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Abstract—The increasing demand for considering multisensor
data fusion technology has drawn attention for precise human
activity recognition (HAR) over standalone technology due to
its reliability and robustness. This article presents a framework
that fuses data from multiple sensing systems and applies neuro-
morphic computing to sense and classify human activities. The
data is collected by utilizing inertial measurement unit (IMU)
sensors, software-defined radios, and radars, and feature extrac-
tion and selection are performed on the data. For each of the
actions, such as sitting and standing, an activity matrix is gener-
ated, which is then fed into a discrete Hopfield neural network
as a binary feature pattern for one-shot learning. Following the
Hopfield network neurons’ feedback output, the conformity to the
standard activity feature pattern is also determined. Following
the Hopfield network neurons’ feedback output, the training of
neurons is completed after two steps under the Hebbian learning
law, and the conformity to the standard activity feature pattern
is also determined. According to the probabilistic statistics on
inference predictions, the proposed method, that is the neuro-
morphic computing of the three data fused framework, achieved
the box plot for the highest lower quartile output of 95.34%, while
the confusion matrix classification accuracy of the two activities
was 98.98%. The results have shown that neuromorphic com-
puting is most capable of multisensor data-fusion-based HAR.
Furthermore, the proposed method can be enhanced by incor-
porating additional hardware signal processing in the system to
enable the flexible integration of human activity data.

Index Terms—Artificial intelligence, data fusion, human activ-
ity recognition (HAR), signal processing.
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I. INTRODUCTION

N RECENT years, the application of multisensor data

fusion technology has become popular for military, indus-
try, and emerging technology development applications [1].
Multisensor information fusion (MSIF) is an information pro-
cessing technique in which the data from multisensor or
multisource hardware are fused and analyzed to complete the
required decision making and estimation [2].

MSIF technology is widely used in robotics [3], gait detec-
tion [4], remote sensing [5], healthcare [6], and other fields [7].
Research studies have proven that compared with single-
sensor systems, the use of MSIF technology results in accurate
detection and tracking of subjects’ activities [8]. Moreover,
it can enhance the validity, reliability, and robustness of the
entire system, improve data credibility to increase accuracy,
expand the time and space coverage, and reinforce the system’s
real-time performance and information utilization [9].

Muhammad et al. [10] proposed a data-fusion-based system
for ensemble computing with the random forest algorithm to
predict results from multiple sensors. The results of the study
was promising as it recorded an average accuracy of more
than 90% after performing data fusion. Li ef al. [11] used the
sequential forward selection (SFS) method to fuse the iner-
tial measurement unit (IMU) and radar information to form
time-series data, which can be used as features to train the
support vector machine (SVM) and artificial neural network
(ANN) algorithm for classification computing, which increases
the accuracy by approximately 6% compared to using a single
type of data.

In view of the uneven data quality of different hardware
platforms [12], Huang et al. [13] used multiscale features by
three sparsity-invariant operations. It depends on a hierarchi-
cal multiscale encoder—decoder neural network, which is used
to process sparse input and feature maps for multihardware
data. The features of multiple sensors can be fused fur-
ther to improve the performance of deep learning algorithms.
However, a multisensing system normally requests hardware
platforms to work synchronously to ensure the collected data
time axis is unified in the coordinate system.

A current research focus revolves around the development
of high accuracy human activity recognition (HAR) systems
using the limited data sets available. Traditional machine
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learning (especially, deep learning models) has achieved prac-
ticable results in the HAR field [14] but it has also led
to a large amount of training data collection overhead [15].
On the upside, deep neural networks are friendly to high-
dimensional data learning and it completes the end-to-end
calculation without the more cumbersome process of feature
engineering. On the downside, it causes problems, such as
huge demand for training samples, complex model structure,
and time-consuming training [16]. Moreover, it loses the cog-
nition of features, and there are challenges to knowing the
importance of data features [17]. On the other hand, neu-
romorphic computing has required fewer training samples to
achieve high accuracy recognition results [18]. It is based on
the combination of feature engineering for the abstract expres-
sion on the object and the associative memory function of
neuromorphic computing, which achieves one-shot learning
for HAR.

This article presents a novel multisensing HAR system,
which is a neuromorphic-computing-based data fusion method.
It extends on the work presented in [19] where IMU sensors,
radar, and the universal software radio peripheral (USRP) sig-
nals are used for HAR. Our method is to construct a feature
matrix to fuse different hardware information as a unified data
input to a Hopfield neural network. The constructed activity
feature matrices depend on attention mechanisms to com-
bine IMU, radar, and USRP signals for feature extraction and
selection. The multihardware data are then fused for better
classification and recognition accuracies using the Hopfield
neural network as compared to traditional data fusion results.

The main contributions of this article are as follows.

1) We explored neuromorphic computing methods in the
HAR task, which is based on the Hopfield neural
network. The advantage of one-shot learning, it is only
one training sample request that is friendly for limited
data sets.

2) We construct an attention mechanism of the data fusion
framework for multisensing device signals. It depends
on TopK calculation to feature selection to achieve fea-
ture maps that are different from traditional handcrafted
features.

This article is organized as follows: Section II outlines
how the human motion data from the IMU, radar, and USRP
are collected and modeled. In Section III, the feature matrix
details of the data fusion for signal preprocessing and the algo-
rithm calculation workflow, are detailed. Section IV presents
a quantitative evaluation of the application of neuromorphic
computing on the fused data set in the context of existing
studies in the literature. Finally, Section V summarizes the
multisensing data fusion implementation of the Hopfield neu-
romorphic computing to HAR and outlines the potential future
direction.

II. MATERIALS AND METHODS
A. Data Collection

At present, there are many types of sensing hardware that
can capture human movement information, but the acquisi-
tion of signals by a single device is relatively limited. In
general, IMU sensors are low cost, easy to use, and less
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Fig. 1. Device setting-up and environment for human activity data collection.

restricted by usage scenarios, and have been integrated into
many wearable devices. However, its serviceable range and
accuracy are inferior to those of USRP and Radar, and its
performance is constrained by other components, such as bat-
teries and microprocessors. USRP can achieve higher precision
object detection through the Doppler frequency-shift princi-
ple. Depending on high power support, hardware performance
can be better released. However, it is generally used in fixed
scenes that cannot move quickly, which means that the cap-
ture of object signals is easily affected by some factors,
such as occlusion and limited angle. Comparatively, the radar
mainly transmits electromagnetic waves and receives echoes
to obtain the distance, speed and angle of objects. It has
good penetration and a strong resolution ratio. However, it
is bulky and complicated to install. Therefore, following the
advantages of these different types of devices, we can inte-
grate them together to form a multisensing human activity
perception system, which complements each other and real-
izes a more stable and reliable HAR task. After the data
fusion method is adopted, the Sensor, USRP and Radar will
provide different perception information, which can over-
come the limitations and discrepancy of a single device in
terms of geometric, spectral and spatial resolution. Finally,
it improves the data quality and, thus, facilitates the posi-
tioning, recognition and interpretation of human movement
information.

The data collection of human body movements was per-
formed using three sensing hardware platforms, as listed in
the following.

1) Shimmer 3 IMU sensor [20].

2) Walabot Radar DIY model [21].

3) USRP [22] X300 unit.

First, the IMU sensor was worn on the wrist where the
three axes of the coordinates system of each sensor (gyroscope,
accelerometer, and magnetometer) have the spatial coordinate
information of X, Y, and Z respectively. Then, the radar and
the USRP were positioned at a distance of 2 m from the fixed
human activity position (see Fig. 1).
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B. IMU Sensor, USRP, and Radar Modeling

IMU Sensor Modeling: The IMU [23] constitutes a gyro-
scope, an accelerometer and a magnetometer, used in mea-
suring the attitude angle of an object. The gyroscope detects
the angular velocity signals relative to the three degrees of
freedom (X, Y, and Z) in the coordinate navigation system,
and the accelerometer monitors the acceleration signals of the
independent three axes of the object carrier coordinate system
in X, Y, and Z directions. The magnetometer can obtain the
surrounding magnetic field information. It can calculate the
angle between the module with the north direction through
the geomagnetic vector and help correct the angular veloc-
ity parameters of the gyroscope. The real-time output that
includes the 3-D angular velocity signal, acceleration signal,
and magnetic field information is used to calculate the object’s
posture. To capture this information, the voltage signals of the
x, y, and z axes in the IMU sensor are digitized at sampling
frequencies of 20 Hz for the magnetic field and 400 Hz for the
accelerometer and gyroscope. The working current of the sen-
sor is 500 nA with a power supply voltage of 3.3 V, resulting
in a total power consumption of 1.65 mW.

Radar Modeling: The Radar device used in this article is an
off the shelf “Walabot DIY” device. The device is designed
to use radar technology to detect metal and wooden studs as
well as electrical wires inside of a wall to assist users with
DIY tasks around the home. However, it can also be used to
detect human movements [24], [25]. The Walabot radar is a
multiple-input and multiple-output (MIMO) device and does
not allow for its preset parameter to be tuned. Hence, the data
for this experiment was collected using the predefined settings
of the product.

USRP Modeling: The USRP device is a software-defined
radio (SDR) used to enable radio-frequency (RF) communica-
tion between two antennas. Two omnidirectional antennas are
connected to a single USRP device, that is, one as a trans-
mitter and one as a receiver. The data collection window was
set to 5 s during which the activity took place. During the 5-s
communication window, the channel state information (CSI)
are captured, reflecting the activity performed. This process
is repeated multiple times to capture several samples for each
activity, where the amplitude of the RF signals is extracted
from the CSI. The USRP was configured to operate at 2.4-GHz
frequency similar to Wi-FI, with a 20-MHz bandwidth.

In this article, the USRP is set up to communicate using
orthogonal frequency-division multiplexing (OFDM) [26].
Channel estimation is an important feature of OFDM as it
monitors the state of the channel for the purpose of improv-
ing performance. Channel estimation does this by using a
specified set of symbols known as pilot symbols. These sym-
bols are used in the transmission of the data and once the
receiver antenna receives the data, the received pilot symbols
are compared to the expected pilot symbols and this provides
the details of the state of the channel.

C. Data Principles

Fig. 2 shows the raw data as captured by the IMU sensor,
radar, and USRP devices, where Fig. 2(a) and (b) represents
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those of the sitting and standing activities, respectively. It is
worth mentioning that the data collected from all three devices
was not synchronized due to the difficulty of controlling the
start and end of the data collection window and the sampling
of each sensor was independent and different from each other.
This resulted in an inconsistent time stamp of the collected
actions, as shown in Fig. 2(c).

The error formula of the action—state variable inhere can
be summarized as (1). Here, §k is the error value between
time i and time j, a is the state quantity, ¢ is the time differ-
ence, and df represents the microvariable with ¢ as the variable.
Following the normalization process of the raw data from each
sensing unit, the measured values are then converted to uni-
fied coordinate system, which eliminates the time stamp of
the information. This is shown for the sitting and standing
activities in Fig. 2(d) and (e), respectively

J

Sk = Z(/ a(t) At - dt)dt 1)

i

III. PROPOSED STRUCTURE MATRIX TO DATA FUSION

Fig. 3 shows the framework and the data flow from the mul-
tisensing stage to the neuromorphic computing stage, for HAR.
First, human motion information is, respectively, collected on
different hardware platforms, and features are extracted from
the collected raw data.

A. Feature Extraction and Feature Selection

Feature Selection and feature extraction are two impor-
tant subcontents of Feature Engineering. Among them, feature
extraction can find the attributes that best represents the
uniqueness of the data [27]. Feature selection is to select the
appropriate feature from the candidate features [28]. It can
reduce the dimension of the data, improve, and optimize the
ML model’s performance.

Fig. 4 shows the process from raw data feature extraction
to the attention mechanism [29] of TopK [29] feature selec-
tion [30], and binarization for human activity features map.
Fig. 4(a) is the raw multisensing data calculated by a tree-
based prediction model that can be used to list features and
obtain the heat map after the TopK order [29], [30]. Fig. 4(b)
is the 5x5 feature matrix after extracting the best 25 features
of TopK computing. Finally, Fig. 4(c) and (d) is the human
activity feature pattern after binarization by features values
(following positive and negative values to binarization).

Feature extraction obtains a new feature space by transform-
ing or mapping the original raw data, such as mapping from
3-D space to 2-D space. The purpose of feature extraction is to
use fewer features to represent most of the information in the
original data space. Thus, it can improve computing efficiency
and reduce dimension disasters.

The attention mechanism [29], [29] of neural networks is
a resource allocation scheme. In neural network learning, the
stronger expression ability of the model requests more parame-
ters on the neurons. Meanwhile, more information can store on
neurons, but this will bring information overload. Therefore,
depending on the attention mechanism, the neuron network
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Fig. 2. Multisensing raw activity signal data. (a) Sit down activity raw data, (b) Stand-up activity raw data, (c) inconsistent time stamp of the collection
device, (d) Sit down activity unified coordinate system data, and (e) Stand-up activity unified coordinate system data.

pays more attention to the high critical information on the information overload can be solved, and the accuracy and
current task. Meanwhile, filtering out irrelevant information efficiency of task operation can be improved, by allocating
and reducing attention to other information. As a result, computing resources to high important tasks.
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Inhere, the attention mechanism selectively ignores unim-
portant information by the following activity features’ impor-
tance. Then, it focuses on these features to express the
corresponding activity. The focusing process is reflected in the
calculation of feature weight coefficients. The weight shows
the essential features of data. Through the heat map of feature
correlation, there are TopK [31] (K = 25) features selected to
represent the original information of the activity.

The formula of the attention mechanism’s distribution prob-
ability is represented by (2) [32]. Source is the stored data, and
Query is for fetching the corresponding value in the memory
of stored data as the attention value. The Lx denotes the length
of the Source, it is a series of <Key, Value> data pairs. In
this case, the weight coefficient of the corresponding Value
of each Key can be obtained by element Query in the Target.
First, it calculates the correlation or similarity between Query
and each Key and then, the Value is weighted and summed to
get the final Attention value. Essentially, the Attention mech-
anism is a weighted sum for the values of elements in the
Source, while Query and Key are used to calculate the weight
coefficient of corresponding values

Attention(Query, Source) =
Ly
Z Similarity(Query, Keyi) e Value;. 2)

i=1

B. Hopfield Neural Network and Euclidean Distance

Designing neuromorphic computing for end-to-end signal
processing. First, the raw data is the feature extracted through
data preprocessing, and the feature map of the correspond-
ing activity is obtained as explained earlier in Section III-A.
The binary feature pattern is then fed to the Hopfield neural
network [33] for training. Finally, the output signal is com-
pared by the Hopfield neural network and the corresponding
activity feature map. It can recognize the input signal that

has been trained or not to achieve the inference result of
the activity. Depending on the Hopfield neural network is
a fully connected structure of the recurrent feedback neural
network to achieve the associative memory of neuromorphic
computing. Fig. 5 shows the network architecture.

The discrete Hopfield neural network (DHNN) [34] is
based on binary feedback to realize associative memory work.
Following the step function of activation calculation to each
neuron, its input and output of the neuron are binary values of
—1 and 1. The Hopfield neural network training phase is illus-
trated in Fig. 6 for the sitting and standing activities. Fig. 6(a)
depicts one Hopfield neural network state-space neuron that
processes the training for both activities. The weight of the
DHNN is calculated using a binary feature matrix (5x5 feature
pattern achieved by the above feature extraction and selection
of human activity), and trained by the Hebbian learning law
[36]. The x-Axis means the Feature Matrix input to corre-
sponding Neurons, and the y-Axis shows the Neurons’ state
change after feature matrix data input. With the process of
learning, the state values (z-Axis) of all neurons will tend to
be stable, which means that the neural network training is
completed, and the neurons have the function of associative
memory for the specified feature matrix. Inhere, it indicates
that the neuron has reached a stable state after the two steps
of training.

Fig. 6(b) displays the entire DHNN weight output after
training the Hebbian learning algorithm using the two prepro-
cessed binary patterns of activities. The weight value means
the connection relationship in the neural network architecture.
Due to the fully connected layer neural network structure, it
is a 25x25 array that shows neurons’ connection strength to
each other, which corresponds to associative memory function
for learned two activities” feature matrices.

All device signals will go through the feature extraction to
output different feature patterns. The input data is transferred
to the neurons, and it is like a filter that only passes the
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Fig. 5. Hopfield neural network architecture.

data for trained two activity feature patterns on the activa-
tion state. Then, the Hopfield neural network output links to
the Euclidean distance algorithm. It is based on the simi-
larity to estimate the recognition result of the HAR, which

compares the output of the neural network and trained feature
patterns. The Euclidean distance to calculate the similarity is
the distance between two points and it is always a nonnega-
tive number [35]. Thus, the similarity value range is between
[—1, 1], and its reciprocal will control the result between
[0, 1]. At this point, the distance is negatively correlated
with similarity. Two trained activities will get a high prob-
ability similarity output, while other data signals will output
a low probability similarity because the neuron is not acti-
vated. Finally, the classifier for neuromorphic computing is
completed to realize effective HAR.

C. Proposed Algorithm Implementation Scheme

Algorithm 1 verifies the feasibility of the whole framework
theoretically, and shows the specific calculation process of
each step in the workflow. In order to avoid the interference
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Algorithm 1 Multisensing Data for HAR

1: Load Multi-Sensing Hardware data:
2: [G_x, G_y, G_z] = Gyroscope [:column_1, column_2,
column_3]
3: [A_X, A_y, A_z] = Accelerometor [:column_1, column_2,
column_3]
4: [M_x, M_y, M_z] = Magnetometor [:column_1, col-
umn_2, column_3]
5: [U_x] = USRP data Matrix [:1]
6: [R_x] = Radar data Matrix [:1]
Require: :
7: Feature Extraction: Tree-based prediction model
8: Fimu(G,AM) = ( fiG_x)) +( fiG_y) + (fAG_z) + (
JAX) + (flA_y)+ (f(A_z) + (fAIM_x))+ (fiM_y)+ (
fiM_z));
9: Fysgp(U) = flU_x);
10: Fradar(R) = fIR_x);
11: Feature Selection:Attention Mechanism
12: F* = Sort F{(G), F1(A), FF (M), F;(U), F1(R)
13: M_f = TopK(F): K = 5x5
14: Binarization Matrix: Depending on a threshold value
15: Threshold value = t
16: for n_i = 0:24 do: out[n_i][n_j] = (M_f > t[n _i]) ? O:
I;
17: return Matrix By,(5:5);
18: HNN = Hopfield(By,)
19: Out(Confidence) = Euclidean_Similarity(HNN-B,)
20: return Recognition Result;

between the different types of hardware signals in the cal-
culation, feature extraction will be performed separately first
and then work on the feature-level fusion. This processing
helps different types of signals keep the original information.
Depending on the attention mechanism [32] of TopK com-
puting, the most important subfeatures can be extracted from
the fused feature set. In order to make the Hopfield neu-
ral network get better processing results, the activity feature
matrix is converted into the binarized feature pattern by calcu-
lating the threshold values. Finally, following the calculation
of the similarity between the Hopfield neural networks output
and feature pattern, the confidence of the activity classification
can be achieved to complete the HAR process.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

As compared to the classification performance of data
collected using a single hardware platform, the data fusion
methodology adopted in this article increases the activity clas-
sification accuracy through the feature-level fusion of the IMU
sensor, radar, and USRP signal, which recorded an accu-
racy of about 98.98% (see the multiclass confusion matrix
in Fig. 7). Fig. 7 as a confusion matrix that evaluates the
performance of the algorithm. It visually statistic classification
model inference error and inference correct values. In the con-
fusion matrix, which is a square matrix for multiclasses. Each
row of this matrix represents instances in the true class, and
each column represents instances in the predicted class. So, it
is easy to show whether the algorithm will confuse the two
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classes. The results show that 100% correct classed the Sit-
down activity, 98% correct classed the Stand-up activity, and
only 2% were confused classification of the Stand-up activity
as Sit-down activity.

This is further shown in Fig. 8 where a box and whiskers
plot is used to compare the inference probability when using
single devices, as well as the fusion of two and three of the
devices together. The inference probability is similar to the
confidence coefficient for algorithm performance. It verified
the stability of the algorithm through high and stable infer-
ence probability output. The box and whiskers plot shows
statistics of the inference probability results, which include
maximum, median, upper quartile, and lower quartile and min-
imum. It can show a set of data variations and outliers. As can
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TABLE I
COMPARISON TABLE WITH OTHER DATA FUSION METHODS

Project Hardware Algorithm Feature Accuracy
Our Method MU sensor | Hopfield Neural | Using Tree-based prediction model for | 98.98%
(magnetometer Network feature extraction and feature level fused
+ accelerometer of feature selection by Attention Mecha-
+ gyroscope) + nism of TopK
USRP + Radar
Bangaru et al | EMG and IMU | Artificial Neural | The EMG and IMU sensor data is nor- | 93.29%
[36] sensors Network (ANN) malized by z-score standardization to data
fusion
Chung et al | IMU sensor | Long Short Term | Using various combinations of sensors, | 94.47%
[37] (magnetometer Memory (LSTM) | and two voting ensemble techniques
+ accelerometer | network adopting all sensor modalities.
+ gyroscope)
Cao et al [38] | Frequency Convolutional The coordination of both labelling meth- | 93.60%
Modulated Neural Network | ods by the neighbor-aggregating-based
Continuous (CNN) labeling method and incorporates with
Wave (FMCW) clustering-based labelling method that
Radar is motivated to be implemented in the
weighted combination form
Universal K Nearest Neigh- 90.71%
Software Radio | bours
Peripheral
(USRP)
William et al Neural Network | Used USRP Radar to collect activity, | 93.40%
[39] mode which each contain 64 subcarriers by fast
Fourier transformer (FFT) produced
Ensemble Classier 93.83%
100) Cao et al. implemented the convolutional neural network clas-
-~ o0 % sifier to processing fused data recognize human activity signal,
s - and William et al. designed a framework to ensemble the KNN,
o) 80 neural network, and ensemble classier model to processing of
3 USRP human activity data. However, by comparing accuracy,
E 70! our implementation is more accurate than their classification. We
believed that the recognition findings are preferable, demon-
60 strating that the Hopfield neural network of neuromorphic
, | | computing to fuse multihardware signal features effectively rec-
MU Radar USRP MU MU USRP  IMU ognizes human behavior. Furthermore, our proposed workflow
Radar  USRP  Radar  USRP has greater robustness and accuracy performance.
Radar

Fig. 8. Box and whiskers plot to compare the machine learning accuracy
obtained from data collected using a single device and fusion of two and three
devices.

be seen, applying neuromorphic computing to fuse HAR data
from three hardware devices is a minimum change and the
highest lower quartile output of 95.34% compared to machine
learning results from a single device and data fusion of two
hardware devices. It means this result is most stable for infer-
ence performance of classification. Therefore, this evaluation
proves that our solution can pass the method of constructing
the matrix to help the data fusion between different hardware,
and the fused data can obtain higher accuracy performance by
the neuromorphic computing algorithm.

Table I shows a comparison against traditional machine
learning algorithms’ accuracy and proves that better results
are achieved through the proposed data fusion method. For
instance, Bangaru et al. worked on the EMG and IMU sensor,
and they used ANN to classify human activities. Furthermore,
Chung et al. improve the data fusion method to be suitable for
9-axes IMU sensor (magnetometer, accelerometer, and gyro-
scope) and achieve results from the LSTM network. Based
on the frequency-modulated continuous-wave (FMCW) radar,

V. CONCLUSION

This study proposed a multisensing data fusion architec-
ture for a HAR system that uses neuromorphic computing to
integrate different hardware signal data for sensing and clas-
sifying human behaviors swiftly and efficiently. Depending
on the attention mechanism method for feature selection to
achieve multisensing device signal fused feature maps. One
of the benefits, the Hopfield neural network of the associa-
tive memory function was applied for one-shot learning to
human activities. It is only requested one training sample that
is friendly to limited data sets. Another benefit is that there
are different from traditional handcrafted features, the TopK
calculation as an attention mechanism method to feature selec-
tion achieves good feature maps representing corresponding
human activities. This approach not only addressed the issues
with traditional machine learning for large training sample
requirements but it also allowed for greater flexibility in fitting
multisensing hardware signals. The suggested technique has
a great potential to assist the different types of measurement
devices in achieving system-level data fusion without affecting
the accuracy of classification and recognition. Furthermore,
validation methods were employed throughout to demonstrate
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that the method yields the significant improvement in accuracy
when sensor, USRP, and radar data are fused. The proposed
approach has shown a classification accuracy of approxi-
mately 98.98% and has demonstrated the strong potential of
neuromorphic computing of multisensing data in HAR.
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