
IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 6, 15 MARCH 2023 4735
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Abstract—For an intelligent transportation system, multiple
object tracking (MOT) is more challenging from the traditional
static surveillance camera to mobile devices of the Internet of
Things (IoT). To cope with this problem, previous works always
rely on additional information from multivision, various sen-
sors, or precalibration. Only based on a monocular camera, we
propose a hybrid motion model to improve the tracking accu-
racy in mobile devices. First, the model evaluates camera motion
hypotheses by measuring optical flow similarity and transition
smoothness to perform robust camera trajectory estimation.
Second, along the camera trajectory, smooth dynamic projection
is used to map objects from image to world coordinate. Third,
to deal with trajectory motion inconsistency, which is caused by
occlusion and interaction of long time interval, tracklet motion is
described by the multimode motion filter for adaptive modeling.
Fourth, in tracklets association, we propose a spatiotemporal
evaluation mechanism, which achieves higher discriminability
in motion measurement. Experiments on MOT15, MOT17, and
KITTI benchmarks show that our proposed method improves the
trajectory accuracy, especially in mobile devices and our method
achieves competitive results over other state-of-the-art methods.

Index Terms—Hybrid motion model, mobile devices, multiple
object tracking (MOT), tracking by tracklet.

I. INTRODUCTION

MULTIPLE object tracking (MOT) plays an important
role in many fields related to the Internet of Things
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(IoT) [1], such as intelligent transportation, video surveil-
lance, etc. With the development of mobile devices, videos
from automobile, UAV, robot, and mobile phone offer more
data and bring greater challenges for MOT. In this article,
we address the motion modeling problem of MOT in mobile
devices. It is difficult to measure and predict object motion
without additional sensor or precalibration.

Recently, remarkable progress has been achieved in object
detection [2], [3], [4], which promotes the popular tracking-
by-detection paradigm for MOT. Despite the high accu-
racy of detectors, false and missing detections still have
impacts. To solve this problem, trackers [5], [6], [7], [8]
are proposed to generate tracklets (short trajectories) with
high confidence to reduce false positives (FPs) in detec-
tions. By tracking the objects as detections or tracklets,
the key problem is to correctly associate objects among
multiple frames. To find the optimal association, many suc-
cessful algorithms are proposed, e.g., min-cost flow [9],
conditional random field [10], [11], [12], multiple hypoth-
esis tracking (MHT) [13], etc. The associations are built
based on affinity measurement, which consider appear-
ance consistency and motion prediction. In crowded sce-
narios, the lower similarity discrimination caused by illu-
mination and pose changes makes appearance unreliable.
Therefore, motion information is applied as another basis of
association.

In the traditional surveillance system, cameras are assumed
to be static, where motion information can be obtained intu-
itively through image coordinates. However, under mobile
devices, the relative movement between the object and cam-
era leads to great changes in image coordinates. The MOT
system on the mobile device will have additional difficulty.
For instance, as shown in Fig. 1, the object in the red box is
almost in sync with the camera, so that its image coordinates
change little. On the contrary, both the size and image coordi-
nates of the blue one vary greatly. Our proposed model uses
world coordinates, which eliminates the interference caused by
mobile devices. As shown in Fig. 1(d), the movement of two
objects has a similar pattern except for the opposite direction.
This phenomenon makes it difficult to build a unified motion
model by image coordinates. Therefore, associating with world
coordinates is effective to measure object motion in mobile
devices. In Fig. 1(c) and (d), the black-dashed arrow indicates
the length between the beginning of two objects in the ver-
tical direction. In the world coordinate, there is a significant
distance between two objects while their image coordinates
are highly similar instead. As a result, spatial constraints
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Fig. 1. (a) and (b) Detections of two pedestrians, colored in blue and red,
with an interval of 2 s (frames 803–831). (c) and (d) Image coordinates and
world coordinates (top view) change of two objects, respectively, where the
moving direction is indicated by the arrow.

are sensitive when using the image coordinate, but the algo-
rithm using world coordinates can detect and track objects
more accurately. Consequently, it is necessary to construct a
motion model with the world coordinate for MOT in mobile
devices.

When tracking in mobile devices, acquiring the world
coordinates of the objects always rely on multivision, depth
sensors, radar, etc., which brings extra hardware and com-
puting expenses. Considering that image coordinate take
the camera as reference, camera trajectory can be used to
compute the ground position of the objects indirectly. To
obtain the camera trajectory, many motion-position estima-
tion methods [14], [15], [16] are proposed. However, these
approaches are not designed for MOT and unsuitable for locat-
ing the camera from the monocular system without additional
information (e.g., location from GPS and depth from RGB-D
sensor). In addition, a large number of moving objects in the
video sequences bring difficulties for point matching between
frames.

In this article, we propose a hybrid motion model to address
the challenges posed by mobile devices in MOT. Due to dif-
ferent moving directions relative to camera devices, there are
great changes in motion states of similar objects, which are
amplified by the motion of the devices. Therefore, it is diffi-
cult for the MOT system to establish a unified motion model.
To solve this problem, the existing MOT methods often rely
on additional information, including multicamera, sensors, cal-
ibration, etc. These bring more hardware requirements and
computational burdens. In a monocular uncalibrated system,
our proposed method make full use of the information (back-
ground, detections, and horizon) in the video scene to estimate
the camera trajectory, and realize the mapping of the objects
from the image to the world coordinates along the camera tra-
jectory. We use the geometric perspective with horizon line to
simplify the calculation and reduce error in visual mapping.

Furthermore, the high confidence tracklets for association is
generated by the ground position and height of objects.

Multiobject tracking in the world coordinate can not only
avoid the influence of motion devices but also increase the
discrimination of motion measurement. The change of motion
state between adjacent tracklets is approximately station-
ary, but is usually nonstationary between tracklets with long
interval. In this case, the incompatibility motion state of track-
lets leads to inconsistent measurement and prediction by a
single motion model. To solve this problem, multimode motion
filter (MMF) is proposed to estimate motion of adjacent
and long spaced tracklets. MMF establishes prediction and
error estimation for different motion modes. Meanwhile, we
proposed a spatiotemporal evaluation mechanism (STEM) to
evaluate the similarity of tracklets by motion metrics in MMF
and appearance feature.

On MOT15, MOT17, and KITTI benchmarks, experiments
demonstrate the higher tracking accuracy. As shown in the
leaderboard, our method is competitive with other state-of-
the-art trackers.

In summary, the main contributions of this article are
summarized as follows.

1) To solve the problem of object motion modeling under
mobile devices, we propose a hybrid motion model
based on world coordinates using scene information.

2) To adapt to the monocular uncalibrated system and
reduce the computational complexity of projection, we
propose smooth dynamic projection for object coor-
dinate mapping according to the perspective of the
imaging system with horizon.

3) To solve incompatibility between adjacent and long
spaced tracklets, MMF is established for the adaptability
of modeling.

4) To provide accurate affinity measurement in the track-
lets association, STEM is proposed with error variance
estimator of motion.

The remainder of this article is organized as follows. Related
work is discussed in Section II. The hybrid motion model for
mobile devices is presented in Section III. MHT based on the
hybrid motion model is described in Section IV. The experi-
mental results are shown and analyzed in Section V followed
by the conclusion in Section VI.

II. RELATED WORK

In this section, we analyze the merits and weaknesses of
recent tracking methods, especially in the mobile devices.

A. Tracking-by-Detection

With preprovided detection, MOT methods focus on
data association algorithms, which are divided into online
and batch, according to whether the information of sub-
sequent frames is considered. Online methods [17], [18],
[19], [20], [21], [22], [23] meet the needs of real-
time processing without the subsequent information, but
sacrifice the trajectory integrity. Most of these meth-
ods [17], [18], [19], [20], [21], [22] focus on the improve-
ment of detector through spatiotemporal affinity, but relies on
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redetection in tracking. Stadler and Beyerer [23] solved the
occlusion problem through heuristic trajectory management.
Zhang et al. [24] proposed a multiplex labeling graph for
near-online tracking in intelligent devices. The batch methods
utilize global information to achieve higher tracking accuracy
at the expense of speed. Methods proposed in [25] and [26]
solve MOT by lifted disjoint paths model which is conducive
to global optimization. Graph network is naturally suitable for
modeling MOT problems. With the development of the graph
neural network (GNN), some GNN-based methods [27], [28]
are proposed recently for further association.

MHT is one of the earliest successful methods proposed
in [29]. The main idea of MHT is to establish a hypothesis tree
for all possible association nodes, then evaluate and solve the
global hypothesis. In the case of dense objects in long video,
this strategy has the disadvantage of large time and space
costs. To overcome this defect, the hypothesis decision is trans-
formed into maximum-weight-independent set (MWIS) [30],
and Sheng et al. [7] proposed a category transfer model for
further efficiency optimization. To apply the method to mobile
devices, we incorporate pruning and gating strategies and use
sliding window. The hypotheses are significantly reduced to
make the algorithm achieve near-online performance.

To improve the accuracy of tracking, some methods use
tracklets as association units instead of detections. In [5], [6],
[7], [8], and [31], the tracklets are generated from detection
for association. By reducing detection errors and improving
the reliability of association, tracking-by-tracklet has achieved
success. Therefore, we use tracklet-level MHT (TLMHT)
proposed in [7] as the baseline to implement our method.

B. Tracking in Mobile Devices

Tracking multiple objects in mobile devices is a complex
problem involving many vision techniques. Solutions can be
divided into three categories according to the vision sensor.
First, the vision matching is established by the multiple cam-
eras with preacquired location or calibration. In [32], [33],
[34], [35], and [36], pairing of stereo camera is used to track
objects. Stereo cameras provide additional information to esti-
mate camera motion and restore the world coordinates of the
objects. Second, 3-D reconstruction can be obtained to detect
and track objects if the depths are provided. In [37], [38], [39],
and [40], RGB-D data or laser points provide the basis for
segmentation and detection of the object, and then the global
motion of the object can be estimated by depth change. These
methods depend on depth sensor, and need much computa-
tion in complex scenes with variety motion. Third, in the case
of monocular visual, precalibration with assumptions, GPS, or
odometry are used to estimate camera trajectory. Ess et al. [41]
established a basic paradigm to track multiple objects in
mobile platform. Wojek et al. [42] focused on 3-D scene under-
standing for traffic scenes. Then, Choi et al. [43] proposed
a general framework by integrating the tracking method in
mobile devices. However, calibration is still required and
the camera speed is assumed to be constant. Some meth-
ods [44], [45] are designed with lower computation expenses
for tracking on UAVs. Gao et al. [16] used odometry in

mobile phone to track vehicle in GPS blocked environments. In
cope with dense scenes, these methods rely on additional sen-
sor information and lack of adaptability for complex motion
interaction. On the contrary, we propose a hybrid motion
model with minimum requirement and assumptions to achieve
competitive results in the latest benchmarks.

C. Motion Estimation

In terms of visual odometry, many successful methods are
proposed in the SLAM field. The method proposed in [15]
is based on the RDB-D sensor, and the other [14] calibrates
the monocular vision system precisely. Without additional
information, our method is initialized with the detection
information and suitable for MOT application. For motion seg-
mentation, Liu et al. [46] and Shen et al. [47] used optical flow
to acquire point trajectories for segmentation, which inspired
us to make background segmentation under mobile devices.

The motion model based on the filter has achieved success
by considering multiple errors. The Kalman filter is proposed
early in [48] and provides a basic framework. However, a
single-motion model is not adapted to deal with unpredictable
motion changes. To model multiple modes, Bar-Shalom [49]
used multiple Kalman Filters with different transition matri-
ces. Genovesio et al. [50] established a probability model to
measure the switching between modes. Recently, LSTM-based
motion estimation [8] is proposed with neural network, while
rely on specialized training step. Inspired by [50], we sim-
plify the model representation and give the STEM for MOT
problem.

III. HYBRID MOTION MODEL FOR MOBILE DEVICES

In this section, we integrate the camera motion of the mobile
device, the camera-object motion projection, and the different
motion modes of objects into hybrid motion model.

A. Model Overview

In order to detect and track multiple objects in mobile
devices, the main idea of the hybrid motion model is to use
world coordinates, which are not affected by camera motion.
The world coordinates of an object can be projected from
detections along with the camera trajectory. In this way, cam-
era motion is required as an indirect quantity for coordinates
mapping. As shown in Fig. 2, the model is mainly composed
of three parts as follows.

Camera Motion: Different from methods in [41], [42], [43],
and [51], our model does not require strict assumptions of pre-
calibration or GPS data. Our method only needs to segment
the background according to the optical flow and detections.
To enhance the robustness and reduce error, the camera tra-
jectory is obtained by evaluating and maximizing the motion
probability. As iteration frame by frame, the motion state is
updated to get the camera trajectory.

Camera-Object Motion: With camera trajectory, each object
is mapped from image to world coordinate by smooth dynamic
projection. Since both the objects and the camera are moving,
the mapping method based on point matching is not feasible.
To adapt to the dynamic change of object and camera, the
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Fig. 2. Structure of Hybrid Motion Model. First, for camera motion, with segmented background, the camera trajectory is obtained by maximizing probability
of motion hypotheses (Section III-B). Second, for camera-object motion, the objects are projected to the world coordinate by smooth dynamic projection in
Section III-C. Third, for object motion, with tracklets generated by in Section IV-A, the motion of adjacent and long spaced tracklets are modeled by MMF
(Section III-D) and candidate hypotheses are solved with STEM (Section IV-B).

TABLE I
NOTATION

projection is established by taking the horizon as reference.
In the projection, the heights of the camera and object are
smoothed by information in previous frames. Besides, only the
focal length is required to obtain the position of each object
in the world coordinate.

Object Motion: In motion modeling, after tracklet genera-
tion, it is inconsistent to measure and predict motion state by
same parameters due to missing detection and long intervals
between tracklets. To solve this problem, MMF is proposed for
adjacent and long spaced associations. With motion prediction
and spatiogating by MMF, we propose STEM to evaluate
hypotheses in the MHT framework.

To clarify the meaning of the equation in this article, styles
of notation are used as summarized in Table I.

B. Camera Motion Estimation

In the first step of the hybrid motion model, camera motion
estimation provides camera trajectory for world coordinate
mapping. The basic geometric matching is initialized to obtain
reliable feature points by finding the static background in
adjacent frames.

Given set Pt−1 and Pt be the feature points [52] between
frame t−1 to t. Then, the initial Translation (Tt) and Rotation
(Rt) of camera at frame t is obtained by eight-point algo-
rithm. In order to eliminate the noise caused by mismatching,
RANSAC [53] is used in iterations to minimize the cost
function

argmin

⎛
⎝ 1

|Pt|
|Pt|∑
i=1

Dsp
(
P

i
t−1,P

i
t; F∗

t

)
⎞
⎠ (1)

where F∗
t is the estimated fundamental matrix from randomly

selected pairs from Pt in each iteration and Dsp compute
Sampson distance of each pair (Pi

t−1,P
i
t).

The continuous pairing process often brings accumula-
tion and estimation errors. To reduce these errors, the video
sequence is divided by the sliding window, where camera
motion hypotheses are proposed with different samples of
frames, pairing points and parameters. To obtain the optimal
trajectory, camera motion hypothesis in each video segment is
measured by the probability function

P i
t = P(Ft|Ct)︸ ︷︷ ︸

a

P
(

Hi
t |Hi+1

t

)
︸ ︷︷ ︸

b

P(Ct|Ct−1)︸ ︷︷ ︸
c

(2)

where (2)(a) is the flow similarity Ft at time t of camera
state set Ct. It controls the flow change caused by camera
moving. Equation (2)(b) is the hypothesis probability updated
from Hi

t to Hi+1
t at time t, modeling the association between

camera motion hypothesis. Equation (2)(c) represents the tran-
sition which controls the smoothness of camera movements in
state set Ct between time t − 1 to t. Through the iterative
process, the probability of motion hypothesis is maximized,
which represent the optimal motion estimation.
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1) Initialization for Estimation: Before hypothesis eval-
uation, it needs to initialize the background segmentation
and estimate the focal length. Static area in background is
overlapped in video fragments to meet the point matching
requirement. In MOT applications, images are generally full of
various objects with complex interaction. Considering detec-
tions describe the position of objects, a cluster model to
segment background is trained by the pixel sample and optical
flow.

In a pixel sample, the real-time superpixel segmentation [54]
is used to form the training set Tv with label l

Tv = {(Ci, l)|i = 1:n}, l =
{

0, otherwise
1, if l ∈ DHconf

(3)

where Ci represents the color feature of superpixel i from the
video and DHconf represents the detection set of each video
with confidence higher than threshold θ1 from raw detections.
Then, we train a Linear SVM with Tv to provide cluster score
Sclu for all superpixels.

Second, optical flow [55] is used as local motion
information. In the static background, the optical flow field
is nearly a smooth surface in velocity space. However, object
motion is inconsistent with the static background. To measure
the background probability, the distance score Sdis is obtained
by distance between object optical flow and background
optical flow (Sdis is mapped from 0 to 1).

Based on the fusion of Sclu and Sdis, the measurement func-
tion M is formulated with weight parameter θ2 to extract the
static surface from the background in each video

M(Sclu, Sdis, θ2) = θ2 · Sclu + (1 − θ2) · Sdis. (4)

In camera motion estimation and objects projection, the
focal length is an essential parameter. The matching xt−1 ∼
Mxt between point pairs (xt−1, xt) is used to estimate the focal
length. Camera position change between adjacent frames is
approximated to rotating around the center of the background
without translation. Also, the radial distortion is ignored in
practice, therefore the mapping is expressed as

M = KRt−1⇒tK−1 (5)

where K is the internal parameter matrix of camera
and Rt−1⇒t represents rotation matrix between point pairs
(xt−1, xt). For simplicity of notation, the pixel center is defined
as the image center (cx = cy = 0). Thus, (5) is expanded

⎡
⎣

m0 m1 m2
m3 m4 m5
m6 m7 m8

⎤
⎦ ∼

⎡
⎣

r00 r01 r02f
r10 r11 r12f

r20/f r21/f r22

⎤
⎦ (6)

where Rt−1⇒t = [rij]. The first two rows (or columns) of
Rt−1⇒t must have the same norm and be orthogonal (even
if the matrix is scaled). From this, the focal length can be
obtained by solving the equation

f 2 = m2
5 − m2

2

m2
0 + m2

1 − m2
3 − m2

4

, if m2
0 + m2

1 �= m2
3 + m2

4 (7)

or

f 2 = − m5m2

m0m3 + m1m4
, if m0m3 �= −m1m4. (8)

2) Motion Hypothesis Measurement and Updating: To
evaluate the motion hypothesis of the camera, flow similar-
ity is measured by camera movement from frame t − 1 to t
and is computed in terms of optical flow φ. The predicted opti-
cal flow φCt at frame t is obtained by the camera translation
matrix Tt and the current camera state Ct (including the focal
length and other parameters). The equation of flow similarity
P(Ft|Ct) is formulated as follows:

P(Ft|Ct) = 1

|P∗|
|P∗|∑
i=1

⎛
⎝ 1√

D(
φ, φCt

) + 1

⎞
⎠ (9)

where P
∗ is the selected set of pairing points and D calculates

the difference of flow displacement.
In the probability function, transition smoothness measures

the stability of camera motion from frame t − 1 to t. Different
from the assumption in [43] that the camera speed is con-
stant in the whole video, our model allows speed changes
dynamically. The speed of the camera has a limited mathe-
matical expectation and the acceleration is relatively stable.
Therefore, the transition motion of the camera is modeled as
normal distribution to control smoothness

P(Ct|Ct−1) = N
(

(Tt−1 × st)(e) + �Tt(e)
e

, 1

)

�Tt = (Tt−1 × st) − (Tt−2 × st) (10)

where st is the scale factor of the transition. The scale factor is
computed by the displacement of matching points on the axis
with the maximum camera movement. Here, e donates the
axis of maximum movement and �Tt represents the velocity
of camera transition.

The parameters, pairing points, and frames in each win-
dow are selected to propose different hypotheses. In order to
maximize the probability of the motion hypothesis, we imple-
ment the iteration to get the solutions. The hypothesis from
Hi

t to Hi+1
t is accept with maximum Pt.

In camera position update, the model tends to adopt con-
servative estimation which indicates that the position of the
camera tends to be stable. Therefore, P(Hi

t |Hi+1
t ) is assumed

as a normal distribution P(Hi
t |Hi+1

t ) = N (Hi
t, 1), where the

hypothesis can be modeled using the current camera position
Hi

t . The update strategy evaluates the probability according
to (2). The motion hypothesis with higher flow similarity
and translation stability is retained. With sliding window, the
camera trajectory is estimated for world coordinate projection.

C. Smooth Dynamic Projection

In the second step of the hybrid motion model, the objects
are mapped from image to world coordinate by smooth
dynamic projection. In order to make the projection more
robust and practical, we consider change of camera height hc

and rotation angle of pitch α. The motion of objects and cam-
era is measured in the same plane (ground), basic geometric
perspective with horizon line h is shown in Fig. 3.

In the initial frame, vertical projection of a camera on the
ground is considered as the world coordinate original point
(0, 0, 0). The height of the camera off the ground plane is
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Fig. 3. Geometric perspective of camera and object in smooth dynamic
projection. Notations are described in (11).

hc. With minimal parameters and object world coordinate
(X, Y, Z), smooth dynamic projection can be established as
height relation (a) and coordinate mapping (b)

(a) ht
c = 1

|Dt|
|Dt|∑
i=1

(
ho

hi

(
Ht

h − bi
))

(b) Y = fhc

f sinα − (
cy − y

)
cosα

X = Y
(x − cxcosα)

f
. (11)

As shown in Fig. 3, ho represents the average height of
object in real world. Dt is the detection set at frame t and Ht

h
is the height of horizon in image at time t. For each object
detected in the image, hi and bi are the height and the bottom
of the bounding box, respectively.

Equation 11(b) represent the relationship between world
(X, Y) and image coordinates (x, y) of the object. (cx, cy) is
the center of the image plane. The camera rotation angle of
pitch alpha is computed by

alpha = 2arctan

(
cy − Ht

h

2f

)
. (12)

1) Horizon Height Estimation: According to (11) and
Fig. 3, in most scenarios, the horizon can be used to simplify
calculations. We sample from the train set in experiments to
estimate the horizon height Ht

h1, which follows a normal dis-
tribution with image center height 0.5 × Himage as mean and
scale factor st as variance

Ht
h1 ∼ N (

0.5 · Himage, ||st||
)
. (13)

By detecting vanishing points [56] at lines parallel to the
horizon, the position of the horizon is obtained for projection.
The set of vanishing points V = {(xv, yv, cv)1:vn} with confi-
dence cv can be obtained. In order to reduce the interference
caused by the lines not parallel to the ground, horizon height
H2

h2 is modeled by the set of vanishing points V as normal
distribution

Ht
h2 ∼ N

(
ymax(cv)

v , 1
)
. (14)

With (13) and (14), we combine horizon estimation and
vanishing point to get the aggregated horizon height Ht

h3:

Ht
h3 = ||st||Ht

h1 + Ht
h2

||st|| + 1
(15)

2) Update and Smooth: In each tracking window, the
information in previous frames can be used to update and
smooth the estimation in the current frame. For Ht−1

h of the
previous frame and the current horizon height Ht

h

Ht
h = (1 − ||st||)Ht−1

h + ||st||Ht
h3. (16)

The camera height in previous frame ht−1
c is used to get

smoothed camera height ht
c∗

ht
c∗ = (1 − ||st||)ht−1

c + ||st||ht
c (17)

where ht
c is computed by (11)(a) and (16). Both the camera

and object height are smoothed with the scale factor and the
world coordinates of each object are obtained according to the
projection (11).

D. Multimode Motion Filter

In the third step of the hybrid motion model, the object
motion is modeled by MMF with different motion param-
eters. The motion state vector of the object is expressed
as xt = (xt, yt, zt, vxt, vyt, vzt)

T at frame t with coordinate
(xt, yt, zt) and speed (vxt, vyt, vzt) in 3-D. In practice, it is con-
sidered that all objects move in the same plane (z = 0), so
the following descriptions are in 2-D form to simplify the
equation.

For the MOT problem, tracklets are often break with frag-
ments due to missing detection and occlusion. When the
interval between tracklets is short, the speed of the object is
not change dramatically, so the prediction of the motion model
can achieve high accuracy. However, after a long interval, the
same motion model is often unable to predict the location of
the object due to the uncertainty movement. Therefore, we
divide the motion of the object into two modes: 1) continuous
and 2) discontinuous. In the continuous mode, the tracklets
are connected with adjacent association and the motion state
is relatively stable. In the discontinuous mode, the interval
between tracklets obviously affect the state of movement.

In order to model two different motion modes and adapt
to the disturbance of the mobile devices. State prediction
and measurement of object motion based on multiple Kalman
filters are defined as follows:

xt+1 = Fmixt + wmi
t+1 (18)

zt+1 = Hmi xt+1 + vmi
t+1 (19)

where mi ∈ M with i ∈ {0 : n} represent successive mode with
frame set T ∈ {T1 : Tn} identifying the beginnings and ends of
the modes. The matrix H is matrix of observation zt. Vectors
wt and vt represent the model noise and the measurement
noise, respectively. The transition matrix F is associated to
the mode mi, which defines the motion mode by the filter.
Specifically, the transition matrices of continuous mode (F1)

and discontinuous mode (F2) are defined as

F1 =

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, F2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (20)
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where F1 models uniform linear motion and F2 remain the
transmission of the speed vector v(vxt, vyt) in the estimation
of the state parameter. For a discontinuous motion filter, v is
ignored if the estimated gain is low.

With (18) and (19), each possible mode sequence for M is
considered to filter the state parameter optimally. To reduce
the cost of parameterization calculation, the possible mode at
frame t without approximation is described as

P(xt+1, z1:t+1) = P
(
xt+1, zTi:t+1

)

∝
∑

mi∈M
P
(
xt+1|zTi:t+1, mi

)
P
(
mi|zTi:t+1

)
(21)

where P(xt+1|zTi:t+1, mi) is assumed to follow a normal dis-
tribution N (x̂mi

t+1, P̂
mi

t+1), where xmi
t+1 is mode conditional mean

and Pmi
t+1 is the covariance matrix. Ti represents the start

time of the current motion mode. The conditional probability
according to the multiple motion filter is given as follows:

P
(
xt+1|zTi:t+1, mi

)

= P(zt+1|xt+1, mi)

P
(
zt+1|zTi:t, mi

) P
(
xt+1|zTi:t, mi

)

= P(zt+1|xt+1, mi)

P
(
zt+1|zTi:t, mi

)
∫

P(xt+1|xt, mi)P
(
xt|zTi:t, mi

)
dxt. (22)

According to the consistency of observations and
predictions, the uniform assumption of motion mode is
given

x̂t = x̂m∗
t and P̂t = P̂

m∗
t (23)

where m∗ is the motion mode with the most probability.
The parameters of different motion modes are mixed to

predict and update the object motion, and the association cycle
of multi Kalman filter is given as

predict : x̄mi
t+1 = Fmi x̂mi

t

P̄
mi
t+1 = Fmi P̂

mi

t Fmi� + Qmi
t (24)

where Qmi
t and Rt are the white noise covariance matrices of

model noise w and the measurement noise v.

update : Kmi
t+1 = P̄

mi
t+1Hmi�

Hmi P̄
mi
t+1Hmi� + Rt+1

P̂
mi

t+1 = (
I − Kmi

t+1Hmi
)
P̄

mi
t+1

x̂mi
t+1 = x̄mi

t+1 + Kmi
t+1

(
zt+1 − Hmi x̄mi

t+1

)
(25)

where Kmi
t+1 is adaptive Kalman gain, and I represents the

identity matrix measured innovation. Then, in (21), the mode
probability P(mi|zTi:t+1) is derived as

P
(
mi|zTi:t+1

) ∝ P
(
zt+1|zTi:t, mi

)
P
(
mi|zTi:t

)
(26)

where

P
(
zt+1|zTi:t, mi

) ∼ N
(

Hx̄mi
t+1, HP̄

mi
t+1H� + R̄

mi
t

)
. (27)

In the process of object motion estimation, if the next
measurement contradicts the uniform assumption (23), the fil-
ter mode switches. To detect mode switches in tracking, the
transport between two modes is measured as

argmaxP
(
zt+1|zTi:t, mi

) �= argmaxP
(
mi|zTi:t

)
. (28)

According to (28), the model switches between the two
modes is detect. Each filter is reinitialized with the previous
measurement parameters. However, in the Discontinuous
mode, the object motion state may experience an irregular
change. Therefore, we use a smooth strategy fuses two inde-
pendent filtering processes, which are forward and backward
in temporal order to solve this problem. In this way, the
parameter differences between the two modes are balanced.

IV. MULTIPLE HYPOTHESIS TRACKING BASED ON

HYBRID MOTION MODEL

In this section, we implement a hybrid motion model in
the MHT framework to solve the MOT problem. MHT estab-
lishes hypothesis trees for all possible tracklet associations,
where motion of nodes is measured by the proposed model.
Considering that confidence of tracklets has a great influ-
ence on tracking accuracy, world coordinates with height
information is used to generate high confidence tracklets. To
select and evaluate candidate tracklets for hypothesis updating
and solving, STEM is proposed based on motion measurement
in the model.

The tracking framework can be summarized into three steps.
1) Tracklet Generation: With world coordinates and height

information provided by smooth dynamic projection, the
false detections are filtered to generate high confidence
tracklets.

2) Hypothesis Updating: From the initial tracklet, MHT
maintain hypothesis trees that contains all possible asso-
ciations. The probability of each branch in hypothesis
tree is measured by STEM.

3) Hypothesis Solving: To avoid the exponential growth of
hypotheses, the N-Scan pruning proposed in [13] is used
to set a time window at size N. Then, the data association
is formulated as MWIS to get objects trajectories. We
solve MWIS by category transfer model proposed in [7].

A. Tracklet Generation by Smooth Dynamic Projection

The scale relationship between each object and the scene
are estimated by mapping between image and world coordi-
nates. This height information can be used to further filter
error detection and generate more accurate tracklets.

Given the detection set Dt = {d1:k} at frame t. FPs in Dt

can be filtered before generating tracklets. Note that all objects
are assumed to move on the ground, the bottom bi of di ∈ Dt

is considered below the horizon estimated in Section III-C.
Therefore, the detection confidence cdi is modified by

cdi = hi

bi + hi − Ht
h

× cdi , if Ht
h ≤ bi (29)

and the height hi of object i should obey the normal distri-
bution hi ∼ N (ĥi, 0.5) under perspective, where the expected
mean height ĥi is estimated by

ĥi = ho
(
Ht

h − bi
)

hc
(30)

where detections with height probability less than threshold θ3
are filtered.
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In tracklets generation, the K-partite graph is modeled for
detection set Dk1:k2 from frame k1 to k2 in windows k. Different
from TLMHT [7], we only use world coordinates to generate
high-confidence tracklets for near-online tracking. In this way,
the K-partite graph is defined as follows.

1) Node Set N: In initialization, N only includes detections.
In subsequent iterations, N contains the tracklets left by
the previous matching window, which length is less than
threshold θ4.

2) Edge Set E: Except the edge between the detection, also
contain the edge between the tracklets and the detection.

3) Weight Set W: Represent the similarity of nodes between
edges, measured by appearance feature and motion state.

The Weight includes motion measurement using
world coordinates (X, Y) can be expressed as
wmot,ij = ||(Xi, Yi), (Xj, Yj)||2. Each graph is associated
with a score set and weight set. Scores serve as cost
coefficients in the various discrete optimization formulations
used to rank solutions. The solution of the graph can be
solved by linear programming proposed in [8] to find the
maximum sum of all weights. By solving the K-partite graph,
tracklets are generated as the nodes of MHT. In addition,
we propose an improvement to incorporate the remaining
individual detection into the node to improve the recall of
tracking method.

B. STEM for Hypothesis Updating and Solving

In hypothesis updating, MHT maintains possible tracklets
in each window. Existing hypotheses are updated to link all
candidate nodes of tracklets. The evaluation of the branch
in hypothesis tree determines the effect of tracking method.
Based on the hybrid motion model, the object motion change
is used to calculate the weight score of edge.

The edge between adjacent tracklets is considered to rep-
resent continuous motion mode, and the edge between long
spaced tracklets belongs to discontinuous motion mode. Here,
MMF is used to measure the object motion and predict the
mode switch. Due to the false and missing detection, if the
tracklets are mismatched in spatial area, a dummy node is pre-
dicted according to the object motion model of discontinuous
mode by (24).

In order to improve the recall and precision of association
in mobile devices, we propose a STEM based on variance
estimator. The count of prediction errors at time t is C(e)mi

t
with current mode mi. The parameters are estimated by

C(e)mi
t+1 = C(e)mi

t + 1

ēt = Kmi
t

(
zt − Hx̄mi

t
)

dmi
t+1 = dmi

t + ēt+1 − dmi
t

C(e)mi
t+1

Mmi
t+1 = Mmi

t + (
ēt+1 − dmi

t+1

)�(
ēt+1 − dmi

t+1

)
(31)

where ēt is average error at time t, dmi
t+1 represent mean devi-

ation of ēt and Mmi
t+1 is square matrix of dmi

t+1. Thus, the
covariance matrix is estimated as

Ct = Mt

C(e)t
. (32)

Following the iteration of (31) and (32), the basic spatial
gating can be estimated by a normal distribution with current
state and covariance matrix. When object motion switched
to discontinuous mode, the optimal association always out
of the estimated space range. To deal with this problem, the
covariance matrix is reinitialized based on the mode switch.
The parameters are reset to initial value (C(e)0, d0, M0) when
detect that the object motion is switched to the discontinuous
mode. To get a robust result in spatial gating prediction, a
similar smoothing method as [57] is implemented in iteration.

In hypothesis solving, the logarithm-likelihood ratio is used
to measure the motion similarity between hypotheses. The
object location probability P is measured by normal distri-
bution N (x̄mi

t+1, ||Qmi
t ||) with x̄mi

t+1 and Qmi
t predicted by (24)

in Section III-D. For null hypothesis φ which indicates false
association, the probability P(Lt ∈ φ) = 1/Â, where Â repre-
sents the estimated area of world coordinate. The motion score
for hypothesis branch L at time t is defined as

S t
mot = ln

(
P(L1:t ∈ H)

P(L1:t ∈ φ)

)

= ln

(∏
1:t P(Lt|Lt−1 ∈ H)∏

1:t P(Lt ∈ φ)

)
(33)

where H means association nodes belongs to the same object.
Accordingly, the aggregated score S∗ of hypothesis H = l1:k

is defined as

S∗ =
⎛
⎝

k∑
i=1

cdi; (1 − θ5)Sk
mot + θ5

k−1∑
j=1

Sapp
(
lj, lj+1

)
⎞
⎠ (34)

where cdi is confidence of each detection in tracklet l and θ5
is the weight for motion and appearance score computed by
adaptive method proposed in [58]. The appearance features of
tracklets are represented by linear mean of detections feature
extracted by the real-time Re-Id network [59]. The score Sapp
is cosine distance of tracklet feature: wapp,ij = cos(appi, appj).
By measuring similarity scores, the associations are solved as
baseline [7] to get trajectories for all objects.

V. EXPERIMENTS

In this section, we first introduce data sets and evalua-
tion metrics. Then, parameters are shown with visual analysis.
To verify the effects of our method, we performed compo-
nent analysis and compared it with various methods. Through
ablation experiments, each component is evaluated in quan-
tization. For general results, our method is compared with
state-of-the-art in MOT and KITTI data sets.

A. Data Sets and Metrics

We evaluate the performance of our method on MOT15 [60],
MOT17 [61] and KITTI [62] data sets, which are widely used to
evaluate MOT performance based on the tracking-by-detection
paradigm. The MOT15 data set consists of 22 video sequences
divided into 11 training sets and 11 testing sets and the MOT17
data set consists of 14 video sequences divided into seven
training sets and seven testing sets. In MOT15 and MOT17,
videos are filmed with different lighting conditions, shooting
angles, and density in both static camera and mobile devices
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Fig. 4. Visual results of camera trajectory in MOT17-05 sequence and visual comparison between MPNTrack [27], Lif_T [25], and the proposed method in
MOT17-14 sequence. The red arrow indicates the lost objects and the green arrow indicates the tracked objects.

provided with public detection, the evaluation focused on the
performance of tracking algorithms. Besides, in MOT17, detec-
tions of each video are obtained by three detectors proposed
in [2], [3], and [4] to balance the impact of different detectors.
In the KITTI data set, videos are captured by a vehicle-mounted
camera without public detections, and provides camera calibra-
tion, stereo view, laser points, and GPS data, which supports
a variety of 3-D tracking methods.

The evaluation metrics include CLEAR MOT metrics [63],
identity switches (ID Sw.) [64], IDF1 score [65], and higher
order tracking accuracy (HOTA) [66]. The MOT accuracy
(MOTA) shows the comprehensive MOT performance by com-
bining three error sources: 1) ID Sw.; 2) FPs; and 3) missed
objects (FN). The IDF1 is ratio of correctly identified detec-
tions over the average number of ground-truth and computed
detections. The HOTA is geometric mean of detection accu-
racy and association accuracy. Averaged across localization
thresholds. MT and ML are ratio of the mostly tracked (80%
tracked) and the mostly lost (80% lost) objects. Frag is the
total number of times a trajectory is fragmented.

B. Parameters and Visual Analysis

In this section, we analyze the parameters of the method.
In addition, selected tracking visualization results are shown
in Fig. 4.

Parameters: Threshold θ1 is used to select detections for
background segmentation in Section III. By evaluating the
detection quality in the train set, θ1 is set to 0.9 consider-
ing that most correct detections have the confidence higher
than this threshold. In Sections III-C and IV-A, the average
height of the object in real world h0 is fixed to 1.7 m, which
represents the mean height of pedestrians.

(a) (b)

(d)(c)

Fig. 5. Impact of each parameter on MOTA of our method in MOT17 and
KITTI data sets. (a) Segmentation weight. (b) Height threshold. (c) Tracklet
length. (d) N Ratio of framerate.

As shown in Fig. 5, we evaluated the effects of θ2, θ3,
θ4, and NRatio on MOTA in MOT17 and KITTI data sets.
Because the parameters are relatively independent, when eval-
uating one parameter, other parameters are fixed as the optimal
setting. Weight parameter θ2 for background segmentation is
set to 0.55 to balance the best MOTA performance on MOT17
and KITTI data sets. When θ3 is set to 0.3, i.e., the detection
with height estimation range (1.45, 1.95) is retained, MOTA of
each data set achieves the highest value of 56.6% and 85.2%.
With the increase of θ3, more reliable detections are filtered
out, so the value of MOTA drops rapidly. In Section IV-A,
to balance the tracklet length and computational efficiency,
the maximum length of tracklet θ4 is set to 5 as used in the
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Fig. 6. Background segmentation for MOT17-12 sequence at frame
511. (a) Original image. (b) Segment (cluster). (c) Segment (optical flow).
(d) Segment (fusion).

baseline method [7]. N determines the compute window in
hypothesis solving, which is related to the rate of the object
state change with time. Thus, we measure N according to
the percentage NRatio of framerate. When NRatio is set to
50%–70%, MOTA of each data set achieves the highest value.
Due to the complexity of algorithm, the memory cost and com-
puting time increase exponentially with the increase of N. So,
we set NRatio to 50% to get the balance between efficiency
and space-time cost.

In summary, to get the best result, we use the parameters
setting in the following experiments:

θ1 = 0.9, θ2 = 0.55, θ3 = 0.3, θ4 = 5

h0 = 1.7, N Ratio = 0.5.

Visual Qualitative Analysis: In terms of background seg-
mentation, qualitative results are shown in Fig. 6. Darker areas
in Fig. 6(b) have higher background scores by cluster measure-
ment. Using the color features of the detection as the training
set, the cluster method is more sensitive to the color. However,
it fails when the object color is close to the cluster center. As
the result shown in Fig. 6(b), the pants of the man in the
middle is not distinguished. In Fig. 6(c), the distance of pixel
velocity to the optical flow is shown in different colors. The
pixels with higher distance are painted red (the person on the
right side), and the pixels with lower distance are painted blue.
Distance measurement based on optical flow is more sensitive
to motion difference, while it fails when the objects move syn-
chronously with the background. By combining both cluster
and distance scores, more accurate fusion result is shown in
Fig. 6(d).

Fig. 4 shows the visual results of the estimated cam-
era trajectory of MOT17-05 sequence and selected frames
in MOT17-14 sequence for visual comparison. As shown in
MOT17-05 sequence, our method accurately restores the posi-
tion of the objects to the world coordinate. As shown by the
arrows in Fig. 4, compared with the MPNTrack [27] and
Lif_T [25], our method can track more objects and keep
continuous tracking in case of occlusion.

TABLE II
COMPARISON OF TRACKLETS GENERATION ON THE MOT17 TRAIN SET

TABLE III
VERIFICATION OF TRACKLET IN THE MOT17 TRAIN SET

TABLE IV
COMPARISON OF MOTION MODEL IN THE MOT17 TRAIN SET

TABLE V
COMPARISON OF MOTION MODEL IN THE KITTI TRAIN SET

C. Effect Analysis for Tracklet Generation and Motion Model

In this section, we analyze the effect of tracklet generation
and motion model with MMF and STEM.

As shown in Table II, Tracklets represents the tracklet gen-
eration method based on smooth dynamic projection. We use
different methods [5], [7], [8] to generate tracklets as input.
Through the height information provided by the projection, the
error detections are filtered and the confidences of detections
are corrected. Therefore, the recall and the ID consistency of
tracklers are both improved for the association. By evalua-
tion on the MOT17 train set, our method achieves the highest
MOTA, IDF1 and HOTA. To further verify the quality of track-
lets in our method, we combine our tracklets into three open
source trackers [19], [20], [21], which are widely used for
online MOT. As shown in Table III, by combining Tracklets,
these methods are all improved in main metrics.

As shown in Tables IV and V, for the motion model, we
compare our proposed method MMF and STEM with four
mainstream motion models [7], [8], [20], [21] on MOT17
and KITTI data sets. Greedy represents distance-based greedy
matching, K represents Kalman filter, IOU represents measure-
ment based on IOU value, G represents threshold-based gating,
and LSTM represents motion prediction network based on
LSTM. By providing prediction probability and error estima-
tion for different motion modes, more tracklets are associated
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TABLE VI
ABLATION STUDY ON DIFFERENT MOVING SEQUENCES IN MOT17 AND KITTI TRAIN SETS

TABLE VII
COMPARISON ON MOVING SEQUENCES IN THE MOT15 TEST SET

TABLE VIII
COMPARISON ON MOVING SEQUENCES IN THE MOT17 TEST SET

with lower FP, FN, and ID Sw., which make our method
achieve better results on MOT17 and KITTI data sets.

D. Ablation Study for Hybrid Motion Model

We evaluated components of our method on moving
sequences in MOT17 and KITTI train sets and the results
are shown in Table VI. ModelT represents only the gener-
ated tracklets are used for tracking. It is noticed that ID Sw.
and Frag of trajectories are significantly reduced with track-
lets generated by our method. Only use STEM in ModelM+S,
FP and FN of each sequence are reduced, which shows that
STEM is effective in tracklets evaluation, rather than achieving
the balance between FP and FN by parameter adjustment. In
ModelM+S, the constraints for tracklets association are stricter,
but ID Sw. and frag of the trajectory do not increase sig-
nificantly. To achieve the best tracking result, ModelT+sM+S
gives a more accurate evaluation so that the integrity of the

same object trajectory is higher, and FN is reduced. At the
same time, the trajectories of different objects are correctly
associated, thus reducing FP. However, compared with other
sequences, the camera trajectory changes greatly in MOT17-
13 sequence, which leads to a slightly lower improvement in
tracking results. The total results show that our method can
effectively improve the accuracy of multiobject tracking in
the video of the handheld mobile camera and vehicle camera.
In addition, the method has good robustness for scenes with
different densities, different weather, and indoor and outdoor
environment.

E. Comparison on Benchmark

To evaluate the overall performance, our method is com-
pared with published state-of-the-art methods on MOT15,
MOT17, and KITTI benchmarks. For a fair comparison,
methods using public detection are compared in the MOT
benchmark and we use the same private detector as [27] to
get a result in the KITTI benchmark.

In moving sequences, as shown in Tables VII and VIII,
our method achieves significant improvement in MOTA, IDF1,
and HOTA among all the methods in MOT15 and MOT17
test sets. By generating tracklets with high confidence and
motion modeling with MMF, hybrid motion model signifi-
cantly improves the ID consistency within and between track-
lets. Furthermore, STEM maintains higher trajectory integrity
without introducing more false associations. Therefore, FN
decreased while FP maintained limited growth, and finally
more accurate trajectories are obtained.

In the overall benchmark result shown in Tables IX–XI,
our method performs with the highest MOTA. By giving
more accurate measurement and prediction for object motion,
our method achieves high trajectory integrity (MT) for video
sequence. Moreover, our tracker also effective for static cam-
era. Without camera motion estimation, the model can directly
use the image coordinate of the object for MMF and use
STEM for tracklet association. In Table XI, in particular,
we choose the tracker using three types of additional sen-
sor data [35], [40], [51]. Compared with these methods, our
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TABLE IX
COMPARISON ON THE MOT15 BENCHMARK

TABLE X
COMPARISON ON THE MOT17 BENCHMARK

TABLE XI
COMPARISON ON THE KITTI BENCHMARK

method only uses monocular video data without calibration
information and obtained better MOT results. The algorithms
used in our method are all designed for quasi-real time system.
Only with the delay of sliding window size and using real-time
detectors, our method can achieve near-online effect for mobile
devices. The benchmark result can also be found in the MOT
Challenge website1 and KITTI Benchmark website.2

VI. CONCLUSION

In this article, a hybrid motion model was proposed to
address the motion modeling problem of MOT in mobile
devices. Through the motion hypothesis evaluation, the camera
motion was estimated for world coordinates projection. Our
method reduces the estimation error and avoid the requirement
of additional information such as calibration. Using horizon
perspective, smooth dynamic projection in the model extracts
the world coordinate, which avoids the interference of camera
motion and results in higher tracking accuracy. Meanwhile,
MMF solves the motion measurement and prediction problem
for different motion modes and it adapts to object motion
estimation under the motion camera. In the tracking frame-
work, STEM provides more accurate affinity measurement
for tracklets. The experimental result showed that our method

1https://motchallenge.net/results/MOT17/
2http://www.cvlibs.net/datasets/kitti/eval_tracking.php

has simple parameter setting and high robustness. A compar-
ison result on MOT and KITTI benchmark demonstrated a
competitive performance over other state-of-the-art methods.
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