
EEJE: Two-Step Input Transformation for Robust
DNN Against Adversarial Examples

Seok-Hwan Choi , Jinmyeong Shin, Peng Liu , and Yoon-Ho Choi

Abstract—Adversarial examples are human-imperceptible
perturbations to inputs to machine learning models. While
attacking machine learning models, adversarial examples cause
the model to make a false positive or a false negative. So far,
two representative defense architectures have shown a significant
effect: (1) model retraining architecture; and (2) input
transformation architecture. However, previous defense methods
belonging to these two architectures do not produce good outputs
for every input, i.e., adversarial examples and legitimate inputs.
Specifically, model retraining methods generate false negatives
for unknown adversarial examples, and input transformation
methods generate false positives for legitimate inputs. To
produce good-enough outputs for every input, we propose and
evaluate a new input transformation architecture based on two-
step input transformation. To solve the limitations of the
previous two defense methods, we intend to answer the following
question: How to maintain the performance of Deep Neural
Network (DNN) models for legitimate inputs while providing
good robustness against various adversarial examples? From the
evaluation results under various conditions, we show that the
proposed two-step input transformation architecture provides
good robustness to DNN models against state-of-the-art
adversarial perturbations, while maintaining the high accuracy
even for legitimate inputs.

Index Terms—Adversarial examples, adversarial perturbation,
deep neural networks(DNNs), input transformation, security.

I. INTRODUCTION

AS a representative machine learning model, Deep Neural

Networks (DNNs) have shown good outputs for legiti-

mate inputs in various real-world applications [1], [2]. How-

ever, many studies showed that DNNs produce false positives

or false negatives for adversarial examples, which are human-

imperceptible perturbations to inputs to machine learning

models [3]–[5]. For example, recent studies showed that such

adversarial examples cause false positives or false negatives

of practical machine learning systems such as face recognition

systems, object recognition systems, and perceptual ad-

blocking system [6]–[9]. Also, Bengio, Hinton, and LeCun

acknowledged adversarial examples as a representative short-

coming of deep learning at AAAI 2020 [10].

However, traditional techniques, such as dropout, for mak-

ing machine learning models robust generally do not provide

a practical defense against adversarial examples. Here, the

term “robustness” is the ability of a machine learning model

to cope with adversarial input during execution.

To provide robustness to DNN models against adversarial

examples, we can consider proactive countermeasures, which

make deep neural networks more robust before adversaries gen-

erate adversarial examples and reactive countermeasures,

which mitigate the effect of adversarial examples after deep

neural networks are built. As a representative proactive counter-

measure to strengthen DNN model, let us consider model

retraining architecture. As shown in Fig. 1b, model retraining

architecture changes the DNN model itself or the training pro-

cess for the given DNN model [11]–[13]. The model retraining

architecture is known to be effective for early adversarial per-

turbation calculation methods such as Fast Gradient Sign

Method (FGSM) [14] and Basic Iterative Method (BIM) [6].

However, the performance of model retraining architecture is

limited because retrained DNNmodels are highly dependent on

adversarial perturbation calculation methods. Thus, it is impos-

sible to identify unknown adversarial examples. Also, themodel

retraining architecture requires high computation and memory

usage when retraining DNN models. On the other hand, we can

consider a representative reactive countermeasure, commonly

referred to as input transformation architecture. As shown in

Fig. 1c, input transformation architecture transforms inputs to

reduce perturbations of adversarial examples before feeding

into DNN models [15]–[17]. Compared to the model retraining

architecture, it can provide robustness to DNN models against

adversarial examples with low computation and memory usage.

Unfortunately, since input transformation architecture trans-

forms even the legitimate input while removing perturbations

of adversarial examples, it does not work well for the legitimate

input. Failure in working well for the legitimate input means

that it can cause significant damage to specific applications

such as self-driving car, bio-medicine, and certification which

are sensitive to small accuracy variation.

To solve the limitations of the previous two defense meth-

ods, we intend to answer the following question: How to main-

tain the performance of DNN models for legitimate inputs
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while providing good robustness against various adversarial

examples?

Specifically, we propose a new type of input transformation

architecture called two-step transformation architecture as

shown in Fig. 1d. Different from the previous one-step input

transformation architecture in Fig. 1c, the two-step input trans-

formation architecture consists of two transformation steps:

Conversion and Inversion. In Conversion step, input images

are transformed into corrupted input images by using a con-

version function, pð�Þ, before construction of adversarial

examples. In Inversion step, adversarial examples are trans-

formed into inputs to DNN models by using the inverse con-

version function, p�1ð�Þ. Due to the inverse relationship

between Conversion and Inversion, the proposed two-step

input transformation architecture works well for the legitimate

input while also providing good robustness against various

adversarial examples.

To evaluate the effectiveness of two-step input transforma-

tion architecture, we also introduce a practical implementa-

tion, called EEJE. Here, the term ‘EEJE’ indicates a chinese

phrase, which means to use a barbarian to control the barbar-

ian. From the experimental results, we show that they work

well for adversarial examples as well as for legitimate inputs.

Compared to model retraining methods, the proposed EEJE

method does not require retraining of existing models and

does not produce false negatives for various adversarial exam-

ples. Also, compared to previous input transformation meth-

ods, the proposed EEJE method does not produce bad outputs

(false positives) to legitimate inputs.

Main contributions of this paper can be summarized as

follows:

(1) We proposed a new type of input transformation archi-

tecture using on two-step input transformation to produce

good-enough outputs for both legitimate inputs and adversar-

ial examples; (2) As a practical way to implement the two-

step input transformation architecture, we introduce new

defense method called EEJE; (3) From analysis results using

EEJE under state-of-the-art adversarial perturbations, we

show that the two-step input transformation architecture pro-

vides better robustness than the model retraining architecture

and the one-step input transformation architecture while main-

taining the high accuracy even for legitimate inputs. Through

such contributions, we present the necessity of various studies

on the two-step input transformation architecture.

The rest of the paper is organized as follows. In Section II,

we overview well-known adversarial perturbation calculation

methods and defense methods. We show the proposed input

transformation architecture and the operational details of the

proposed EEJE method in Section III. In Section IV, we show

the influence of different adversarial perturbation calculation

methods on EEJE. Finally, we summarize this paper in

Section V.

II. PRELIMINARIES AND RELATED WORKS

In this section, after we overview the state-of-the-art pertur-

bation calculation methods for generating adversarial exam-

ples, we introduce two well-known defense architectures

against adversarial examples. We also introduce a practical

attack model which exploits adversarial examples.

A. Adversarial Perturbation Calculation Methods

In this section, we summarize the characteristics of five

well-known adversarial perturbation calculation methods,

which are commonly used as construction models for adver-

sarial examples [6], [14], [18]–[20]. Equations for every

adversarial perturbation calculation method are summarized

in appendix for further reference.

� Fast Gradient Sign Method (FGSM): As a non-iterative-

based fast adversarial perturbation calculation method,

FGSM was introduced by Goodfellow et al. [14]. To

calculate adversarial perturbations, FGSM uses the sign

of the gradient to increase loss of DNN models.

� Basic Iterative Method (BIM): A. Kurakin et al. pro-

posed the basic iterative adversarial perturbation calcu-

lation method by extending FGSM [6]. Unlike FGSM,

which performs only one gradient update, BIM per-

forms several gradient updates for the fine optimization

and clips the pixels of each intermediate result.

� DeepFool: As an L2 distance-based (Euclidean dis-

tance) untargeted attack, DeepFool performs an itera-

tive linearization of the classifier to generate minimal

adversarial perturbation [18]. To minimize the magni-

tude of adversarial perturbation, DeepFool finds the

nearest decision boundary from an input X, and calcu-

lates perturbation which is closest to the boundary value

with multiple iterations.

� C&W’s Method: Carlini and Wagner [19] introduced

three new perturbation calculation methods, which not

only minimize the magnitude of perturbation but also

have a higher attack success rate than other methods.

Each C&W method is defined as L0, L1 and L2 type

based on the distance metric used to calculate the

Fig. 1. Architecture comparison of defense methods against adversarial
examples.
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perturbation. In this paper, we consider only the L2 type

of C&W method (CW), which is most frequently men-

tioned in other works [21], [22].

� Jacobian Saliency Map Approach (JSMA): JSMA

makes an adversarial perturbation based on the for-

ward-derivative calculation [20]. JSMA is L0 distance-

based method and allows an adversary to compute

adversarial saliency maps, which are used to identify

the input features causing the most significant changes

to the output.

B. Defense Architecture and Methods Against Adversarial

Examples

In this section, we overview well-known defense methods

against adversarial examples based on two significant defense

architectures, i.e., model retraining architecture and input

transformation architecture.

1) Model Retraining Architecture and Methods: To make

DNN models more robust against adversarial examples, the

model retraining architecture changes the current DNN model

fð�Þ into the new DNN model f 0ð�Þ. It aims at generating good

outputs to inputs to DNN models regardless of the existence

of adversarial examples. When the adversarial perturbation

calculation method hð�Þ and a legitimate input X are given,

the objective function of the model retraining architecture can

be expressed into:

max
f 0ð�Þ

Prðl0 ¼ lÞ

s:t: l0 ¼ f 0 � hðXÞ;
l ¼ f 0ðXÞ: (1)

So far, as representative defense methods corresponding to

f 0ð�Þ, Adversarial Training [11], [12], [23], Defensive Distilla-
tion [13] have shown a significant effect.

Since Adversarial Training trains DNN models by using

both adversarial examples and legitimate inputs, the trained

DNN models are robust against known adversarial examples.

However, since Adversarial Training is highly dependent on

known adversarial examples, they may require periodic

retraining to generate good outputs for the new adversarial

examples [24].

Defensive Distillation is a defense method that uses distilla-

tion training to reduce the bad output caused by adversarial

input to DNN models. Note that the original distillation train-

ing method trains two DNNs with different architectures to

reduce the dimension of DNNs. On the other hand, a Defen-

sive Distillation trains two DNNs with the same architecture

to improve robustness against adversarial examples. However,

in a recent research, Defensive Distillation has been proved to

be ineffective to defend C&W’s method [25]. Even though

these two model retraining methods are simple to implement,

they require a lot of costs while retraining the current deployed

DNN models.

2) Input Transformation Architecture and Methods: Differ-

ent from the model retraining architecture which retrains the

existing DNN models, the input transformation architecture

transforms inputs to make adversarial examples less threat-

ened. As shown in Equation (2), the output of the transforma-

tion function ið�Þ becomes the input to the DNN model fð�Þ.
Note that since not only the adversarial example but also the

legitimate input are transformed by ið�Þ, input transformation

architecture should be carefully selected to minimize the clas-

sification accuracy degradation for legitimate inputs as well as

to maximize the classification accuracy improvement for

adversarial examples. That is when the adversarial perturbation

calculation method hð�Þ, the input transformation methods ið�Þ
and an input X are given, the objective function of the input

transformation architecture can be expressed into:

max
ið�Þ

Prðl0 ¼ lÞ

s:t: l0 ¼ f � i � hðXÞ;
l ¼ f � iðXÞ: (2)

Note that most input transformation methods do not require

to retrain DNNmodels and generally require lower computation

cost than model retraining methods [15], [26]. However, while

transforming every input into the corrupted ones, the classifi-

cation accuracy of DNNmodels for the legitimate input is inevi-

tably worse. So far, as representative defense methods

corresponding to ið�Þ, there exist Denoising [15], Feature

Squeezing, Image Purify [16], [17] andGuo et al.’s method [22].

Meng et al. proposed a denoising method to reduce pertur-

bations of adversarial examples by using autoencoder-based

reformer [15]. The reformer is used to map the adversarial

examples into legitimate inputs. It was known that a denoising

method was effective when correctly identifying adversarial

examples with small perturbation. Xu et al. proposed a new

defense method, called Feature Squeezing [16]. Given an

input image, the Feature Squeezing method reduced the color

depth and reduced variation among pixels using median filter.

The Feature Squeezing method was effective when mitigating

small perturbations such as DeepFool and C&W’s method.

Song et al. proposed an image purifying method, called Pixel-

Defend [17]. PixelDefend used the PixelCNN to return adver-

sarial examples back to distribution of training dataset. The

PixelDefend method showed outstanding accuracy against

strong perturbations such as DeepFool and C&W’s method.

To improve the performance, they used two pre-trained classi-

fiers instead of a discriminator. Guo et al. proposed a new

defense architecture, which combines the input transformation

architecture and the model retraining architecture [22]. For

mitigating the effectiveness of adversarial examples, they per-

formed image transformation at training and test time. The

Guo et al.’s method provided a good robustness under the vari-

ous attack scenarios.

C. Threat Model

As a form of session hijacking, such as sidejacking, sniffing

and so on, a man-in-the-middle(MITM) attack allows an

adversary to eavesdrop the flow of plain or encrypted traffic

between two parties. Especially, in the cloud service environ-

ment including the clients and the server, MITM allows

910 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 8, NO. 2, APRIL-JUNE 2021



adversary to impersonate two parties. After gaining access to

data in the flow of traffic between two parties, adversary inter-

cepts the data and exploits the real-time transfer of other

data [27], [28].

As shown in Fig. 2b, let us consider a cloud-based deep

learning environment where the client transmits data (e.g.,

image, text, and sound) to the server for prediction (e.g,

regression and classification). Let us assume that parameter

values used for training deep neural networks in the server are

publicly known(: white-box). However, details of how to pro-

cess input data at the client is not known publicly. Let us con-

sider when adversary gains access to data in the flow of traffic

after session hijacking. As a result, the normal session

between two parties is broken. Even though the normal flow

of traffic between two parties is intercepted and perturbed by

the adversary, two parties believe that they are communicating

each other securely. That is, after analyzing the adversarial

examples instead of the normal input data, the server returns

the abnormal prediction results to the client.

For example, a cloud-based deep learning environment for

autonomous driving such as TuSimple using AWS has been

applied to image recognition and object detection for intelli-

gent transportation systems. To perform traffic safety and

driver assistance in autonomous driving, input data to deep

learning models, collected from multiple sensors such as

onboard camera and LiDAR, are transmitted through the

vehicular infrastructure. When adversary intercepts and tam-

pers sensor data transmitted from the vehicle(: client) to the

server, the server returns the abnormal prediction results on

image recognition and object detection. Since such abnormal

prediction directly influences on traffic safety and driver assis-

tance, autonomous driving can confront with a major risk.

Thus, defense methods which maintain the performance of

deep learning models for legitimate inputs while providing

good robustness against various adversarial examples are criti-

cal issues for performing practical applications.

III. PROPOSED ARCHITECTURE AND METHOD

In this section, we describe the proposed input transforma-

tion architecture against adversarial examples to obtain good

outputs to every input. We also introduce a practical defense

method that implements the two-step input transformation

architecture.

A. Two-Step Input Transformation Architecture

Different from the previous input transformation architec-

ture, the proposed input transformation architecture performs

two-step input transformation before feeding inputs into DNN

models.

As shown in Fig. 1d, the proposed input transformation

architecture consists of two transformation steps, i.e., Conver-

sion and Inversion. In the Conversion step, the service client

side adds the large perturbation to the original input and thus,

causes the adversary to add small perturbation to the original

input. In the Inversion step, the service server side restores the

original image for every input to DNN models by subtracting

the perturbation added by Conversion step.

Such a method is motivated from the following observa-

tions. In Fig. 3, we show the input data distribution from

CIFAR-10 test dataset [29] over the various L0 and L2 norm

values, which are computed from the pixel value difference in

the original input image and the adversarial example by Deep-

Fool [18]. We used a 3�3 median smoothing for the one-step

input transformation architecture and DeepFool conversion

for the proposed input transformation architecture. Here, the

L0 value in x-axis of Fig. 3a represents the number of trans-

formed pixels and the L2 value in x-axis of Fig. 3b represents

the normalization value of L2(Euclidean) distance. In Fig. 3a

and b, we observe that while most of test data in the two-step

input transformation architecture shows the lower L0 and L2

values than the one-step input transformation architecture. We

note that even though not directly influencing on robustness of

DNN models, the input data distribution over the different L0

and L2 norm values can affect the classification accuracy deg-

radation of DNN models.

As shown in Fig. 4, for an inputX, the DNN model fð�Þ and
the adversarial perturbation calculation method hð�Þ, the

objective function of the two-step input transformation archi-

tecture can be expressed into:

max
pð�Þ

min
hð�Þ

Prðl0 ¼ lÞ

s:t: l0 ¼ f � p�1 � h � pðXÞ;
l ¼ f � p�1 � pðXÞ ¼ fðXÞ; (3)

where, pð�Þ is a conversion function which transforms the input

to make DNN models robust to adversarial examples, and

p�1ð�Þ is an inverse function of pð�Þ, which restores the input

image transformed by pð�Þ.
Note that different from the previous one-step input trans-

formation architecture, the proposed two-step input transfor-

mation architecture shows the good accuracy even for

legitimate inputs. As shown in Equation (3), if adversarial per-

turbations do not occur, DNN models in the proposed two-step

transformation architecture return the same result as DNN

models fð�Þ with no defense as shown in Fig. 1a. This is

because Inversion, p�1ð�Þ, is the inverse of Conversion, pðXÞ,

Fig. 2. Threat model: normal flow of traffic vs. adversarial flow of traffic
under the MITM attacks.
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for a legitimate inputX. In other words, the legitimate inputX
is completely restored due to the inverse relationship between

Conversion and Inversion. That is, after the service client side

transforms legitimate input X to pðXÞ, the service server can

restore legitimate inputX from p�1 � pðXÞ.
Let us also note that the proposed architecture may increase

robustness of DNN models against adversarial examples after

being combined with the other architectures. This is because

the proposed new architecture offers the possibility of triple-

defense by combining with model retraining architecture

and input transformation architecture. In previous research,

only dual-defense was possible through the combination of

model retraining architecture and input transformation archi-

tecture [16], [17]. The combination of different types of

defense methods is important for two reasons. First, the com-

bination of defense methods can complement each other’s

weaknesses. Second, DNN models combined with different

defense architectures can increase complexity of the

perturbation calculation of the adversary, thereby lowering the

success rate of the adversarial examples.

B. A Practical Two-Step Input Transformation Method: EEJE

As a practical two-step input transformation method, we

introduce a new method, called EEJE. Here, the term ‘EEJE’

indicates a chinese phrase, which means to use a barbarian to

control the barbarian. In EEJE, perturbations to key features

in inputs to DNN models are added by both defender and

attacker. That is, different from attacker who minimizes the

magnitude of adversarial perturbations to key features in

inputs to DNN models, defender makes the magnitude of

adversarial perturbations large. Overall operation procedures

of EEJE are as follows: (1) Defender adds a certain perturba-

tion pð�Þ to an input X from Conversion; (2) Attacker adds an

adversarial perturbation hð�Þ into the input transformed by

Conversion; and (3) Defender adds an inverse perturbation of

Fig. 3. Data distribution under the various L0 and L2 values between the pixel values on the input image and the transformed image by the one-step input trans-
formation architecture and the proposed two-step input transformation architecture. Here, the entire test data of CIFAR-10 dataset were used for input data on
ResNet-20 model and DeepFool was used for adversarial perturbation.

Fig. 4. Overall operation of the proposed two-step input transformation architecture.
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p�1ð�Þ from Inversion. Here, the inverse perturbation is addi-

tive inverse of the perturbation added in Conversion.

Let us compare outputs corresponding to inputs to DNN

models in details according to the existence of EEJE. The

white-colored and the black-colored pixels in adversarial per-

turbation images in Fig. 5 indicate pixels which are the same

as the original ones and different from the original ones,

respectively. For adversarial examples located at the 1st row

to the 4th row in Fig. 5a, DNN models return bad outputs

because most pixels in adversarial perturbation images have

the black color. However, for inversion images located at the

1st row and the 2nd row in Fig. 5b, DNN models return good

outputs because most pixels in adversarial perturbation images

have the white color. This is because most pixel values in the

original input image are kept without change. Also, even

though most pixels in adversarial perturbation images for the

inversion images located at the 3 rd row and the 4th row in

Fig. 5b have the black color, DNN models show good outputs

because key features which affect classification are restored

by the inverse function p�1ð�Þ. That is, the magnitude of per-

turbation added into key features remains in the range of iden-

tification into the good output.

IV. EVALUATION RESULTS

To show how robust the proposed two-step input transfor-

mation architecture is against adversarial examples, we mea-

sured the performance of the proposed EEJE method under

various conditions including different adversarial perturba-

tions [6], [14], [18], [19], [20]. Specifically, we evaluated the

performance of the proposed EEJE method to answer the fol-

lowing questions:

� How do different types of DNN architectures influence

on the performance of the proposed two-step input

transformation architecture?

� How does the performance of the proposed two-step

input transformation architecture vary under different

adversarial perturbations?

� Does the proposed EEJE method show the better perfor-

mance than the other state-of-the-art defense methods?

� How does the performance of the proposed two-step

input transformation architecture change according to

the variance of magnitude of adversarial perturbation?

� How does the performance of the proposed two-step

input transformation architecture vary under the worst-

case adversary?

� Is it efficient to combine the proposed two-step input

transformation architecture with the other defense

architectures?

� How does the performance of the proposed two-step

input transformation architecture vary under various

types of data?

We selected these questions based on the results of many

representative works [12], [16], [22], [23] and the evaluation

checklist of a paper for evaluating adversarial robustness [30].

Such questions encompass evaluations of the scalability(IV-

B1, IV-B2 and IV-B6) and effectiveness(3 and IV-B7) of the

proposed two-step input transformation architecture. Also, we

answer the questions(4 and IV-B5) to verify the reliability of

our evaluation results. To measure the performance under the

practical usage scenario, we assume that defender knows tar-

get DNN model architecture, but does not know adversarial

perturbation calculation methods added into inputs to DNN

models.

A. Experimental Environment

When evaluating the performance of the proposed EEJE

method on DNN models, we embedded the proposed EEJE

method into a Convolution Neural Network(CNN), which is a

class of DNN, to process input images effectively. To answer

Fig. 5. Four input images randomly selected from CIFAR-10 dataset [29], where each image is transformed using different adversarial perturbation calculation
methods: Using FGSM for 1st and 3 rd row images; and using DeepFool for 2nd and 4th row images.
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the first six questions listed above, we performed experiments

using the CIFAR-10 image classification dataset [29]. CIFAR-

10 image dataset consists of 50,000 training images and

10,000 testing images corresponding to 10 classes. For more

accurate image classification, we used the entire testing

images while measuring the classification accuracy of image

classification. To answer the influence of various types of data

on the performance of the proposed two-step input transforma-

tion architecture, we also performed experiments using

MNIST dataset of handwritten digits [31].

To evaluate the influence of different types of DNN archi-

tectures on the proposed EEJE method, we measured the clas-

sification accuracy under different conversion methods for

five ResNet architectures with different sizes and for two

state-of-the-art DNN architectures, i.e., ResNet-110 and

VGG16. Also, when considering the influence of various per-

turbation models for Conversion and adversarial example gen-

eration, we measured the classification accuracy under two

categorizes of models: (1) the Gaussian Random Noise (GRN)

for generating a random perturbation; and (2) the five well-

known adversarial perturbation calculation methods, i.e.,

FGSM, BIM, DeepFool, C&W and JSMA, for considering

practical use cases.

When measuring the influence of different perturbation cal-

culation methods on the proposed EEJE method and the other

defense methods, we set the values of parameters into: (1) 0.3

for the magnitude of perturbation (�) in FGSM; (2) 10 and 0.3

for the number of iterations (N) and �, respectively, in BIM; (3)

50 and 0.02 for the maximum number of iterations and over-

shoot to prevent updates from vanishing, respectively, in Deep-

Fool; and (4) 0 for the parameter to control the confidence

value(k) in C&W’s method. These parameter values are set fol-

lowing the recommended configuration values from the clever-

hans library [32] and some representative works [16], [22].

We implemented the classification models using Tensor-

Flow-gpu version 1.10.1 and Python version 2.7.15, and per-

formed adversarial perturbation calculations by using the

cleverhans software library, which provides standardized ref-

erence implementations of adversarial examples [32]. For the

efficient experiments, we measured the performance on the

Ubuntu 18.04.1 LTS machine with kernel version 4.15.0-36-

generic, 2.40 GHz CPU clock(Intel Xeon CPU E5-2630 v3),

GeForce GTX 1080 Ti, and 32 GB memory.

B. Experimental Analysis

1) How Do Different Types of DNN Architectures Influence

on the Performance of the Proposed Two-Step Input Transfor-

mation Architecture?: To evaluate the performance of the

proposed EEJE method under different types of DNN archi-

tectures, we measured the classification accuracy under differ-

ent sizes of ResNet architectures without adversarial

perturbation. The performance of five ResNet architectures,

which have different numbers of layers, from ResNet-20 to

ResNet-110 is measured. Evaluation results are listed at the

‘None’ column in Table I.

We observed that as the size of the ResNet architecture [33]

increased, the classification accuracy increased from 90.93%

for ResNet-20 to 92.26% for ResNet-110. These results show

that as the number of layers in ResNet increases, ResNet

becomes more robust against adversarial examples. From the

‘None’ column in Table I, we also observe how the perfor-

mance of the proposed EEJE method varied under two differ-

ent state-of-the-art DNN architectures, i.e., ResNet-110 and

VGG16 [34]. The proposed two-step input transformation

architecture showed the high accuracy by as much as 92.26%

and 93.68% for ResNet-110 and VGG16, respectively. These

observations imply that various DNN architectures combined

with the proposed two-step input transformation architecture

can show the high accuracy.

Result 1: The proposed two-step input transformation

architecture effectively works even when being embedded

into different types of DNN architectures.

2) How Does the Performance of the Proposed Two-Step

Input Transformation Architecture Vary Under Different

Adversarial Perturbations?: To show the influence of differ-

ent adversarial perturbations on the proposed two-step input

transformation architecture, we measured the classification

accuracy of the proposed EEJE method under the various

combination of Conversion methods and adversarial perturba-

tion calculation methods when the DNN model is given.

First, the proposed EEJE method showed better accuracy

than no Conversion (marked into the term ‘None’ in Conver-

sion method column) under various adversarial perturbation

calculation methods. For example, while the classification

accuracy with no conversion was 5.03% on average in

ResNet-20 and 6.95% in VGG16, the classification accuracy

of the proposed EEJE method measured into 49.56% in

ResNet-20 and 76.12% in VGG16 on average. Among Con-

version methods, GRN showed the lowest accuracy against

adversarial examples. That is, the classification accuracy of

EEJE using GRN Conversion method was ranged from

21.81% in VGG16 to 26.02% in ResNet-110 on average,

while the classification accuracy of EEJE using the DeepFool

Conversion method was ranged from 77.91% in VGG16 to

56.19% in ResNet-110 on average.

Second, we observe that the proposed EEJE method shows

the higher accuracy for the state-of-the-art adversarial exam-

ples from the DeepFool and C&W methods than those from

the FGSM and BIM methods. This is because the magnitudes

of perturbations calculated by the FGSM and BIM methods is

larger than those by the DeepFool and C&W methods. For

example, while EEJE using FGSM Conversion method against

FGSM and BIM perturbations in ResNet-110 showed the clas-

sification accuracy by as much as 11.74% and 17.52% on

average respectively, EEJE using FGSM Conversion method

against DeepFool and C&W perturbations in ResNet-110

showed the classification accuracy by as much as 92.26% and

90.44% on average respectively.

Third, as observed from the last column in Table I, EEJE

using various Conversion methods showed no accuracy degra-

dation even for legitimate inputs, i.e., inputs without adversar-

ial perturbations. For example, given the ResNet-20 model,

EEJE using different Conversion methods showed the same

accuracy regardless of the existence of Conversion methods.
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This is because the legitimate inputs are restored by Inversion,

i.e, the inverse function of Conversion.

Since the implementation of JSMA perturbation [20] needs

a lot of memory and computation time, we measured the clas-

sification accuracy under the combination of the JSMA Con-

version method with various perturbations in ResNet-20. As

shown in Table II, EEJE using JSMA Conversion method

showed the classification accuracy by as much as 13.03%

against FGSM perturbation and 63.69% against JSMA pertur-

bation. Also, we observed that for the given JSMA perturba-

tion method, EEJE using different Conversion methods

showed the classification accuracy by as much as 53.53% on

average. For example, EEJE using the DeepFool Conversion

method showed the classification accuracy by as much as

38.97% against JSMA perturbation. Also, EEJE using the

BIM Conversion method showed the classification accuracy

by as much as 64.69% against JSMA perturbation.

Result 2: The proposed two-step input transformation

architecture using various Conversion methods is robust against

various adversarial perturbations while maintaining the classifi-

cation accuracy even for legitimate inputs. Especially, EEJE

using the DeepFool Conversion method shows the best robust-

ness against various adversarial perturbations on average.

3) Does the Proposed EEJE Method Show the Better Per-

formance Than the Other State-of-the-Art Defense Meth-

ods?: To compare the performance of the proposed EEJE

method with the other state-of-the-art defense methods, we

measured the classification accuracy of the Adversarial Train-

ing [12], [23], Feature Squeezing [16] and Guo et al.’s

method [22] in ResNet-20. Here, Adversarial Training is a

TABLE II
CLASSIFICATION ACCURACY OF EEJE USING JSMA

TABLE I
CLASSIFICATION ACCURACY OF EEJE UNDER THE COMBINATION OF VARIOUS CONVERSION METHODS AND

ADVERSARIAL PERTURBATION CALCULATION METHODS USING CIFAR-10 DATASET
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representative method of model retraining and Feature

Squeezing and Guo et al.’s method are the state-of-the-art

methods using one-step input transformation. For Adversarial

Training, we configured FGSM-based Adversarial Training,

where � is set into 0.3 and Projected Gradient Descent (PGD)-

based Adversarial Training, where � is set into 0.1. For Fea-

ture Squeezing, we used five squeezing methods which are fre-

quently used in many references [21], [35]. For Guo et al.’s

method, we transformed the inputs using Total Variance Mini-

mization (TVM), where weight is set into 0.03 and 5.0, and

used transformed inputs at training and test time. For more

accurate measurement of the classification accuracy, we also

excluded data augmentation that could affect the performance

of the Adversarial Training.

In Table III, we observed that the classification accuracy of

Adversarial Training, Feature Squeezing and Guo et al.’s

method decreased for legitimate inputs. While EEJE in

ResNet-20 showed the same classification accuracy by as

much as 76.80% under no adversarial perturbation, the classi-

fication accuracy of non-local means-based Feature Squeezing

decreased by as much as 76.80% to 46.13%. Also, the classifi-

cation accuracy of TVM-based Guo et al.’s method decreased

by as much as 76.80% to 53.72%. For Adversarial Training,

FGSM-based Adversarial Training and PGD-based Adver-

sarial Training in ResNet-20 showed the lower accuracy than

EEJE in ResNet-20.

Also, Adversarial Training, Feature Squeezing and Guo

et al.’s method showed worse robustness against various

adversarial perturbations than EEJE on average. Even though

Adversarial Training showed the higher robustness than the

proposed EEJE method against the FGSM perturbation

method, the classification accuracy of Adversarial Training

against the BIM, DeepFool and C&W perturbations was lower

than EEJE using the DeepFool Conversion method. Also, the

classification accuracy of Feature Squeezing and Guo et al.’s

method showed the worse robustness against most adversarial

perturbations than the proposed EEJE method.

Result 3: The proposed EEJE method can be used as

a stand-alone defense method against various adversarial

perturbations.

4) HowDoes the Performance of the Proposed Two-Step Input

Transformation Architecture Change According to the Variance of

Magnitude of Adversarial Perturbation?: While changing the

magnitude of perturbation generated from the FGSM perturbation,

which intuitively shows classification accuracy changes when

the magnitude of perturbation increases, we conducted the basic

sanity test of EEJE as descried in [30]. According to basic sanity

test in [30], the classification accuracy(attack rate) decreases

(increases) when the magnitude of perturbation increases. Thus,

we showed the classification accuracy of EEJE using the FGSM

Conversion method while gradually varying the value of � of

FGSM perturbation by as much as 0.01 from 0.01 to 0.3.

As shown in Fig. 6, the classification accuracy of the pro-

posed EEJE method decreased as the magnitude of adversarial

perturbation increased. Especially, the classification accuracy

of the proposed EEJE method rapidly decreased in the range

from 0.05 to 0.10. When the value of � was greater than 0.15,

the classification accuracy of the proposed EEJE method no

longer significantly decreased.

Result 4: The proposed two-step input transformation

architecture satisfies the basic sanity test under various attack

(success) rates.

Fig. 6. Classification accuracy with the increase of magnitude of FGSM
perturbation.

TABLE III
COMPARISON RESULTS WITH ADVERSARIAL TRAINING AND FEATURE SQUEEZING
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5) How Does the Performance of the Proposed Two-Step

Input Transformation Architecture Vary Under the Worst-

Case Adversary?: To evaluate the performance of the pro-

posed EEJE method under the worst-case adversary, we mea-

sured the performance of the proposed EEJE method in

ResNet-20 under the scenario where the adversary is aware of

our defense architecture. Note that in our threat model, an

adversary may assume that input data has been processed at the

client, but does not know details of how to process input data.

In other words, the adversary has no direct access to Conver-

sion method. Instead, the adversary can mitigate the effective-

ness of the Conversion method by applying the denoising

techniques. On the other hand, an adversary can control the

Inversion method only when he/she has complete access to the

server. Thus, we measured the classification accuracy under

two attack scenarios: (1) a white-box attack, where an adver-

sary has complete access to the server and can bypass the Inver-

sion method; and (2) a gray-box attack, where an adversary

only knows the parameter values used for training deep neural

networks and cannot bypass the Inversion method. When mea-

suring the classification accuracy of the proposed EEJEmethod

under two attack scenarios, we used DeepFool Conversion for

the proposed EEJE method and five denoising techniques for

the adversary to mitigate Conversionmethod.

As shown in Table IV, the classification accuracy of pro-

posed EEJE method decreased under both white-box and gray-

box attacks. For example, while the stand-alone EEJE showed

the classification accuracy by as much as 55.09%, EEJE under

white-box attack and gray-box attack showed the classification

accuracy by as much as 16.20% and 46.50% on average,

respectively. For gray-box attack, we observed that key fea-

tures in inputs are restored by Inversion method even though

Conversionmethod is mitigated by the adversary. For example,

even though the adversary mitigates Conversionmethod with a

non-local means filter, EEJE showed the classification accu-

racy by as much as 90.87% against DeepFool perturbation.

Also, the classification accuracy of EEJE under gray-box attack

was similar regardless of the denoising techniques. For white-

box attack, the classification accuracy of the proposed EEJE

method significantly decreased by as much as 16.20%, but is

still higher than non-defense architecture. Also, different from

the case of gray-box attack, the proposed EEJE method shows

the lower accuracy against DeepFool and C&W perturbations.

For example, while EEJE against DeepFool and C&W pertur-

bations under the gray-box attack showed the classification

accuracy by as much as 90.16% and 71.78% on average respec-

tively, EEJE against DeepFool and C&W perturbations under

the white-box attack showed the classification accuracy by as

much as 21.49% and 19.47% on average respectively.

Result 5: The proposed two-step input transformation

architecture effectively works even the worst-case adversary.

Especially, the proposed two-step input transformation archi-

tecture shows the good enough performance under the gray-

box attack.

6) Is It Efficient to Combine the Proposed Two-Step Input

Transformation Architecture With the Other Defense Archi-

tectures?: To improve the classification accuracy degradation

under the increase of �, especially under � equal to 0.3, we

considered to combine the proposed EEJE method with Adver-

sarial Training or Feature Squeezing. To show the effective-

ness of the proposed EEJE method combined with other

defense methods, we measured the classification accuracy of

EEJE using the DeepFool Conversion method combined with

FGSM-based Adversarial Training or median smoothing

(2 � 2)-based Feature Squeezing.

In Table V, we summarize the evaluation results. EEJE

combined with Feature Squeezing, EEJE with Adversarial

Training, and EEJE with Feature Squeezing and Adversarial

Training showed better accuracy than using the stand-alone

EEJE in ResNet-20. For example, while the stand-alone EEJE

showed the classification accuracy by as much as 48.11% on

average, EEJE combined with Adversarial Training showed

the classification accuracy by as much as 61.35% on average.

Specifically, the classification accuracy against FGSM pertur-

bation was improved from 20.56% to 58.66%, and the classifi-

cation accuracy against BIM perturbation was improved from

22.71% to 39.39%. Even when showing the slightly lower

accuracy than using the stand-alone EEJE in ResNet-20

against DeepFool and C&W perturbations, EEJE combined

with Feature Squeezing and Adversarial Training in ResNet-

20 showed the classification accuracy by as much as 62.4% on

average, while the stand-alone EEJE in ResNet-20 showed the

classification accuracy by as much as 48.11% on average.

Result 6: The proposed two-step input transformation

architecture can good-enough improve the classification accu-

racy when being combined with other defense methods.

TABLE IV
CLASSIFICATION ACCURACY OF EEJE UNDER THE VARIOUS DENOISING TECHNIQUES OF THE ADVERSARY
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7) How Does the Performance of the Proposed Two-Step

Input Transformation Architecture Vary Under Various Types

of Data?: To show how effective the proposed two-step input

transformation architecture is under various types of data, we

performed additional experiments using MNIST dataset [31].

Unlike CIFAR-10 dataset, which is a color dataset, MNIST is

a grayscale dataset of handwritten digits. MNIST consists of

60,000 training images and 10,000 testing images correspond-

ing to 10 classes.

As shown in Table VI, the proposed two-step input transfor-

mation architecture showed the high robustness even for

MNIST dataset. For example, while the classification accuracy

with no conversion was 6.71% on average, the classification

accuracy of the proposed EEJE method measured into 76.65%

on average. Especially, EEJE using DeepFool Conversion

method showed the highest accuracy by as much as 97.04%

against adversarial examples. We also observed that EEJE

using various Conversion methods showed no accuracy degra-

dation for legitimate inputs even when using MNIST dataset.

While EEJE method showed the low robustness for FGSM

and BIM perturbations in CIFAR-10 dataset, EEJE method

using DeepFool Conversion method and C&W Conversion

method showed the high robustness for FGSM and BIM per-

turbations in MNIST dataset. For example, EEJE using the

DeepFool Conversion method against FGSM and BIM pertur-

bations showed the high classification accuracy by as much as

94.77% and 97.75%, respectively.

Result 7: The proposed two-step input transformation

architecture shows the good-enough performance under vari-

ous types of data.

C. Theoretical Analysis

Since the defender cannot know which perturbation calcula-

tion method the adversary is using, there exist uncertainties in

the optimal selection of adversarial perturbation calculation

methods and defense methods. Game theory is useful for anal-

ysis when there exist uncertainties in the strategies for each

player. Thus, we evaluated the efficiency of the EEJE by ana-

lyzing the results based on adversary-defender game.

In adversary-defender game, the defender Pd converts an

input image X by selecting an adversarial perturbation calcu-

lation method according to a defender’s strategy Sj, and the

adversary Pa adds an adversarial perturbation into the con-

verted image according to a attacker’s strategy Si.

The game arises from the fact that each player does not

know the opponent’s strategy, although they do know each

other’s strategy space. That is, as a two-player game, the

adversary-defender game consists of the defender Pd and the

adversary Pa with each designated strategy space, i.e., SD and

SA, where Sj 2 SD and Si 2 SA. As a result of the adversary-

defender game, Pa receives a payoff pij which indicates attack

success rate, and Pd receives a payoff 1� pij. Note that the

adversary-defender game is a constant sum game since

the sum of Pd’s payoff and Pa’s payoff does not change. Thus,

the optimal strategy of Pd can be obtained as follows:

argmax
Sd
j

min
Sa
i

S
i;j

Sd
j Sa

i ð1� pijÞ (4)

where Sd
j and Sa

i are mixed (random) strategies, which are

defined according to probability distribution of pure strategies

over the strategy spaces SD and SA, respectively. In Equa-

tion (4), Pd’s optimal strategy guarantees a certain classifica-

tion accuracy, regardless of Pa’s strategy.

To evaluate the performance of EEJE, we analyzed two adver-

sary-defender games, which have different sets of SD but the

same sets of SA. In the first game, we consider SD ¼ fGNR;

FGSM;BIM;DeepFool; C&Wg and SA ¼ fFGSM;BIM;
DeepFool;C&Wg to find the optimal Conversion method for

TABLE VI
CLASSIFICATION ACCURACY OF EEJE UNDER THE COMBINATION OF VARIOUS CONVERSION METHODS AND

ADVERSARIAL PERTURBATION CALCULATION METHODS USING MNIST DATASET

TABLE V
EXPERIMENTAL RESULTS AFTER COMBINING WITH OTHER DEFENSE METHODS
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EEJE. For ResNet-20, Table VII shows the payoff table of Pa

for strategies Si 2 SA and Sj 2 SD. From the solution of

Equation (4) for the first game, EEJE using DeepFool Conver-

sion is observed into the optimal strategy of Pd. As shown in the

experimental analysis, such an observation indicates that EEJE

using DeepFoolConversion is the best strategy for defender.

In the second game, we considered SD ¼ fEEJE ðDeepFoolÞ;
FeatureSqueezing ð2� 2 mediansmoothingÞ; Adversarial
Trainingg and SA ¼ fFGSM;BIM;DeepFool;C&Wg in

order to show that EEJE is more efficient than the other defense

methods.

Payoffs of Pa according to different Sj (2 SD) in ResNet-20

are shown in Table VIII. From the solution of Equation (4) for

the second game, EEJE is also selected into the optimal strat-

egy of Pd. This observation indicates that EEJE is better suited

for defending adversarial examples than the other defense

methods.

V. CONCLUSION

DNN models have shown impressive accuracy in various

real-world application fields. However, as adversarial exam-

ples cause the model to make a false positive or a false nega-

tive, the study on how to maintain the performance of DNN

models for legitimate inputs while providing good robust-

ness against various adversarial examples has been

emerged. So far, two types of defense architectures have

shown a significant effect: (1) model retraining architecture;

and (2) input transformation architecture. However, previ-

ous defense methods belonging to two architectures did not

produce good outputs for adversarial examples as well as

legitimate inputs. In this paper, to produce good-enough

outputs for every input, we proposed a new type of input

transformation architecture using on two-step input trans-

formation. Also, as a practical implementation method, we

introduced a practical defense method, called EEJE. From

evaluation results under various experimental conditions,

we showed that the proposed EEJE method provided robust-

ness to DNN models against various state-of-the-art adver-

sarial perturbations while maintaining the high accuracy

even for legitimate inputs. Specifically, the classification

accuracy of EEJE using DeepFool Conversion showed bet-

ter performance than Adversarial Training or Feature

Squeezing. Also, the proposed EEJE method combined with

Adversarial Training or Feature Squeezing showed the bet-

ter classification accuracy than the stand-alone usage

of EEJE. From such evaluation results, we believe that the

proposed two-step input transformation architecture can

support robustness of DNN models against various adver-

sarial perturbations.
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