
Finite-Time Distributed Algorithms for Verifying
and Ensuring Strong Connectivity

of Directed Networks

Made Widhi Surya Atman ,Member, IEEE and Azwirman Gusrialdi ,Member, IEEE

Abstract—The strong connectivity of a directed graph associated
with the communication network topology is crucial in ensuring the
convergence of many distributed estimation/control/optimization
algorithms. However, the assumption on the network’s strong
connectivity may not always be satisfied in practice. In addition,
information on the overall network topology is often not available,
e.g., due to privacy concerns or geographical constraints which calls
for a distributed algorithm. This paper aims to fill a crucial gap in
the literature due to the absence of a fully distributed algorithm to
verify and ensure in finite-time the strong connectivity of a directed
network. Specifically, inspired by the maximum consensus
algorithm we propose distributed algorithms that enable individual
node in a networked system to verify the strong connectivity of a
directed graph and further, if necessary, augment a minimum
number of new links to ensure the directed graph’s strong
connectivity. The proposed distributed algorithms are implemented
without requiring information of the overall network topology and
are scalable as they only require finite storage and converge in finite
number of steps. Furthermore, the algorithms also preserve the
privacy in terms of the overall network’s topology. Finally, the
proposed distributed algorithms are demonstrated and evaluated
via numerical results.

Index Terms—Distributed algorithms, finite-time, link addition,
max-consensus, strongly connected digraph, weakly connected
digraph.

I. INTRODUCTION

A. Motivation and Literature Review

D ISTRIBUTED algorithm plays an important role in esti-

mation [2], [3], optimization [4], [5], and control [6], [7],

[8], [9] of networked systems. In contrast to centralized algo-

rithms where all the computations are performed at a control

center, the computations in distributed algorithms are locally

performed at individual system and by exchanging informa-

tion with a number of neighboring systems via a communica-

tion network. As a result, distributed algorithms have several

potential advantages such as scalability to system’s size,

robustness with respect to failure of individual system, and

also preservation of data privacy. Strong connectedness of a

graph associated with the communication network topology of

distributed systems is a crucial requirement in ensuring the

convergence of the above mentioned distributed algorithms.

Most of the work on distributed estimation, optimization, and

control algorithms take for granted (i.e., assume) that the com-

munication network topology is strongly connected. However,

in practice the communication network topology of a net-

worked systems may not always be strongly connected. There-

fore, it is of importance to first verify and further ensure (e.g.,

by adding new links) the strong connectivity of a given com-

munication network topology before executing any distributed

estimation/optimization/control algorithms. More importantly,

the procedure for verifying and ensuring strong connectivity

of a communication network topology also needs to be per-

formed in a distributed manner as the overall network topol-

ogy is often not available due to privacy concerns or

geographical constraints and also in order to comply with the

feature of distributed algorithms that will be deployed in the

networked systems.

Motivated by the above fundamental yet crucial issue, this

paper focuses on the problem of distributively verifying and

ensuring the strong connectivity of a directed graph. The com-

munication of many real-world distributed systems is unidi-

rectional whose overall communication network topology can

be modelled as a directed graph. For example, in a broadcast-

based communication scheme or publish-subscribe protocol

(as can be found in Robot Operating System for robotic sys-

tems [10] and Open Field Message Bus for smart grid [11])

the receiver/subscriber can decide to use only a portion of all

the broadcasted/published information due to their selected

preferences or to limit the computational and/or communica-

tion cost. Other examples of unidirectional communication

include connectivity in social network such as Twitter [12]

and wireless network using directional antennae [13].

The problem of verifying a strongly connected directed

graph (digraph) can be translated into the problem of comput-

ing strongly connected components of a given digraph. Exist-

ing algorithms to solve the computation include Tarjan [14],

[15], Kosaraju–Sharir [16], and Gabow [17], [18] algorithm,

which are based on depth-first-search approach, as well as the

relation-transitive-closure-based Warshall algorithm [19]. On

Manuscript received 30 October 2021; revised 6 July 2022; accepted 15
August 2022. Date of publication 25 August 2022; date of current version 28
October 2022. This work was supported by the Academy of Finland under
Academy Project under Grant 330073. Recommended for acceptance by Prof.
Tie Qiu. (Corresponding author: Made Widhi Surya Atman.)

The authors are with the Faculty of Engineering and Natural Sciences, Tam-
pere University, 33014 Tampere, Finland (e-mail: widhi.atman@tuni.fi;
azwirman.gusrialdi@tuni.fi).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TNSE.2022.3200466, provided by the authors.

Digital Object Identifier 10.1109/TNSE.2022.3200466

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022 4379

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0929-2604
https://orcid.org/0000-0003-0929-2604
https://orcid.org/0000-0003-0929-2604
https://orcid.org/0000-0003-0929-2604
https://orcid.org/0000-0003-0929-2604
https://orcid.org/0000-0002-5659-1239
https://orcid.org/0000-0002-5659-1239
https://orcid.org/0000-0002-5659-1239
https://orcid.org/0000-0002-5659-1239
https://orcid.org/0000-0002-5659-1239
mailto:
mailto:
https://doi.org/10.1109/TNSE.2022.3200466
https://doi.org/10.1109/TNSE.2022.3200466

the other hand, the problem of ensuring strong connectivity of

a directed graph is often described as strong connectivity aug-

mentation problem. The study on the augmentation problem

was initiated by the work in [14], [15], followed by subsequent

research in [20], [21], emphasizing that the problem is solv-

able in polynomial time. Note that while the problem of ensur-

ing strong-connectivity problem is equivalent to constructing

k-edge-connectivity topology with k ¼ 1, various approaches
for k � 2 in undirected graph topology has also been gaining

interest to ensure robustness of the communication network,

see for example [22], [23].

Despite the aforementioned approaches in verifying and

ensuring strongly connected digraph, most of the solutions

focus on the centralized or parallel computation and rely on

the assumption that information/knowledge of the overall net-

work topology is available or known beforehand. A fully dis-

tributed approach (i.e., without requiring knowledge of the

overall network topology) to solve the problem is still limited

in literature, with notable examples are presented in [9], [24].

The distributed algorithms in [9], [24] focus on verifying

strong connectivity of a digraph after link removals. However,

the algorithm still requires the initial graph before link

removal to be strongly connected.

B. Statement of Contributions

The main contributions of this paper are twofold. First, we

propose distributed algorithms for verifying strong connectivity

of a directed graph. The proposed algorithms are inspired by the

maximum consensus algorithm [25], [26]. Our second contribu-

tion is distributed algorithms to turn a non-strongly connected

digraph into a strongly connected one by adding a minimum

number of new links. This is achieved by first developing dis-

tributed link addition algorithms together with their optimality

gap to ensure strong connectivity of a directed graph. A distrib-

uted method is then developed to check if the number of added

links is minimum and further, if necessary, compute a new set

of minimum number of links to make the digraph strongly con-

nected. In addition to be fully distributed and without requiring

information of the overall network topology, the proposed dis-

tributed algorithms are also scalable as they only require finite

storage and converge in finite time steps. The completion in a

finite number of steps allows the proposed algorithms to be eas-

ily implemented before executing any distributed estimation/

control/optimization algorithms whose convergence require

strong connectedness of the underlying communication net-

work. Furthermore, the distributed algorithms are also able

to preserve the privacy in terms of the global network

topology.

Finally, in comparison to the preliminary version of our

work on this problem [1], this paper considers link augmenta-

tion problem for not only weakly connected digraph but also

disconnected digraph. The distributed algorithms in this paper

also ensure strong connectivity of a digraph with minimum

number of link addition. In addition, this paper includes all the

proofs omitted in the preliminary version together with exten-

sive simulations.

C. Organization

The remainder of this paper is organized as follows. In

Section II, we review the basic notions from graph theory and

provide the problem settings. Section III presents the distribu-

tive algorithm to verify whether a given directed network is

strongly connected. The distributed algorithm to estimate

strongly connected components of a digraph is then presented

in Section IV. Section V presents the distributed algorithm to

strongly connect a directed graph. Numerical results is pre-

sented in Section VI and followed with concluding remarks in

Section VII. All the proofs of the theorems, propositions and

lemmas are presented in the Appendix. Illustrative examples

to describe the procedure of the proposed algorithms are

included as a supplementary material.

II. PROBLEM FORMULATION

In this section, we recall some basic notions of the fundamen-

tal theories such as graph theory and maximum consensus algo-

rithm. Then, we define the problem settings within this paper.

A. Notation and Graph Theory

Information exchange between nodes in a network can be

modeled by means of directed graph (digraph). A directed

graph is denoted by G ¼ ðV; EÞ with a set of nodes V ¼
f1; 2; . . . ; ng and a set of edges (links) E � V � V. A graph

G1 ¼ ðV1; E1Þ is a subgraph of G ¼ ðV; EÞ if V1 � V and E1 �
E. Existence of an edge ði; jÞ 2 E denotes that node j can

obtain information from node i, or node i is accessible to node
j. Here, node i is said to be an in-neighbor of node j while

node j is the out-neighbor of node i. Within this paper, the set

of all in-neighbors of node i is denoted by N in
i ¼ fj 2

V j ðj; iÞ 2 Eg while N out
i ¼ fj 2 V j ði; jÞ 2 Eg denotes the

set of all out-neighbors of node i. Let the set K consist of all

2-element subsets of V, then the edge set EC :¼ K n E denotes

all possible edges that are not present in G.
A path is a sequence of nodes ði1; i2; . . . ; ipÞ; p > 1, such

that ij is an in-neighbor of ijþ1 for j ¼ i1; . . . ; p� 1. An ele-

mentary path is a path in which no nodes appears more than

once. A path is closed if ip ¼ i1. A cycle is a closed path such

that i1; i2; . . . ; ip�1 are all distinct. A graph is acyclic if it has

no cycles. A graph is said to be strongly connected if there is a

path between any pair of distinct nodes and it is called weakly

connected if the graph obtained by adding an edge ðj; iÞ for

every existing edge ði; jÞ 2 E in the original graph is strongly

connected. A strongly connected component of directed graph

G is a subgraph of G that is strongly connected and maximal,

as such no additional edges or vertices from G can be included

in the subgraph without breaking its property of being strongly

connected.

Within this paper, let R be the set of real numbers and Z�0

be the set of non-negative integers. By 1n 2 Rn and 0n 2 Rn,

we denote the all ones vector and zeros vector in n-dimension,

respectively. For a given set N , jN j denotes the number of

elements in this set. Vectors are denoted as boldface letters

and matrices are denoted as capital letters in boldface. Finally,

4380 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022

the state associated with node i 2 V is represented by the sub-

script operator, for example state aaaaaaa 2 Rb; b > 1 for node i is
shown as aaaaaaaiiiiiii and the j-th element of vector aaaaaaaiiiiiii (with j � b) is
denoted by ai;j.

B. Max-Consensus Algorithm

Consider a directed graph G ¼ ðV; EÞwith n nodes and let us

assign state yi½t� 2 R to each node i 2 V. The max-consensus

algorithm allows all nodes to distributively compute the maxi-

mum value of the initial conditions yi½0� for all i 2 V. Specifi-
cally, each node executes the following update rule [25]

yi½tþ 1� ¼ max
j2N in

i [fig
yj½t�

� �
;

(1)

with t denotes the t-th communication event.

Definition 1 (Max-Consensus [25]): Given a directed graph

G ¼ ðV; EÞ, an initial states yi½0� for each node i 2 V and the

update law (1). Then, max-consensus is said to be achieved, if

9l 2 Z�0 such that

yi½k� ¼ max
i2V

fyi½0�g 8k � l; 8i 2 V: (2)

If (2) holds for all possible yi½0�, we say that strong max-

consensus is achieved. If (2) only holds for a subset of all pos-

sible yi½0�, weak max-consensus is achieved.
Next, we recall the following results.

Lemma 1 (Max-Consensus [25]): Let G be a directed graph

representing the communication topology of n nodes.

� Strong max-consensus: Given any initial value of yi½0�,
the necessary and sufficient condition for strong max-

consensus is that there exist a path between any pair of

nodes in G, i.e., the digraph G is strongly connected.

� Weak max-consensus: Given partitions of all nodes

based on the initial value of yi½0� as Vm :¼ fi 2 V j yi
½0� ¼ maxi2Vfyi½0�gg and Vo :¼ V n Vm. Then, the nec-

essary and sufficient condition for weak max-consensus

is that for any node j 2 Vo, there exist a path ending in

j and starting in a node k 2 Vm.

� Convergence speed: The required number of communi-

cation instants is the maximum of the shortest path

length between any pair of nodes in G, i.e. n� 1 in the

worst case.

It will be demonstrated throughout the paper that max-con-

sensus algorithm serves as a unified framework to solve our

problem.

C. Problem Settings

Consider a network consisting of n nodes whose connections

is given by a directed graph G0 ¼ fV; Eg, which also represents
the communication network topology between the nodes. We

make the following assumptions in the remaining of the paper:

Assumption 1: Assume that

1) The information of the overall network topology G0 is

not available and each node i only knows the informa-

tion onN in
i ,N out

i , and n.

2) Each node is equipped with its own computational

resources and is assigned with a unique identifier which

can be mapped to its vertex number, i.e., i 2 f1; . . . ; ng.
Note that the unique identifier is a standard assumption

commonly used in designing distributed algorithm which can

be realized e.g., by using MAC address, see for example [3],

[7]. In addition to Assumption 1, it is also assumed that the

communication between nodes occur in a synchronous man-

ner. Furthermore, we consider a discrete-time case, where

communication instants may either be defined by a clock or

by the occurrence of external events. This can be realized,

e.g., by allowing the node to have access to global/universal

time and by having the execution timing and interval to be

predetermined beforehand.

The objective of this paper is to develop distributed algo-

rithms, under assumption 1, for solving the following problems:

Problem 1 (Connectivity Verification): Verify in a distrib-

uted manner if directed graph G0 is strongly connected.

Problem 2 (Connectivity Augmentation): For a directed

graph G0, add a minimum number of additional edges DEþ �
EC in a distributed manner to ensure that the resulting graph

G	 ¼ fV; E [DEþg is strongly connected, i.e., to solve the fol-
lowing optimization problem

min
DEþ�EC

jDEþj;

s.t. G	 is strongly connected
(3)

For the sake of readability, the notations used in this paper

are summarized in Table I. Each notation will be described in

more detail when it is first used in the discussion.

III. DISTRIBUTED VERIFICATION OF A DIRECTED GRAPH’S

STRONG CONNECTIVITY

In this section, we present a distributed algorithm to verify

whether a given network is strongly connected. Here, for each

node i 2 V, we introduce the state xxxxxxxi½t� 2 Rn for checking if

node i is reachable from any other nodes and state fi½t� 2 R
for locally verifying if graph G0 is strongly connected. Within

this paper, we refer t 2 Z�0 as the tth communication event.

To this end, each node updates each row j 2 V of its state

xxxxxxxi½t�, i.e., xi;j½t�, for n iterations according to the following

max-consensus protocol

xi;j½tþ 1� ¼ max
k2N in

i [fig
xk;j½t� (4)

whose initial condition is chosen as

xi;j½0� ¼
1; if j ¼ i

0; otherwise:

�
(5)

Given the initialization in (5), this approach allows individual

node to estimate the existence of paths from all other nodes to

itself as the value of xi;j½n� ¼ 1 for any i 6¼ j implies that there

exists a path from node j to node i while the value of xi;j½n� ¼

ATMANAND GUSRIALDI: FINITE-TIME DISTRIBUTED ALGORITHMS FOR VERIFYINGAND ENSURING STRONG CONNECTIVITY OF DIRECTED NETWORKS 4381

0 signals the absence of that path [9]. The n iterations is

selected to ensure xi reach its steady state.

The following result establishes the relationship between

the value of xxxxxxxi½n� and the strong connectivity of directed graph
G0.

Theorem 1: Given a digraph G0 and each node executes (4)

for n iterations whose initial values are given in (5), the graph

G0 is strongly connected if and only if xxxxxxxi½n� ¼ 1n for all i 2 V.
As a last step, each node needs to verify locally whether

xxxxxxxi½n� ¼ 1n for all i 2 V. To this end, each node updates its

state fi½t� for n iterations according to

fi½tþ 1� ¼ max
j2N in

i [fig
fj½t� (6)

whose initial value is chosen as

fi½0� ¼
0; if xxxxxxxi½n� ¼ 1n

1; otherwise:

�
(7)

Each node can then independently verify the strong connectiv-

ity of digraph G0 by observing its own value of fi½n� as shown
in the following theorem.

Theorem 2: Given a digraph G0 and each node executes in

sequence update rule (4) and (6) for n iterations each, with

each initial values as in (5) and (7). The graph G0 is strongly

connected if and only if fi½n� ¼ 0 for any i 2 V.
The pseudo code of distributed verification algorithm for

solving problem 1 is summarized in Algorithm 1.

Remark 1 (Computational Complexity): Algorithm 1 fin-

ishes in 2n iterations i.e., its computational complexity is

equal to OðnÞ.
Remark 2 (Privacy Preservation): From the retrieved infor-

mation through Algorithm 1, each node only knows the exis-

tence of path from other nodes to itself (state xxxxxxxi) and the

general notion of the strong connectivity of the graph G0 (state

fi). Thus, Algorithm 1 does not reveal the overall network

topology.

Now, assume that after running Algorithm 1 all nodes verify

that the graph G0 is not strongly connected, i.e., G0 is either a

weakly connected or a disconnected digraph. A distributed

algorithm is then needed to add new edges to G0 so that the

resulting graph becomes strongly connected. The problem can

be reduced to a simpler one by converting G0 into a directed

acyclic graph Ĝ0 which contains one node for each strongly

connected component (SCC) of G0. The resulting node in Ĝ0

with no entering edge is called a source, and a node with no

exiting edge is called a sink. The new edges to strongly con-

nect Ĝ0 can then be selected by connecting the existing sink to

source following a certain ordering, as shown in [14], [15].

However, the computation for the solution in general is cen-

tralized which requires information of the overall network

topology. In the following sections, given a non-strongly con-

nected digraph we propose distributed algorithms which first

estimate the strongly connected components that each node

belongs to (Section IV) and then distributively add new links

to make the digraph strongly connected (Section V).

IV. DISTRIBUTED ESTIMATION OF SCC

In the following, inspired by the max-consensus algorithm

we propose distributive approaches for estimating the strongly

connected component (SCC) of a directed graph. First, let us

introduce the following definitions on different types of SCC.

Definition 2 (source-scc): source strongly connected com-

ponent is a strongly connected component with no entering

edges and one or more exiting edges.

Definition 3 (sink-scc): sink strongly connected component

is a strongly connected component with no exiting edges and

one or more entering edges.

Algorithm 1: Distributed Algorithm for Solving Problem 1

Input: network size n, in-neighbor setN in
i

Output: verification if G0 is strongly connected

1: initialize each row of xxxxxxxi½0� as in (5)
2: for each j-th row of xxxxxxxi (j 2 f1; . . . ; ng), execute max-consensus

update law (4) for n iterations.

3: assign fi½0� as in (7)
4: execute max-consensus update law (6) for n iterations

5: node i knows that graph G0 is strongly connected when fi½n� ¼ 0
and not strongly connected when fi½n� ¼ 1.

TABLE I
A LIST OF KEY NOTATIONS

4382 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022

Definition 4 (isolated-scc): isolated strongly connected

component is a strongly connected component with no exiting

edges and no entering edges.

An illustration of source-sccs, sink-sccs, and isolated-sccs is

shown in Fig. 1. Note that a SCC which is neither sink-scc,

source-scc, or isolated-scc can also exist (called as non-

assigned SCC) within a directed graph, e.g., nodes 9 and 10 in

Fig. 1.

The proposed distributed algorithms allow each node i 2 V
to estimate the following: 1) the existence of paths from other

nodes to itself; 2) the SCC that it belongs to, namely the set

Ci; 3) the existence of entering or exiting edges of its own

SCC; and 4) verify whether its own SCC is a source-scc, sink-

scc, isolated-scc, or neither of these.

To that end, for each node i 2 V, let us assign states xxxxxxxi½t� 2
Rn, ccccccci½t� 2 Rn, and oooooooi½t� 2 Rn. State xxxxxxxi½t� is used to check if

node i is reachable from any other nodes. State ccccccci½t� then col-

lect all accessible xxxxxxxj½n� from other nodes for determining the

set Ci. Using the information on ccccccci½n�, each node i also deter-

mines an additional set Pi consisting of all nodes which are

reachable to Ci. The determination of entering edge into Ci
will rely on Pi. Then, states oooooooi½t� estimates the exiting edges

from Ci. Finally, the characterization of its own SCC into

source-scc, sink-scc, or isolated-scc will rely on the informa-

tion Ci, Pi and oooooooi½n� values.

A. Estimation of Paths and SCCs

As the first step, each node updates its state xxxxxxxi½t� for n itera-

tions according to the update rule (4) whose initial condition

is chosen as in (5). Next, let us define the information number

of node i, denoted as zi, as the number of nodes that can reach

node i, including node i itself. Noting that the existence of a

path from node j to i is indicated by the value xi;j½n� ¼ 1,
node i’s information number is then equal to zi ¼ 1Tnxxxxxxxi½n�. In
order to estimate the information number of other nodes which

can reach node i, each node updates for n iterations each row

j 2 V of its own state ccccccci½t�, i.e., ci;j½t�, according to the follow-

ing rule

ci;j½tþ 1� ¼ max
k2N in

i [fig
ck;j½t� (8)

whose initial condition is chosen as

ci;j½0� ¼
zi; if j ¼ i

0; otherwise:

�
(9)

After n iterations, the information number of all nodes j that
can reach node i will be given by the entry of ci;j½n�.

We then have the following results on the information

number:

Lemma 2: If node i is reachable from node j (i.e.,

ci;jðnÞ > 0) and nodes i and j have the same information

number (i.e., ci;jðnÞ ¼ zi), then nodes i and j are belonging to

the same SCC (i.e., they are mutually reachable to each other).

Lemma 3: For each node i, the other nodes in the set Pi

have a smaller (positive) information number compared to

node i (equivalently any nodes in Ci). Specifically, the infor-

mation number of node i satisfy zi � jCij þmaxj2Pi
zj.

As a direct result of Lemma 3, it is clear that within all the

entries of ccccccci½n�, its i-th element ci;i½n� ¼ zi always has the

highest number. Additionally, from Lemma 2 node i can esti-

mate its own SCC, i.e., set Ci, by identifying all nodes which

have the same information number with itself, namely

Ci :¼ f8j 2 V j ci;j½n� ¼ ci;i½n�g: (10)

Furthermore, each node i can estimate the set Pi by collecting

all nodes which have lower information number than itself,

that is

Pi :¼ f8j 2 V j 0 < ci;j½n� < ci;i½n�g: (11)

Here, ci;j½n� ¼ 0 represents the case where node j’s informa-

tion is inaccessible to i. Note that the node i’s local estimation

of Ci and Pi are identical to all the other nodes which belong

to the same SCC (i.e,. Cj ¼ Ci and Pj ¼ Pi for all j 2 Ci).
It is easy to observe that the only SCC of a strongly con-

nected graph is the graph itself. In fact, using this observation

we can develop an alternative distributed algorithm to solve

Problem 1 in which each node distributively checks the mem-

bership of its own SCC and verifies if it comprises of all

nodes, i.e. V, as shown in the following corollary.
Corollary 1: Given a digraph G0 and each node executes in

sequence the update laws (4) and (8) for n iterations each,

with initial conditions given in (5) and (9). Then, G0 is

Algorithm 2: Alternative Distributed Algorithm for Solving

Problem 1

Input: directed graph G0, network size n, in-neighbor setN in
i

Output: verification whether graph G0 is strongly connected

1: initialize each row of xxxxxxxi½0� as in (5)
2: for each j-th row of xxxxxxxi (j 2 f1; . . . ; ng), execute max-consensus

update law (4) for n iterations.

3: initialize each row of ccccccci½0� as in (9)
4: for each j-th row of ccccccci (j 2 f1; . . . ; ng), execute max-consensus

update law (8) for n iterations

5: node i knows that graph G0 is strongly connected when

ccccccci½n� ¼ n1n.
Fig. 1. Examples of source-sccs (green regions), sink-sccs (blue regions),
isolated-sccs (orange regions), and non-assigned SCC (gray region).

ATMAN AND GUSRIALDI: FINITE-TIME DISTRIBUTED ALGORITHMS FOR VERIFYINGAND ENSURING STRONG CONNECTIVITY OF DIRECTED NETWORKS 4383

strongly connected if and only if for any i 2 V, ccccccci½n� ¼ n1n
(equivalent to jCij ¼ n and Ci ¼ V).

The pseudo code of alternative distributed verification algo-

rithm for solving problem 1 is summarized in Algorithm 2.

B. Determination of Sink-Scc, Source-Scc, and Isolated-Scc

Using Algorithm 2, node i can estimate the existence of

paths from other nodes to itself and the SCC that it belongs to,

namely the set Ci. In order to provide an effective strong con-

nectivity augmentation which will be described later, it is

important that each node is also able to characterize whether

its own SCC is a source-scc, sink-scc, or isolated-scc. For this

purpose, each node needs to identify the existence of entering

or exiting edges of its own SCC. To that end, we introduce the

following lemma.

Lemma 4: A SCC has no entering edges if and only if Pi ¼
; for all node i in its membership.

With the estimated value of Pi, each node i can determine

the absence of an entering edge to its own SCC (i.e., set Ci)
based on Lemma 4, namely when Pi ¼ ;.

On the other hand, in order to verify if there exists an edge

from nodes i in Ci to any nodes j =2 Ci, each node updates for

n iterations each row j 2 V of its state oooooooi½t�, i.e., oi;j½t�, accord-
ing to the following rule

oi;j½tþ 1� ¼ max
k2N in

i [fig
ok;j½t� (12)

whose initial condition is chosen as

oi;j½0� ¼ 1; if j ¼ i and9k 2 N out
i ðk =2 CiÞ

0; otherwise:

�
(13)

In other words, the state oooooooi½n� collects the information from all

nodes k 2 Pi [Ci on whether there exists an edge from node

k to any nodes outside of its set Ck.
We can then establish the following result which allows

each node to distributively characterize its own SCC.

Proposition 1: Given a digraph G0 and each node executes

in sequence the update rules (4), (8), and (12) for n iterations

each, with initial values given in (5), (9), and (13), respec-

tively. Node i can then determine the following to characterize

its own SCC (i.e. the set Ci):
1) All nodes in the set Ci is a source-scc if and only if Pi ¼

; and there exist a node j 2 Ci where oi;j½n� ¼ 1.

2) All nodes in the set Ci is a sink-scc if and only if Pi 6¼ ;
and oi;j½n� ¼ 0; 8j 2 Ci.

3) All nodes in the set Ci is an isolated-scc if and only if

Pi ¼ ; and oi;j½n� ¼ 0; 8j 2 Ci.
Note that a non-assigned SCC will fall outside of the condi-

tions 1)–3) in Proposition 1, i.e., Pi 6¼ ; and there exist a node

j 2 Ci where oi;j½n� ¼ 1. The pseudo code for the proposed

distributed estimation and characterization of SCC is pre-

sented in Algorithm 3.

Remark 3 (Computational Complexity): Algorithms 2 and 3

finishes in 2n and 3n iterations, respectively. Thus, both algo-

rithms’ computational complexity are equal to OðnÞ.
Remark 4 (Privacy Preservation): Using the information

retrieved via Algorithms 2 and 3, each node only knows the

existence of path from other nodes to itself (state xxxxxxxi), the

information number of other nodes (state ccccccci), and the other

SCC’s information regarding their exiting edges (state oooooooi).
Therefore, Algorithms 2 and 3 does not reveal the overall net-

work topology.

Remark 5: In the case where there is no disjoint subgraphs

in the directed graph G0, it is sufficient to know only the infor-

mation on the upper bound of the number of nodes in the net-

work (denoted by n) for executing Algorithm 3. This is due to

the fact that the state xxxxxxxi, ccccccci, and oooooooi are reaching steady state at

time step t ¼ n � n. Moreover, each node i can verify strong

connectivity of the digraph by checking whether its own SCC

is an isolated-scc, namely property 3) in Proposition 1.

V. DISTRIBUTED AUGMENTATION FOR A DIRECTED GRAPH’S

STRONG CONNECTIVITY

In this section, we focus our discussion on the distributed

strategies to solve Problem 2. We first propose a distributed

algorithm together with its optimality gap in order to add new

edges to a non-strongly connected directed graph G0 so that

the resulting graph becomes strongly connected. Then,

inspired by the centralized approach in [14], [15], we propose

an algorithm to verify in a distributed manner whether the

number of added edges is minimum and alternatively provide

a solution for the minimum link addition problem. All the

computations are performed in a distributed manner and with-

out requiring information of the overall network topology G0.

We start by introducing the following additional assumption.

Assumption 2: Each node can establish a communication

link to any node in G0.

This assumption can be satisfied for the publish-subscribe

protocol as found in Open Field Message Bus and in social

network such as Twitter where a node can request a connec-

tion to any other nodes.

In order to simplify the discussion and presentation of the

proposed algorithms, in the remaining of the section each

sink-scc, source-scc, and isolated-scc is represented by a sin-

gle node which is a member of their own SCC. To this end, let

us denote Gm as the resulting graph after the m-iteration of

link-addition. Let us define Vm
sour, Vm

sink, and Vm
isol, as a set con-

sisting of representative nodes respectively for source-scc,

sink-scc, and isolated-scc in Gm. Furthermore, let Sm
j denote

Algorithm 3: Distributed Estimation and Characterization of

SCC

Input: directed graph G0, network size n, neighbor setN in
i andN out

i

Output: node i’s associated SCC
1: step 1-4 in Algorithm 2

2: estimate Ci and Pi by (10) and (11), respectively

3: initialize each row of oooooooi½0� as in (13)
4: for each j-th row of oooooooi (j 2 f1; . . . ; ng), execute max-consensus

update law and (12) for n iterations

5: node i can determine whether Ci is a source-scc, sink-scc, isolated-
scc or neither (Proposition 1).

4384 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022

the set of all the source-scc representative nodes accessible to

representative node j 2 Vm
sink.

A condensed graph representation of a digraph Gm is then

given by Gm
:¼ fVm

; Emg with Vm ¼ fVm
sour;Vm

sink;Vm
isolg � V

and ði; jÞ 2 Em
denotes the existence of path from node i to

node j in the original graph Gm. Note that all nodes within

non-assigned SCC, together with non-representative nodes

within source-scc, sink-scc, and isolated-scc, will not have

special role during the distributed link addition other than

passing the information, hence they are omitted for the con-

densed graph representation.

To this end, the representative nodes can be selected by fol-

lowing a predefined rules, e.g., the node with the highest ver-

tex (ID) number in each SCC is selected as the representative

node. Alternatively, the nodes within the same SCC can

locally coordinate over a certain decision variable, e.g., to

select a node with the most number of out-neighbors, each

node can share its own N out
i and execute a max-consensus

algorithm. For the above two examples, the selection of repre-

sentative nodes will take no more than n iteration.

Moreover, we consider the representative nodes after each

link addition, i.e., Vm
, to be selected within V0

. To be precise,

the selection of the representative node ensures that Vm
sour �

V0
sour [V0

isol, Vm
sink � V0

sink [V0
isol, and Vm

isol � V0
sink [V0

isol are

maintained. Additionally let us denote dm as the number of

disjoint subgraphs within Gm. An example of this condensed

graph is illustrated in Fig. 2. Note that the condensed graph

information is introduced only for facilitating the discussion,

and not necessarily known by each node in the original graph.

A. Distributed Link Addition Algorithm

Here, we present the algorithm to strongly connects G0 by

utilizing the estimated SCCs obtained from the previous sec-

tion. Recall that each node can use Algorithm 3 to estimate

whether its own SCC is a source-scc, sink-scc, isolated-scc, or

neither of these. Let us further assume that the procedure to

select representative nodes for all SCCs have been established,

and as a result we can present the discussion in terms of the

condensed graph �Gm.

To this end, the proposed algorithm will rely on the

approach where each node i 2 Vm
sour broadcasts its information

to the rest of the network and accordingly each node j 2 Vm
sink

collects this information. This information broadcasting ena-

bles each sink-scc representative j to obtain the information

about all the accessible source-scc representative Sm
j � Vm

sour.

The broadcast of information can be distributively realized via

another max-consensus update law which takes as many as n
time-steps, that is by introducing a state si½t� 2 Rn and initial-

izing its element as si;i½0� ¼ 1 if i 2 V0
sour and si;j½0� ¼ 0 for

j 6¼ i.
1) Distributed Algorithm for Weakly Connected Graph:

We first consider the case where the non-strongly connected

digraph is given by a weakly connected digraph which has no

isolated-sccs, i.e., V0
isol ¼ ;. Before proceeding, we introduce

the following lemma.

Lemma 5: Given a weakly connected graph G0, adding

edges ðj; iÞ from each node j 2 V0
sink to all reachable nodes i 2

S0
j , results in a strongly connected graph.

The above lemma provides a one-step strategy to strongly

connect a weakly connected digraph, namely by adding a set

of edges from each j 2 V0
sink to all reachable i 2 S0

j . The

pseudo code of the proposed algorithm is given in Algorithm

4. Next, let D	 denote the optimality gap between the added

edges using Algorithm 4, denoted by jDEþj and the minimum

number of required links to strongly connect the graph. We

then have the following main result.

Theorem 3: Given a weakly connected digraph G0 ¼
fV; Eg, Algorithm 4 results in a strongly connected graph

Gm ¼ fV; E [DEþg. Furthermore, Algorithm 4 will finish in

5n iterations with one link-addition step (m ¼ 1), whose opti-
mality gap D	 is equal to

D	 ¼ jDEþj �max jV0
sourj; jV0

sinkj
� �

(14)

where jDEþj ¼ P
i2V0

sink
jS0

i j � jV0
sourjjV0

sinkj.
Note that the resulting jDEþj also denotes the total number

of elementary paths from any pair source-scc to sink-scc that

Fig. 2. A condensed graph representation �G0 for the digraph in Fig. 1. The
nodes within non-assigned SCCs and non-representative nodes are omitted in
the graph �G0. The graph �G0 is composed of 5 disjoint subgraphs, i.e., d0 ¼ 5,
which are f1; 2; 6; 7; 8g, f11; 15g, f18g, f19g, and f20g.

Algorithm 4: Distributed Algorithm to Strongly Connect A

Weakly Connected Digraph

Input: weakly connected graph G0, network size n, neighbor set N in
i

andN out
i

Output: strongly connected graph Gm ¼ fV; E [DEþg
1: setm ¼ 0 and run Algorithm 3 fforGm ¼ fV; Egg
2: if Gm not strongly connected, i.e. Ci 6¼ V then

3: determine SCC’s representative node within Ci
4: m ¼ mþ 1
5: if i 2 Vm�1

sour then

6: broadcast its own information

7: else if i 2 Vm�1
sink then

8: Sm�1
i ¼ ; and start collecting source information

9: end if

10: forward broadcast information for n iterations

11: if i 2 Vm�1
sink then

12: add all members of Sm�1
i into N out

i and establish new link

from node i to all j 2 Sm�1
i .

13: end if

14: end if

ATMANAND GUSRIALDI: FINITE-TIME DISTRIBUTED ALGORITHMS FOR VERIFYINGAND ENSURING STRONG CONNECTIVITY OF DIRECTED NETWORKS 4385

exists in the initial graph. Furthermore, the following corollary

shows a case where Algorithm 4 results in a minimum link

addition.

Corollary 2: For a weakly connected digraph G0 with a sin-

gle source-scc (jV0
sourj ¼ 1) or a single sink-scc (jV0

sinkj ¼ 1),
Algorithm 4 yields an optimal solution with minimum link

addition.

2) Distributed Algorithm for Disconnected Digraph: Next,

we present distributed algorithm to strongly connect G0, given

that G0 is a disconnected graph which separates group of nodes

into several disjoint subgraphs, i.e. d0 > 1. The main idea for

the proposed distributed link addition algorithm comprises of

two main steps (extending from ideas in Algorithm 4), namely

to strongly connect each weakly-connected subgraph and to

connect all disconnected subgraphs. Specifically, each link-

addition step adds the following new links: (i) from each i 2
Vm
sink to all j 2 Sm

i and (ii) from each i 2 Vm
isol to a random

node j =2 Ci. The pseudo-code of the distributed algorithm is

given in Algorithm 5 and its performance is summarized in

the following theorem.

Theorem 4: Given a disconnected digraph G0 ¼ fV; Eg,
then Algorithm 5 results in a strongly connected graph Gm ¼
fV; E [DEþg by adding at most ð2 d0 þP

i2V0
sink

jS0
i jÞ new

edges. Furthermore, Algorithm 5 will finish in 3nþ 5 nm
iterations with the worst case m ¼ 2dlog 2 d0e, whose opti-

mality gap D	 is upper-bounded by

D	 � 2 d0 þ
X

i2V0
sink

jS0
i j � ðmaxfjV0

sourj; jV0
sinkjg þ jV0

isoljÞ: (15)

Remark 6: Note that for a weakly connected digraph, the

link addition procedure in Algorithm 5 is identical to Algo-

rithm 4, i.e., m ¼ 1. However, Algorithm 5 introduces addi-

tional 3n iterations for strong connectivity verification

(Algorithm 3 in line 12), thus finishes in 8n.
Remark 7 (Alternative Algorithm): An earlier version of

algorithm is presented in [1] without the need to broadcast the

source information. However, it may results in a longer com-

putation time as the computation complexity is Oðn2Þ.
Remark 8: Analogous to Remark 5, given a weakly con-

nected graph G0, the Algorithms 4 and 5 can be executed only

with the information of the upper bound of number of nodes

n � n by modifying the step 2 into checking whether Ci
reflects an isolated-scc, namely property 3) in Proposition 1.

Moreover, the exact number of nodes, i.e., n, can be inferred

at the end of Algorithm 5 as n ¼ jCij.

B. Verifying and Enforcing Minimum Link Addition

In the previous subsection, we have presented distributed

link addition algorithms to ensure a strongly connected graph.

However, as summarized in Theorems 3 and 4, the resulting

number of added links is not always guaranteed to be mini-

mum. In the following, we present the procedure to verify

whether the number of added links is minimum, and addition-

ally compute a new set of edges to ensure minimum link aug-

mentation by first removing the previously augmented edges

DEþ. The computation will be conducted by a single node

called a virtual leader. The virtual leader can be selected

among any node i 2 V0
sink [V0

isol where ði; jÞ 2 DEþ for some

nodes j.
The verification of minimum link addition is conducted

once the execution of Algorithm 5 is finished. The strong con-

nectivity of the graph is required in order to collect the infor-

mation for the minimum link verification algorithm as well as

to solve the minimum link augmentation problem. A solution

to the minimum link augmentation problem itself is presented

in [14], [15], where amaxfjV0
sourj; jV0

sinkjg þ jV0
sinkj number of

links can be added once the information on V0
isol, V0

sour, V0
sink,

and S0
i ; 8i 2 V0

sink are known.

Adopting the approach in [14], [15] to our current setup, the

virtual leader needs to collect the following information: 1)

original sinks V0
sink; 2) reachable sources S

0
i for each i 2 V0

sink;

and 3) number of added links jDEþj. Note that the set V0
sour can

be reconstructed from [i2V0
sink

S0
i . These information can be

obtained by having all nodes i 2 V0
sink [V0

isol to broadcast their

own information and the number of links which they added.

Using the above information, the virtual leader can then verify

if the added link jDEþj is minimum. If the number of added

links is not minimum, the virtual leader then constructs a new

set ofDEþ which ensure the minimal link augmentation.

The procedure to compute the minimum link augmenting

set, as shown in [14], [15], requires an index p and an ordering

vð1Þ; . . . ; vðjV0
sourj þ jV0

isoljÞ and wð1Þ; . . . ; wðjV0
sinkjÞ. The

ordering w contains all nodes in V0
sink, while the ordering v

contains a combination of V0
sour and V0

isol. The index p and the

orderings need to ensure the following properties:

1) there is a path from vðiÞ to wðiÞ for 1 � i � p;
2) for each source vðiÞ; pþ 1 � i � jV0

sourj there is a path
from vðiÞ to some wðjÞ; 1 � j � p; and

3) for each sink wðjÞ; pþ 1 � j � jV0
sinkj there is a path

from some vðiÞ; 1 � i � p to wðjÞ.
Additionally, the ordering vðjV0

sourj þ 1Þ; . . . ; vðjV0
sourj þ

jV0
isoljÞ contains all nodes from V0

isol. Given the existing

Algorithm 5: Distributed Algorithm to Strongly Connect A

Disconnected Digraph

Input: directed graph G0, network size n, neighbor setN in
i andN out

i

Output: strongly connected graph Gm ¼ fV; E [DEþg
1: setm ¼ 0 and run Algorithm 3

2: while Gm is not strongly connected, i.e. Ci 6¼ V do

3: determine representative node within Ci
4: m ¼ mþ 1
5: run step 5–10 in Algorithm 4

6: if i 2 Vm�1
isol then

7: randomly select a candidate node j =2 Ci
8: add j intoN out

i and establish new link ði; jÞ.
9: else if i 2 Vm�1

sink then

10: add all members Sm�1
i into N out

i and establish new links

from node i to all j 2 Sm�1
i .

11: end if

12: run Algorithm 3

13: end while

4386 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022

information in the virtual leader, the ordering can be con-
structed by following the steps in Algorithm 6.
Lemma 6: Given a list of pairings of sinks and their reachable

sources, the Algorithm 6 finds an index p and an ordering of v
and w satisfying Properties 1–3.

Once the p and the ordering of v and w are known, the aug-

menting set can be constructed as a combination of the follow-

ing edges shown in (16), shown at the bottom of the page. Note

that the formulated links in (16) is modified from the original

formulation in [14], [15] to circumvent the need to flip the

direction of the graph for the case of jV0
sourj > jV0

sinkj. The
information about the augmenting set can then be distributed to

all nodes to reconfigure the new edges, that is by locally remov-

ing existingDEþ and replacing it with the new one.

The complete pseudo-code of algorithm for verifying and

enforcing minimum link addition is presented in Algorithm 7.

The results can be formally stated in the following theorem.

Theorem 5: Consider a disconnected digraph G0. Given an

index p, and an ordering of v and w following Properties 1-3,

then the set of edges DEþ in (16) makes the resulting graph

G	 ¼ fV; E [DEþg strongly connected. In addition, the num-

ber of links added is jDEþj ¼ maxfjV0
sourj; jV0

sinkjg þ jV0
isolj.

Remark 9 (Privacy Preservation): In addition to the existing

information as stated in Remark 4, by executing Algorithm 4, 5,

or 7, each node can also retrieved the information of Vm
sour, V0

sink,

and V0
isol from the broadcasted information. While this informa-

tion provide a general existence of paths between source-sccs

and sink-sccs, it is still not sufficient for each node to reveal the

overall network topology, thus preserving the privacy.

Remark 10 (Computational Complexity): Algorithm 7 fin-

ishes in 3n additional iterations from Algorithm 4 due to the

broadcasting procedures, totaling to 6nþ 10nðdlog 2 d0eÞ
iterations. Hence, Algorithm 7 computational complexity is

equal to OðnlognÞ.

VI. NUMERICAL SIMULATION

In this section, we provide numerical simulations where we

test Algorithm 7 as it covers all the main functionalities pre-

sented in Algorithms 1-6. The distributed computation of

Algorithm 7 including the information exchange are simulated

in a single PC using python programming language. The

source code is available in the following link https://github.

com/TUNI-IINES/dist-strong-connectivity

For the simulations we consider three different graphs,

namely GA;GB;GL. The graph GA ¼ ðVA; EAÞ consists of 5

disjoint subgraphs and is shown in Fig. 1. Digraph GB ¼
ðVB; EBÞ is a weakly connected graph consists of 10 nodes as

depicted in Fig. 4. Finally, digraph GL is a disconnected graph

of 50 nodes as shown in Fig. 3. The detailed parameters for

each graph and the theoretical bounds presented in Theorems

4 and 5 are summarized in Table II.

Since the distributed link addition for the weakly connected

graph provides a unique solution, it is sufficient to run a single

numerical simulation for GB. Furthermore, we conduct 400

and 2500 number of simulations for GA and GL respectively in

order to ensure sufficient samples (n2) are collected for verify-

ing our theoretical results in Theorem 4 and 5, as some new

links are selected randomly.

All the results of the numerical simulation show that the dis-

tributed link addition algorithms result in strongly connected

digraph and if the number of added links is not minimum, the

DEþ ¼ fðwðiÞ; vðiþ 1ÞÞ j 1 � i < pg [fðwðiÞ; vðiÞÞ j pþ 1 � i � minfjV0
sourj; jV0

sinkjgg

[

ðwðpÞ;V	Þ; if jV0
sourj ¼ jV0

sinkj > 0;

ðwðpÞ; wðjV0
sourj þ 1ÞÞ [fðwðiÞ; wðiþ 1ÞÞ j jV0

sourj þ 1 � i < jV0
sinkjg

[ðwðjV0
sinkjÞ;V	Þ; if jV0

sourj < jV0
sinkj;

ðwðpÞ; vðjV0
sinkj þ 1ÞÞ [fðvðiÞ; vðiþ 1ÞÞ j jV0

sinkj þ 1 � i < jV0
sourjg

[ðvðjV0
sourjÞ;V	Þ; if jV0

sourj > jV0
sinkj;

8>>>>>><
>>>>>>:

[fðvðiÞ; vðiþ 1ÞÞ j ðjV0
sourj þ 1Þ � i < ðjV0

sourj þ jV0
isoljÞg [ðvðjV0

sourj þ jV0
isoljÞ; vð1ÞÞ if jV0

isolj 6¼ 0;
; if jV0

isolj ¼ 0;

�

withV	 ¼ vðjV0
sourj þ 1Þ if jV0

isolj 6¼ 0;
vð1Þ if jV0

isolj ¼ 0;
.

�
(16)

Algorithm 6: Ordering for Sinks and Sources

Input: V0
sour, V0

sink, V0
isol, and S0

i for all i 2 V0
sink

Output: p, v and w following Properties 1–3

1: p ¼ 0
2: for each i 2 V0

sink do

3: for each j 2 S0
i do

4: if j =2 fvð1Þ; . . . ; vðpÞg and i =2 fwð1Þ; . . . ; wðpÞg then
5: p ¼ pþ 1
6: add j to vðpÞ and add i to wðpÞ
7: end if

8: end for

9: end for

10: add the remaining V0
sour into vðpþ 1Þ; . . . ; vðjV0

sourjÞ
11: add the remaining V0

sink into wðpþ 1Þ; . . . ; wðjV0
sinkjÞ

12: add all V0
isol into vðjV0

sourj þ 1Þ; . . . ; vðjV0
sourj þ jV0

isoljÞ

ATMANAND GUSRIALDI: FINITE-TIME DISTRIBUTED ALGORITHMS FOR VERIFYINGAND ENSURING STRONG CONNECTIVITY OF DIRECTED NETWORKS 4387

https://github.com/TUNI-IINES/dist-strong-connectivity
https://github.com/TUNI-IINES/dist-strong-connectivity

algorithms will further enforce a minimum number of added

links. Hence, the results are aligned with Theorem 5. More

detailed results are presented in the subsequent discussions to

further verify the required number of time steps and the number

of augmented link before the minimum link reconfiguration in

comparison to its theoretical bound given in Theorem 4.

A. Weakly Connected Graph GB With 10 Nodes

The results for graph GB is illustrated in Fig. 4. The algo-

rithm finishes in 11n time steps, where it first introduces 5

new edges (Fig. 4(a)) to strongly connect graph GB before

minimum link addition is enforced with 3 new edges (Fig. 4

(b)). Note that for the weakly connected graph, the link addi-

tion procedure in Algorithm 5 is identical to the one in Algo-

rithm 4, which ensures strong connectivity in 5n iteration

(m ¼ 1). In addition, Theorem 3 guarantee a smaller optimal-

ity gap with D	 ¼ 2, which is aligned with the observation

shown in Fig. 4.

Fig. 4. Numerical results for graphGB at the end of: a) distributed link addition
algorithm and b) verification and enforcing minimum link addition algorithm.

Fig. 3. A disconnected graph GL with 50 nodes.

Algorithm 7: Distributed Algorithm for Solving Problem 2

Input: directed graph G0, network size n, neighbor setN in
i andN out

i

Output: strongly connected graph Gm ¼ fV; E [DEþg with mini-

mum number of DEþ

1: run Algorithm 5

2: determine virtual leader

3: if node i 2 V0
sink [V0

isol then

4: if node i is not virtual leader then
5: broadcast i, added edges, and accessible sources S0

i (if

applicable)

6: else

7: start collecting other’s information

8: end if

9: end if

10: forward broadcast information for n iterations

11: if node i is virtual leader then
12: construct V0

sour, V0
sink, V0

isol and DEþ

13: if jDEþj > maxfjV0
sourj; jV0

sinkjg þ jV0
isolj then

14: construct Tarjan’s ordering as Algorithm 6

15: construct minimum link augmentation as in (16)

16: broadcast the optimal link to reforge new DEþ

17: else

18: broadcast that link is already optimal

19: end if

20: end if

21: save broadcasted information and forward it for n iterations

22: process the information, re-establish new links if previously not

optimal

Fig. 5. An example of numerical results for graph GA at the end of: a) distrib-
uted link addition algorithm and b) verification and enforcing minimum link
addition algorithm.

TABLE II
PARAMETER OF THE TESTED GRAPH AND THE THEORETICAL BOUNDS FROM

THEOREMS 4 AND 5

4388 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022

B. Disconnected Graph GA With 20 Nodes

An example of the results for graph GA is illustrated in

Fig. 5 while the results for n2 ¼ 400 repetitions are summa-

rized in Fig. 6. For all the repetitions, the data shows that the

algorithm finishes in 21n time steps, which is equivalent to

link addition with m ¼ 3 steps. The number of added links for

all the repetitions are between 12 to 14 new edges. Both the

number of iterations and number of augmented links are

within the expected bounds as shown in Table II.

C. Disconnected Graph GL With 50 Nodes

Finally, an example of the results for graph GL is illustrated

in Fig. 7 while the results for n2 ¼ 2500 repetitions are sum-

marized in Fig. 8. The data is divided into two groups, with

the majority (1362 results) finishes in 26n time steps and the

remaining (1138 results) finishes in 21n time steps, which are

equivalent to link addition with m ¼ 4 and m ¼ 3 steps,

respectively. The number of added links for all the results are

between 46 to 50 new edges. Both the number of iterations

and number of augmented links are within the expected

bounds as shown in Table II. The results verify the theoretical

bounds given in Theorem 4 and 5.

VII. CONCLUSION

This paper proposes distributed and finite time algorithms to

verify strongly connected property of a directed graph and to

make a directed graph strongly connected with a minimum

number of link addition. The strategy is inspired by maximum

consensus algorithm which is known to have finite computa-

tion time. The proposed strategies provide the solutions with-

out requiring knowledge of the overall network topology and

further preserve the privacy in terms of the overall network’s

topology. Strong connectivity is a graph property that is com-

monly assumed or required in many distributed systems and is

crucial in guaranteeing convergence of many distributed esti-

mation/optimization/control algorithms. Hence, the proposed

distributed strategy has broad applications.

Future work will aim towards the asynchronous implemen-

tation of the proposed algorithms and to relax the assumption

where only upper bound of the number of nodes is known. In

addition, several application specific use-cases will be consid-

ered, e.g., towards minimizing network’s end-to-end delay or

a case where a communication link can only established with

nodes within a certain communication range.

Fig. 7. An example of numerical results for graph GL at the end of: a) distrib-
uted link addition algorithm and b) verification and enforcing minimum link
addition algorithm.

Fig. 8. Numerical results of disconnected graph GL with 50 nodes for 2500
repetitions. The number beside each data point describe the number of accu-
mulated occurrences on that data point.

Fig. 6. Numerical results of disconnected graph GA with 20 nodes for 400
repetitions. The number beside each data point describe the number of accu-
mulated occurrences on that data point.

ATMAN AND GUSRIALDI: FINITE-TIME DISTRIBUTED ALGORITHMS FOR VERIFYINGAND ENSURING STRONG CONNECTIVITY OF DIRECTED NETWORKS 4389

APPENDIX

PROOF

A. Proof of Theorem 1

We start by showing the necessity ð)Þ. From Lemma 1,

since the graph G0 is strongly connected, each element in xi

namely xi;j will converge to maxixi;j½0� ¼ 1 (strong max-con-

sensus) for all i; j 2 V within the worst-case of n� 1 itera-

tions. Thus, xxxxxxxi½n� ¼ 1n is fulfilled for all i 2 V. Next, we
show the sufficiency ð(Þ through contradiction. We first

assume that graph G0 is not strongly connected, i.e., there

exists no path from a certain node i to j. However, as we have
xi;j½n� ¼ 1 under update law (4) for all j-th row in xxxxxxxi½n� and
for all nodes i in the network, this means that there exist path

from any node j to any node i. Hence the graph G0 is strongly

connected, which contradicts the assumption.

B. Proof of Theorem 2

Let us divide all nodes into set V0 :¼ f8i 2 V j fi½0� ¼ 0g
and V1 :¼ f8i 2 V j fi½0� ¼ 1g. Then, we can rewrite Theo-

rem 1 as graph G0 is strongly connected if and only if V0 ¼ V
and V1 ¼ ;, equivalently fi½n� ¼ 0; 8i 2 V.

For a non-strongly connected graph G0, under update law

(6), the value of fi will converge to maxifi½0� ¼ 1; 8i 2 V
(weak maximum consensus) if for any node i 2 V0 there exists

path ending in i and starting in j 2 V1 [25]. Note that this con-

dition is satisfied as any node i 2 V0 is reachable from all

nodes. This ensures that fi½n� ¼ fj½n�; 8i; j 2 V.

C. Proof of Lemma 2

As there exist a path between any distinct nodes within a

SCC, this means that all information from one node can reach

the other, which results in an equal information number.

D. Proof of Lemma 3

Node i can be reached by all nodes in Pi as well as its own

SCC, i.e. Ci, thus ensures a higher information number than

all nodes in Pi. Hence, node i’s information number is lower

bounded by maxj2Pi
jCij þ zj, noting that node i’s SCC can

have multiple entering edges.

E. Proof of Corollary 1

We start by showing the necessity ð)Þ. Since the graph G0

is strongly connected, Theorem 1 ensures that xxxxxxxi½n� ¼ 1n for

all i 2 V. Hence, all node i’s information number is equal to

n, initializing ci;i½0� ¼ n. Strong connectivity of G0 and update

law (8) ensures maximum consensus protocol [25] for each

element in ci namely ci;j will converge to maxici;j½0� ¼ n for

all i; j 2 V. Thus, ccccccci½n� ¼ n1n. Note that with (10), the above

condition is equivalent to each node i ends up with Ci ¼ V
(alternatively jCij ¼ jVj ¼ n) for all i; j 2 V. The sufficiency

ð(Þ through contradiction follows similar arguments with

Theorem 1.

F. Proof of Lemma 4

We can show the proof by contradiction, assume a given node

i where its SCC (i.e. set Ci) has no entering edge and Pi 6¼ ;.
The fact that Pi 6¼ ; implies that there exist at minimum one

node outside of Ci which can reach node i 2 Ci. Hence, there
exist an entering edge to its own SCCwhich contradict the origi-

nal assumption.

G. Proof of Proposition 1

The three statements follows directly from Definitions 2-

4 as results from update rules (4), (8), and (12). The condi-

tion Pi 6¼ ; denotes that there exist at least one node in Pi

that can reach a node in Ci, hence the existence of at least

an entering edge to node i’s SCC. Conversely, the absence

of entering nodes is denoted by Pi ¼ ;. The existence of

at least an exiting edge is denoted by any oi;j½n� ¼ 1 for

all node j 2 Ci, while the absence of exiting edge is

denoted by oi;j½n� ¼ 0; 8j 2 Ci.

H. Proof of Lemma 5

Each new edge ðj; iÞ creates a cycle containing all nodes

within the elementary path from i 2 S0
j � V0

sour to the j 2
V0
sink, merging the corresponding SCCs into a single SCC. As

it occurs simultaneously for all sink-sccs towards all existing

source-sccs, this ensure there exist a path from node j to node

i for every original edge ði; jÞ 2 E. Hence, by the definition of

weakly connected graph, the resulting graph is strongly

connected.

I. Proof of Theorem 3

The Algorithm 4 reflects the described step in Lemma 5,

hence strongly connects the whole graph.

Upper bound of the added links: The link addition proce-

dure in step 12 introduces jS0
i j � jV0

sourj number of new links

for each i 2 V0
sink. Thus, the number of added links will beP

i2V0
sink

jS0
i j and is upper-bounded by jV0

sourjjV0
sinkj.

Computational complexity: The Algorithm 3 in step 1

runs in 3n iterations, while the link addition step (steps 3-

13) requires 2n steps due to the selection of representative

nodes and information broadcast. Hence, by a simple cal-

culation, the execution of Algorithm 4 requires a total 5n
iterations.

Optimality gap: The minimum number of edges that must

be added to strongly connect a weakly connected digraph is

equal to maxfjV0
sourj; jV0

sinkjg, see [14], [15]. This stems from

the fact that we need to introduce at least one exiting edge on

sink-scc and at least one entering edge on source-scc. Then,

the number of the new edges added through Algorithm 4 is

jDEþj � maxfjV0
sourj; jV0

sinkjg. Thus, the optimality gap can

be calculated as D	 ¼ jDEþj �maxfjV0
sourj; jV0

sinkjg. As the

number of added link is
P

i2V0
sink

jS0
i j, the optimality gap is

D	 ¼ P
i2V0

sink
jS0

i j �maxfjV0
sourj; jV0

sinkjg.

4390 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022

J. Proof of Corollary 2

When jV0
sourj ¼ 1 or jV0

sinkj ¼ 1, we can write the right hand

side of inequality (14) as

X
i2V0

sink

jS0
i j �max jV0

sourj; jV0
sinkj

� �

� jV0
sourjjV0

sinkj �max jV0
sourj; jV0

sinkj
� � ¼ 0:

(17)

Hence, the optimality gap D	 ¼ 0, i.e., number of links

obtained from Algorithm 4 is minimum.

K. Proof of Theorem 4

As stated in Lemma 5 the combination of new links from

each i 2 Vm
sink to all j 2 Sm

i strongly connects the subgraph

where node i belongs to (Step 10). In addition, the new links

from each i 2 Vm
isol to a random node j =2 Pi [Ci (Step 8) con-

nect the associated disjoint subgraphs to form either new

weakly connected subgraphs or new isolated-sccs (from multi-

ple isolated-sccs forming a cycle).

Now, consider a case where the original graph consists of d0

weakly connected subgraphs and assume d0 is even. For m ¼
1, only nodes i 2 V0

sink add new links following step 10, result-

ing in d0 isolated-sccs. Next, consider an extreme condition in

the subsequent link addition (m ¼ 2), where any distinct pair

of isolated-sccs connect to each other to form a new isolated-

sccs. This reduces the number of disjoint subgraphs into d0=2.
Note that we can consider the above as the worst-case sce-

nario, given the following arguments: (a) when isolated-scc

exists in the original graph, the number of disjoint graphs will

already be reduced after m ¼ 1, (b) in many cases several iso-

lated-sccs can chain together, thus further reducing the num-

ber of disjoint graph after m ¼ 2, and (c) the extreme case for

odd d0 after m ¼ 2 will be analogous to the above (even) case

as the last single isolated-scc need to add link to a pair of con-

nected isolated-sccs. Hence, it is guaranteed that after 2 num-

ber of link additions the number of disjoint subgraph will be

less than half of the original, i.e., dmþ2 � dm=2. Thus, the pro-
posed Algorithm 5 guarantees the reduction of the number of

disjoint subgraphs which results in a strongly connected graph

under finite number of link-addition steps.

Upper bound of the added links: Since the number of dis-

joint subgraphs is guaranteed to be less than half of its original

after 2 steps of link addition, i.e., dmþ2 � dm, Algorithm 5

will finish at most within 2dlog 2 d0e link additions.
In the first link addition, i.e., m ¼ 1, each node i 2 V0

sink

adds jS0
i j � jV0

sourj number of new links (step 10). At the same

time each node i 2 V0
isol adds a new link towards other disjoint

subgraphs (step 8). Note that after each link addition, any

weakly connected subgraph becomes an isolated-sccs while

any existing isolated-sccs add a new exiting edge. From the

above observations, we can infer that any new weakly con-

nected subgraph that is created after adding new links will

only have a single sink-scc. Note that the subsequent new

edges from this single sink-scc to all source-sccs, is still within

the considered worst-case scenario where pair of isolated-sccs

are selecting each other to add new links. Hence, with the

exception of
P

i2V0
sink

jS0
i j number of links from step 10 at

m ¼ 0, the number of new links to connect the disjoint sub-

graphs via Algorithm 5 can be upper-bounded by d0 þ d0=2þ
d0=4þ � 2 d0. Thus, in total the number of added links is

upper-bounded by
P

i2V0
sink

jS0
i j þ 2 d0.

Computational complexity: The Algorithm 3 runs in 3n iter-

ations, while each link addition steps will need 2n steps due to

the selection of representative node and information broad-

cast. Then by simple calculation, each link addition step

requires 5n iterations. In total, as m � 2dlog 2 d0e, Algorithm
5 requires at maximum 3nþ 10ndlog 2 d0eÞ iterations.

Optimality gap: The minimum number of edges that must be

added to strongly connect a disconnected digraph is

maxfjV0
sourj; jV0

sinkjg þ jV0
isolj, as shown in [14], [15]. This

stems from the fact that we need to introduce at least one exit-

ing edge on sink-sccs and isolated-sccs and at least one entering

edge on source-sccs and isolated-sccs. Thus, the optimality gap

can be calculated as D	 ¼ jDEþj � ðmaxfjV0
sourj; jV0

sinkjg þ
jV0

isoljÞ. with the upper-bound is given by D	 � P
i2V0

sink
jS0

i j þ
2 d0 � ðmaxfjV0

sourj; jV0
sinkjgþ jV0

isoljÞ.

L. Proof of Lemma 6

Algorithm 6 constructs the ordering by iterating and check-

ing each pairing of sink and reachable sources. Note that each

pairings already ensures that there is a path from any selected

source j 2 S0
i � V0

sour to the given i 2 V0
sink, which is a

requirement for Property 1. Initially, at the first iteration we

can add any i 2 V0
sink and its respective j 2 S0

i . Then, in the

subsequent iterations, assuming that the pairing list contains

no duplicate sink, the order can be updated as long as there

exist a reachable source that has not been listed from a given

pairing, i.e., j =2 fvð1Þ; . . . ; vðpÞg. If all sources j 2 Si already

included in the ordering, i.e., j =2 fvð1Þ; . . . ; vðpÞg, then the

given sink already satisfy the condition for Property 3, thus

can be added later into wðpþ 1Þ; . . . ; wðjV0
sinkjÞ after finished

inspecting all the pairing list. In a similar argument, all the

sources that is not selected during iterations, 8j j j 2
V0
sour n fvð1Þ; . . . ; vðpÞg, satisfy the condition for Property 2

and can be assigned into vðpþ 1Þ; . . . ; vðjV0
sourjÞ.

M. Proof of Theorem 5

The proof follow analogously to the existing result in [14],

[15]. First, let us consider jV0
isolj ¼ 0 and focus on all the aug-

mented edges with the exception of ðwðiÞ; vðiÞÞ j pþ 1 � i �
minfjV0

sourj; jV0
sinkjg. These in total introduces pþ kjV0

sourj �
jV0

sinkjk new edges. Observe that by augmenting these edges,

the nodes vð1Þ; . . . ; vðpÞ; wð1Þ; . . . ; wðpÞ and either vðjV0
sinkjÞ;

. . . ; vðjV0
sourjÞ for jV0

sinkj < jV0
sourj or wðjV0

sourjÞ; . . . ;
wðjV0

sinkjÞ for jV0
sourj < jV0

sinkj are on a directed cycle

(denoted by C) and thus strongly connected. Thus, all of these

nodes and their respective sccs are mutually reachable.

ATMAN AND GUSRIALDI: FINITE-TIME DISTRIBUTED ALGORITHMS FOR VERIFYINGAND ENSURING STRONG CONNECTIVITY OF DIRECTED NETWORKS 4391

By property (2) there is a path from vðiÞ; pþ 1 � i �
minfjV0

sourj; jV0
sinkjg to some vertex in wðjÞ; 1 � i � p and

hence to all vertices on C. Then, from property (3) and the

addition of edge ðwðiÞ; vðiÞÞ for pþ 1 � i � minfjV0
sourj;

jV0
sinkjg, there is a path from every node in the cycle C to each

vðiÞ; pþ 1 � i � minfjV0
sourj; jV0

sinkjg. A similar argument

shows that there is a directed path from the nodes in the cycle

C to each wðiÞ; pþ 1 � i � minfjV0
sourj; jV0

sinkjg and from

each wðiÞ; pþ 1 � i � minfjV0
sourj; jV0

sinkjg to the nodes in

cycle C.
To this end, the set ðwðiÞ; vðiÞÞ for pþ 1 � i � min

fjV0
sourj; jV0

sinkjg introduces minfjV0
sourj; jV0

sinkjg � p new

edges. In addition to the pþ kjV0
sourj � jV0

sinkjk number of

edges introduced previously, the total number of augmented

set in DEþ is minfjV0
sourj; jV0

sinkjg þ k jV0
sourj � jV0

sinkjk ¼
max fjV0

sourj; jV0
sinkjg.

Note that for the case of jV0
isolj > 0, the modification in

(16) adds jV0
isolj new edges by chaining the nodes vðjV0

sourj þ
1Þ; . . . ; vðjV0

sourj þ jV0
isoljÞ in the directed cycle C. The rest of

the proof follows the previous discussion when jV0
isolj ¼ 0,

which ensures all nodes are mutually reachable. The addi-

tional modification for connecting isolated-sccs results in the

total number of augmented set introduced in DEþ as

maxfjV0
sourj; jV0

sinkjg þ jV0
isolj.

REFERENCES

[1] M. W. S. Atman and A. Gusrialdi, “Distributed algorithms for verifying
and ensuring strong connectivity of directed networks,” in Proc. 60th
IEEE Conf. Decis. Control, 2021, pp. 4798–4803.

[2] A. Gusrialdi and Z. Qu, “Distributed estimation of all the eigenvalues and
eigenvectors of matrices associated with strongly connected digraphs,”
IEEE Contr. Syst. Lett., vol. 1, no. 2, pp. 328–333, Oct. 2017.

[3] T. Charalambous, M. G. Rabbat, M. Johansson, and C. N. Hadjicostis,
“Distributed finite-time computation of digraph parameters: Left-eigen-
vector, out-degree and spectrum,” IEEE Trans. Control Netw. Syst.,
vol. 3, no. 2, pp. 137–148, Jun. 2016.

[4] V. S. Mai and E. H. Abed, “Distributed optimization over directed
graphs with row stochasticity and constraint regularity,” Automatica,
vol. 102, pp. 94–104, 2019.

[5] Q. Yang and G. Chen, “Primal-dual subgradient algorithm for distrib-
uted constraint optimization over unbalanced digraphs,” IEEE Access,
vol. 7, pp. 85190–85202, 2019.

[6] T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and
M. Johansson, “Distributed finite-time average consensus in digraphs in
the presence of time delays,” IEEE Trans. Control Netw. Syst., vol. 2,
no. 4, pp. 370–381, Dec. 2015.

[7] L. Sabattini, C. Secchi, and N. Chopra, “Decentralized estimation and
control for preserving the strong connectivity of directed graphs,” IEEE
Trans. Cybern., vol. 45, no. 10, pp. 2273–2286, Oct. 2015.

[8] Z. Qu and M. A. Simaan, “Modularized design for cooperative control
and plug-and-play operation of networked heterogeneous systems,”
Automatica, vol. 50, no. 9, pp. 2405–2414, 2014.

[9] A. Gusrialdi, “Distributed algorithm for link removal in directed
networks,” in Proc. Int. Conf. Complex Netw. Appl., 2020, pp. 509–521.

[10] Ros-robot operating system. Accessed: Jul. 03, 2022. [Online]. Avail-
able: https://www.ros.org/

[11] Open field message bus. Accessed: Jul. 03, 2022. [Online]. Available:
https://openfmb.ucaiug.org/

[12] H. Efstathiades, D. Antoniades, G. Pallis, M. D. Dikaiakos, Z. Szl�avik,
and R.-J. Sips, “Online social network evolution: Revisiting the Twitter
graph,” in Proc. IEEE Int. Conf. Big Data, 2016, pp. 626–635.

[13] S. Dobrev, E. Kranakis, D. Krizanc, J. Opatrny, O. M. Ponce, and
L. Stacho, “Strong connectivity in sensor networks with given number
of directional antennae of bounded angle,” in Proc. Int. Conf. Combina-
torial Optim. Appl., 2010, pp. 72–86.

[14] K. P. Eswaran and R. E. Tarjan, “Augmentation problems,” SIAM J.
Comput., vol. 5, no. 4, pp. 653–665, Dec. 1976.

[15] S. Raghavan, “A note on eswaran and tarjan’s algorithm for the strong
connectivity augmentation problem,” in The Next Wave in Computing,
Optimization, and Decision Technologies, (ser. Operations Research/
Computer Science Interfaces Series) B. Golden, S. Raghavan, and
E. Wasil, Eds. Berlin, Germany: Springer, 2005, pp. 19–26.

[16] M. Sharir, “A strong-connectivity algorithm and its applications in data
flow analysis,” Comput. Math. Appl., vol. 7, no. 1, pp. 67–72, Jan. 1981.

[17] H. N. Gabow, “Path-based depth-first search for strong and biconnected
components,” Inf. Process. Lett., vol. 74, no. 3, pp. 107–114, May 2000.

[18] P. Lammich, “Verified efficient implementation of gabow’s strongly
connected component algorithm,” in Interactive Theorem Proving, ser.
Lecture Notes in Computer Science, G. Klein and R. Gamboa, Eds. Ber-
lin, Germany: Springer, 2014, pp. 325–340.

[19] Z. Wang, Y. Wu, Y. Xu, and R. Lu, “An efficient algorithm to determine
the connectivity of complex directed networks,” IEEE Trans. Cybern.,
vol. 52, no. 7, pp. 7164–7171, Jul. 2022.

[20] T. Watanabe and A. Nakamura, “Edge-connectivity augmentation prob-
lems,” J. Comput. Syst. Sci., vol. 35, no. 1, pp. 96–144, Aug. 1987.

[21] K. V. Klinkby, P. Misra, and S. Saurabh, “Strong connectivity augmen-
tation is FPT,” in Proc. ACM-SIAM Symp. Discrete Algorithms, Soc.
Ind. Appl. Math., 2021, pp. 219–234.

[22] X. Bao, L. Han, C. Deng, H. Zhang, and W. Tan, “Robust topology con-
struction method with radio interface constraint for multi-radio multi-
channel wireless mesh network using directional antennas,” Int. J. Dis-
trib. Sensor Netw., vol. 12, no. 9, Sep. 2016, Art. no. 1550147716668062.

[23] N. Chen, T. Qiu, Z. Lu, and D. O. Wu, “An adaptive robustness evolu-
tion algorithm with self-competition and its 3D deployment for Internet
of Things,” IEEE/ACM Trans. Netw., vol. 30, no. 1, pp. 368–381,
Feb. 2022.

[24] A. Gusrialdi, Z. Qu, and S. Hirche, “Distributed link removal using local
estimation of network topology,” IEEE Trans. Netw. Sci. Eng., vol. 6,
no. 3, pp. 280–292, Jul.–Sep. 2019.

[25] B. M. Nejad, S. A. Attia, and J. Raisch, “Max-consensus in a max-plus
algebraic setting: The case of fixed communication topologies,” in Proc.
IEEE XXII Int. Symp. Inf. Commun. Automat. Technol., 2009, pp. 1–7.

[26] B. M. Nejad, S. A. Attia, and J. Raisch, “Max-consensus in a max-plus
algebraic setting: The case of switching communication topologies,”
IFAC Proc., vol. 43, no. 12, pp. 173–180, Jan. 2010.

Made Widhi Surya Atman (Member, IEEE) received
the B.Eng. and M.Sc. degrees in electrical engineering
from Institut Teknologi Bandung, Bandung, Indonesia, in
2011 and 2014, respectively, and the M.Eng. degree in
mechanical and control engineering andD.Eng. degree in
systems and control engineering from the Tokyo Institute
of Technology, Tokyo, Japan, in 2017 and 2020, respec-
tively. Since 2020, he has been a Postdoctoral Research
Fellowwith theAutomation Technology andMechanical
Engineering, Tampere University, Tampere, Finland. His
research interests include human–swarm interaction, pas-
sivity-based control, and distributed control of networked
system.

Azwirman Gusrialdi (Member, IEEE) received the
B.Eng. and M.Eng. degrees in mechanical and con-
trol engineering from the Tokyo Institute of Technol-
ogy, Tokyo, Japan, in 2006 and 2008, respectively,
and the Dr.-Ing. degree in control engineering from
Technische Universit�at at M€unchen, Munich, Ger-
many, in 2012. He was a Postdoctoral Researcher
with the Department of Electrical and Computer
Engineering, University of Central Florida, Orlando,
FL, USA. Since 2019, he has been an assistant pro-
fessor with the Automation Technology and Mechan-

ical Engineering unit, Tampere University, Finland, and leading the
Intelligent Networked Systems group. His research interests include design of
resilient networked systems, cooperative control and distributed optimization
for networked cyber-physical systems.

4392 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 6, NOVEMBER-DECEMBER 2022

https://www.ros.org/
https://openfmb.ucaiug.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

