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Finite-Time Distributed Algorithms for Verifying
and Ensuring Strong Connectivity
of Directed Networks

Made Widhi Surya Atman

Abstract—The strong connectivity of a directed graph associated
with the communication network topology is crucial in ensuring the
convergence of many distributed estimation/control/optimization
algorithms. However, the assumption on the network’s strong
connectivity may not always be satisfied in practice. In addition,
information on the overall network topology is often not available,
e.g., due to privacy concerns or geographical constraints which calls
for a distributed algorithm. This paper aims to fill a crucial gap in
the literature due to the absence of a fully distributed algorithm to
verify and ensure in finite-time the strong connectivity of a directed
network. Specifically, inspired by the maximum consensus
algorithm we propose distributed algorithms that enable individual
node in a networked system to verify the strong connectivity of a
directed graph and further, if necessary, augment a minimum
number of new links to ensure the directed graph’s strong
connectivity. The proposed distributed algorithms are implemented
without requiring information of the overall network topology and
are scalable as they only require finite storage and converge in finite
number of steps. Furthermore, the algorithms also preserve the
privacy in terms of the overall network’s topology. Finally, the
proposed distributed algorithms are demonstrated and evaluated
via numerical results.

Index Terms—Distributed algorithms, finite-time, link addition,

max-consensus, strongly connected digraph, weakly connected
digraph.

1. INTRODUCTION
A. Motivation and Literature Review

ISTRIBUTED algorithm plays an important role in esti-

mation [2], [3], optimization [4], [5], and control [6], [7],
[8], [9] of networked systems. In contrast to centralized algo-
rithms where all the computations are performed at a control
center, the computations in distributed algorithms are locally
performed at individual system and by exchanging informa-
tion with a number of neighboring systems via a communica-
tion network. As a result, distributed algorithms have several
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potential advantages such as scalability to system’s size,
robustness with respect to failure of individual system, and
also preservation of data privacy. Strong connectedness of a
graph associated with the communication network topology of
distributed systems is a crucial requirement in ensuring the
convergence of the above mentioned distributed algorithms.
Most of the work on distributed estimation, optimization, and
control algorithms take for granted (i.e., assume) that the com-
munication network topology is strongly connected. However,
in practice the communication network topology of a net-
worked systems may not always be strongly connected. There-
fore, it is of importance to first verify and further ensure (e.g.,
by adding new links) the strong connectivity of a given com-
munication network topology before executing any distributed
estimation/optimization/control algorithms. More importantly,
the procedure for verifying and ensuring strong connectivity
of a communication network topology also needs to be per-
formed in a distributed manner as the overall network topol-
ogy is often not available due to privacy concerns or
geographical constraints and also in order to comply with the
feature of distributed algorithms that will be deployed in the
networked systems.

Motivated by the above fundamental yet crucial issue, this
paper focuses on the problem of distributively verifying and
ensuring the strong connectivity of a directed graph. The com-
munication of many real-world distributed systems is unidi-
rectional whose overall communication network topology can
be modelled as a directed graph. For example, in a broadcast-
based communication scheme or publish-subscribe protocol
(as can be found in Robot Operating System for robotic sys-
tems [10] and Open Field Message Bus for smart grid [11])
the receiver/subscriber can decide to use only a portion of all
the broadcasted/published information due to their selected
preferences or to limit the computational and/or communica-
tion cost. Other examples of unidirectional communication
include connectivity in social network such as Twitter [12]
and wireless network using directional antennae [13].

The problem of verifying a strongly connected directed
graph (digraph) can be translated into the problem of comput-
ing strongly connected components of a given digraph. Exist-
ing algorithms to solve the computation include Tarjan [14],
[15], Kosaraju—Sharir [16], and Gabow [17], [18] algorithm,
which are based on depth-first-search approach, as well as the
relation-transitive-closure-based Warshall algorithm [19]. On
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the other hand, the problem of ensuring strong connectivity of
a directed graph is often described as strong connectivity aug-
mentation problem. The study on the augmentation problem
was initiated by the work in [14], [15], followed by subsequent
research in [20], [21], emphasizing that the problem is solv-
able in polynomial time. Note that while the problem of ensur-
ing strong-connectivity problem is equivalent to constructing
k-edge-connectivity topology with k = 1, various approaches
for £ > 2 in undirected graph topology has also been gaining
interest to ensure robustness of the communication network,
see for example [22], [23].

Despite the aforementioned approaches in verifying and
ensuring strongly connected digraph, most of the solutions
focus on the centralized or parallel computation and rely on
the assumption that information/knowledge of the overall net-
work topology is available or known beforehand. A fully dis-
tributed approach (i.e., without requiring knowledge of the
overall network topology) to solve the problem is still limited
in literature, with notable examples are presented in [9], [24].
The distributed algorithms in [9], [24] focus on verifying
strong connectivity of a digraph after link removals. However,
the algorithm still requires the initial graph before link
removal to be strongly connected.

B. Statement of Contributions

The main contributions of this paper are twofold. First, we
propose distributed algorithms for verifying strong connectivity
of a directed graph. The proposed algorithms are inspired by the
maximum consensus algorithm [25], [26]. Our second contribu-
tion is distributed algorithms to turn a non-strongly connected
digraph into a strongly connected one by adding a minimum
number of new links. This is achieved by first developing dis-
tributed link addition algorithms together with their optimality
gap to ensure strong connectivity of a directed graph. A distrib-
uted method is then developed to check if the number of added
links is minimum and further, if necessary, compute a new set
of minimum number of links to make the digraph strongly con-
nected. In addition to be fully distributed and without requiring
information of the overall network topology, the proposed dis-
tributed algorithms are also scalable as they only require finite
storage and converge in finite time steps. The completion in a
finite number of steps allows the proposed algorithms to be eas-
ily implemented before executing any distributed estimation/
control/optimization algorithms whose convergence require
strong connectedness of the underlying communication net-
work. Furthermore, the distributed algorithms are also able
to preserve the privacy in terms of the global network
topology.

Finally, in comparison to the preliminary version of our
work on this problem [1], this paper considers link augmenta-
tion problem for not only weakly connected digraph but also
disconnected digraph. The distributed algorithms in this paper
also ensure strong connectivity of a digraph with minimum
number of link addition. In addition, this paper includes all the
proofs omitted in the preliminary version together with exten-
sive simulations.
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C. Organization

The remainder of this paper is organized as follows. In
Section II, we review the basic notions from graph theory and
provide the problem settings. Section III presents the distribu-
tive algorithm to verify whether a given directed network is
strongly connected. The distributed algorithm to estimate
strongly connected components of a digraph is then presented
in Section IV. Section V presents the distributed algorithm to
strongly connect a directed graph. Numerical results is pre-
sented in Section VI and followed with concluding remarks in
Section VII. All the proofs of the theorems, propositions and
lemmas are presented in the Appendix. Illustrative examples
to describe the procedure of the proposed algorithms are
included as a supplementary material.

II. PROBLEM FORMULATION

In this section, we recall some basic notions of the fundamen-
tal theories such as graph theory and maximum consensus algo-
rithm. Then, we define the problem settings within this paper.

A. Notation and Graph Theory

Information exchange between nodes in a network can be
modeled by means of directed graph (digraph). A directed
graph is denoted by G = (V,€) with a set of nodes V =
{1,2,...,n} and a set of edges (links) £ CV x V. A graph
G = V1, &) isasubgraphof G = (V,€)if V; CVand & C
E. Existence of an edge (4,j) € £ denotes that node j can
obtain information from node %, or node 7 is accessible to node
j. Here, node ¢ is said to be an in-neighbor of node j while
node j is the out-neighbor of node . Within this paper, the set
of all in-neighbors of node i is denoted by N7 ={je
V| (j,i) € €} while N = {j € V|(i,5) € £} denotes the
set of all out-neighbors of node i. Let the set X consist of all
2-element subsets of V, then the edge set & =K \ € denotes
all possible edges that are not present in G.

A path is a sequence of nodes (i1,%2,...,%,),p > 1, such
that 4; is an in-neighbor of 7;,, for j =i,...,p — 1. An ele-
mentary path is a path in which no nodes appears more than
once. A path is closed if i, = i;. A cycle is a closed path such
that ¢1, 19, ...,%,-1 are all distinct. A graph is acyclic if it has
no cycles. A graph is said to be strongly connected if there is a
path between any pair of distinct nodes and it is called weakly
connected if the graph obtained by adding an edge (j,¢) for
every existing edge (i, ) € £ in the original graph is strongly
connected. A strongly connected component of directed graph
G is a subgraph of G that is strongly connected and maximal,
as such no additional edges or vertices from G can be included
in the subgraph without breaking its property of being strongly
connected.

Within this paper, let R be the set of real numbers and Z>
be the set of non-negative integers. By 1, € R" and 0,, € R",
we denote the all ones vector and zeros vector in n-dimension,
respectively. For a given set A/, [N| denotes the number of
elements in this set. Vectors are denoted as boldface letters
and matrices are denoted as capital letters in boldface. Finally,
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the state associated with node ¢ € V is represented by the sub-
script operator, for example state a € R®, b > 1 for node i is
shown as a; and the j-th element of vector a; (with j < b) is
denoted by a; ;.

B. Max-Consensus Algorithm

Consider a directed graph G = (V, £) with n nodes and let us
assign state y;[t] € R to each node ¢ € V. The max-consensus
algorithm allows all nodes to distributively compute the maxi-
mum value of the initial conditions y;[0] for all < € V. Specifi-
cally, each node executes the following update rule [25]

max

yit +1]= m
JENUL)

{ilt]} (1)

with ¢ denotes the ¢-th communication event.

Definition 1 (Max-Consensus [25]): Given a directed graph
G = (V,&), an initial states y;[0] for each node 7 € V and the
update law (1). Then, max-consensus is said to be achieved, if
3l € Z>¢ such that

yilk] = max{y;[0]} VE>1, VieV. Q)
€y

If (2) holds for all possible y;[0], we say that strong max-
consensus is achieved. If (2) only holds for a subset of all pos-
sible y;[0], weak max-consensus is achieved.

Next, we recall the following results.

Lemma 1 (Max-Consensus [25]): Let G be a directed graph
representing the communication topology of n nodes.

e Strong max-consensus: Given any initial value of y;[0],
the necessary and sufficient condition for strong max-
consensus is that there exist a path between any pair of
nodes in G, i.e., the digraph G is strongly connected.

o Weak max-consensus: Given partitions of all nodes
based on the initial value of ;0] as V,,, :== {i € V|y;
[0] = max;ep{y;[0]}} and V,, := V' \ V,,. Then, the nec-
essary and sufficient condition for weak max-consensus
is that for any node j € V,, there exist a path ending in
j and starting in a node k € V,,,.

e Convergence speed: The required number of communi-
cation instants is the maximum of the shortest path
length between any pair of nodes in G, i.e. n — 1 in the
worst case.

It will be demonstrated throughout the paper that max-con-
sensus algorithm serves as a unified framework to solve our
problem.

C. Problem Settings

Consider a network consisting of n nodes whose connections
is given by a directed graph G’ = {V, £}, which also represents
the communication network topology between the nodes. We
make the following assumptions in the remaining of the paper:

Assumption 1: Assume that

1) The information of the overall network topology G’ is
not available and each node ¢ only knows the informa-
tion on A/}, A", and n.
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2) Each node is equipped with its own computational
resources and is assigned with a unique identifier which
can be mapped to its vertex number, i.e.,i € {1,...,n}.

Note that the unique identifier is a standard assumption
commonly used in designing distributed algorithm which can
be realized e.g., by using MAC address, see for example [3],
[7]. In addition to Assumption 1, it is also assumed that the
communication between nodes occur in a synchronous man-
ner. Furthermore, we consider a discrete-time case, where
communication instants may either be defined by a clock or
by the occurrence of external events. This can be realized,
e.g., by allowing the node to have access to global/universal
time and by having the execution timing and interval to be
predetermined beforehand.

The objective of this paper is to develop distributed algo-
rithms, under assumption 1, for solving the following problems:

Problem 1 (Connectivity Verification): Verify in a distrib-
uted manner if directed graph G is strongly connected.

Problem 2 (Connectivity Augmentation): For a directed
graph G, add a minimum number of additional edges A" C
£% in a distributed manner to ensure that the resulting graph
G" = {V,EUAE"} is strongly connected, i.e., to solve the fol-
lowing optimization problem

min_ |AET,
Agtcel (3)
s.t. G" is strongly connected

For the sake of readability, the notations used in this paper
are summarized in Table I. Each notation will be described in
more detail when it is first used in the discussion.

III. DISTRIBUTED VERIFICATION OF A DIRECTED GRAPH’S
STRONG CONNECTIVITY

In this section, we present a distributed algorithm to verify
whether a given network is strongly connected. Here, for each
node 7 € V, we introduce the state z;[t] € R" for checking if
node 4 is reachable from any other nodes and state f;[t] € R
for locally verifying if graph G° is strongly connected. Within
this paper, we refer ¢t € 7> as the tth communication event.
To this end, each node updates each row j € V of its state
z;[t], i.e., z; ;[t], for n iterations according to the following
max-consensus protocol

zij[t+1] = max xy,[t] )

L in, .
keNIUE}
whose initial condition is chosen as

2,[0] { 1, ifj=1 5)

0, otherwise.

Given the initialization in (5), this approach allows individual
node to estimate the existence of paths from all other nodes to
itself as the value of z; j[n] = 1 for any ¢ # j implies that there
exists a path from node j to node 7 while the value of z; ;[n] =
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TABLEI
A LIST OF KEY NOTATIONS
Notations  Description
go original graph to test
vV, E set of nodes and initial edges in Ggv
n number of nodes, i.e., n = |V
AT set of new edges to strongly connect G°
x;[t] node ¢’s estimate of reachable nodes
filt] node i’s estimate of strong connectivity
cilt] node i’s estimate of other nodes” information number
0;t] node ¢’s estimate of other SCC’s outgoing edge
Gi node i’s information number, i.e. 1 plus total number
of reachable nodes to 4
C; node i’s estimate of its own member of SCC
P node ¢’s estimate of reachable nodes outside of C;
m index for number of link addition iteration
gm the resulting graph after m-iteration of link addition
Vil representative node of source-scc in graph G
Vi representative node of sink-scc in graph G™
Vi representative node of isolated-scc in graph G
am number of disjoint subgraphs in graph G™
s set of node within V(. that is accessible to j € VI,
g" a condensed graph representation for G™
" setof nodesin G, ie., V" = {Vi, ,Vm v} C Y
g set of edges in G Edge (i,7) € £ denotes the
existence of path from i € VI, to j € V', in G™
A* optimality gap between |AE™| and the minimum
number of required link to strongly connect G°
v an ordering for V.., Vi, to compute minimum link
w an ordering for V[ to compute minimum link
D an index to compute minimum link

0 signals the absence of that path [9]. The n iterations is
selected to ensure x; reach its steady state.

The following result establishes the relationship between
thoe value of z;[n] and the strong connectivity of directed graph
g.

Theorem 1: Given a digraph G and each node executes (4)
for n iterations whose initial values are given in (5), the graph
G is strongly connected if and only if z;[n] = 1, forall i € V.

As a last step, each node needs to verify locally whether
z;[n] =1, for all ¢ € V. To this end, each node updates its
state f;[t] for n iterations according to

filt+1] = max fj[t] (6)
JENTMU{i}

whose initial value is chosen as

if Z; [’ﬂ] = 1n

filo] = {0’ (7

1, otherwise.

Each node can then independently verify the strong connectiv-
ity of digraph G° by observing its own value of f; [r] as shown
in the following theorem.

Theorem 2: Given a digraph G° and each node executes in
sequence update rule (4) and (6) for n iterations each, with
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Algorithm 1: Distributed Algorithm for Solving Problem 1

Input: network size n, in-neighbor set A/ ;“

Output: verification if G° is strongly connected

1: initialize each row of x;[0] as in (5)

2: for each j-th row of z; (j € {1,...,n}), execute max-consensus

update law (4) for n iterations.

assign f;[0] as in (7)

execute max-consensus update law (6) for n iterations

5: node i knows that graph G° is strongly connected when f; [n] =0
and not strongly connected when f;[n] = 1.

Rl

each initial values as in (5) and (7). The graph G° is strongly
connected if and only if f;[n] = 0 for any i € V.

The pseudo code of distributed verification algorithm for
solving problem 1 is summarized in Algorithm 1.

Remark 1 (Computational Complexity): Algorithm 1 fin-
ishes in 2n iterations i.e., its computational complexity is
equal to O(n).

Remark 2 (Privacy Preservation): From the retrieved infor-
mation through Algorithm 1, each node only knows the exis-
tence of path from other nodes to itself (state x;) and the
general notion of the strong connectivity of the graph G° (state
fi). Thus, Algorithm 1 does not reveal the overall network
topology.

Now, assume that after running Algorithm 1 all nodes verify
that the graph G is not strongly connected, i.e., G° is either a
weakly connected or a disconnected digraph. A distributed
algorithm is then needed to add new edges to G” so that the
resulting graph becomes strongly connected. The problem can
be reduced to a simpler one by converting G° into a directed
acyclic graph G" which contains one node for each strongly
connected component (SCC) of G°. The resulting node in C
with no entering edge is called a source, and a node with no
exiting edge is called a sink. The new edges to strongly con-
nect G can then be selected by connecting the existing sink to
source following a certain ordering, as shown in [14], [15].
However, the computation for the solution in general is cen-
tralized which requires information of the overall network
topology. In the following sections, given a non-strongly con-
nected digraph we propose distributed algorithms which first
estimate the strongly connected components that each node
belongs to (Section IV) and then distributively add new links
to make the digraph strongly connected (Section V).

IV. DISTRIBUTED ESTIMATION OF SCC

In the following, inspired by the max-consensus algorithm
we propose distributive approaches for estimating the strongly
connected component (SCC) of a directed graph. First, let us
introduce the following definitions on different types of SCC.

Definition 2 (source-scc): source strongly connected com-
ponent is a strongly connected component with no entering
edges and one or more exiting edges.

Definition 3 (sink-scc): sink strongly connected component
is a strongly connected component with no exiting edges and
one or more entering edges.
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Fig. 1. Examples of source-sccs (green regions), sink-sccs (blue regions),
isolated-sccs (orange regions), and non-assigned SCC (gray region).

Definition 4 (isolated-scc): isolated strongly connected
component is a strongly connected component with no exiting
edges and no entering edges.

An illustration of source-sccs, sink-sccs, and isolated-sccs is
shown in Fig. 1. Note that a SCC which is neither sink-scc,
source-scc, or isolated-scc can also exist (called as non-
assigned SCC) within a directed graph, e.g., nodes 9 and 10 in
Fig. 1.

The proposed distributed algorithms allow each node ¢ € V
to estimate the following: 1) the existence of paths from other
nodes to itself; 2) the SCC that it belongs to, namely the set
C;; 3) the existence of entering or exiting edges of its own
SCC; and 4) verify whether its own SCC is a source-scc, sink-
scc, isolated-scc, or neither of these.

To that end, for each node ¢ € V, let us assign states x;[t] €
R™, ¢;[t] € R", and o;[t] € R". State z;[t] is used to check if
node ¢ is reachable from any other nodes. State ¢;[t] then col-
lect all accessible z;[n] from other nodes for determining the
set C;. Using the information on ¢;[n], each node 7 also deter-
mines an additional set P; consisting of all nodes which are
reachable to C;. The determination of entering edge into C;
will rely on P;. Then, states o;[t] estimates the exiting edges
from C;. Finally, the characterization of its own SCC into
source-scc, sink-scc, or isolated-scc will rely on the informa-
tion C;, P; and o;[n] values.

A. Estimation of Paths and SCCs

As the first step, each node updates its state z;[t] for n itera-
tions according to the update rule (4) whose initial condition
is chosen as in (5). Next, let us define the information number
of node ¢, denoted as ¢;, as the number of nodes that can reach
node ¢, including node i itself. Noting that the existence of a
path from node j to ¢ is indicated by the value z;;[n] =1,
node 4’s information number is then equal to ¢; = 17 z;[n]. In
order to estimate the information number of other nodes which
can reach node ¢, each node updates for n iterations each row
Jj € Vofits own state ¢;[t], i.e., ¢; j[t], according to the follow-
ing rule

Cij [t + 1] = max
keN UL}

Chjt] ®)
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Algorithm 2: Alternative Distributed Algorithm for Solving
Problem 1

Input: directed graph G°, network size n, in-neighbor set N’ i-“

Output: verification whether graph G° is strongly connected

1: initialize each row of «;[0] as in (5)

2: for each j-th row of z; (j € {1,...,n}), execute max-consensus

update law (4) for n iterations.

3: initialize each row of ¢;[0] as in (9)

. for each j-th row of ¢; (j € {1,...,n}), execute max-consensus
update law (8) for n iterations

5: node i knows that graph G° is strongly connected when

¢i[n] = nl,.

~

whose initial condition is chosen as

¢ijl0] = {E,;, if =i 5

0, otherwise.

After n iterations, the information number of all nodes j that
can reach node ¢ will be given by the entry of ¢; ;[n].

We then have the following results on the information
number:

Lemma 2: If node i is reachable from node j (i.e.,
¢ j(n) > 0) and nodes ¢ and j have the same information
number (i.e., ¢; j(n) = ¢;), then nodes i and j are belonging to
the same SCC (i.e., they are mutually reachable to each other).

Lemma 3: For each node 7, the other nodes in the set P;
have a smaller (positive) information number compared to
node ¢ (equivalently any nodes in C;). Specifically, the infor-
mation number of node ¢ satisfy ¢; > |C;| + maxep, ¢je

As a direct result of Lemma 3, it is clear that within all the
entries of ¢;[n], its i-th element ¢;;[n] = ¢; always has the
highest number. Additionally, from Lemma 2 node % can esti-
mate its own SCC, i.e., set C;, by identifying all nodes which
have the same information number with itself, namely

C; = {Vj ey | Cm‘[n} = c“[n]} (10)
Furthermore, each node ¢ can estimate the set P; by collecting
all nodes which have lower information number than itself,
that is
P; = {V] eV | 0< Cw‘[n} < c;,‘i[n]}. (11D
Here, ¢; j[n| = 0 represents the case where node j’s informa-
tion is inaccessible to 7. Note that the node 7’s local estimation
of C; and P; are identical to all the other nodes which belong
to the same SCC (i.e,. C; = C; and P; = P; forall j € C;).

It is easy to observe that the only SCC of a strongly con-
nected graph is the graph itself. In fact, using this observation
we can develop an alternative distributed algorithm to solve
Problem 1 in which each node distributively checks the mem-
bership of its own SCC and verifies if it comprises of all
nodes, i.e. V), as shown in the following corollary.

Corollary 1: Given a digraph G° and each node executes in
sequence the update laws (4) and (8) for n iterations each,
with initial conditions given in (5) and (9). Then, G is
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Algorithm 3: Distributed Estimation and Characterization of
SCC

Input: directed graph G°, network size n, neighbor set V" and A"

Output: node i’s associated SCC

1: step 1-4 in Algorithm 2

2: estimate C; and P; by (10) and (11), respectively

3: initialize each row of 0;[0] as in (13)

4: for each j-th row of o; (j € {1,...,n}), execute max-consensus
update law and (12) for n iterations

5: node i can determine whether C; is a source-scc, sink-scc, isolated-
scc or neither (Proposition 1).

strongly connected if and only if for any ¢ € V, ¢;[n] = nl,
(equivalent to |C;| = nand C; = V).

The pseudo code of alternative distributed verification algo-
rithm for solving problem 1 is summarized in Algorithm 2.

B. Determination of Sink-Scc, Source-Scc, and Isolated-Scc

Using Algorithm 2, node 7 can estimate the existence of
paths from other nodes to itself and the SCC that it belongs to,
namely the set C;. In order to provide an effective strong con-
nectivity augmentation which will be described later, it is
important that each node is also able to characterize whether
its own SCC is a source-scc, sink-scc, or isolated-scc. For this
purpose, each node needs to identify the existence of entering
or exiting edges of its own SCC. To that end, we introduce the
following lemma.

Lemma 4: A SCC has no entering edges if and only if P; =
() for all node 4 in its membership.

With the estimated value of P;, each node 7 can determine
the absence of an entering edge to its own SCC (i.e., set C;)
based on Lemma 4, namely when P; = ().

On the other hand, in order to verify if there exists an edge
from nodes ¢ in C; to any nodes j ¢ C;, each node updates for
n iterations each row j € V of its state o;[t], i.e., 0; j[t], accord-
ing to the following rule

oijlt +1] = max oyt (12)
keNPU{i}
whose initial condition is chosen as
. L. out )
0,[0] = 1, if j=4and3k e ./\/'7 (k¢ C) (13)
0, otherwise.

In other words, the state o;[n] collects the information from all
nodes k € P; UC; on whether there exists an edge from node
k to any nodes outside of its set C.

We can then establish the following result which allows
each node to distributively characterize its own SCC.

Proposition 1: Given a digraph G” and each node executes
in sequence the update rules (4), (8), and (12) for n iterations
each, with initial values given in (5), (9), and (13), respec-
tively. Node ¢ can then determine the following to characterize
its own SCC (i.e. the set C;):

1) All nodes in the set C; is a source-scc if and only if P; =

() and there exist a node j € C; where o; j[n] = 1.
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2) All nodes in the set C; is a sink-scc if and only if P; # ()
and o0; j[n] =0, Vj € C;.

3) All nodes in the set C; is an isolated-scc if and only if
P = () and oi,j[n] =0, V] e C;.

Note that a non-assigned SCC will fall outside of the condi-
tions 1)-3) in Proposition 1, i.e., P; # ) and there exist a node
j € C; where o; ;[n] = 1. The pseudo code for the proposed
distributed estimation and characterization of SCC is pre-
sented in Algorithm 3.

Remark 3 (Computational Complexity): Algorithms 2 and 3
finishes in 2n and 3n iterations, respectively. Thus, both algo-
rithms’ computational complexity are equal to O(n).

Remark 4 (Privacy Preservation): Using the information
retrieved via Algorithms 2 and 3, each node only knows the
existence of path from other nodes to itself (state x;), the
information number of other nodes (state c¢;), and the other
SCC’s information regarding their exiting edges (state o;).
Therefore, Algorithms 2 and 3 does not reveal the overall net-
work topology.

Remark 5: In the case where there is no disjoint subgraphs
in the directed graph G°, it is sufficient to know only the infor-
mation on the upper bound of the number of nodes in the net-
work (denoted by 7) for executing Algorithm 3. This is due to
the fact that the state z;, ¢;, and o; are reaching steady state at
time step t = n < n. Moreover, each node ¢ can verify strong
connectivity of the digraph by checking whether its own SCC
is an isolated-scc, namely property 3) in Proposition 1.

V. DISTRIBUTED AUGMENTATION FOR A DIRECTED GRAPH’S
STRONG CONNECTIVITY

In this section, we focus our discussion on the distributed
strategies to solve Problem 2. We first propose a distributed
algorithm together with its optimality gap in order to add new
edges to a non-strongly connected directed graph G° so that
the resulting graph becomes strongly connected. Then,
inspired by the centralized approach in [14], [15], we propose
an algorithm to verify in a distributed manner whether the
number of added edges is minimum and alternatively provide
a solution for the minimum link addition problem. All the
computations are performed in a distributed manner and with-
out requiring information of the overall network topology G.
We start by introducing the following additional assumption.

Assumption 2: Each node can establish a communication
link to any node in q°.

This assumption can be satisfied for the publish-subscribe
protocol as found in Open Field Message Bus and in social
network such as Twitter where a node can request a connec-
tion to any other nodes.

In order to simplify the discussion and presentation of the
proposed algorithms, in the remaining of the section each
sink-scc, source-scc, and isolated-scc is represented by a sin-
gle node which is a member of their own SCC. To this end, let
us denote G™ as the resulting graph after the m-iteration of
link-addition. Let us define V. ., Vi ., and Vii,, as a set con-
sisting of representative nodes respectively for source-scc,
sink-scc, and isolated-scc in G™. Furthermore, let 8;71 denote
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Fig. 2. A condensed graph representation G° for the digraph in Fig. 1. The
nodes within non-assigned SCCs and non-representative nodes are omitted in
the graph G°. The graph G° is composed of 5 disjoint subgraphs, i.e., d° = 5,
which are {1,2,6,7,8}, {11,15}, {18}, {19}, and {20}.

the set of all the source-scc representative nodes accessible to
representative node j € Vi .

A condensed graph representation of a digraph G™ is then
givenby G := {V" "} with V" = {Vy™ ynycy
and (4, j) € E" denotes the existence of path from node i to
node j in the original graph G™. Note that all nodes within
non-assigned SCC, together with non-representative nodes
within source-scc, sink-scc, and isolated-scc, will not have
special role during the distributed link addition other than
passing the information, hence they are omitted for the con-
densed graph representation.

To this end, the representative nodes can be selected by fol-
lowing a predefined rules, e.g., the node with the highest ver-
tex (ID) number in each SCC is selected as the representative
node. Alternatively, the nodes within the same SCC can
locally coordinate over a certain decision variable, e.g., to
select a node with the most number of out-neighbors, each
node can share its own A" and execute a max-consensus
algorithm. For the above two examples, the selection of repre-
sentative nodes will take no more than n iteration.

Moreover, we con51der the representative nodes after each
link addition, i.e., V to be selected within V To be premse
the selection of the representative node ensures that V"

sour =
0 m 0
V%mu Vlsol’ sink C V sink U V and V C Vsmk U VNOI are

maintained. Additionally let us denote d” as the number of
disjoint subgraphs within G”. An example of this condensed
graph is illustrated in Fig. 2. Note that the condensed graph
information is introduced only for facilitating the discussion,
and not necessarily known by each node in the original graph.

sour? %mk ’

isol> isol

A. Distributed Link Addition Algorithm

Here, we present the algorithm to strongly connects G° by
utilizing the estimated SCCs obtained from the previous sec-
tion. Recall that each node can use Algorithm 3 to estimate
whether its own SCC is a source-scc, sink-scc, isolated-scc, or
neither of these. Let us further assume that the procedure to
select representative nodes for all SCCs have been established,
and as a result we can present the discussion in terms of the
condensed graph G".

To this end, the proposed algorithm will rely on the

approach where each node ¢ € V[ = broadcasts its information
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Algorithm 4: Distributed Algorithm to Strongly Connect A
Weakly Connected Digraph

Input: weakly connected graph G°, network size n, neighbor set A’ in
and V' ;’ut
Output: strongly connected graph G" = {V, E UAET}

1: setm = 0 and run Algorithm 3 {for " = {V,£}}

2: if G™ not strongly connected, i.e. C; # V then
determine SCC’s representative node within C;
m=m-+1
ifi € V! then

broadcast its own information
elseif i € V7! then
S~ = () and start collecting source information

9: endif
10:  forward broadcast information for n iterations
11:  ifi e VI, then

B AN A

12: add all members of 7! into A" and establish new link
from node i to all j € S

13:  endif

14: end if

to the rest of the network and accordingly each node j € VZ
collects this information. This information broadcasting ena-
bles each sink-scc representative j to obtain the information
about all the accessible source-scc representative S7' C Vo, .
The broadcast of information can be distributively realized via
another max-consensus update law which takes as many as n
time-steps, that is by introducing a state Si [t] € R" and initial-
izing its element as s;;[0] = 1 if i € V2 and s, ;[0] = 0 for
Jj# i

1) Distributed Algorithm for Weakly Connected Graph:
We first consider the case where the non-strongly connected
digraph is given by a weakly connected digraph which has no
isolated-sccs, i.e., le = (). Before proceeding, we introduce
the following lemma.

Lemma 5: Given a weakly connected graph G°, adding
edges (j,4) from each node j € V', , to all reachable nodes i €
S(,;, results in a strongly connected graph.

"The above lemma provides a one-step strategy to strongly
connect a weakly connected digraph, namely by adding a set
of edges from each j€ VY  to all reachable i € S? The
pseudo code of the proposed algorithm is given in Algorithm
4. Next, let A* denote the optimality gap between the added
edges using Algorithm 4, denoted by |A£"| and the minimum
number of required links to strongly connect the graph. We
then have the following main result.

Theorem 3: Given a weakly connected digraph G’ =
{V, &}, Algorithm 4 results in a strongly connected graph
G" = {V,£UAE"}. Furthermore, Algorithm 4 will finish in
5n iterations with one link-addition step (m = 1), whose opti-
mality gap A* is equal to

sour

|A(€+‘ - maX{|V§0ur| |V§1nk‘} (14)

where |AET| = Zievo |50| < VoulVS

Note that the resultmg |AET| also denotes the total number
of elementary paths from any pair source-scc to sink-scc that

sour sink I+
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Algorithm 5: Distributed Algorithm to Strongly Connect A
Disconnected Digraph

Input: directed graph G°, network size n, neighbor set V" and A"
Output: strongly connected graph G” = {V, E U AET}
1: set m = 0 and run Algorithm 3
2: while G™ is not strongly connected, i.e. C; # V do
3:  determine representative node within C;
m=m+1
run step 5—10 in Algorithm 4
ifi € V! then
randomly select a candidate node j ¢ C;
add j into A" and establish new link (i, 7).
elseif i € V7! then
add all members S"" into A" and establish new links
from node i to all j € S .
11:  endif
12:  run Algorithm 3
13: end while

YR IUNh

1

exists in the initial graph. Furthermore, the following corollary
shows a case where Algorithm 4 results in a minimum link
addition.

Corollary 2: For a weakly connected digraph G° with a sin-
gle source-scc (|V2 | = 1) or a single sink-scc (|V% .| = 1),
Algorithm 4 yields an optimal solution with minimum link
addition.

2) Distributed Algorithm for Disconnected Digraph: Next,
we present distributed algorithm to strongly connect G°, given
that G° is a disconnected graph which separates group of nodes
into several disjoint subgraphs, i.e. d’ > 1. The main idea for
the proposed distributed link addition algorithm comprises of
two main steps (extending from ideas in Algorithm 4), namely
to strongly connect each weakly-connected subgraph and to
connect all disconnected subgraphs. Specifically, each link-
addition step adds the following new links: (i) from each i €
Vi toall j €8 and (ii) from each i € Vi, to a random
node j ¢ C;. The pseudo-code of the distributed algorithm is
given in Algorithm 5 and its performance is summarized in
the following theorem.

Theorem 4: Given a disconnected digraph G° = {V, £},
then Algorithm 5 results in a strongly connected graph G =
{V,£UAE"} by adding at most (2 d" + >, 0 . |SY]) new
edges. Furthermore, Algorithm 5 will finish iIblm?m +5 nm

iterations with the worst case m = 2[log, d’], whose opti-
mality gap A” is upper-bounded by

A <2 do + Z |SO| - max{‘vsoul| |V>1nk|} + |V1901 )

ZEVsmk

15)

Remark 6: Note that for a weakly connected digraph, the
link addition procedure in Algorithm 5 is identical to Algo-
rithm 4, i.e., m = 1. However, Algorithm 5 introduces addi-
tional 3n iterations for strong connectivity verification
(Algorithm 3 in line 12), thus finishes in 8n.

Remark 7 (Alternative Algorithm): An earlier version of
algorithm is presented in [1] without the need to broadcast the
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source information. However, it may results in a longer com-
putation time as the computation complexity is O(n?).

Remark 8: Analogous to Remark 5, given a weakly con-
nected graph G°, the Algorithms 4 and 5 can be executed only
with the information of the upper bound of number of nodes
n > n by modifying the step 2 into checking whether C;
reflects an isolated-scc, namely property 3) in Proposition 1.
Moreover, the exact number of nodes, i.e., n, can be inferred
at the end of Algorithm 5 as n = |C;]|.

B. Verifying and Enforcing Minimum Link Addition

In the previous subsection, we have presented distributed
link addition algorithms to ensure a strongly connected graph.
However, as summarized in Theorems 3 and 4, the resulting
number of added links is not always guaranteed to be mini-
mum. In the following, we present the procedure to verify
whether the number of added links is minimum, and addition-
ally compute a new set of edges to ensure minimum link aug-
mentation by first removing the previously augmented edges
AET. The computation will be conducted by a single node
called a virtual leader. The virtual leader can be selected
among any node i € V%, , UV | where (4,5) € A" for some
nodes j.

The verification of minimum link addition is conducted
once the execution of Algorithm 5 is finished. The strong con-
nectivity of the graph is required in order to collect the infor-
mation for the minimum link verification algorithm as well as
to solve the minimum link augmentation problem. A solution
to the minimum link augmentation problem itself is presented
in [141, [15], where a max{|V% |, [V%..|} + [V, | number of
links can be added once the information on V), VO V0
and S, Vi € VO | are known.

Adoptlng the approach in [14], [15] to our current setup, the
virtual leader needs to collect the following information: 1)
original sinks V%, , ; 2) reachable sources S for each i € V'
and 3) number of added links |AE"|. Note that the set )°
be reconstructed from U, 0

sin isol

sour?

sink>

sour can

S . These information can be

obtained by having all nodes i € V%, , U V!, | to broadcast their
own information and the number of links which they added.
Using the above information, the virtual leader can then verify
if the added link |AE"| is minimum. If the number of added
links is not minimum, the virtual leader then constructs a new
set of A" which ensure the minimal link augmentation.

The procedure to compute the minimum link augmenting
set, as shown in [14], [15], requires an index p and an ordering
U(l) <|Vsour‘ + |V1501 ) and ’LU(l (|V51nk The
orderlng w contains all nodes in mek, Whlle the ordering v
contains a combination of V?, and V!, |. The index p and the
orderings need to ensure the following properties:

1) there is a path from v(¢) to w(z) for 1 < i < p;

2) for each source v(i), p+ 1 <i < [V | there is a path

from v(7) to some w(j), 1 < j < p; and

3) for each sink w(j), p+1 < j < [V’ | there is a path

from some v(7), 1 <i<pto w(j).
Additionally, the ordering U(WWH\ +1),.
V.1l) contains all nodes from V! |

(|VQOUI‘| +
. Given the existing
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Algorithm 6: Ordering for Sinks and Sources
Input: V° V0 V0 and S forall i € VP
Output. p, v and w following Properties 1-3

sour” ”sink> isol” sink

1:p=0

2: for eachi € V%, do

3: foreachjc S’ do

4: if j¢ {v(1),...,v(p)} and i ¢ {w(1),...,w(p)} then

5: p=p+1

6: add j to v(p) and add i to w(p)

7: end if

8: end for

9: end for
10: add the remaining V2, into v(p + 1),...,v(V° .])
11: add the remaining VY, , into w(p + 1),...,w(|V%,])
12: add all V2 into o(V°, |+ 1),..., v(\Vbour\ + VLD

information in the virtual leader, the ordering can be con-
structed by following the steps in Algorithm 6.

Lemma 6: Given a list of pairings of sinks and their reachable
sources, the Algorithm 6 finds an index p and an ordering of v
and w satisfying Properties 1-3.

Once the p and the ordering of v and w are known, the aug-
menting set can be constructed as a combination of the follow-
ing edges shown in (16), shown at the bottom of the page. Note
that the formulated links in (16) is modified from the original
formulation in [14], [15] to circumvent the need to flip the
direction of the graph for the case of VO | > VY ,|. The
information about the augmenting set can then be distributed to
all nodes to reconfigure the new edges, that is by locally remov-
ing existing AE" and replacing it with the new one.

The complete pseudo-code of algorithm for verifying and
enforcing minimum link addition is presented in Algorithm 7.
The results can be formally stated in the following theorem.

Theorem 5: Consider a disconnected digraph G°. Given an
index p, and an ordering of v and w following Properties 1-3,
then the set of edges AE" in (16) makes the resulting graph
G = {V,E UAE"} strongly connected. In addition, the num-
ber of links added is |AE"| = max{|V2 |, [V%.l} + Vol-

sour

4387

Remark 9 (Privacy Preservation): In addition to the existing
information as stated in Remark 4, by executing Algorithm 4, 5,
or 7, each node can also retrieved the information of V™ V% |
and V! | from the broadcasted information. While this informa-
tion provide a general existence of paths between source-sccs
and sink-sccs, it is still not sufficient for each node to reveal the
overall network topology, thus preserving the privacy.

Remark 10 (Computational Complexity): Algorithm 7 fin-
ishes in 3n additional iterations from Algorithm 4 due to the
broadcasting procedures, totaling to 6n + 10n([log, d°])
iterations. Hence, Algorithm 7 computational complexity is
equal to O(nlogn).

VI. NUMERICAL SIMULATION

In this section, we provide numerical simulations where we
test Algorithm 7 as it covers all the main functionalities pre-
sented in Algorithms 1-6. The distributed computation of
Algorithm 7 including the information exchange are simulated
in a single PC using python programming language. The
source code is available in the following link https://github.
com/TUNI-IINES/dist-strong-connectivity

For the simulations we consider three different graphs,
namely G4,Gp,Gr. The graph G4 = (V4,€4) consists of 5
disjoint subgraphs and is shown in Fig. 1. Digraph Gp =
(VB, Ep) is a weakly connected graph consists of 10 nodes as
depicted in Fig. 4. Finally, digraph Gy is a disconnected graph
of 50 nodes as shown in Fig. 3. The detailed parameters for
each graph and the theoretical bounds presented in Theorems
4 and 5 are summarized in Table II.

Since the distributed link addition for the weakly connected
graph provides a unique solution, it is sufficient to run a single
numerical simulation for Gg. Furthermore, we conduct 400
and 2500 number of simulations for G4 and Gy, respectively in
order to ensure sufficient samples (n?) are collected for verify-
ing our theoretical results in Theorem 4 and 5, as some new
links are selected randomly.

All the results of the numerical simulation show that the dis-
tributed link addition algorithms result in strongly connected
digraph and if the number of added links is not minimum, the

={( W(Z),v i+ 1)1 <i < pyu{(w(i), o)) |p+1 < i <min{|Vg, | Vol
(’LU(p if |Vsour| = |V:>mk| > 07
(w(p), w(| wur\ + 1) U{(w(i), w(i + 1) [ Ve +1 <0 < Vo)
U U(w(|V8mk| *) if |V9mu| < |V51nk
(UJ p |V51nk| + 1)) U {(U(Z)’U(Z + 1)) | ‘Vsmk| +1 S i < |V(s)0ur|}
U(U :aour )’ if |Vbour| > |V5mk
U {(U(Z)’ U(Z + 1)) ‘ (|Vsour| + 1) S i < (|Vsou1| + |V1501 )} U ( (|Vsour| + |Vlsol (1)) if |Vlsol| # 07
@ if |V1:>ol| - 07
1 * (|Vsou1| + 1) if |V1501‘ 7& 0’
with V* = { o(1) " |V 120 (16)

isol


https://github.com/TUNI-IINES/dist-strong-connectivity
https://github.com/TUNI-IINES/dist-strong-connectivity
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Algorithm 7: Distributed Algorithm for Solving Problem 2

Input: directed graph G, network size n, neighbor set A ;n and N/ ?ut
Output: strongly connected graph G" = {V, £ UAET} with mini-
mum number of A"

1: run Algorithm 5

2: determine virtual leader

3: ifnode i € V%, UV then

4:

5

if node ¢ is not virtual leader then
broadcast ¢, added edges, and accessible sources 8? af

applicable)
6: else
7 start collecting other’s information
8: endif
9: end if

10: forward broadcast information for n iterations
11: if node 7 is virtual leader then
12: construct VO VY% VY and AET

sour® ” sink?
13: i [AEY] > max{|V2, .|, Vol + V2| then

sour sink
14: construct Tarjan’s ordering as Algorithm 6
15: construct minimum link augmentation as in (16)
16: broadcast the optimal link to reforge new AE™
17:  else
18: broadcast that link is already optimal
19:  endif
20: end if

21: save broadcasted information and forward it for n iterations
22: process the information, re-establish new links if previously not
optimal

—— Original Edges

A disconnected graph G, with 50 nodes.

Fig. 3.

algorithms will further enforce a minimum number of added
links. Hence, the results are aligned with Theorem 5. More
detailed results are presented in the subsequent discussions to
further verify the required number of time steps and the number
of augmented link before the minimum link reconfiguration in
comparison to its theoretical bound given in Theorem 4.

A. Weakly Connected Graph G With 10 Nodes

The results for graph Gp is illustrated in Fig. 4. The algo-
rithm finishes in 11n time steps, where it first introduces 5
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—— Original Edges
= Added Edges #1

—— Original Edges
= Minimum Link Edges

(a) Result of Algorithm 5 (b) Result of Algorithm 7
Fig. 4. Numerical results for graph G at the end of: a) distributed link addition
algorithm and b) verification and enforcing minimum link addition algorithm.

TABLE II
PARAMETER OF THE TESTED GRAPH AND THE THEORETICAL BOUNDS FROM
THEOREMS 4 AND 5

Parameter G Ga GL
VO] 3 4 1
Ve 2 3 1
pe, 0 3 e
120 5 6 34
d° 1 5 9
min required links |[AET| 3 7 17
guaranteed max links |AET| 7 16 52
max optimality gap A* 4 9 35
max number of link addition m 2 6 8
max time step iteration lén  36n  46n

—— Original Edges

- Added Edges #1
- Added Edges #2
= Added Edges #3

—— Original Edges
= Minimum Link Edges

(a) Result of Algorithm 5. (b) Result of Algorithm 7

Fig.5. An example of numerical results for graph G4 at the end of: a) distrib-
uted link addition algorithm and b) verification and enforcing minimum link
addition algorithm.

new edges (Fig. 4(a)) to strongly connect graph Gp before
minimum link addition is enforced with 3 new edges (Fig. 4
(b)). Note that for the weakly connected graph, the link addi-
tion procedure in Algorithm 5 is identical to the one in Algo-
rithm 4, which ensures strong connectivity in 5n iteration
(m = 1). In addition, Theorem 3 guarantee a smaller optimal-
ity gap with A* = 2, which is aligned with the observation
shown in Fig. 4.
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Fig. 6. Numerical results of disconnected graph G4 with 20 nodes for 400
repetitions. The number beside each data point describe the number of accu-
mulated occurrences on that data point.

—— Original Edges
= Added Edges #1
- Added Edges #2
= Added Edges #3 /&

(a) Result of Algorithm 5.

—— Original Edges
= Minimum Link Edges

(b) Result of Algorithm 7

Fig. 7. An example of numerical results for graph G;, at the end of: a) distrib-
uted link addition algorithm and b) verification and enforcing minimum link
addition algorithm.

B. Disconnected Graph G4 With 20 Nodes

An example of the results for graph G, is illustrated in
Fig. 5 while the results for n? = 400 repetitions are summa-
rized in Fig. 6. For all the repetitions, the data shows that the
algorithm finishes in 21n time steps, which is equivalent to
link addition with m = 3 steps. The number of added links for
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Fig. 8. Numerical results of disconnected graph G, with 50 nodes for 2500
repetitions. The number beside each data point describe the number of accu-
mulated occurrences on that data point.

all the repetitions are between 12 to 14 new edges. Both the
number of iterations and number of augmented links are
within the expected bounds as shown in Table II.

C. Disconnected Graph G, With 50 Nodes

Finally, an example of the results for graph G, is illustrated
in Fig. 7 while the results for n> = 2500 repetitions are sum-
marized in Fig. 8. The data is divided into two groups, with
the majority (1362 results) finishes in 26n time steps and the
remaining (1138 results) finishes in 21n time steps, which are
equivalent to link addition with m =4 and m =3 steps,
respectively. The number of added links for all the results are
between 46 to 50 new edges. Both the number of iterations
and number of augmented links are within the expected
bounds as shown in Table II. The results verify the theoretical
bounds given in Theorem 4 and 5.

VII. CONCLUSION

This paper proposes distributed and finite time algorithms to
verify strongly connected property of a directed graph and to
make a directed graph strongly connected with a minimum
number of link addition. The strategy is inspired by maximum
consensus algorithm which is known to have finite computa-
tion time. The proposed strategies provide the solutions with-
out requiring knowledge of the overall network topology and
further preserve the privacy in terms of the overall network’s
topology. Strong connectivity is a graph property that is com-
monly assumed or required in many distributed systems and is
crucial in guaranteeing convergence of many distributed esti-
mation/optimization/control algorithms. Hence, the proposed
distributed strategy has broad applications.

Future work will aim towards the asynchronous implemen-
tation of the proposed algorithms and to relax the assumption
where only upper bound of the number of nodes is known. In
addition, several application specific use-cases will be consid-
ered, e.g., towards minimizing network’s end-to-end delay or
a case where a communication link can only established with
nodes within a certain communication range.
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APPENDIX
PROOF

A. Proof of Theorem 1

We start by showing the necessity (=). From Lemma 1,
since the graph G° is strongly connected, each element in z;
namely z; ; will converge to max;z; j[0] = 1 (strong max-con-
sensus) for all 4,7 € V within the worst-case of n — 1 itera-
tions. Thus, z;[n] =1, is fulfilled for all ¢ € V. Next, we
show the sufficiency (<) through contradiction. We first
assume that graph G° is not strongly connected, i.e., there
exists no path from a certain node ¢ to 5. However, as we have
z; j[n] = 1 under update law (4) for all j-th row in &;[n] and
for all nodes ¢ in the network, this means that there exist path
from any node j to any node i. Hence the graph G° is strongly
connected, which contradicts the assumption.

B. Proof of Theorem 2

Let us divide all nodes into set Vy := {Vi € V| f;[0] = 0}
and Vy := {Vi € V| f;[0] = 1}. Then, we can rewrite Theo-
rem 1 as graph G° is strongly connected if and only if Vy = V
and V; = (), equivalently f;[n] =0, Vi € V.

For a non-strongly connected graph G°, under update law
(6), the value of f; will converge to max; f;[0] =1, Vi€ V
(weak maximum consensus) if for any node ¢ € V), there exists
path ending in ¢ and starting in j € V; [25]. Note that this con-
dition is satisfied as any node i € Vy is reachable from all
nodes. This ensures that f;[n] = f;[n],Vi,j € V.

C. Proof of Lemma 2

As there exist a path between any distinct nodes within a
SCC, this means that all information from one node can reach
the other, which results in an equal information number.

D. Proof of Lemma 3

Node ¢ can be reached by all nodes in P; as well as its own
SCC, i.e. C;, thus ensures a higher information number than
all nodes in P;. Hence, node 7’s information number is lower
bounded by maxjep,|C;| + ¢;, noting that node i’s SCC can
have multiple entering edges.

E. Proof of Corollary 1

We start by showing the necessity (=). Since the graph G’
is strongly connected, Theorem 1 ensures that x;[n] = 1,, for
all = € V. Hence, all node i’s information number is equal to
n, initializing ¢; ;[0] = n. Strong connectivity of G" and update
law (8) ensures maximum consensus protocol [25] for each
element in ¢; namely ¢; ; will converge to max;c; j[0] = n for
all i, j € V. Thus, ¢;[n] = n1,. Note that with (10), the above
condition is equivalent to each node ¢ ends up with C; =V
(alternatively |C;| = |V| = n) for all 4, j € V. The sufficiency
(«) through contradiction follows similar arguments with
Theorem 1.
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F. Proof of Lemma 4

We can show the proof by contradiction, assume a given node
1 where its SCC (i.e. set C;) has no entering edge and P; # (.
The fact that P; # () implies that there exist at minimum one
node outside of C; which can reach node i € C;. Hence, there
exist an entering edge to its own SCC which contradict the origi-
nal assumption.

G. Proof of Proposition 1

The three statements follows directly from Definitions 2-
4 as results from update rules (4), (8), and (12). The condi-
tion P; # () denotes that there exist at least one node in P;
that can reach a node in C;, hence the existence of at least
an entering edge to node i’s SCC. Conversely, the absence
of entering nodes is denoted by P; = (). The existence of
at least an exiting edge is denoted by any o, j[n] =1 for
all node je€ (C;, while the absence of exiting edge is
denoted by o, j[n] =0, Vj € C;.

H. Proof of Lemma 5

Each new edge (j,4) creates a cycle containing all nodes
within the elementary path from i € 8? CV , tothe j€
ngk, merging the corresponding SCCs into a single SCC. As
it occurs simultaneously for all sink-sccs towards all existing
source-sccs, this ensure there exist a path from node j to node
i for every original edge (i, j) € £. Hence, by the definition of
weakly connected graph, the resulting graph is strongly

connected.

L Proof of Theorem 3

The Algorithm 4 reflects the described step in Lemma 5,
hence strongly connects the whole graph.

Upper bound of the added links: The link addition proce-
dure in step 12 introduces |S?| < [V? | number of new links

sour

for each 7 € V° . Thus, the number of added links will be

sink*
Zievgmk |SY| and is upper-bounded by V2 [V |

Computational complexity: The Algorithm 3 in step 1
runs in 3n iterations, while the link addition step (steps 3-
13) requires 2n steps due to the selection of representative
nodes and information broadcast. Hence, by a simple cal-
culation, the execution of Algorithm 4 requires a total 5n
iterations.

Optimality gap: The minimum number of edges that must
be added to strongly connect a weakly connected digraph is
equal to max{|V% |, V% .|}, see [14], [15]. This stems from
the fact that we need to introduce at least one exiting edge on
sink-scc and at least one entering edge on source-scc. Then,
the number of the new edges added through Algorithm 4 is

IAET| > max{|VY |, [V’ .|} Thus, the optimality gap can

sour sink
be calculated as A* = |[AET| — max{|V" |, V% ..|}. As the

number of added link is Zz’eViJillk |SY], the optimality gap is
A= T 187 = max{ V| V)

sour sink
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J. Proof of Corollary 2

When |V:>our| =1lor |V
side of inequality (14) as

blnk| = 1, we can write the right hand

Z |SO| - max{|vbour| ‘Vblllk|}

0
levsrnk

< V2 Vo] — max{ V2 =0.

a7

0
sink Vs)ink | }

sour §0u1

Hence, the optimality gap A" =0, i.e., number of links
obtained from Algorithm 4 is minimum.

K. Proof of Theorem 4

As stated in Lemma 5 the combination of new links from
each ¢ € Vi to all j € S strongly connects the subgraph
where node ¢ belongs to (Step 10). In addition, the new links
from each i € Vi to a random node j ¢ P; UC; (Step 8) con-
nect the associated disjoint subgraphs to form either new
weakly connected subgraphs or new isolated-sccs (from multi-
ple isolated-sccs forming a cycle).

Now, consider a case where the original graph consists of d"
weakly connected subgraphs and assume d° is even. For m =
1, only nodes i € V°. | add new links following step 10, result-
ing in d° isolated-sccs. Next, consider an extreme condition in
the subsequent link addition (m = 2), where any distinct pair
of isolated-sccs connect to each other to form a new isolated-
sccs. This reduces the number of disjoint subgraphs into d° /2.

Note that we can consider the above as the worst-case sce-
nario, given the following arguments: (a) when isolated-scc
exists in the original graph, the number of disjoint graphs will
already be reduced after m = 1, (b) in many cases several iso-
lated-sccs can chain together, thus further reducing the num-
ber of disjoint graph after m = 2, and (c) the extreme case for
odd d° after m = 2 will be analogous to the above (even) case
as the last single isolated-scc need to add link to a pair of con-
nected isolated-sccs. Hence, it is guaranteed that after 2 num-
ber of link additions the number of disjoint subgraph will be
less than half of the original, i.e., d"*2? < d™ /2. Thus, the pro-
posed Algorithm 5 guarantees the reduction of the number of
disjoint subgraphs which results in a strongly connected graph
under finite number of link-addition steps.

Upper bound of the added links: Since the number of dis-
joint subgraphs is guaranteed to be less than half of its original
after 2 steps of link addition, i.e., dmt2 < dgm, Algorithm 5
will finish at most within 2[log , d°] link additions.

In the first link addition, i.e., m = 1, each node 7 € mek
adds |S?| < [V | number of new links (step 10). At the same
time each node i € VY ; adds a new link towards other disjoint
subgraphs (step 8). Note that after each link addition, any
weakly connected subgraph becomes an isolated-sccs while
any existing isolated-sccs add a new exiting edge. From the
above observations, we can infer that any new weakly con-
nected subgraph that is created after adding new links will
only have a single sink-scc. Note that the subsequent new
edges from this single sink-scc to all source-sccs, is still within
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the considered worst-case scenario where pair of isolated-sccs

are selecting each other to add new links. Hence, with the

exception of 3,0 |S| number of links from step 10 at
sink

m = 0, the number of new links to connect the disjoint sub-
graphs via Algorithm 5 can be upper-bounded by d” + d°/2 +
d° JA4+ <2 d°. Thus, in total the number of added links is
upper-bounded by >, e IS?+2 d.

Computational complexity: The Algorithm 3 runs in 3n iter-
ations, while each link addition steps will need 2n steps due to
the selection of representative node and information broad-
cast. Then by simple calculation, each link addition step
requires 5n iterations. In total, as m < 2[log, d’], Algorithm
5 requires at maximum 3n + 10n[log, d"]) iterations.

Optimality gap: The minimum number of edges that must be
added to strongly connect a disconnected digraph is
max{|V |, V% .|} + [V, as shown in [14], [15]. This
stems from the fact that we need to introduce at least one exit-
ing edge on sink-sccs and isolated-sccs and at least one entering
edge on source-sccs and isolated-sccs. Thus, the optimality gap
can be calculated as A" = |AST| — (max{|V’ |, V%.l} +

[V2,;])- with the upper-bound is given by A* < 3™ 0 |S?| +
sink

2 dO (max{‘vsour‘ |mek|}+ |V1501 )

L. Proof of Lemma 6

Algorithm 6 constructs the ordering by iterating and check-
ing each pairing of sink and reachable sources. Note that each
pairings already ensures that there is a path from any selected
source j € SY CV’ to the given i€V’ ., which is a
requirement for Property 1. Initially, at the first iteration we
can add any i € V%, | and its respective j € S'. Then, in the
subsequent iterations, assuming that the pairing list contains
no duplicate sink, the order can be updated as long as there
exist a reachable source that has not been listed from a given
pairing, i.e., 7 ¢ {v(1),...,v(p)}. If all sources j € S; already
included in the ordering, i.e., j ¢ {v(1),...,v(p)}, then the
given sink already satisfy the condition for Property 3, thus
can be added later into w(p + 1), ..., w(|V’,.|) after finished
inspecting all the pairing list. In a srmrlar argument, all the
sources that is not selected during iterations, Vj|j €

W\ {v(1),...,v(p)}, satisfy the condition for Property 2
and can be assrgned intov(p + 1),...,0()W°

sour | )

M. Proof of Theorem 5

The proof follow analogously to the existing result in [14],
[15]. First, let us consider [V, || = 0 and focus on all the aug-
mented edges with the exception of (w(i),v(:))|p+1<i <
min{|Vi’mn| VY. |} These in total introduces p + |||V, .| —
V2% ||| new edges. Observe that by augmenting these edges,
the nodes v(1),..., v(p),w(l), ...,w(p) and either v(|V5mk\)

(|Vaour|) for |mek| < |vaour| or (|vaour ) )

(|Vsmk|) for |V | < V%, are on a directed cycle
(denoted by C) and thus strongly connected. Thus, all of these
nodes and their respective sccs are mutually reachable.
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By property (2) there is a path from v(i), p+1<i <
min{[V% |, [V%..|} to some vertex in w(j), 1 <i <p and

sour sink
hence to all vertices on C. Then, from property (3) and the

addition of edge (w(i),v(i)) for p+1 <i < min{? |,

sour

[V2 |}, there is a path from every node in the cycle C to each

sink
v(i), p+1<i<min{V2_[,|V%.]}. A similar argument

sour
shows that there is a directed path from the nodes in the cycle
C to each w(i), p+1 <4 <min{[V |, V%.|} and from

sour sink
each w(i), p+1 <i <min{V _|,[V% .|} to the nodes in

cycle C.
To this end, the set (w(i),v(i)) for p+1 <i < min
{|V:?our|7 |Vgink|} introduces min{“/gour'a |Vgink|} —p new

edges. In addition to the p+ ||[V2 [ — V.|| number of

edges introduced previously, the total number of augmented
set in A08+ is Omin{njgour" |Vgink } + || |V50‘our| - |V8mk||| =
max {‘Vsour|7 |Vsink .

Note that for the case of [V || > 0, the modification in

(16) adds |V ;| new edges by chaining the nodes v(|V’, | +
D), ..., o(V2 | +|V,]) in the directed cycle C. The rest of

sour isol
the proof follows the previous discussion when [V | =0,

which ensures all nodes are mutually reachable. The addi-

tional modification for connecting isolated-sccs results in the

total number of augmented set introduced in AE" as
0 0 0

max{|V |7 |Vsink } + |Visol .

sour
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