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Abstract—Distributed line graphs were introduced by Zhang and Liu as an overlay for Peer-to-Peer networks. Distributed line graphs

have some useful properties as a network topology, such as out-regular and small diameter, where the former implies that each user

possesses a constant size of routing table and the latter means that a reasonably small number of hops is necessary to reach a target

user. In this paper, we newly introduce distributed line sharp graphs, as an extension of distributed line graphs, so as to further expand

the possibility of finding better network topologies and theoretically analyze their properties. The analysis on the distributed line sharp

graphs is based on the analysis on distributed line graphs presented by Zhang and Liu. In particular, we further examine the diameter

and the in-degree of a vertex, and improve the previous results together with detailed proofs. We also show that the diameter of a

certain distributed line sharp graph is equal to the diameter of its corresponding distributed line graph.

Index Terms—Distributed line graph, distributed line sharp graph, diameter, in/out degree, vertex merging

Ç

1 INTRODUCTION

THE study of Peer-to-Peer (P2P) networks [2] has been
gaining particular interest these days due to the broad-

bandization of internet and the improvement of computers.
Distributed Hash Tables (DHTs) are structured overlay for
P2P networks. Typical examples for DHTs are CAN [3],
Chord [4], and Kademlia [5]. Indeed, those DHTs are mainly
used in file sharing networks.

For many DHTs, when there are N users in a network,
either 1) the routing table size (which corresponds to the
out-degree) is OðlogNÞ and the diameter (the worst number
of hops required to reach a target user) is OðlogNÞ (e.g.,
Chord, Kademlia, Pastry [6], Tapestry [7]), or 2) the routing
table size is OðdÞ and the diameter is OðN1=dÞ (e.g., CAN). It
is obvious that there exists a fundamental tradeoff between
the routing table size and the diameter [8]. Indeed, it has
been shown that VðlogN=log logNÞ and VðlogNÞ are the
lower bounds when routing table sizes are no more than
logN and d, respectively [9]. Thus, typical DHTs are close to
optimal (in the sense of satisfying the lower bounds above)
but not exactly optimal, and therefore, DHTs satisfying the
optimality would be desired.

One of the main purposes of this paper is to propose
Distributed Line Sharp (DL#) graphs as an overlay of DHT-
based P2P networks. The class of DL# graphs contains the
class of Distributed Line (DL) graphs and that of DL plus
(DLþ) graphs introduced by Zhang and Liu [10], [11]. DL

graphs and DLþ graphs are generated from regular graphs,
including De Bruijn graphs and Kautz graphs [12], [13],
with an aim to locally handle user joins and user leaves.
More precisely, DLþ graphs are considered to be an exten-
sion of DL graphs, based on the vertex merging in graph
theory, so that both user joins and user leaves in a proper
manner. DLþ graphs also possess additional conditions for
the vertices to maintain the balance of networks. DL#

graphs, on the other hand, relax the conditions in order to
consider more general networks, including unbalanced net-
works. This relaxation not only expands the possibility of
finding better network topologies, but also covers more
practical cases. In addition, it can also reduce the complexity
of the user joins and user leaves.

For DL graphs and DLþ graphs graphs, it is observed
in [11] that the out-degree is constant and the diameter
is OðlogNÞ, such as Viceroy [14] and Koorde [15] (both
of which are based on De Bruijn graphs). Furthermore,
routing process is simple and straightforward, and a
path from the source to the target can be obtained from
their IDs. It implies that a new path can be easily found
even though some edges are missing by accident (i.e.,
edge-fault tolerance). Indeed, DL graphs and DLþ graphs
are considered to be a generalization of SKY [16], a DHT
based on Kautz graphs which has remarkable effective-
ness compared with other Kautz-based DHT algorithms
such as FissionE [17] and Moore [18]. DL# graphs also
possess such desired properties. Therefore, DL# graphs
can be a suitable candidate for a DHT-based P2P net-
work topology.

It is important to analyze properties of network topolo-
gies based on DL# graphs. Indeed, theoretical results on
DL# graphs guarantee the performance of DL#-based P2P
networks. Since DL# graphs are based on DL graphs, the
study on DL graphs is the core of the study of DL# graphs.
However, many results are provided only with the outline
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of proofs. The results are based on an intuitive assumption
that DL graphs are suffix-free (so any ID is not a suffix of
any other IDs), which gives us the central concept of rout-
ing in DL graphs. We therefore first present a mathemati-
cally sound proof of suffix-free (Proposition 2). We then
show important properties of DL graphs such as the in-
degree of a vertex in a DL graph (Theorem 4) which is
more accurate than the result in [11]. We also focus on
deriving the lower bound of the diameter (Theorem 8),
and the explicit diameter of a DL graph generated from a
complete graph (Collorary 12).

Another main purpose of this paper is to show that the
diameter of a DL# graph is equal to the diameter of its cor-
responding DL graph when an initial graph is a complete
graph (Theorem 13). The result implies that we can directly
apply existing theoretical results on the diameters of DL
graphs to DL# graphs. Thus, combining this result with
results on DL graphs can strongly support effectiveness of
DL# graphs for P2P network topologies.

The rest of the paper is organized as follows. In
Section 2, we go over fundamental background on graph
theory and languages which are the core of the analysis. In
Section 3, we introduce the precise definition of DL graphs
and DHTs, together with examples. In Section 4, we show
useful properties of DL graphs. Based upon the properties,
we first discuss in Section 5 the in-degrees of vertices in
DL graphs and present some simulation results. We next
present in Section 6 a main theorem regarding the diameter
of a DL graph. We then move our focus to DL# graphs in
Section 7, and consider the diameters of DL# graphs.
Section 8 discusses simulation results on DL# graphs to
support efficiency of our contributions. In particular, we
focus on the diameters, the average path length, and the
betweenness centrality. We terminate this paper with con-
clusion and future works in Section 9.

2 PRELIMINARIES

2.1 Graph Theory

We begin with fundamental background on graph theory,
based on [19], [20]. Let G ¼ ðV;EÞ be a directed graph with
vertex set V and edge set E � V � V . Throughout this
paper, we assume thatG is simple; that is, there are no multi-
ple edges or self-loops.

For a directed graph G, an edge e ¼ ðu; vÞ in G is called
an incoming edge of v, and an outgoing edge of u. For a vertex
v in G, an in-neighbour (resp. out-neighbour) of v is a vertex u
such that ðu; vÞ 2 E (resp. ðv;uÞ 2 E), and the sets of in-
neighbours and out-neighbours are denoted by NIN

G ðvÞ and
NOUT

G ðvÞ, respectively. We further define the neighbour set

NGðvÞ of v to beNGðvÞ :¼ NIN
G ðvÞ [NOUT

G ðvÞ.
The in-degree doutðvÞ and the out-degree doutðvÞ) of v satisfy

dinðvÞ ¼ cardðNIN
G ðvÞÞ and doutðvÞ ¼ cardðNOUT

G ðvÞÞ when G
is simple. For d 2 N, we call a graph G d-in-regular (resp.
d-out-regular) if dinðvÞ ¼ d (resp. doutðvÞ ¼ d) for each vertex v
in G. In particular, G is called d-regular if G is d-in-regular
and d-out-regular. A typical example of a d-regular graph
would be the complete graph Kdþ1 ¼ ðV;EÞ, consisting of
dþ 1 vertices, such that for any distinct vertices u; v in
Kdþ1, ðu; vÞ 2 E; that is, each vertex in Kdþ1 is adjacent to
any other vertices inKdþ1.

A (directed and non-empty) path p from u to v is a
sequence of vertices x0; x1; . . . ; x‘ (for some ‘ � 1) such that
x0 ¼ u, x‘ ¼ v and ðxi; xiþ1Þ 2 E for each 0 � i � ‘� 1. In
particular, a path is called a cycle if x0 ¼ x‘. To clarify
the transitions in p, we represent the path p as
p : u ¼ x0 ! x1 ! � � � ! x‘ ¼ v. The length of p is the num-
ber of transitions in p (that is, ‘) and it is denoted by lðpÞ.
A directed graphG is called irreducible (or strongly connected)
if for any pair of vertices u and v in G, there exists a path
from u to v. We always assume that a directed graph G is
irreducible if not stated.

2.2 Languages

We next go over the fundamental background on lan-
guages, based on [21], [22]. Let S be an alphabet, a finite set
of symbols. A word ww ¼ w1w2 . . .wn (for some n 2 N) is a
finite-length sequence over S, and n is the length of ww,
denoted by jwwj. The empty word � is the word such that
j�j ¼ 0. We set ww ¼ w1w2 . . .wn ¼ �when n ¼ 0.

For a word ww ¼ w1w2 . . .wn, a subword xx ¼ x1x2 . . .xm is a
word with m � n such that xx ¼ wiwiþ1 . . .wiþm�1 for some
1 � i � n�mþ 1. In particular, xx is called a prefix of ww if
i ¼ 1, and a suffix of ww if i ¼ n�mþ 1. We use the notations
xx 	p ww and xx 	s ww to denote that xx is a prefix of ww and a suf-
fix of ww, respectively.

Given words ww and ww0, wwww0 is the word generated by
concatenating ww followed by ww0. We define by convention
that ww� ¼ �ww ¼ ww for any word ww. In addition, define ww 
 ww0

to be the longest word zz such that zz 	s ww and zz 	p ww
0.

Example 1. Let ww ¼ 2101 and ww0 ¼ 1011. The prefixes of ww0

are �; 1; 10; 101; 1011 and the suffices of ww are
�; 1; 01; 101; 2101. Therefore, the longest word zz such that
zz 	p ww and zz 	s ww

0 is 101, and thus, ww 
 ww0 ¼ 101.

3 DISTRIBUTED LINE TRANSFORM AND

DISTRIBUTED LINE GRAPHS

In this section, we go over the definition of a distributed line
transform (DLT) and distributed line graphs (DL graphs)
obtained under DLTs. Throughout this paper, a word over
S is assigned to each vertex as its ID, and we identify a ver-
tex with its ID. Thus, for vertex v with ID vv ¼ v1v2 . . . vn, we
consider v ¼ vv ¼ v1v2 . . . vn.

Suppose that a d-regular graph G0 ¼ ðV0; E0Þ is given
as an initial graph, and assign distinct symbols to the
vertices. Define an alphabet S to be the set of symbols
assigned to the vertices of G0; that is, S ¼ V0. Without
loss of generality, set S :¼ f0; 1; . . . ; q � 1g when there are
q vertices in G0.

We first introduce the definition of DLT. Zhang and Liu
[11] use the conjunction operation to define DLT, but we mod-
ify the definition to clarify its properties.

Definition 1 (modification of [11, Definition 1]). Suppose
that a d-regular graph G0 ¼ ðV0; E0Þ is given as an initial
graph. Let G ¼ ðV;EÞ be a directed graph, and r ¼ r1r2 . . . r‘
be a vertex in G (a word over S) such that jrj � jxj for any
x 2 NGðrÞ. A DLT is the procedure to generate a new graph G0

from G as follows.

Step 1: Delete r and edges attached to r from G.
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Step 2: Add new vertices a1r; a2r; . . . ; adr to G, where
ai 2 NIN

G0
ðr1Þ for each 1 � i � d.

Step 3: Partition NIN
G ðrÞ into d disjoint sets I1; I2; . . . ; Id

so that

u ¼ u1u2 . . .ujuj 2 Ii()ujuj�jrjþ1 ¼ ai:
1

Step 4: Assign edges from vertices in Ii to air for each
1 � i � d.

Step 5: Assign edges from air to vertices in NOUT
G ðrÞ for each

1 � i � d.
We denote G0 ¼ DLðG; rÞ to emphasize that G0 is gener-

ated from G by applying the DLT with respect to (w.r.t.) r.
The vertex r is called the responsible vertex of the DLT.

Definition 2 (modification of [11, Definition 1]). LetG0 be
an initial d-regular graph. A (base-d) DL graph G is a graph
generated from G0 by applying DLT finite times. We denote by
Gi ¼ ðVi;EiÞ a DL graph generated fromG0 by applying DLT i

times. When a DL graph ~G can be generated from G by a proper
iteration of DLTs, then we say that ~G is obtainable fromG.

Example 2. Let an initial graph G0 be the complete graph
K3; that is, there are three vertices labelled 0, 1, 2 in K3

and they are adjacent each other.
Let G be the leftmost DL graph in Fig. 1 generated

from G0. Suppose that we generate new DL graph G0

from G applying the DLT w.r.t. r ¼ 1. First delete vertex
1 and edges attached to 1 from G (Step 1). Since
NIN

G0
ðr1Þ ¼ NIN

G0
ð1Þ ¼ f0; 2g, add a1r ¼ 01 and a2r ¼ 21 to

G (Step 2). For vertex 2 in NIN
G ð1Þ ¼ f2; 10; 20g, focus the

first symbol of 2 (which is 2) since j2j � jrj þ 1 ¼ 1. Simi-

larly, focus the second symbols of 10 and 20 in NIN
G ð1Þ

(which are both 0) since j10j � jrj þ 1 ¼ j20j � jrj þ 1 ¼ 2.

Then partition NIN
G ð1Þ into I1 ¼ f10; 20g and I2 ¼ f2g

(Step 3) based on these symbols. Finally, for each i 2 f1; 2g,
assign edges from vertices in Ii to air (Step 4) and edges

from air to vertices inNOUT
G ð1Þ (Step 5). The resulting graph

G0 is the rightmost DL graph in Fig. 1.

Example 3. Fig. 2 represents an iteration of DLTs, where the
initial graph G0 is the complete graph K4; so d ¼ 3 and
S ¼ f0; 1; 2; 3g. The responsible vertex of the first DLT is
0 and that of the second DLT is 1.

If G0 ¼ Kq for some q 2 N and if we always pick a ver-
tex with the shortest length as the responsible vertex of
each DLT, then we obtain following graphs (Fig. 3) called
Kautz graphs Kð‘; qÞ, where the vertex set ofKð‘; qÞ is the
set of all words vv ¼ v1v2 . . . v‘ over S ¼ f0; 1; . . . ; q � 1g
with constant length ‘ such that any adjacent symbols vi
and viþ1 (for 1 � i � ‘� 1) are distinct.

Remark 1. Let G0 be an initial d-regular graph. Then for
each base-d DL graph Gi generated from G0, we have the
following.

1) The out-degree dOUT
Gi

ðvÞ ¼ d for each v 2 Vi. That
is, the out-degree is always constant even though
the number of vertices in a graph gets larger.

2) Let i � 1 and suppose Gi ¼ DLðGi�1; rÞ. Then

Vi ¼ ðVi�1 n frgÞ [ far j a 2 NIN
G0

ðr1Þg;
where r1 is the first symbol of r.

3) If G0 is irreducible, then Gi is irreducible.

4 USEFUL PROPERTIES OF DL GRAPHS

In this section, we introduce some useful properties on DL
graphs which will be used later in proving main results.
These propositions focus on suffixes of vertices in DL
graphs.

Proposition 1. Let G0 be an initial graph and consider two DL
graphs G ¼ ðV;EÞ and ~G ¼ ð ~V ; ~EÞ generated from G0. If ~G is
obtainable from G, then for any vertex ~w 2 ~V , there exists a
vertexw 2 V such thatw 	s ~w.

Proof. It is enough to show that the statement holds when
~G ¼ DLðG; rÞ for some responsible vertex r 2 V .

Recall that ~V ¼ ðV n frgÞ [ far j a 2 NIN
G0

ðr1Þg. Hence,
for a vertex ~w 2 ~V , if ~w 2 ðV n frgÞ, then set w ¼ ~w. If
~w 2 far j a 2 NIN

G0
ðr1Þg, then set w ¼ r. Then w is in V

andw is a suffix of ~w. tu
The following proposition states that a DL graph is a

suffix-free, which is a core of the analysis of DL graphs.

Fig. 1. An example of DLTw.r.t. r ¼ 1.

Fig. 2. An iteration of DLTs.

Fig. 3. Kautz graphs; The left isKð1; 3Þ and the right isKð3; 3Þ.

1. You will see that we can always find such ai from Lemma 6.
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Proposition 2. Let G be a DL graph generated from an initial
graph G0. Then G is suffix-free; that is, for each vertex x in G,
there is no vertex y in G such that y 6¼ x and y 	s x.

Proof. Let G ¼ Gi and we prove it by mathematical induc-
tion on i. The statement is true when i ¼ 0 (for the initial
graph G0). So assume that the statement is true when
i ¼ k and consider the case when i ¼ kþ 1.

Let Gkþ1 ¼ DLðGk; rÞ. Pick distinct vertices x; y 2 Vkþ1,
arbitrarily. Then (without loss of generality) there are
three cases for the choice of x and y; (1) x; y 2 Vkþ1 \ Vk, (2)
x 2 Vkþ1 \ Vk and y 2 Vkþ1 n Vk, and (3) x; y 2 Vkþ1 n Vk.

For (1), clearly x 6	s y and y 6	s x since Gk is suffix-free
by assumption. For (2), observe that y ¼ ar for some
a 2 NIN

G0
ðr1Þ. If y 	s x, then we have r 	s x. Conversely, if

x 	s y, then jxj < jyj since x 6¼ y. As y ¼ ar, we have
x 	s r. In any case, we have a contradiction since
x; r 2 Vk. For (3), since x ¼ br and y ¼ ar for some distinct
symbols a; b 2 NIN

G0
ðr1Þ, it is obvious that x 6	s y and

y 6	s x hold. Hence, Gkþ1 is also suffix-free as required. tu

5 IN-DEGREES OF VERTICES IN DL GRAPHS

We have already seen that when a d-regular graph is given
as an initial graph G0, each DL graph G obtainable from G0

is d-out-regular (whatever the number of vertices in G),
which is equivalent to say that the size of a routing table
each user possesses is always constant. On the other hand,
G is not always d-in-regular; that is, the in-degree of a vertex
can vary. In this section, we precisely determine the value of
the in-degree for a vertex in a DL graph.

We first remark that Zhang and Liu introduced the
following theorem regarding the in-degree of a vertex in a
DL graph.

Theorem 3 (Zhang and Liu, [11]). Let G be a base-d DL
graph. Then for each vertex v inG, its in-degree dING ðvÞ satisfies

1 � dING ðvÞ � d2:

However, only an outline of the proof is given, so more
detailed explanations will be necessary for full understand-
ing. Therefore, we provide the following theorem which is
more explicit than the previous result, together with its
complete proof.

Theorem 4. Let G be a base-d DL graph generated from an ini-
tial graph G0. Then for each vertex v in G, its in-degree dING ðvÞ
is given by

dING ðvÞ ¼ 1þ ðd� 1Þt;
for some integer 0 � t � dþ 1.

The theorem does not go counter to Theorem 3, but it
shows that the in-degree takes the value at intervals of d� 1.
To prove the theorem, we need the following lemmas. These
results are also described in [11] only with outline of proofs,
so here, we introduce them together with complete proofs.

Lemma 5. Let G be a DL graph generated from an initial graph
G0. For a vertex v and its in-neighbour u 2 NIN

G ðvÞ, we have
�1 � jvj � juj � 1:

That is, juj is jvj � 1, jvj, or jvj þ 1.

Proof. Let G ¼ Gi, and prove it by mathematical induction
on i. The statement holds when i ¼ 0 since each vertex in
G0 has length 1. Suppose the statement is true when i ¼ k
and consider Gkþ1 ¼ DLðGk; rÞ.

Since r is the responsible vertex, we only need to focus
on the relationship between new vertices ar for some
a 2 NIN

G0
ðr1Þ and x 2 NGk

ðrÞ. Recall that jrj � jxj holds for
each x 2 NGk

ðrÞ from the definition of DLT, and there-
fore, jrj ¼ jxj � 1 or jrj ¼ jxj from the assumption on Gk.
Hence, for an out-neighbour y of r in Gk (so r is an in-
neighbour of y in Gk), y has in-neighbours ar of length jyj
or jyj þ 1. Similarly, for a vertex ar in Gkþ1, its in-neigh-
bour has length jrj þ 1 ¼ jarj or jrj ¼ jarj � 1. Hence, we
can show that the statement is true for Gkþ1 as well. tu

Lemma 6. Let G be a DL graph generated from an initial graph
G0. For a vertex v ¼ v1v2 . . . vn and its in-neighbour
u ¼ u1u2 . . .um 2 NIN

G ðvÞ, we have

u ¼
v1v2 . . . vn�1 ðm ¼ n� 1Þ
av1v2 . . . vn�1 for some a 2 NIN

G0
ðv1Þ ðm ¼ nÞ

a0av1v2 . . . vn�1 for some a 2 NIN
G0

ðv1Þ
and a0 2 NIN

G0
ðaÞ ðm ¼ nþ 1Þ

8>>><
>>>:

Proof. It is clear that there are only three choices for
mð¼ jujÞ from Lemma 5. Let G ¼ Gi, and prove it by
mathematical induction on i. The statement holds when
i ¼ 0 (for the initial graph G0). Suppose the statement is
true when i ¼ k and consider Gkþ1 ¼ DLðGk; rÞ.

Since r ¼ r1r2 . . . rjrj is the responsible vertex, we
only need to focus on the relationship between new
vertices âr for some â 2 NIN

G0
ðr1Þ and x 2 NGk

ðrÞ. Recall
that jxj¼jrj þ 1 or jrj ¼ jxj for each x 2 NGk

ðrÞ ¼ NIN
Gk

ðrÞ [
NOUT

Gk
ðrÞ.

If x 2 NIN
Gk

ðrÞ, then x ¼ a0ar1r2 . . . rjrj�1 or x ¼ ar1r2 . . .
rjrj�1 by the assumption on Gk. For âr, recall from the def-
inition of DLT that x 2 NIN

Gkþ1
ðârÞ if and only if a ¼ â, and

hence, we have that each in-neighbour of ar in Gkþ1 satis-
fies the form in the statement. Similarly, if x ¼ x1x2 . . .
xjxj 2 NOUT

Gk
ðrÞ (so r is an in-neighbour of x in Gk), then

we have r ¼ bx1x2 . . .xjxj�1 for some b 2 NIN
G0

ðx1Þ or

r ¼ x1x2 . . .xjxj�1, and hence, each vertex âr satisfies the

form in the statement as an in-neighbour of x in Gkþ1. tu
We are now in a position of proving Theorem 4.

Proof of Theorem 4. From Lemmas 5 and 6, recall that for
a vertex v ¼ v1v2 . . . vn in G and its in-neighbour u ¼
u1u2 . . .um 2 NIN

G ðvÞ, jm� nj � 1 and

u ¼
v1v2 . . . vn�1 ðm ¼ n� 1Þ
av1v2 . . . vn�1 for some a 2 NIN

G0
ðv1Þ ðm ¼ nÞ

a0av1v2 . . . vn�1 for some a 2 NIN
G0

ðv1Þ
and a0 2 NIN

G0
ðaÞ ðm ¼ nþ 1Þ

8>>><
>>>:

First observe that if there exists an in-neighbour u of
length n� 1, then u must be a unique in-neighbour of v,
since otherwise, in-neighbours of length n and nþ 1
have u as a suffix which contradicts suffix-free property.

Now suppose that each in-neighbour has length n

or nþ 1. Consider a symbol a 2 NIN
G0

ðv1Þ. Then from
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suffix-free property, if a is the first symbol of an in-neigh-
bour of length n, then it cannot be the second symbol of
any in-neighbour of length nþ 1, and vice versa.

Let t0 be the number of a’s used as the second symbol
of an in-neighbour of length nþ 1. Then there are d� t0

a’s used as the first symbol of an in-neighbour of length

n. Furthermore, since there are d choices of a0 2 NIN
G0

ðaÞ
for each a used as the second symbol, we have

dING ðvÞ ¼ ðd� t0Þ þ dt0

¼ 1þ ðd� 1Þðt0 þ 1Þ; (1)

where t0 ranges from 0 to d. Substituting t0 þ 1 in (1) with
t, and noting that dING ðvÞ ¼ 1 can be given when t ¼ 0, we
obtain the theorem. tu

Example 4. Fig. 4 represents the distributions of in-degrees
for a DL graph consisting of 10,000 vertices,2 where an
initial graph G0 is the complete graph K5 (4-regular, thus
d ¼ 4). It can be confirmed that in-degrees take the value
only at 1þ 3tð¼ 1þ ðd� 1ÞtÞ for some t, which fits the
statement of Theorem 4.

6 THE DIAMETER OF A DL GRAPH

For a directed graph G ¼ ðV;EÞ, define dGðu; vÞ to be the
length of a shortest path from vertex u to vertex v. The diam-
eter of a graph G, denoted byDðGÞ, is given by

DðGÞ ¼ max
u;v2V

dGðu; vÞ:

Observe that DðGÞ < 1 when G is irreducible, and
DðGÞ ¼ 1 otherwise.

The diameter is an important value since it gives us how
closely vertices are connected each other in a network.
Indeed, it is preferable to have a graph with small diameter
as a topology of a network, and there have been many exist-
ing studies regarding diameters and their comparisons (see,
for example, [23]). Many typical networks have diameters
OðlogNÞ with OðlogNÞ neighbours. On the other hand, DL
graphs have diameters OðlogNÞ with a constant number
of neighbours. In this section, we further analyze the diame-
ters of DL graphs based on the routing scheme for DL
graphs, and present an explicit diameter when an initial
graph is a complete graph.

6.1 Routing Scheme for DL Graphs

Let G be a DL graph generated from an initial graph G0.
From Lemma 6, we have that for a vertex x ¼ x1x2 . . .xn,

an out-neighbour y ¼ y1y2 . . . ym of x is y ¼ x3 . . .xnc,
y ¼ x2x3 . . .xnc or y ¼ x1x2 . . .xnc for some c 2 NOUT

G0
ðxnÞ.

That is, a transition along an outgoing edge from the
present vertex reaches a vertex with only one new sym-
bol attached to the end. Using the property, the routing
scheme (i.e., how to get to the target from the source)
for G is described as follows. The scheme is intuitive
and elementary, but it is supported by the suffix-free
property in Proposition 2.

Routing scheme for DL graphs. Let G be a DL graph, and
suppose that we want to find a path from the source
s ¼ s1s2 . . . sm to the target t ¼ t1t2 . . . tn in G.

Step 1: Compute zz ¼ s 
 t; the longest word zz such that
zz 	s s and zz 	p t.

Step A: If zz 6¼ � and jzzj ¼ k � 1, then find a path p : s ¼ p0 !
p1 ! � � � ! pn�k such that the jth transition in p (the out-
going edge from pj�1 to pj) reaches a vertex with tjþk at
the end; that is, vertex pj ends with tjþk. Such a path p is
uniquely determined, and the terminal vertex pn�k is t.

Step B: If zz ¼ �, then it is necessary to first reach a vertex w
ending with t1 from s. To do so, find a path r̂ : sm ¼
q0 ! q1 ! � � � ! qh ¼ t1 in G0. Then, based on r̂, we can
find a path r of length lðr̂Þ in G from s to w. After that,
follow Step A to find a path p fromw to t.

Example 5. Given a DL graph in Fig. 5 with the initial graph
K4, and suppose that we want to find a path from the
source s ¼ 3120 to the target t ¼ 0120.

First observe that zz ¼ s 
 t ¼ 0 6¼ �, and jzzj ¼ 1. Then
by following the routing scheme, we can find a path p

such that

p : s ¼ 3120 ! 201 ! 012 ! 0120 ¼ t;

where the jth transition of p (1 � j � 3) reaches a vertex
ending with tjþ1. This is a shortest path from s to t and
hence, dGðs; tÞ ¼ 3.

From the routing scheme, we can obtain the following
lemma.

Lemma 7. Let G0 be a d-regular graph, and G be a base-d DL
graph generated from G0. Then the length of a shortest path
from the source s ¼ s1s2 . . . sm to the target t ¼ t1t2 . . . tn is
given by

Fig. 4. The distribution of in-degrees.

Fig. 5. An example of routing from s ¼ 3120 to t ¼ 0120.

2. There are, to be exact, 10,001 vertices in the graph.
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dGðs; tÞ ¼ jtj � js 
 tj ðs 
 t 6¼ �Þ
dG0

ðsm; t1Þ þ jtj � 1 ðotherwiseÞ
�

Proof. When s 
 t 6¼ �, it is obvious from the routing scheme
that dGðs; tÞ � jtj � js 
 tj holds. Furthermore, recall that
a transition along an outgoing edge from the present
vertex reaches a vertex with only one new symbol
attached to the end. Hence, for each path p from s to t, we
have lðpÞ � jtj � js 
 tj. Therefore, dGðs; tÞ ¼ jtj � js 
 tj as
required.

When s 
 t ¼ �, consider paths from s to verticesw end-
ing with t1. Let h be a path of the shortest length amongst
those paths. Then clearly lðhÞ ¼ dG0

ðsm; t1Þ. Furthermore,
for the vertexw0 reachable from s by following h, we have
jw0 
 tj ¼ 1 since otherwise, contradicts the assumption
that s 
 t ¼ � or the assumption on h. Therefore, dGðs; tÞ ¼
dG0

ðsm; t1Þ þ dGðw0; tÞ ¼ dG0
ðsm; t1Þ þ jtj � 1, which com-

pletes the proof. tu

6.2 The Diameter of a DL Graph

Zhang and Liu state in [11] (and it is also clear from
Lemma 7) that the diameter DðGÞ of a DL graph G gener-
ated from an initial graph G0 satisfies

DðGÞ � DðG0Þ þ ‘Gmax � 1; (2)

where ‘Gmax is the length of a longest vertex in G. On the
other hand, lower bounds on the diameter have not been
well discussed. The main result of this section is the follow-
ing which denotes an explicit lower bound of a DL graph,
using the lengths of IDs in the graph.

Theorem 8. Set d � 2, and consider a DL graph G generated
from an initial d-regular graph G0. Then the diameter DðGÞ of
G satisfies

‘Gmax � DðGÞ;
where ‘Gmax is the length of a longest ID (vertex) in G.

We first show some lemmas and a corollary which will
be used in the proof of Lemma 8.

Lemma 9. Set d � 2 and consider a d-out-regular graph G. Then
for each vertex v in G, there exists a cycle g not containing v.

Proof. First remark that for a directed graph such that
doutðvÞ � 1 for each vertex v, a cycle does exist. This prop-
erty can be easily verified using Pigeonhole principle.

Now fix a vertex v inG, and consider a subgraph G0 of
G generated by deleting v and its attached edges from G.
Observe that (since G is simple) each vertex v0 in G0 has
out-degree doutðv0Þ � d� 1 ¼ 1. Hence, from the remark
above, G0 has a cycle g. Clearly, this g does not contain
vertex v, and g is a cycle inG. Therefore, we can conclude
that for each vertex v in G, there exists a cycle g not con-
taining v. tu

Lemma 10. Let G ¼ ðV;EÞ be a DL graph generated from an
initial graph G0 ¼ ðV0; E0Þ, such that each vertex has the
same length ‘. Then for a word ww ¼ w1w2 . . .w‘ 2 S‘, vertex
w ¼ ww is in V if and only if there exists a path p : w1 ! w2 !
� � � ! w‘ in G0.

Proof.We first show the existence of vertex implies the exis-
tence of path. Suppose that there exists a vertex w ¼

w1w2 . . .w‘ 2 V . Then, from the definition of DLT, wi 2
NIN

G0
ðwiþ1Þ for each i. It automatically implies the exis-

tence of path p as desired.
We next show the existence of path implies the exis-

tence of vertex. Suppose that there exists a path
p : w1 ! w2 ! � � � ! w‘ in G0. Now consider a chain of
graphs C : G0 * G1 * � � � * Gk ¼ G such that Gi ¼
DLðGi�1; riÞ. To obtain graph G from G0, there must exist
a unique integer i1, 1 � i1 � k, such that Gi1 ¼
DLðGi1�1; w‘Þ. Observe that the word w‘�1w‘ of length 2
is a vertex in Gi1 as w‘�1 2 NIN

G0
ðw‘Þ. Similar argument

yields that there exists a unique sequence of integers
i1; i2; . . . ; i‘�1 with 1 � i1 < i2 < � � � < i‘�1 � k such
that Gij ¼ DLðGij�1; w‘�jw‘�jþ1 . . .w‘Þ for 1 � j � ‘ �1.
Hence, Gi‘�1

has w as a vertex, and therefore (as we do
not apply DLT w.r.t. w afterwords to obtain G from
Gi‘�1

), G hasw as a vertex as well. tu
Corollary 11. Let G ¼ ðV;EÞ and G0 ¼ ðV 0; E0Þ be DL graphs

generated from an initial graph G0 such that any vertex in V

and that in V 0 has the same length ‘ for some ‘ 2 N; that is,
jvj ¼ jv0j ¼ ‘ for each vertex v 2 V and v0 2 V 0. Then G and
G0 are the same.

Proof. From Lemma 10, we have V ¼ V 0. Furthermore, from
the allocations of edges between vertices, we also have
E ¼ E0. tu
Corollary 11 implies that for each ‘ 2 N, a graph H‘ with

the constant vertex length ‘ uniquely exists. We name the
graph H‘ the ‘-proper graph generated from G0. Observe that
H‘ ¼ Kð‘; qÞ if and only if the initial graph G0 is the com-
plete graphKq.

We are now in a position of proving Theorem 8.

Proof of Theorem 8. Let ‘Gmax ¼ ‘. To show the statement, it
is enough to prove the existence of vertices x and y in G
such that

1) jyj ¼ ‘Gmax ¼ ‘; and
2) x 
 y ¼ �.
Indeed, if there exist such vertices, then we have

dGðx; yÞ � ‘ by Lemma 7, which automatically implies
DðGÞ � ‘.

Now consider the ‘-proper graph graph H‘. First
observe that H‘ is obtainable from G by choosing a
vertex with the shortest length as the responsible ver-
tex of each DLT.

Now take a vertex y ¼ y1y2 . . . y‘ in G such that jyj ¼ ‘.
Clearly, y is a vertex in H‘. For this y, from Lemmas 9
and 10, we can find a vertex w inH‘ such thatw does not
contain y1 at any position, by considering a cycle g in G0

not containing y1. Also, since H‘ is obtainable from G,
from Proposition 1, we can find a vertex x in G such that
x 	s w. For this x, we have x 
 y ¼ �, since otherwise,
contradicts the fact thatw does not contain y1 at any posi-
tion. Therefore, we can show the existence of such x and
y as desired. tu
Theorem 8 and Inequality (2) imply the following corol-

lary which explicitly computes the diameter of a DL graph
when an initial graph G0 is the complete graphKd.
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Corollary 12. Let an initial graph G0 be the complete graph
Kdþ1 with d � 2. Then for a DL graph G generated from G0,
we have

DðGÞ ¼ ‘Gmax:

Proof. Theorem 8 and Inequality (2) imply

‘Gmax � DðGÞ � DðG0Þ þ ‘Gmax � 1:

Furthermore, since DðG0Þ ¼ 1 as G0 is the complete
graph, we haveDðGÞ ¼ ‘Gmax: tu
Suppose a complete graph is given as an initial graph.

The corollary also implies that if a vertex v with the shortest
length is chosen as the responsible vertex at each DLT, then
for each i � 0, the resulting graph G�

i after applying DLT i
times in that manner has the smallest diameter amongst
all DL graphs Gi’s which can be generated from G0 by
applying DLT i times.

7 DL# GRAPHS AND THEIR DIAMETERS

As we have seen so far, DL graphs have desirable properties
and can be suitable candidates for network topologies. How-
ever, as we can see from 2) in Remark 1, each DLT generates
new d vertices, even though only fewer vertices are necessary
for new users joining a network. Also, it is necessary to design
graphs so that not only user join but user leave should be
properly handled. In this section, we introduce DL# graphs
and present a result on the diameter of a DL# graph.

7.1 Vertex Merging and DL# Graphs

In graph theory, vertex merging is, roughly speaking, a pro-
cess to identify two or more vertices with one vertex. More
precisely, vertex merging is e defined as follows.

Definition 3. Let v1; v2; . . . ; vk be k vertices in a graph G.
Vertex merging of these k vertices is a procedure to identify
them with one vertex v. More precisely,

NOUTbG ðvÞ ¼
[ k

i¼1
NOUT

G ðviÞ; and

NINbG ðvÞ ¼
[ k

i¼1
NIN

G ðviÞ;

where bG is the resulting graph after vertex merging. We call
vertex v a physical vertex, and v1; v2; . . . ; vk logical verti-
ces of v. For a physical vertex v, the number of its logical verti-
ces is denoted by jjvjj. One of the IDs of logical vertices is
randomly chosen and assigned as the ID of v, but we assume
that v possesses all of its logical vertices’ IDs.

It is possible to apply vertex merging to any vertices,
but throughout this paper, we apply vertex merging only
for the vertices generated at the same DLT, which we call
sibling vertices. More precisely, if a d-regular graph is given
as an initial graph, the d sibling vertices have the form
a1r; a2r; . . . ; adr, where r is the responsible vertex of some
DLT. Based on DLTs and vertex merging for sibling verti-
ces, DL# graphs are defined as follows.

Definition 4. Let G0 be an initial d-regular graph. A (base-d)
DL# graph G# is a graph generated from G0 by an iteration of
DLTs followed by a series of vertex merging for sibling vertices
w.r.t. vertices v satisfying

jvj � juj for any neighbour u of v: (3)

It is clear from the definition that the set of DL graphs is
(properly) included in the class of DL# graphs. In other
words, DL graphs are special DL# graphs such that jjvjj ¼ 1
for each vertex v. We also note that the vertex splitting (the
reverse process of the vertex merging) can be considered in
order to represent user joins. However, graphs after the ver-
tex splitting also belong to the class of DL# graphs, so we
only focus on the vertex merging hereafter.

In DL# graphs, user joins are represented by DLTs or
vertex splitting, and user leaves are represented by vertex
merging. It has to be mentioned that Zhang and Liu [11]
introduce DLþ graphs not only to handle user joins and
user leaves, but also to maintain the network balance. More
precisely, conditions on the number of merged logical verti-
ces and the choice of sibling vertices to be merged must be
considered. DL# graphs, on the other hand, are obtained by
relaxing the conditions of the vertex merging as (3) above,
with an aim to cover more general and practical cases.

Example 6. Let an initial graph G0 be the complete graph
K4. Fig. 6 is an example of generating a DL# graph.

Suppose that DLT is applied w.r.t. r ¼ 1 in G0. Then
we obtain DL graph G1 with vertices 0,2,3,01,21,31. Since
21 and 31 are siblings, we apply vertex merging to 21

and 31, and the resulting graph is a DL# graph G#
1 with

(physical) vertices 0,2,3,01,21, where jj0jj ¼ jj2jj ¼ jj3jj ¼
jj01jj ¼ 1 and jj21jj ¼ 2.

Restricting vertex merging only for sibling vertices gives
us important and interesting remarks, which will be key
points on the analysis of DL# graphs.

Remark 2. LetG# be a base-d DL# graph. Then we have the
followings.

1) Invariance on out-neighbour sets.
Suppose that vertex merging is applied to k

sibling vertices a1r; a2r; . . . ; akr in G#, and new
vertex br is generated in the resulting DL# graph
H#. Observe that

NOUT
H# ðbrÞ ¼

[ k

i¼1
NOUT

G# ðairÞ ¼ NOUT
G# ða1rÞ

since sibling vertices have the same out-neigh-
bour set.

2) The maximum number of logical vertices.
We can always assume that for any vertex v in

G#jjvjj < d. Indeed, if there exists a vertex v such
that jjvjj ¼ d, then we can substitute vwith its lon-
gest proper suffix v0 (i.e., v0 	s v and jv0j ¼ jvj � 1)
and for v0, we have jjv0jj ¼ 1.

Fig. 6. An example of generating a DL# graph.
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3) The existence of sibling vertices.
There can exist a vertex with no sibling verti-

ces. Indeed, such a vertex exists if and only if
other sibling vertices are used as responsible ver-
tices of DLTs. It implies that vertices u satisfying
juj ¼ ‘G

#

max has a sibling vertex.

7.2 The Diameter of a DL# Graph

Recall that the diameter is an important value to measure
the effectiveness of network topologies. In this section, we
observe the diameter of a DL# graph G# using its corre-
sponding DL graph G, which is obtained from G# by replac-
ing all physical vertices with their logical vertices. The
corresponding DL graph is uniquely determined by 2) of
Remark 2.

From the definitions on DL graphs and DL# graphs, it is
straightforward to obtain the followings regarding relation-
ships between a DL# graph and its corresponding DL graph.

Remark 3. Let G# be a DL# graph and G be its correspond-
ing DL graph. Then

1) ‘Gmax ¼ ‘G
#

max; and

2) The routing scheme of G# is based on the routing
scheme of G.

The main theorem in this section is the following. It
implies that we only have to focus on the diameters of DL
graphs when an initial graph is a complete graph.

Theorem 13. Let an initial graph G0 be the complete graphKdþ1

with d � 2, and G ¼ ðV;EÞ be a DL graph obtained from G0.
Then for any DL# graph G# ¼ ðV#; E#Þ whose corresponding
DL graph is G, we have

DðG#Þ ¼ DðGÞ:

Proof. Throughout this proof, define a map f : V�!V# so
that for vertex v 2 V , fðvÞ is the physical vertex in G#

having v as its logical vertex. The map f is surjective; so
V# ¼ fðV Þ ¼ ffðvÞ : v 2 V g.

The statement is trivial when G# ¼ G0 since the corre-
sponding DL graph G of G0 is G0 itself. So we hereafter
assume that G# 6¼ G0. Observe that this assumption
gives us ‘G

#

max � 2.
We first show that DðG#Þ � DðGÞ. For arbitrary verti-

ces s; t 2 V , let r : s ! m1 ! � � � ! t be any path from s
to t in G. Then path fðrÞ : fðsÞ ! fðm1Þ ! � � � ! fðtÞ,
which is obtained by replacing all vertices m in r

with fðmÞ, is a path from fðsÞ to fðtÞ in G#. Assuming r

to be a shortest path from s to t, we have dG#ðfðsÞ;
fðtÞÞ � dGðs; tÞ. Therefore, together with the fact that f is
surjective, we can conclude thatDðG#Þ � DðGÞ.

We next show that DðGÞ � DðG#Þ. Take an arbit-
rary vertex v# 2 V# such that jv#j ¼ ‘G

#

max. From 3) in
Remark 2, there exists a (physical) sibling vertex u# of
v# in G#.

Now let u#
1 and u#

2 be the first and the second symbols
of u#, respectively. Since the initial graph G0 is complete
graph Kdþ1, there exists a cycle g : u#

1 ! u#
2 ! u#

1 in G0.
Following Lemma 10 and the similar argument in the
proof of Theorem 8, we can find a vertex w in V which is
a suffix of ðu#1 u#

2 Þk (the word generated by concatenating
u#
1 u

#
2 k times) for some positive integer k. As u#

1 6¼ u#
2

and u#
2 is the second symbol of v# as well, for any logical

vertex x of v#,w 
 x ¼ � holds. Observing that

dG#ðfðwÞ; v#Þ ¼ minxdGðw; xÞ
we have

DðG#Þ � dG#ðfðwÞ; v#Þ ¼ minxdGðw; xÞ
¼ jxj (4)

¼ DðGÞ; (5)

where the equality at (3) is from Lemma 7, and the equal-
ity at (4) comes from the fact that jxj ¼ jv#j ¼ ‘Gmax and
Corollary 12. tu
Note that the first half of the proof of Theorem 13 shows

that DðG#Þ � DðGÞ holds, whatever initial graphs are
given. We believe that further analysis provides the con-
crete value ofDðG#Þ for general case.

8 SIMULATIONS

In this section, we will show some simulation results to sup-
port our theoretical contributions. We focus on

1) the diameters and the average path lengths; and
2) the betweenness centrality of a vertex.
The simulations are conducted using Gephi, an open

source software for analyzing networks [24]. Throughout
the simulations, the initial graph is set to be the complete
graphK5.

8.1 The Diameters and the Average Path Lengths

Recall that the diameter of a graph is the length of the short-
est path between distinct vertices. Similarly, the average

Fig. 7. The diameters and the average path lengths for DL# graphs. Fig. 8. The diameters for corresponding DL graphs of Fig. 7.
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path length is the average length of the shortest path
between two distinct vertices.

Fig. 7 shows the diameters and the average path
lengths for DL# graphs with various number of vertices.
From this figure, we can observe that the diameters and
the average path lengths are reasonably small. Indeed,
by comparing Fig. 8a in [11], we can confirm that they
are quite similar to the diameters and the average path
lengths of DLþ graphs (about 3 percent better for the
average path lengths). Thus, the relaxation of the condi-
tions on vertices does not at least deteriorate the perfor-
mance of path lengths. In addition, we can say that they
are much smaller than CAN, Koore and FissionE; that is,
other DHT-based networks.

Fig. 8 shows the diameters of corresponding DL
graphs for DL# graphs in Fig. 7, together with the longest
ID lengths amongst vertices. Observe that Figs. 7 and 8
support Corollary 12 and Theorem 13. Indeed, we can
confirm that the diameter of a DL# graph is equal to the
diameter of its corresponding DL graph. In addition, the
diameter is equal to the length of the longest ID amongst
all vertices.

8.2 The Betweenness Centrality

Given a graph G ¼ ðV;EÞ, the betweenness centrality of vertex
v implies the ratio of v being used within a shortest path
between some vertices. More precisely, the betweenness
centrality cðvÞ for vertex v is defined to be

cðvÞ ¼
X
s6¼v 6¼t

sðs; tjvÞ
sðs; tÞ ;

where sðs; tÞ is the number of shortest paths from s to t and
sðs; tjvÞ is the number of those paths that pass through v.

The betweenness centrality of a vertex gives us the impor-
tance of the vertex in the graph. Also, the distribution of the
betweenness centralities is used to determine the uniformity
of a network. See, for example, [25], [26] for further details.

Fig. 9 shows the histograms of normalized betweenness
centralities of graphs with 256, 2048 and 16384 vertices,
respectively, where the centralities for a graph of N vertices
are normalized by multiplying 1

ðN�1ÞðN�2Þ. Fig. 10 depicts the

DL# graph of 256 vertices for which the vertices of higher
betweenness centralities are painted in darker color. The
average, the variance and themaximumvalue for each graph
are presented in Table 1. From these results, we can observe
that the the average and the variance of the betweenness cen-
tralities are quite small at each graph, especially for bigger
graphs. It indicates that the importance of each vertex is well
balanced. It also implies that shortest paths in the network
can be maintained even though some vertices fail, which is a
desired property as a network topology.

9 CONCLUSION

In this paper, we proposed DL# graphs, an extension of DL
graphs, as a candidate of an overlay for P2P networks. We

Fig. 9. The betweenness centralities of DL# graphs.

Fig. 10. DL# graph of 256 vertices generated from 100 DLTs followed by
vertex merging representing 49 user leaves.

TABLE 1
Average, Variance and Maximum Value for Each Graph

N Average Variance Maximum value

256 1:0644� 10�2 5:0970� 10�5 0.039694
2,048 2:0607� 10�3 3:0833� 10�6 0.026475
16,384 3:4957� 10�4 8:3469� 10�8 0.003999
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then presented theoretical results of DL graphs and DL#

graphs, especially diameters and in-degrees of those graphs.
More precisely, we showed the values of in-degrees for DL
graph which are more specific than existing result, together
with some simulation results. We also presented a tight
lower bound of the diameter of DL graphs, which gives us
the exact diameter when an initial graph is a complete graph.
We further proved that the diameter of a certain DL# graph
can be obtained from its corresponding DL graph. To sup-
port theoretical results and efficiency of DL# graphs, we also
presented simulation results on the diameter, the average of
path length, and the betweenness centrality.

As a future work, we aim to find some properties for a
DL# graph to have a short average path length, together
with an algorithm to obtain such a DL# graph. We also ana-
lyze the complexities on user joins and user leaves for DL#

-based networks .
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