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Modeling Communication Processes
in the Human Connectome through
Cooperative Learning

Uttara Tipnis, Enrico Amico™, Mario Ventresca, and Joaquin Goni

Abstract—Communication processes within the human brain at different cognitive states are neither well understood nor completely
characterized. We assess communication processes in the human connectome using ant colony-inspired cooperative learning
algorithm, starting from a source with no a prioriinformation about the network topology, and cooperatively searching for the target
through a pheromone-inspired model. This framework relies on two parameters, namely pheromone perception and edge perception,
to define the cognizance and subsequent behaviour of the ants on the network and, overall, the communication processes happening
between source and target nodes. Simulations obtained through different configurations allow the identification of path-ensembles that
are involved in the communication between node pairs. These path-ensembles may contain different number of paths depending on
the perception parameters and the node pair. In order to assess the different communication regimes displayed on the simulations and
their associations with functional connectivity, we introduce two network measurements, effective path-length and arrival rate. These
communication features are tested as individual as well as combined descriptors of functional connectivity during different tasks.
Finally, different communication regimes are found in different specialized functional networks. Overall, this framework may be used

as a test-bed for different communication regimes on top of an underlaying topology.

Index Terms—Brain connectomics, graph theory, computational neuroscience, ant-colony algorithm, communication processes

1 INTRODUCTION

SHORTEST paths in any system that can be described as a
network, such as the human brain or roads in a state, are
considered important as routing through them could mini-
mize communication delays [1]. The concept of a shortest
path is defined as the sequence of edges between a node
pair in the network corresponding to the shortest distance
between them. In the case of a road network, shortest paths
may be used by a traveler who has knowledge of the net-
work topology. On the other hand, in a biological network,
such as the human brain, it is not assumed that the signal
has knowledge of the network topology and thus does not
necessarily take the shortest path. Even so, shortest paths
are highly important in a biological network as they inform
us of the most efficient routing.
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Additionally, shortest paths and walks also have practi-
cal importance in artificial systems that can be represented
as networks. For example, this measure has proven useful
in identification of keywords in textual applications [2], dis-
tinguishing literary styles in books published over four cen-
turies [3], and probing the topology of language networks
[2], [4], [5], among other applications. The measure also has
applications in pattern recognition and machine vision [6].

In many natural systems, the concept of shortest paths can
be relaxed to a natural selection of one or more communica-
tion paths (potentially, an ensemble of paths) chosen through
a collaborative effort, as in the case of foraging behaviour
of ants. Deneubourg et al. [7] conducted experiments on
Argentine ants (I. humilis) to study their pheromone-driven
foraging behaviour. In order to study how the indirect collab-
oration, also called stigmergy, evolves over time from random
exploration for food by an ant colony, the authors set up a
two-bridge environment (from a network perspective, two
nodes connected through two different edges, as in the case
of multigraphs) that the ant colony explored. Both the edges
(here representing possible paths) were of the exact same
length and the passage of ants over the edges was observed
over time. It was observed that at the beginning the individ-
ual ants randomly chose one of the two possible paths in
search of food. However, as the pheromones dropped by the
ants on their way started accumulating and affecting the
environment over time, the ants eventually converged to
using only one of the edges. As the experiment was run
repeatedly, either of the paths emerged as the one on which
the ants randomly converged. This is explained by the slight
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fluctuation in the number of ants taking each of the paths,
increasing the pheromone concentration on that path. In the
second part of the experiment, the ratio of lengths of the two
bridges was 2:1. As a result, the ants always converged on the
shortest path every time the experiment was run.

The foraging behaviour of many species of ants is driven
by the indirect communication between them through
chemicals, called pheromones, as their visual faculties are not
well developed [8]. When a colony of ants starts searching
for food, individual ants do so in a completely random
and uncooperative manner [8]. As soon as an ant finds a
food source, it takes some of it and carries it back to the nest
and then starts again towards the food source. Thus, the
ants keep moving back and forth between the nest and the
food source until the food is completely depleted. During
this journey, the ants leave a trail of pheromones on their
path that other ants can smell. As the concentration of pher-
omones increases, ants gradually change their exploration
behavior from unbiased random walks to an exploration
biased by the concentration of pheromones. This is a critical
characteristic of the ant-colony that allows the individual
agents to initially explore many possible paths while subse-
quently converging to a potentially optimal path or ensem-
ble of paths. This behavior of ant colonies seems to emerge
in open two-dimensional spaces [7] as well as in constrai-
ned, network-like structures [7], [9].

Ant colony optimization (ACO) algorithm takes its moti-
vation from this indirectly collaborative behaviour of ants
that allows them to find the shortest paths [10]. The ACO is
typically used to find solutions to NP-hard problems that
can be modeled as shortest path problems in a graph, e.g.,
travelling salesman problem (TSP), scheduling problems,
assignment problems, amongst others.

It is well known that neuronal structure in the brain
forms a complex structural network [11]. This network is a
static representation of white matter connections between
brain regions. As such, it is a very slowly evolving topology.
This structural network, called structural connectivity (SC),
dictates how different parts of the brain communicate with
each other, which is known as functional connectivity (FC).
FC between two brain regions is the correlation between
their fMRI time-series data. Thus, it is a fast evolving topol-
ogy. Structural topology of the Human Connectome has
been extensively assessed through measures that provide
static views of the underlying connectivity of the brain net-
work, such as shortest path between regions, search infor-
mation (SI), modularity, and degree distribution, amongst
others. As these measures are static, they do not provide
much explanation of how the SC and FC, which is a
dynamic topology, might be related. Also, only a fraction of
the edges in a network form the shortest paths. Thus, by
assuming that communication in the brain takes place
through shortest paths, one is essentially ignoring large
parts of the network (discussed further in Section 3.1).

In order to overcome the problems discussed above, De
Vico Fallani et al. [12] and Avena-Koenigsberger et al. [13]
have proposed that the communication between brain
regions does not take place through shortest paths. Instead,
Avena-Koenigsberger et al. have suggested that communi-
cation between brain regions takes place through an ensem-
ble of k-shortest paths, while De Vico Fallani et al. have

suggested investigating all possible paths between a pair of
brain regions consisting of a certain number of edges. Thus,
in both of these methods the paths that are investigated are
pre-defined by the user.

Communication efficiency as defined by Estrada and
Hatano [14] takes into account all potential paths between a
pair of source-target nodes instead of using only the short-
est paths. The authors propose a function based on this
measure as a way to quantify how much information can
flow from one node to another in a network. Furthermore,
Chavez et al. [15] have studied the accessibility of different
cortical areas to measure how well an area can be reached
by the rest of the network. The method proposed in the cur-
rent paper is a relaxation of the measure proposed by
Estrada and Hatano, as we consider only the paths that are
traversed by the ants. It can also be compared to the accessi-
bility measure proposed by Chavez et al., as it measures the
hiddenness of brain regions from each other.

In this paper, we propose a method to model signal prop-
agation and communicability between brain regions through
the use of an ant colony-inspired algorithm. We test this
novel framework on the functional and structural data pro-
vided by the Human Connectome Project [16], [17]. When
exploring the network topology of the human structural con-
nectome, the ants trace the ensemble of paths between each
source-target pair of brain regions by traversing them proba-
bilistically. By tuning two main communicability parameters
related to the ant colony behavior (i.e., pheromone perception
and edge perception), we investigate four different communi-
cation scenarios on SC: independent random walk, weakly
coupled random walk, collaborative spreading preferen-
tially along weak structural connections (side roads), and col-
laborative spreading preferentially along strong structural
connections (main roads). For each scenario, we define two
network measures extracted from the path ensembles trav-
eled by the ants, namely effective path length (EPL) and arrival
rate (AR). We show how these two node pair-wise measure-
ments are good predictors of task-based FCs and partly of
resting-state FCs, for different optimal choices of pheromone
perception and edge perception. The predictive power of AR
and EPL is even more noteworthy when considering com-
munication scenarios within different functional subnet-
works. We conclude by discussing the potentials of this new
model for describing communication in large-scale brain net-
works and new directions for the investigation of communi-
cability and signal propagation regimes in the human
connectome, a new exciting avenue in brain connectomics.

2 METHODS

2.1 Human Connectome Project Data Processing
The functional and structural dataset used in this work is
from the Human Connectome Project (HCP, http://www.
humanconnectome.org/), Release Q3. Below is the full
description of the acquisition protocol and processing steps.
We employed the Freesurfer parcellation into 164 brain
regions [18], [19].

2.1.1 HCP: Structural Data

We used DWI runs from the 100 unrelated subjects of the
HCP 900 subjects data release [16], [17]. The diffusion
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acquisition protocol is covered in detail elsewhere [20], [21],
[22]. Below we mention the main characteristics. Very high-
resolution acquisitions (1.25 mm isotropic) were obtained by
using a StejskalTanner (monopolar) [23] diffusion-encoding
scheme. Sampling in g-space was performed by including 3
shells at b = 1000, 2000 and 3000 s/mm?2. For each shell corre-
sponding to 90 diffusion gradient directions and 5 b = Os
acquired twice were obtained, with the phase encoding
direction reversed for each pair (i.e., LR and RL pairs).

The HCP DWI data were processed following the
MRtrix3 [24] guidelines (http://mrtrix.readthedocs.io/en/
latest/tutorials/hcp_con nectome.html), as done in recent
paper [25]. In summary, we first generated a tissue-
segmented image appropriate for anatomically constrained
tractography (ACT [26], MRtrix command 5ttgen); we then
estimated the multi-shell multi-tissue response function [27]
(MRtrix command dwi2response msmt_5tt) and performed
the multi-shell, multi-tissue constrained spherical decon-
volution [28] (MRtrix dwi2fod msmt _csd); afterwards, we
generated the initial tractogram (MRtrix command tckgen,
10 million streamlines, maximum tract length = 250, FA cutoff
= 0.06) and applied the successor of Spherical-deconvolution
Informed Filtering of Tractograms (SIFT2, [29]) methodology
(MRtrix command tcksift2). Both SIFT [29] and SIFT2 [30]
methods provide more biologically meaningful estimates of
structural connection density. SIFT2 allows for a more logi-
cally direct and computationally efficient solution to the
streamlines connectivity quantification problem by determin-
ing an appropriate cross-sectional area multiplier for each
streamline rather than removing streamlines altogether,
biologically accurate measures of fibre connectivity are
obtained whilst making use of the complete streamlines reco-
nstruction [29]. Finally, we mapped the SIFI2 outputted
streamlines onto the 164 chosen brain regions [18], [19] to
produce a structural connectome (MRtrix command tck2con-
nectome). Finally, a log10 transformation [31] was applied on
the structural connectomes to better account for differences
at different magnitudes. In consequence, SC values ranged
between 0 and 5 on this dataset.

2.1.2 HCP: Functional Data

We used fMRI runs from the 100 unrelated subjects of
the HCP 900 subjects data release [16], [17]. The fMRI
resting-state runs (HCP filenames: rfMRI REST1 and
rfMRI_REST2) were acquired in separate sessions on two
different days, with two different acquisitions (left to right
or LR and right to left or RL) per day [16], [17], [20]. The
seven fMRI tasks were the following: gambling (tfMRI_
GAMBLING), relational (tfMRI_RELATIONAL), social
(ttMRI_SOCIAL), working memory (tfMRI_WM), motor
(ttMRI_MOTOR), language (tfMRI_ LANGUAGE, including
both a story-listening and arithmetic task), and emotion
(ttMRI_EMOTION). The working memory, gambling, and
motor task were acquired on the first day, and the other
tasks were acquired on the second day [20], [32]. The HCP
scanning protocol was approved by the local Institutional
Review Board at Washington University in St. Louis. For all
sessions, data from both the left-right (LR) and right-left
(RL) phase-encoding runs were averaged to calculate con-
nectivity matrices. Full details on the HCP dataset have
been published previously [20], [32], [33].

The HCP functional preprocessing pipeline [20], [33] was
used for the employed dataset. This pipeline included artifact
removal, motion correction and registration to standard space.
Full details on the pipeline can be found in [20], [33], [34].

For the resting-state fMRI data, we also added the follow-
ing steps: global gray matter signal was regressed out of the
voxel time courses [35]; a bandpass first-order Butterworth
filter in forward and reverse directions [0.001 Hz, 0.08 Hz]
[35] was applied (Matlab functions butter and filtfilt); the
voxel time courses were z-scored and then averaged per
brain region, excluding outlier time points outside of 3 stan-
dard deviation from the mean, using the workbench soft-
ware [36] (workbench command—cifti-parcellate).
For task fMRI data, we applied the same above mentioned
steps, with a less restrictive range for the bandpass filter
[0.001 Hz, 0.25 Hz].

Pearson correlation coefficients between pairs of nodal
time courses were calculated (MATLAB command corr),
resulting in a symmetric connectivity matrix for each fMRI
session of each subject. Functional connectivity matrices
from the left-right (LR) and right-left (RL) phase-encoding
runs were averaged to improve signal-to-noise ratio. The
functional connectomes were kept in its signed weighted
form, hence neither thresholded nor binarized.

Finally, group average matrices were obtained from the
resulting individual structural and functional connectivity
(rest and 7 tasks) matrices. These were then grouped (rows
and columns) according to the 7 cortical functional networks
(ENs) as proposed by Yeo et al. [37] based on resting state.

2.2 Ant-Colony Inspired Algorithm

ACO is an optimisation algorithm used to solve NP-hard
problems [10], although in this paper the algorithm has
been modified so that the goal is not optimisation anymore.
Instead of finding the shortest path between brain regions,
which can be done by better and much faster algorithms
[38], [39], the modified ant colony algorithm is aimed at
exploring the brain network and at assessing different com-
munication regimes between source and target nodes at dif-
ferent cognitive states. At the beginning, a source node and
a target node are fixed, with the colony of ants located at the
source and their goal is to find the target node. The network
is unmarked by any pheromones in the beginning and so
the ants start exploring the network in a random fashion.
The probability of an ant taking a certain edge in the net-
work is calculated as a transition probability and the ant
randomly chooses between the neighbors of a node. The
probability of an ant taking the edge ij at time-step ¢ is calcu-
lated as follows:

pO _ (ng)('lfj) )
v o By°
Zj(tij)(nz’j)

Where,

n;; = fiber density of edge ij, i.e., the underlying brain
structural connectivity matrix

B = edge perception

7;; = amount of existing pheromone on edge ij at time-
step ¢

o = pheromone perception
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TABLE 1
Effect of the Different Configurations of Pheromone and Edge Perception on the Behaviour of the Ant Colony
Pheromone Edge Ant Colony Communication
Perception Perception Behaviour Regime
a>1 B>1 Highly collaborative and communication through Enforcing the use of main roads
most prominent edges only
a <1 B>1 No collaborative and communication through most ~ Weakly-coupled random walkers with
prominent edges only preference for main roads
a>1 <1 Highly collaborative and extensive use of network Enforcing the use of side roads
a <1 <1 Weak collaboration and extensive use of network Weakly-coupled random walkers with
almost no preference for roads
a=0 p=0 Not collaborative and extensive use of network Independent random walkers with no

preference for roads

Note that exponents « and § characterize the individual
perception of the ants. In particular, o represents the sensitiv-
ity to follow edges previously used by other ants, whereas g
represents how influential is the strength of the edge. Both
exponents maybe sublinear, linear (equal to 1), and supralin-
ear, and hence reflect the perception of the ants with respect
to the underlying topology (SC network) and to the collabo-
rative architecture through pheromones. Hence we will refer
to « as pheromone (ph) perception and to B as edge perception.

In Equation (1), we are essentially calculating the transi-
tion probability of an ant going from node i to node j when
accounting for two dimensions or layers of information (i.e.,
structural topology and pheromones). Thus, the denomina-
tor is a normalizing factor in order to keep the row-wise
sum in the transition probability (TP) matrix equal to 1. As
can be seen in Equation 1, the calculation of the transition
probability also involves the amount of existing pheromone
on the edge ij, which changes at every iteration. Hence, the
TP matrix is dynamic across time. Thus, we cannot resort to
analytical approaches, such as mean first passage time
(MFPT) [40], in order to study this changing topology.

While running the simulations, the exponents in
Equation (1), pheromone perception and edge perception, are the
variables that can be controlled within a certain range. Each
separate combination of these variables characterizes a dif-
ferent collaborative spreading regime or configuration
(expressed in terms of the two parameters) that can be associ-
ated with different task and resting state FCs. As 7 is the
underlying structural connectivity matrix in terms of fiber
density, all the values in this matrix are lower than 1. Thus,
when the value of edge perception is below 1, the combined
effect is to give more importance to all the values in the 7
matrix. On the other hand, when the value of edge perception
is over 1, the combined effect is to shrink the values in n even
further, but the smaller values shrink more than the higher
ones. For example, the effect of edge perception =2 on n,;; = 0.05
and 0.5 is to make them 0.0025 and 0.25 respectively. Thus,
the effect is similar to almost completely wiping out the weak
connections in the structural connectivity matrix. The interac-
tion between the pheromone matrix, 7, and its exponent pher-
omone perception is different as t has entries that are above
and below 1. The interactions between the ph and edge percep-
tion is summarized in Table 1. As the underlying structural
connectivity matrix, 5, remains static throughout the simula-
tion and the pheromone matrix changes at every iteration, it
can be thought of as a double-layered network structure, where

the interaction between the two layers of the network is regu-
lated by Equation (1). Even though the pheromone matrix
changes at every step of the simulation, the way it changes
depends on the SC, as the ants only take the existent edges.
Thus, only the edges existent in the SC appear in the phero-
mone matrix.

The global behavior of the ants is a result of the individ-
ual dynamics. Thus, the simulation is set up in such a way
that the ants are always in one of the three different states
as follows:

e  Explorer ant: The ants all start at the source node act-
ing as random walkers (explorer ants) and do not
deposit any pheromone on the edges. Hence, for
each explorer ant, the step at time t will be deter-
mined by the transition probability matrix at that
time (see Equation (1)). The ants remain in this state
until they find the target node.

e Ant at target: When an explorer ant reaches the tar-
get, it becomes an ant at target. The ants are in this
state only for one time step. At this step, the label of
the ant changes from explorer ant to homebound ant.

e  Homebound ant: The ants are in this state when they
are coming back to the source node after visiting the
target. In order to do so, they trace the same path
back to the source that they took to get to the target.
On their way, they deposit pheromones on the path
as a signal to the other explorer ants. This effectively
increases the probability of other ants taking the
same edges to reach the target in future. The amount
of pheromone deposited by ants on their return jour-
ney is inversely proportional to the length of the
path taken. This pheromone update mechanism
rewards the shorter paths over longer ones. When
the homebound ant makes its way back to the source
node, it again starts a new journey as an explorer ant.

As the algorithm is designed so that all the ants move one
edge at every step of the simulation, it can provide us with
the number of ants that have made it to the target at least
once at every step.

In cases where no pheromone is deposited by the ants on
the edges of the network, for any value of the edge perception
(B), the system behaves as a set of random walkers indepen-
dently exploring the underlying SC. Such SC is in our case a
representation of a complex network. This is not necessarily
the case, and more simple models such as two dimensional
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Fig. 1. Ant’ collective collaborative behaviour exhibited on the undirected Dolphin social network with 62 nodes. As ants start finding the target node,
they deposit pheromones on some of the edges. Thus, the pheromone structure changes at every iteration. Shown here is the pheromone structure
at three different iterations, along with the changing transition probability (TP) matrix.

lattices (representing a landscape) can be used as well. This
would be equivalent to a coarse-grain scenario of the explo-
ration of a two-dimensional open space, as widely assessed
in foraging theory [7].

In order to demonstrate the mechanism by which the ant
colony algorithm cooperatively learns the topology over
time, we executed it on a small toy network. Fig. 1 shows
the ant colony’s collective behaviour exhibited on the undi-
rected dolphin social network with 62 nodes [41] for one
source-target pair. As can be seen, the pheromone structure
evolves with iterations as more and more ants reach the tar-
get and multiple paths emerge between the node pair. Note
that the running time of an ant colony algorithm with # ants
is O(n*m.log(n)/p), for networks with n nodes and m edges,
where p is the evaporation rate [42].

2.3 Ant Colony Simulations

One run of the simulation consists of running the ant colony
algorithm for every source-target pair in a 164-region par-
cellation for the structural connectivity (SC) of the group
average of 100 unrelated HCP subjects. The algorithm runs
in discrete time steps, i.e., the ants move one edge at a time.
Before starting a simulation run, the following parameters
can be controlled, along with the range of values that have
been explored for each of them:

o = Pheromone perception = [0.01,0.05,0.1,0.5:0.5:4]
B = Edge perception = [0.1,0.5:0.5:4]
Amount of pheromone deposited by each ant = 1/
Lengthpath
e Number of ants in the colony = 200
e Number of simulation steps = 1000
e Number of simulation runs per configuration = 10
The simulation does not necessarily run for 1000 steps for
every source-target pair as it stops when at least 95 percent
of the ants have made it to the target. This termination con-
dition is added in order to optimize the running time of a
full simulation run.

At every step of the simulation, the number of ants that
have made it to the target at least once is saved, along with
the paths that each individual ant took to reach there. Due to
the effect of pheromones, convergence of ants for each source
and target is typically observed on multiple paths, although a
path is discarded at the end of the simulation if it is used less
than 10 times. The remaining paths are saved in a path ensem-
ble, along with the number of ants that have taken each path
to reach the target. The data regarding the different paths
taken by the ants is saved in order to study the backbone and
centrality of the brain structural connectivity in terms of effec-
tive path length and arrival rate (measurements explained in
Section 2.4) of the target from the source and edge centrality
that drives the spreading of ants in the network.

One important factor that should be remembered here is
that the pheromone structure is not updated at every iter-
ation in the entire network until all the ants have finished
their move. Thus, an ant does not see another ants” freshly
deposited pheromones until everyone has finished taking
one step. This is to ensure that only the pheromones existing
before the start of the iteration affect an ant’s decision to
take a certain edge.

2.4 Network Analysis

The data generated through the simulations contains very
valuable information about the system, the evolving com-
municability, and the effects of collaborative spreading.
Such information cannot be summarized by means of static
measurements on the shortest-path, or even on a fixed set of
paths. Hence, we developed two network-based measure-
ments that account for the collective behavior of the ant col-
ony as a single entity. One of the most important outputs of
the ant colony simulations is the use of different paths by
different number of ants to reach the target. The different
paths taken by the ants between each source-target pair are
kept track of, along with the number of times those paths
are used. Thus, for each source-target pair, we may isolate
the subnetwork within the underlying SC matrix that only
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includes edges belonging to the ensemble of paths used by
the ants under each configuration.

One such network measure that we have defined is effec-
tive path length (EPL), which is defined as the sum of the
length of each path multiplied by the number of ants taking
that path as a fraction of the total number of ants that have
ever made it to the target. This can be represented mathe-
matically as:

Z;Zl (Lp x Traffic,)
" Traffic,

p=

EPL; = 2)

Where,

ij = source-target pair for which effective path length is
being calculated

n, = number of different paths taken by the ants

L, =length of path p based on the fiber density

Traffic, = number of times the ants took path p to reach
the target

Note that Equation (2) is normalized by dividing by the
sum of all the ants that have reached the target by taking
the saved paths. Thus, the contribution of paths taken less
than 10 times by the ants to the EPL would be negligibly
small. Hence, ignoring those paths does not significantly
affect the calculation of EPL. A high EPL reflects that com-
munication through the path ensemble involves longer
paths, whereas a low EPL suggests the involvement of
shorter paths.

Another network measurement that we have defined is
arrival rate (AR). For every source-target pair, this is the ratio
of the number of arrivals to the maximum number of arriv-
als that could have taken place (defined as an ant exclu-
sively taking the shortest path back and forth between
source and target). Mathematically, this can be shown as:

2 x Arrivals;j x SPL;; 3)
numAnts x (iteraiva + SPLij) |

AR“ = lOglo (

Where,

Arrivals;; = number of times ants have successfully
reached target j from source i by using any path in the path
ensemble

numAnts = number of ants used in the simulation = 200

SPL;; = number of edges in the shortest path length
between i and j

iterqrriva = iteration number when at least 95 percent of
the ants reach the target

AR represents the log)o transformation of the percentage
of arrivals (hence, ranging between 0 and 1) to the target
with respect to the maximum number of arrivals that could
possibly happen as bounded by communication solely hap-
pening through shortest paths. A high value of AR repre-
sents that the communication between a node pair is
efficient, whereas a low value indicates that it is inefficient
with few arrivals to the target.

2.5 Null Models Based on Structural Connectivity

We tested two different null models based on randomiza-
tions of SC [43]. In order to do so, we evaluated the FC
predictive power of the ant colony-derived measurements
on two different randomized topologies. Note that the
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.
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Fig. 2. lterative randomization procedure on SC network. Dissimilarity
as a function of the number of xswaps for whole-brain (A) and intra-
hemispheric randomizations (C). Adjacency matrices for final randomized
networks are shown for whole-brain (B) and intra-hemispheric (D).

randomization procedure used for both null models have
density, degree-distribution, and degree-sequence as topo-
logical invariants.

e  Whole-brain Randomization. The entire SC network
was randomized using the xswap method [43], [44].
This iterative procedure was performed until full
randomization was achieved. This was evaluated by
measuring dissimilarity between the original and the
increasingly randomized network until a plateau
was reached. Dissimilarity reflects the percentage of
entries that are different between a network and a
reference network. Note that upper boundaries of
dissimilarity are dependent on the density of the net-
work, and hence a perfect dissimilarity (value of 1)
may only be reached in networks where density is 50
percent. Figs. 2A and 2B show dissimilarity as a
function of number of xswaps and the randomized
network, respectively. Fig. 2A shows that dissimilar-
ity reaches a plateau around 0.5 after 15,000 xswaps.
Hence, we chose this configuration for the analysis
of the null model based on whole-brain randomiza-
tion. This whole-brain randomized network will
henceforth be referred to as SC"4"4..

o Intra-hemispheric Randomization. The second null
model used introduced another invariant by always
preserving the inter-hemispheric connections, i.e.,
neither deleting any existing nor adding any new
edges when performing xswaps. Analogously to the
procedure performed in the first null model, it was
found that dissimilarity reached a plateau around
0.3 after 18,000 xswaps. Figs. 2C and 2D are the dis-
similarity as a function of the number of xswaps and
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Fig. 3. A1 is the group average weighted structural connectivity (SC). A2 is the edgewise shortest-path betweenness centrality on SC. Note
that 23 percent of the edges participate in at least one shortest path. A3 is the equivalent of the shortest-path betweenness centrality in the
path ensembles obtained through the ant colony algorithm (results correspond to the configuration « = 1.5 and g = 0.1). 100 percent of the edges
participate in at least one path ensemble. The B1, B2, and B3 are the corresponding histograms for each measurement. The plot inset inside B3
shows the percentage of edges used for each «-8 configuration. The * indicates the configuration to which A3 and B3 belong.

the randomized network, respectively. This intra-
hemispheric randomized network will henceforth be
referred to as SCI".

We run the simulations as explained in Section 2.3 on the
two null models explained above. The same network analy-
sis as in Section 2.4 was conducted out on the data gener-
ated by these simulations. The Results section discusses the

results of these null model-based simulations in detail.

3 RESULTS

As described earlier, 100 unrelated subjects in the HCP [16],
[17] dataset were used to construct the group average struc-
tural and functional connectomes. The ant colony simula-
tions were run on the group average structural connectome.
The data that is saved from these simulations consists of the
different paths taken by the ants between each node pair,
along with the number of ants taking each of the paths. In
order to characterize different aspects of communication for
different a-f configurations, we calculated EPL and AR for
each source-target pair (see Section 2.4 for details). These
two measures were then associated, individually and
together (in a multilinear regression), with the group aver-
age task-based and resting-state functional connectivity pat-
terns, estimated as per the protocol described in Section 2.1.
This section reports the results obtained from the path
ensembles and the associations with the FCs.

3.1 Evaluation of Path Ensembles and

Betweenness Centrality

As discussed in Section 2, running the ant colony inspired
algorithm allows us to identify the ensemble of paths most
widely used by the ants for each source-target pair in the
brain structural network. Fig. 3A1 shows the group-average
weighted structural connectome used in this study whereas
Fig. 3B1 shows the distribution of the non-zero weights.
Fig. 3A2 shows the edgewise betweenness centrality as
measured on the shortest paths and Fig. 3B2 shows the dis-
tribution of such centrality. Different configurations of -8
yield potentially different path ensembles. As an example
of it, we show in Fig. 3A3 the pairwise path ensemble cen-
trality (as obtained from the simulations) for « =2, = 0.1,
as well as its distribution (Fig. 3B3). Figs. 3A2 and 3A3
show that only 23 percent of the edges participate in short-
est paths, whereas 100 percent of the edges participate in
the path ensembles for this particular collaborative regime.
The inset in Fig. 3B3 shows the percentage of edges used for
every a-f configuration.

3.2 Associations between Functional Connectivity
and Path Ensemble-Derived Measures

The two network measures defined in Section 2.2, effective

path length (EPL) and arrival rate (AR), were calculated for

every source-target pair in every configuration of ph and
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Fig. 4. For every configuration of the ant colony, Effective Path Length and

Arrival Rate are calculated for every source-target pair. The Pearson cor-

relations between these measures and different task-based and resting state functional connectivities are calculated. A and B show the correlations
of resting state FC with EPL and AR, while C and D show these correlations with Motor FC. The * in each of these matrices shows the configuration
for which the correlation is highest. E, F, G, and H are the scatter plots between the FCs and EPL and AR for the configuration with the highest

correlation.

edge perception. Then, EPL and AR for each configuration
were correlated with each task-based and resting state func-
tional connectivity (FCs). Figs. 4A, 4B, 4C, and 4D show the
correlation values of EPL and AR with resting state and
motor-task FC for all configurations of ph («) and edge per-
ception (B). Figs. 4E, 4F, 4G, and 4H illustrate the scatter plots
of EPL and AR with the resting state and motor-task FCs
corresponding to the configurations with highest correla-
tions in Figs. 4A, 4B, 4C, and 4D. Note that for resting state
FC, the highest correlation with EPL is achieved at (o« = 0.01,
B = 0.1) and with AR at (e = 0.05, 8 = 1). Analogously,
for motor-task FC, the highest correlations are attained at
(@ =15, =01 and (¢ = 0.5, 8 = 0.5) with EPL and AR

TABLE 2
Pearson Correlation Coefficients between Path Length
Measurements on SC and Task-Based FCs

Path Length Measurements

rand

Task sC scpand scuand sC
(EPL) (EPL) (EPL) (SPL)
REST —0.31 -0.07 0.03 —0.14
LANGUAGE 041 —0.16 0.02 —-0.27
EMOTION —0.40 -0.15 0.01 -0.28
GAMBLING ~0.39 -0.15 0.01 —-0.27
MOTOR —0.45 -0.20 -0.02 -0.33
RELATIONAL  —037 —0.15 0.01 —-0.27
SOCIAL -0.37 -0.13 0.01 ~0.24
WM —0.42 —-0.17 0.01 -0.31

Path length measurements were obtained from SC, and from two null models
derived from SC, namely SCI®%, and SC'@"% . EPL is the effective path length,
calculated from the collaborative behaviour of the ant colony, whereas SPL is

the shortest path length on SC (as a baseline for EPL)

respectively. In order to test the variation in EPL and AR
values across different simulation runs, we have calculated
the node pair-wise coefficient of variation values of these
measures as shown in Fig. 8.

Tables 2 shows the Pearson correlation coefficients
between the path length measurements and task-based FCs.
The path length measurements were calculated on SC and
two null models, SC/% (intra-hemispheric randomization)
and SC"9"¢ (whole-brain randomization, see Section 2.5 for
details). The table also reports the associations between FCs
and shortest path length (SPL) as a baseline for EPL. Note
that, as expected, EPL calculated on SC is negatively corre-
lated with all task and resting-state FCs. This indicates that
the longer the EPL for a node pair, the less functionally cou-
pled it is. Also, for all tasks and resting-state FCs, the EPL
computed on SC outperforms EPL on the two null models
as well as SPL on SC.

Analogously, Tables 3 shows the Pearson correlation
coefficients between the arrival measurements and task-
based FCs. The arrival measurements were calculated on
SC and two null models, SC%" (intra-hemispheric random-
ization) and SC;‘}LZ?B (whole-brain randomization, see
Section 2.5 for details). The table also details the associations
between FCs and max flow (MF) [45] as a baseline for AR.
Note that, as expected, AR calculated on SC is positively
correlated with all task FCs. This indicates that the higher
the AR for a node pair, the higher the functional coupling
between them. Also, for all tasks and resting-state FCs, the
AR computed on SC outperforms AR on the two null mod-
els as well as MF on SC.

In order to evaluate the joint predictive capacity of EPL
and AR, we conducted multilinear regression analysis for
every a-f configuration. Figs. 5A and 5B show the explained
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TABLE 3
Pearson Correlation Coefficients between Arrival
Measurements on SC and Task-Based FCs
Arrival Measurements
Task SC  SCind  SCupe SC
(AR) (AR) (AR) (MF)

REST 0.35 0.13 —0.03 —0.0043
LANGUAGE 0.43 0.17 —0.03 0.0123
EMOTION 0.43 0.16 —0.01 0.0109
GAMBLING 0.42 0.16 0.02 0.0054
MOTOR 0.48 0.20 —0.02 0.0290
RELATIONAL 0.42 0.16 0.01 —8x107°
SOCIAL 0.39 0.15 —0.01 —0.0011
WM 0.45 0.18 —0.02 0.0078

Arrival measurements were obtained from SC and from two null models
derived from SC, namely SC1'e, and SC™%"d.. AR is the arrival rate calcu-

intra’ whole*

lated from the collaborative behaviour of the ant colony, whereas MF is the
maximum feasible flow between node pairs (baseline for AR).

variance (R?) for all configurations for the resting-state and
motor-task FCs respectively. Figs. 5C and 5D are the scatter
plots between the predicted and observed FCs for resting-
state and motor-task respectively for the optimal configura-
tions. Table 4 summarizes the R* values for all FCs when the
underlying topology is SC, SC!%, and SC"%"¢ . The predic-
tive capacity of the EPL and AR when using the SC null mod-
els is negligible. Also observe that EPL and AR calculated on

SC outperform the baseline predictors, SPL and MF.

3.3 Associations within Functional Networks

Lastly, we further tested the joint predictive capabilities of
EPL and AR within the 7 brain functional networks (FN) as
defined by Yeo et al. [37]. This was achieved by carrying out
multilinear regression analysis across all «-8 configurations
for node pairs within the 7 FNs (i.e., visual, somatomotor,

Rest FC = multilinear(EPL,AR)

Motor FC = multilinear(EPL,AR)
*

o
o
2

o
n

Ph Perception (a)
Ph Perception (a)

1 1 4
Edge Perception (B)

0.01
0.5
0.2

%= 0.28

n wa
[

Observed FC Rest
Observed FC Motor

0.6
-0.2 0.4 0.2 0.4
Predicted FC Rest Predicted FC Motor

Fig. 5. For every configuration of the ant colony, multilinear regression is
carried out with EPL and AR as the predictor variables and the different
task-based and resting state FCs as the predicted variable. A and B
show the R? values of the regression for the different configurations,
while the * highlights the configuration for which the R? is highest. C and
D are the scatter plots between the predicted and observed FCs for rest-
ing state and Motor task respectively.
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Fig. 6. A. Optimal configurations of ant-colony parameters, ph and edge
perception. Each entry denotes the optimal configuration (highest R?)
for a task and a functional network (FN). Note that for each FN, only the
node pairs involving brain regions of that FN are considered. B. shows
the values of pheromone and edge perception associated with the opti-
mal R? for each task-FN combination. C. shows the dimensionality
reduction of the task states to two dimensions. It can be seen that,
except for Gambling and WM, all the other task FCs occupy unique pla-
ces in the reduced dimension space.

dorsal attention, ventral attention, limbic, frontoparietal,
and default-mode network). For each FN-FC combination,
the highest explained variance (R?) and its corresponding
a-B configuration was saved. Fig. 6A shows maximum R*
values reached for each FC-FN combination, while Fig. 6B
shows the corresponding o and B values. We further used
these @ and B values in order to summarize the configura-
tion distances amongst all tasks into a two-dimensional
space. This was done by using the pairwise euclidean dis-
tances between the vectors (corresponding rows of the
matrices in Fig. 6B) as the input for multidimensional scal-
ing (MATLAB command mdscale). Fig. 6C shows the
result of this dimensionality reduction. It can be seen that,
except for Gambling and WM, all the other FCs occupy
unique spaces inside this reduced two-dimensional space.
Observe that Motor-task has the highest ?* within fronto-
parietal FN, followed closely by somatomotor FN. Even
though these R’ values are very close, the big difference
between them is the «-f configuration for which they are
observed. Note that both & and $ are above 1 for frontoparie-
tal region, while for somatomotor the configuration is o«
below 1 and B above 1. Referring to Table 1, we can see that a
highly collaborative regime and communication through
the most prominent edges is essential for motor task within
frontoparietal FN. On the other hand, within somatomotor
FN, the ant colony regime is not collaborative but the
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TABLE 4
Multi-Linear Models Using Path-Length and Arrival
Measurements as Predictors of FC for Different Tasks

Combined Predictors

Task sC scpnd - gcrand sC
(EPL,AR) (EPL,AR) (EPL,AR) (SPL,MF)
REST 0.14 0.02 0.0001 0.03
LANGUAGE 0.22 0.04 0.0001 0.10
EMOTION 0.21 0.04 0.0004 0.11
GAMBLING 0.19 0.03 0.0004 0.11
MOTOR 0.28 0.05 0.0010 0.14
RELATIONAL  0.18 0.03 0.0003 0.11
SOCIAL 0.17 0.03 0.0005 0.08
WM 0.23 0.04 0.0007 0.13

Values indicate explained variance. SC and two subsequent null models,
Scrand | and SCTd are evaluated. SPL and MF are evaluated on SC as base-

intra’ whole

line models for EPL and AR respectively.

communication takes place through the prominent edges in
the network. This suggests that, for a single task, the commu-
nication within brain regions imitates different regimes of the
ant colony algorithm within different FNs. Similar phenom-
ena can be observed for other FC-FN combinations as well.

4 DISCUSSION

There have been several studies in the recent past focused on
a better understanding of the communication mechanisms of
the human brain [1]. The present paper delves into this topic
by proposing a framework inspired from the collaborative
foraging behaviour of a colony of ants in order to simulate
communication as a collaborative spreading phenomenon
on top of an underlaying complex network. This framework
allowed characterization of source-target communications,
not as a single estimate through a single (shortest) path but
through path ensembles whose identification is sensitive to
the pheromone-based activity of the ants.

We found important differences when looking at the
betweenness centrality of the edges based on the path
ensembles as compared to the shortest path-based central-
ity. As shown in Figs. 3A2 and 3A3, path ensembles used by
the ant colony involve many more of the structural edges
than the small portion (23 percent) that participates in any
shortest path. Indeed, configurations with g < 1 involved
all structural edges for any o value evaluated. Figs. 3B1,
3B2, and 3B3 show the histograms of the values for each of
the three corresponding plots. Also notice that the distribu-
tion of the path ensemble-based betweenness centrality dis-
plays a log-normal behaviour.

The plot inset inside Figs. 3A2 shows the percentage of
edges used for each of the collaborative regimes that have
been explored. It can be seen that this percentage is signifi-
cantly higher for low values of g, as it is the exponent that
determines the edge weights. Higher values of B penalize
the weaker edges and reward the stronger ones, thus incen-
tivizing the ants to opt for paths with higher weights. When
there is no collaboration, i.e., « = 0 and B = 1, the ants act as
pure (independent) random walkers. As such, they make
their routing decisions based only on the edge weights and
do no converge on any single path. This is evident in the
fact that, for « = 0 and g = 1, all path ensembles were empty

at the end of the simulations, as only the paths used at least
10 times by the ants are considered.

From Tables 2, 3, and 4 we can observe that the associa-
tions between the different task-based and resting state
FCs and the two measures that we have defined, EPL and
AR, are systematically higher when the algorithm is run on
SC as compared to the two different null models and the
baseline models in terms of SPL and MF. Fig. 7 in Appendix
A shows the different R? values for the multilinear regres-
sion models evaluated for every level of collaboration, i.e.,
a-f configuration, for the task FCs not represented in Fig. 5.
The panel also provides the scatter plot of predicted versus
observed FCs for the optimal configurations. It can be seen
from Figs. 5 and 7 that the associations are consistently
higher for the task FCs as compared to the Rest FC. This
might suggest that the ants’ collective foraging behaviour is
a better representation of the communication processes tak-
ing place in the brain when subjects are engaged in a task,
as opposed to when the subjects are at rest.

Additionally, it was found that the associations are
higher within certain functional networks for specific FCs
(see Section 3.3 for details). This result in particular might
be an indication that when a person is performing a task, a
specific set of brain regions is more active than the other
parts of the brain and that this activity is simulated well by
the ant colony algorithm. Further, the communication
regimes used by the ants in terms of « and g are different
for different FC-FN combinations. This suggests that the
communication dynamic within different FNs varies when
a person is performing different tasks.

In the next step, we performed a multidimensional scal-
ing (MATLAB command mdscale) on the results obtained
in Section 3.3. The inputs to the multidimensional scaling
algorithm were the optimal « and B values per task FC,
i.e.,, the rows of the two matrices shown in Fig. 6B. The
result of this scaling, shown in Fig. 6C, show that all the
functional states occupy unique positions on the reduced
two-dimensional space, with the exception of Gambling and
WM. This suggests that the « and B values per functional
state per functional network can be successfully used as pre-
dictors of the functional state.

An added value of the method proposed in this paper is
that it allows for simple parametrization of any system
between two layers, its structural and functional sides,
using just two parameters, namely pheromone perception and
edge perception. Another point to note is that this framework
obtains, in a data-driven fashion based on simulations, the
path ensembles representing the most important communi-
cation pathways between each source and each target, as
opposed to fixing the number of paths [13] as a constant
value for all path ensembles or fixing the number of steps
[12]. In consequence, the presented framework allows for
communication between different sources and targets to
have different number of paths involved depending on the
topology and the dynamics of the ant-colony as defined by
pheromone perception and edge perception. The impact of these
two exponents on the behavior of the ant colony and on the
communication regime is summarized in Table 1. The pre-
sented framework allows for very different communication
regimes occurring under the same topology, from indepen-
dent random walkers that perceive the network as binary to
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Fig. 7. Multi-linear regression analyses with EPL and AR as predictor varia-
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highly collaborative walkers biased towards using either the
main roads or the side roads.

The ant colony-inspired algorithm presented here as a
dynamical model on top of a network topology is a

framework that may be used as a testbed for evaluating dif-
ferent communication scenarios. Previously, Misi¢ et al. [46]
have used a cascade spreading model to study the network
properties of the human brain that facilitates spreading of
signal through any possible path. In order to do so, they
activated two or more seed nodes in the SC and studied how
the perturbation spreads through the network in a collabora-
tive and also in a competitive manner. The primary difference
between our approach to modeling communication in the
brain versus Misic¢ et al.’s approach is the use of pheromones
as a means of indirect communication between the ants.
Another difference in the two approaches is that while Misi¢
et al. do not allow a node that has already received a signal
once to be perturbed by the same or another signal again, the
ant colony simulations allow for multiple uses of the same
paths. Indeed, this is how the ants strengthen certain paths
more than the others in their search for the target node.

This study has several limitations, most of them related to
the computational power and time required to run the ant col-
ony simulations on the brain network (structural connectiv-
ity). This has restricted the simulations in different manners,
including the number of simulation runs per configuration,
size of the ant colony population, values of pheromone amou-
nt explored, and the brain parcellation used. It has also pre-
vented the use of individual connectomes, hence preventing
us from assessing inter-subject differences that should be
explored in future work. All these factors have ultimately
hampered the exploration of the solution space in a more thor-
ough manner. In order to study the stability of results, future
work shall be focused on exploring the effect of parameters
such as number of ants and values of pheromone amount
over a more constricted range of a-f exponents. Additionally,
a larger number of simulations per configuration should be
performed to assess the stability of the solutions (i.e., the path
ensembles obtained). Even with all the limitations described
above, it can be seen from the coefficient of variation values
and their distributions for EPL and AR (see Fig. 8 for an exam-
ple) that the results did not vary extensively from simulation
to simulation for the same «-f configuration.

Future work shall be focused on exploring the inter-
subject differences in connectomes through the algorithm
proposed in this paper. As this paper used data from
healthy subjects, another avenue is to study the behaviour
of the ant colony on the connectomes of patients of neurode-
generative disorders, such as Alzheimer’s or multiple scle-
rosis. As this framework is source-target oriented, it could
also be linked with experiments where the concept of a
source is very well-defined, such as Transcranial Magnetic
Stimulation (TMS) [47], [48].

The framework presented here combines a complex net-
work topology tested by an ant-colony algorithm that, by
means of two perception exponents, namely ph and edge per-
ception, allows to simulate different communication regimes
and to capture the most important path ensembles involved
on the communication of each pair of source and target
nodes. This framework has shown evidence of being able to
establish associations between SC and FC when subjects are
in different cognitive states as they are performing different
tasks. This methodology allows for compression of the com-
municability happening to a reduced two-parameter space.
We have presented important foundations on how these
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Fig. 8. This panel shows the node pairwise coefficient of variation for
EPL and AR (for « = 1.5 and B = 0.1) and the distributions of these val-
ues based on the 10 simulation runs.

parameters mimic different communication regimes that
might better explain different functional states.

APPENDIX A
See Fig. 7.

APPENDIX B
See Fig. 8.
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