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An Improved Model on the Vague Sets-Based
DPoS’s Voting Phase in Blockchain
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Abstract—As a common consensus mechanism used in
Blockchain, DPoS uses voting to select the committee members to
generate blocks. In order to elect the committee members more
fairly, vague sets are introduced into the voting phase of DPoS. In
the original vague sets-based model proposed in 2020, the voting
nodes can vote yes, no or abstain. In this paper, we improve
this model by introducing a new mapping from the vague set
to the fuzzy set and assigning weights to each node. In our new
model, we consider that the influence factor of abstention vote
increases with the increase of effective votes. Moreover, several
nice properties of the improved model are proved which make our
model conform to the real situation. Through our experiments,
the fuzzy value’s distribution of our scheme is more uniform and
reduce the probability of the same fuzzy value. If the ratio of
non-abstention votes is higher, the influence of abstention vote
will be greater, and the chance of being selected will increase.
This makes the voting phase of DPoS fairer.

Index Terms—Blockchain, DPoS, Voting, Weight Value, Fuzzy
Set

I. INTRODUCTION

Since Satoshi Nakamoto proposed Bitcoin [1], its core tech-
nology, blockchain, has been highly valued. The emergence of
blockchain technology solves the security issues of untrusted
third parties and data tampering. In blockchain, each block
contains transaction data generated by the network over a
period of time. By consensus mechanism, all the network
nodes can verify the validity of a new block and participate in
the mining to generate the next block [2]. There are currently
three types of blockchains: public chains, private chains, and
alliance chains. The consensus mechanisms used in the al-
liance chain [3] are BFT and PBFT. Bitcoin and Ethereum [4]
is a typical representative of public chain. Common consensus
mechanisms [5] in public chain are PoW [6] and PoS [7].
DPoS is an improvement on PoS, which uses proxy voting
and delegates to vote on nodes. DPoS has high efficiency and
can be applied in public and alliance chains.

At present, there are not many researches on DPoS. The
main improvement is to improve its voting process. In the
literature [8], it was proposed to use the reputation mechanism
to dynamically the select nodes. The agent can vote according
to the node’s reputation score, and set a certain reward and
punishment mechanism to make the voting process of DPoS
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more fair. In the literature [9], an incentive mechanism of
clustering algorithm is proposed, which distributes rewards
to different nodes according to the classification results, and
improves the enthusiasm of the nodes through this scheme. In
the literature [10], it proposed an algorithm to identify attacks,
and use game theory to design incentive mechanism. Most of
these improvements have designed a reward and punishment
mechanism to improve the efficiency of the voting algorithm.
However, in Xu’s work [11], the concept of fuzzy set was used
to make the voting more fair. Each node can vote for, against
and abstain. Here in this paper, we will improve their work.

Consensus mechanism is the key to the decentralization and
security of blockchain technology. There are many existing
consensus mechanisms [12], such as PBFT [13], [14], PoW,
PoS [15], and DPoS [16]. This paper is focused on the voting
phase of DPoS and is organized as follows: In Section II,
several typical consensus mechanisms are introduced, among
which DPoS is an important one. In Section III, the concepts
of fuzzy set and vague set are briefly explained. The existing
vague sets-based DPoS voting model is introduced in Section
IV. Then an improved model and the reason for the improve-
ment are presented in Section V. And this improved model is
analyzed and its several nice properties are proved In Section
VI. The experimental simulation of our improved model has
been done and analyzed in the next section.

In this paper, we have improved the conversion formula
from vague set to fuzzy set in the DPoS voting process
proposed by Xu [11]. The formula in [11] transforming vague
set [tV (u), 1− fV (u)] into a fuzzy value µF (V )(u) is:

µF (V )(u) = tV (u) +
1

2
[1 +

tV (u)− fV (u)

tV (u) + fV (u) + 2λ
]

× (1− tV (u)− fV (u)).

However, this conversion formula cannot easily prove that the
fuzzy value increases as tV (u) increases or fV (u) decreases.
In Xu’s model, the multiplication ratio α = 1/(tV (u) +
fV (u) + 2λ). We notice that this α decreases on tV (u) +
fV (u). Considering that in reality, α should increase as the
tV (u) + fV (u) value increases, which means the influence
of abstention votes should increase. In our scenario, we set
α = tV (u) + fV (u). Our improved conversion formula
can obviously prove that the fuzzy value increases as tV (u)
increases or fV (u) decreases, and α obviously increases on
the tV (u) + fV (u). What’s more, our model introduces the
concept of weight to avoid the same fuzzy-set value as much
as possible, which makes the voting process fairer. In this way,
the system can select committee members more fairly based
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on the fuzzy value. That is to say, We make the following
contributions.

1) The conversion formula from the vague set to the
fuzzy set has been improved to make the formula more
reasonable and the node election process fairer.

2) The weight is introduced to make the voting process
more in line with the working process of DPoS.

3) By using the improved fuzzy set transformation formula
after adding weight, we can get that the distribution of
fuzzy set values of our new model is more scattered.

All symbols in this article are listed in TABLE I.

TABLE I
NOTATIONS

Notations Descriptions
tV (u) Proportion of yes votes
fV (u) Proportion of no votes

µF (V )(u) fuzzy value
α Influence factor of abstention vote
t Simplified tV (u)
f Simplified fV (u)
µ Simplified µF (V )(u)

II. RELATED WORK

A. Blockchain’s Consensus Mechanism and DPoS

The consensus mechanism [18] of blockchain is a technol-
ogy that allows the irrelevant nodes to reach a consensus on the
transactions. Due to the existence of the consensus mechanism,
each transaction does not need to be processed by an untrusted
third party. Instead, all the network nodes use the consensus
mechanism to reach the agreement on each transaction, and it
improves the security of the transaction and avoids transaction
tampering. The main phases of the consensus mechanism are
as follows [19]:

• 1) Election of block producers: Select the node which
is responsible for generating blocks. A node needs to
complete certain tasks to become block producers.

• 2) Block generation: Pack the transaction data generated
on the network within a period of time into the current
block. The block header contains the hash value of the
previous block, time-stamp and other contents.

• 3) Node verification and blockchain update: Once the
current block is generated, it will be broadcast across
the entire network. The nodes that receive the informa-
tion verify the correctness of the block and update the
blockchain.

The most commonly used consensus mechanisms are the
Proof-of-Work mechanism (PoW) and the Proof-of-Stake
mechanism (PoS). The Proof-of-Work is the earliest consen-
sus mechanism, which is used in the Bitcoin. In order to
solve the problem of power consumption in PoW, PoS has
been proposed. PoS selects nodes based on the size of the
tokens they hold. PoS has to some extent improved consensus
efficiency. Subsequently, DPoS was proposed by combining

PoS and proxy voting systems. Compared to PoS, DPoS is
more efficient. DPoS achieves consensus in a more equitable
manner.

As a relatively new consensus mechanism, Delegated Proof
of Stake (DPoS) was proposed in 2014. In DPoS, the token
holders vote to elect the nodes that generate blocks. The size
of the equity held by the holders determine their votes. The
node owing the greater equity has more votes. After the voting
phase, the fixed number of the nodes with the most votes will
become the committee members to generate blocks. Each node
will generate a block in turn. If the node does not generate a
block during a specific period of time, it will be delisted. And
the network will select a new node to replace it. DPoS also
has some drawbacks, such as inability to prevent malicious
nodes from entering the committee, low enthusiasm of voting
nodes, or only voting for a few nodes. There is a possibility
of collusion voting among nodes.

In order to solve the problems of DPoS, many improvement
schemes are proposed. In the literature [11], Xu proposed
using the Vague Set voting method to reduce the possibility
of node collusion voting and to some extent improve the
enthusiasm of node voting. In the literature [20], a credit
scoring mechanism was proposed to rate the behavior of
nodes and vote based on the credit score. At the same time,
an incentive mechanism is introduced to reward nodes who
actively vote and punish malicious nodes. Different incentive
mechanisms have also been proposed in the literature [21] to
enhance DPoS voting enthusiasm. In this paper, we improve
the vague sets-based voting phase based on Xu’s scheme to
make the election more reasonable. Such an improvement
ensures the fairness of the election and keeps the members
entering the committee more reliable, and so it can reduce the
possibility of the selecting malicious nodes.

B. Fuzzy Set and Vague Set

In the traditional set theory [22], given a set U , for any
element a, there are only two cases related to U and a: a
belongs to U or does not belong to U , which refers to only
two distinct values: 0 and 1. Fuzzy set theory introduces the
concept of the membership degree. The membership degree
refers to the certainty of an element in this set. For a set U ,
each element in the set has a corresponding membership value
µF : U → [0, 1] and this value is unique. For example, in
a set of some tall persons, µF maps a person of 2-meters
height to 0.7, and maps a person of 1.7-meters height to
0.4. With the emergence of fuzzy set theory, the possibilities
are expressed in numbers. Subsequently, the vague set was
proposed. Compared with fuzzy set, vague set proposed the
interval more accurately. Moreover, the vague set combines
certainty and uncertainty, the fuzzy set has only a single
certainty or uncertainty.

Vague set can also describe the membership degree in the set
[23]. An interval instead of a single value is used to represent
a vague set. Given a set U , tV (u) represents the membership
degree that V truly belongs to U , and tV (u) is the lower bound
of the supporting membership derived from the supporting
evidence. At the same time, the membership degree fV (u)
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represents the membership degree that V falsely belongs to
U . As a result, fV (u) is the lower bound of the opposing
membership derived from the opposing evidence. Therefore,
the membership interval of V is [tV (u), 1− fV (u)].

III. THE VAGUE SET-BASED DPOS’S VOTING PHASE

The DPoS voting model [11] recently proposed is based on
the conversion from the vague set to the fuzzy set [24]. In this
model, each node can vote favor, oppose or abstention. And the
ratio of the favor votes to the total votes is the true membership
degree, namely tV (u). The percentage of oppose notes is the
false membership degree fV (u). Because of the existence
of abstention votes, it is obvious that tV (u) + fV (u) ≤ 1,
matching the requirements of the vague set. Through the
transformation from the vague set to the fuzzy set, the interval
value of vague set is transformed into the unique value of
the fuzzy set. As a result, vague set can be transformed into
a fuzzy set. In [21], Y. Liu et al. proposed several relatively
simple transformation methods and discussed their advantages
and shortcomings. In [13], G. Xu et al. formally presented
a more complicated conversion from [tV (u), 1 − fV (u)] to
µF (V )(u):

µF (V )(u) = tV (u) +
1

2
[1 +

tV (u)− fV (u)

tV (u) + fV (u) + 2λ
]

× (1− tV (u)− fV (u)),

(1)

where λ = 1 by default. After applying this conversion, the
µF (V )(u) for each node can be computed. Then all the nodes
can be sorted by the µF (V )(u), which means the node with
higher fuzzy value is in the front rank. Suppose that there
are m nodes to be selected among n nodes, according to
µF (V )(Ni1) > µF (V )(Ni2) > · · · > µF (V )(Nin), the first
m nones Ni1 , Ni2 , · · · , Nim are selected. If µF (V )(Nim) =
µF (V )(Nim+1

), a lottery algorithm is performed for node
selection. First, uniformly choose a random number r from
[0, 1). Then the m-th node is selected if r ∈ [0, 0.5), and the
the m + 1-th node is selected if r ∈ [0.5, 1). Moreover, it
is natural to generalize the lottery algorithm to the case that
more nodes share the same µF (V )(u).

IV. THE IMPROVED MODEL ON THE VAGUE SET-BASED
DPOS’S VOTING PHASE

In this section, we present FW-DPoS (a new weighted vague
to fuzzy mapping DPoS) which has two improvements on the
vague set based DPoS’s voting phase.

A. Improvement on the vague to fuzzy mapping

In practice, the abstention vote will favor the party with a
larger number according to the number of affirmative votes and
negative votes. Therefore, the influence factor of abstention
will increase with the increase of affirmative votes and negative
votes. First, we rewrite the mapping from the vague set to the
fuzzy set in [23] as follows:

µF (V )(u) = tV (u) +
1

2
(1 + α(tV (u)− fV (u)))

× (1− tV (u)− fV (u)),

where
α = 1/(tV (u) + fV (u) + 2λ).

The multiplication ratio α clearly represents the trend of the
abstention part being counted into the final fuzzy value of the
node.

We notice that this α decreases on tV (u) + fV (u) for the
fixed λ > 0. However, we consider that this property of α
is not reasonable. If a node has high tV (u) + fV (u), then its
participation rate is also high, which means that the abstention
part should contribute more when computing the fuzzy value.
From this perspective, α should increase on tV (u) + fV (u).

We now present our improvement, which is based on such a
hypothesis: α is increasing on tV (u) + fV (u). For simplicity,
we just set

α = tV (u) + fV (u)

which leads to an improved mapping:

µF (V )(u)

= tV (u) +
1

2
[1 + (tV (u) + fV (u))(tV (u)− fV (u))]

× (1− tV (u)− fV (u)).

(2)

Remark 1. Notice that when tV (u) = fV (u), we have
µF (V )(u) = tV (u) + 1

2 (1 − 2tV (u)) = 0.5, which is a
reasonable case.

B. Improvement on the voting weights of each node

In the previous voting model, each node can only cast one
vote and the weight of each vote is set to be 1, 0 and −1 for
favor votes, abstention votes and opposing votes, respectively.
Thus the fuzzy value of each node can be computed by
calculating the ratio of favor votes and the ratio of opposing
votes.

Under the improved model, the weight of the node voting is
considered [25]. In DPoS, the number of the votes each node
can vote is different due to the different rights and interests
held. Here we use voting weights to represent the equity of
each node. For an elector, the favor votes received is the sum
of the weights of all nodes that voted in favor, and we set
tV (u) to be the ratio of this value in the sum of the weights
of all nodes voted. Similarly, we set fV (u) to be the ratio of
the weight summation of the opposing votes to the one of the
all nodes. Then we use Formula 2 to calculate each node’s
fuzzy value and sort all the nodes by decreasing µF (V )(u).

Example: In order to see the changes of the fuzzy value
before and after weighting, we present a simple example.
Assume that there are 10 nodes in total, and the voting status of
one node is shown in Table II. The node received 5 favor votes,
3 abstention votes and 2 opposing votes. The distribution of
weights for voting is listed in Table III. For simplicity, the
weights of 10 nodes are set to be ranging from 1 to 10. The
weight vector of the favor, abstention and opposing votes are
[1, 4, 6, 7, 9], [3, 5, 10] and [2, 8], respectively. In this way,
the vague value and the fuzzy value before and after weighting
can be calculated.
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TABLE II
NODES’ VOTING RESULTS BEFORE WEIGHTING

Total votes Favor votes Abstention votes Negative votes
10 5 3 2

TABLE III
WEIGHTS FOR VOTING

Total weights Favor weights Abstention weights Negative weights
[1,2,3,4,5,6,7,8,9,10] [1,4,6,7,9] [3,5,10] [2,8]

TABLE IV
VAGUE VALUES AND FUZZY VALUES BEFORE AND AFTER WEIGHTING

Vague value interval Fuzzy value
Before weighting [0.5, 0.8] 0.6815
After weighting [0.49, 0.82] 0.6886

From Table II, the vague value before weighting can be
calculated as

tV (u) =
5

10
= 0.5, fV (u) =

2

10
= 0.2.

Then we use Table III to calculate the weighted vague values:

tV (u) =
1 + 4 + 6 + 7 + 9∑10

i=1 i
=

27

55
= 0.49,

fV (u) =
2 + 8∑10

i=1 i
=

10

55
= 0.18.

This means that the vague value interval before weighting is
[0.5, 0.8], and the weighted vague value is [0.49, 0.82]. Then
we use Eq. (2) to calculate the corresponding fuzzy value.
The results are shown in Table IV. For the vague value before
and after weighting, notice that the requirements on tV (u) and
fV (u) are always tV (u) ∈ [0, 1], fV (u) ∈ [0, 1] and tV (u) +
fV (u) ∈ [0, 1]. This also means that after the introduction of
weights, it is still feasible to vote through the proposed model
in Section V.

The improvement of the introduced weights is necessary and
meaningful. It makes our model closer to the real situation of
DPoS’s voting phase since each node in DPoS has different
voting rights. Moreover, the effect of weighting to the model
will be explained in Section VII’s experimental analysis.

V. MODEL ANALYSIS

Recall that for the vague set V , the improved model
mapping the vagues set to the fuzzy set is defined by

µF (V )(u)

= tV (u) +
1

2
[(1 + (tV (u)− fV (u)))(tV (u) + fV (u))]

× (1− tV (u)− fV (u)),

where [tV (u), 1− fV (u)] is the vague value of u ∈ U .
After checking the properties of µF (V )(u), it can be proved

that µF (V )(u) increases on tV (u) and decreases on fV (u).

Theorem 1. For any u ∈ U and the mapping 2, we have

∂µF (V )(u)

∂tV (u)
≥ 0,

∂µF (V )(u)

∂fV (u)
≤ 0

on the conditions with tV (u), fV (u) and tV (u) + fV (u) ∈
[0, 1].

Proof. For simplicity, we replace tV (u), fV (u) and µF (V )(u)
by t, f and µ to respectively rewrite the model 2 as

µ = t+
1

2
(1 + t2 − f2)(1− t− f).

We have to prove

∂µ

∂t
≥ 0 and

∂µ

∂f
≤ 0

for conditions t, f and t + f ∈ [0, 1], It can be directly
computed as follows:

∂µ

∂t
= 1 +

1

2
(1 + t2 − f2)

′

t · (1− t− f)

+ (1 + t2 − f2) · ((1− t− f)
′

t))

= 1 +
1

2
(2t · (1− t− f)− (1 + t2 − f2))

=
1

2
(2 + 2t− 2t2 − 2tf − 1− t2 + f2)

=
1

2
(−3t2 + (2− 2f)t+ (1 + f2)).

Since t, f, t + f ∈ [0, 1], the domain of t is actually t ∈
[0, 1− f ] for some f ∈ [0, 1]. Moreover, we have

∂µ

∂t
|t=0 =

1

2
(1 + f2) > 0

and
∂µ

∂t
|t=1−f =

1

2
(−3(1− f)2 + (2− 2f)(1− f) + (1 + f2))

= f ≥ 0.

It follows that ∂µ
∂t ≥ 0 at two endpoints. Since ∂µ

∂t is a parabola
opening down with respect to the variable t, it is true that

∂µ

∂t
≥ 0

for any t ∈ [0, 1 − f ] with f ∈ [0, 1], which completes the
first part of the proof.

For the second part, similarly, we have

∂µ

∂f
=

1

2
(1 + t2 − f2)

′

f · (1− t− f)

+ (1 + t2 − f2) · ((1− t− f)
′

f ))

=
1

2
(−2f · (1− t− f)− (1 + t2 − f2))

=
1

2
(−2f + 2tf + 2f2 − 1− t2 + f2)

=
1

2
(3f2 + (2t− 2)f − (1 + t2)).

For t, f and t+ f ∈ [0, 1], the domain of f is f ∈ [0, 1− t]
for some t ∈ [0, 1]. Then we have

∂µ

∂f
|f=0 = −1

2
(1 + t2) < 0

and
∂µ

∂f
|f=1−t =

1

2
(3(1− t)2 + (2t− 2)(1− t)− (1 + t2))

= −t ≤ 0.
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It follows that ∂µ
∂f ≥ 0 at two endpoints. Similarly, since ∂µ

∂f
is a parabola opening up with respect to the variable f , it is
true that

∂µ

∂f
≤ 0

for any f ∈ [0, 1− t] with t ∈ [0, 1], which finishes the second
part of the proof.

Remark 2. These properties of µF (V )(u) are reasonable.
Since larger tV (u) or smaller fV (u) means that the possibility
of the node u to be chosen into the next phase is larger,
corresponding to the larger µF (V )(u).

Theorem 2. Given a vague set V in U , for any u ∈ U , if
tV (u), fV (u) and tV (u) + fV (u) ∈ [0, 1], then we have

tV (u) ≤ µF (V )(u) ≤ 1− fV (u)

and the value distribution table about µF (V )(u) as follows.

Values of µF (V )(u) Conditions on tV (u) and fV (u)
1 tV (u) = 1, fV (u) = 0

(0.5, 1] tV (u) > fV (u)
0.5 tV (u) = fV (u)

[0, 0.5) tV (u) < fV (u)
0 tV (u) = 0, fV (u) = 1

.

Proof. Similarly, we replace tV (u), fV (u) and µF (V )(u)
respectively by t, f and µ to simplify the model as

µ = t+
1

2
(1 + t2 − f2)(1− t− f).

For the first part, notice that for t, f, t+f ∈ [0, 1], it is easy
to obtain

1 + t2 − f2 ∈ [0, 2].

Since 1− t− f ≥ 0, we have

µ ≥ t+
1

2
· 0 · (1− t− f) ≥ t

and
µ ≤ t+

1

2
· 2 · (1− t− f) = 1− f,

which proves the first part of the theorem.
For the second part, we prove it in the following cases:
1) Case 1: µ = 1 ⇔ t = 1, f = 0

⇐:
For t = 1, f = 0,

µ = t+
1

2
(1 + t2 − f2)(1− t− f)

= 1 +
1

2
(1 + 12 − 02)(1− 1− 0) = 1.

⇒:
If µ = 1, since t ≤ µ ≤ 1 − f from the first part, we
know that 1 − f = 1, implying f = 0. Then in fact
µ = t+ 1

2 (1 + t2)(1− t) = 1. Simplify this equation to
obtain

(1− t2)(t− 1) = 0.

Consequently, t = 1 and f = 0.

2) Case 2: µ = 0 ⇔ t = 0, f = 1
⇐:
For t = 0, f = 1,

µ = t+
1

2
(1 + t2 − f2)(1− t− f)

= 0 +
1

2
(1 + 02 − 12)(1− 0− 1) = 0.

⇒:
If µ = 0, since we know that t ≤ µ ≤ 1−f , then t = 0.
Thus we have µ = 0 + 1

2 (1 − f2)(1 − f) = 0, which
can be simplified as

(1− f2)(1− f) = 0.

As a result, f = 1 and t = 0.
3) Case 3: µ = 0.5 ⇔ t = f

⇐:
For t = f ,

µ = t+
1

2
(1 + t2 − f2)(1− t− f)

= t+
1

2
(1 + t2 − t2)(1− t− t)

= t+
1

2
(1− 2t) = 0.5.

⇒:
If µ = 0.5, then

0 = µ− 0.5

= t+
1

2
(1 + t2 − f2)(1− t− f)− 1

2

=
1

2
(2t+ (1 + t2 − f2)(1− t− f)− 1)

=
1

2
(t− f − (t3 − f3) + (t2 − f2)− tf(t− f))

=
1

2
(t− f)(1− (t2 + tf + f2) + t+ f − tf)

=
1

2
(t− f)(1− (t+ f)2 + (t+ f)).

Since t+ f ∈ [0, 1], we know that

1− (t+ f)2 + (t+ f) ≥ 1,

which implies that t− f = 0.
4) Case 4 and Case 5:

µ ∈ (0.5, 1] ⇔ f < t,

µ ∈ [0, 0.5) ⇔ t < f.

From the proof in Case 3, we know that

µ− 0.5 =
1

2
(t− f)(1− (t+ f)2 + (t+ f)).

Since t+ f ∈ [0, 1], we have

1− (t+ f)2 + (t+ f) ≥ 1.

As a result, it follows

sgn(µ− 0.5) = sgn(t− f).

Thus we have

µ > 0.5 ⇔ f < t,
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µ < 0.5 ⇔ t < f.

From the first part of the proof for this theorem, we have
t ≤ µ ≤ 1 − f , implying µ ∈ [0, 1], which completes
the proof of Case 4 and Case 5.

VI. EXPERIMENTS AND ANALYSIS

For our FW-DPoS voting model, we conduct experiments
to verify its effectiveness, which are performed in the two
versions: the small-scale version and the large-scale version.
In the experiments, we simulate the voting process of 30 nodes
in the small-scale version and 1000 nodes in the large-scale
version. We use “0” for abstention vote, “1” for favor vote,
and “-1” for opposing vote. We count the number of the votes
received by each node and calculate the fuzzy values of each
node by the new conversion formula (2). We use Python to
run the experiments. The processor of the computer is Intel
(R) Core (TM) i5-6500 CPU @ 3.20GHz with 8GB RAM.
The operating system is Windows 10.

A. Small-scale Experiments

In this version, we conduct the experiments in small scale
according to the following steps:

• 1) Generate nodes and assign weights. We assume that
5 nodes are elected among 30 nodes. First we generate
30 nodes in the personal computer. In order to simplify
the experiment, we regard all of these nodes as both
the voters and the candidates. Then we randomly assign
weight to each node. Here we choose a random integer
in [1, 100) for each node as its weight.

• 2) Make each node vote and calculate vague values. We
make each node randomly do the voting, where it can
vote yes, no or abstain with the same probabilities equal
to 1/3. After the voting, we calculate the voting results.
For each node u, Let the ratio of the favored weights to
the total weights be tV (u), and the ratio of the opposed
weights to the total weights be fV (u).

• 3) Compute fuzzy values to sort nodes and do election.
After calculating tV (u) and fV (u), we use the new
mapping (2) to obtain the fuzzy value µF (V )(u) for each
node, and sort the 30 nodes by their fuzzy values from
large to small. The first 5 nodes will be selected as the
committee members. In the case that the different nodes
share the same fuzzy value, the node with the highest
weight will be chosen. If their weights are still the same,
we apply the lottery algorithm to randomly select the
nodes.

TABLE V
DISTRIBUTION OF THE WEIGHTS OF EACH NODE

Nodes N1 N2 N3 N4 N5 N6 N7 N8 N9 N10N11N12N13N14N15

Weights 55 97 38 19 49 70 61 68 23 19 70 78 31 51 81
Nodes N16N17N18N19N20N21N22N23N24N25N26N27N28N29N30

Weights 8 61 2 70 22 15 91 93 17 77 1 61 87 97 34

TABLE V shows the weight distribution of 30 nodes. This
also represents the size of the node’s power, which has an

impact on the subsequent voting. It can be easily calculated
that the weight sum of all nodes is

∑30
i=1 w(Ni) = 1546.

TABLE VI
THE COMPARISON OF THE FUZZY VALUES’ DISTRIBUTION IN OUR MODEL

AND XU’S MODEL

NodesYes votesNo votesAbstention votes The fuzzy values of
our model with weight

The fuzzy values of
our model without weight

The fuzzy values of
Xu’s model[13]

N11 17 7 6 0.7331 0.6933 0.6786
N18 14 7 9 0.6917 0.6412 0.6269
N30 13 6 11 0.6508 0.6438 0.6329
N28 16 6 8 0.6503 0.6993 0.6829
N3 14 10 6 0.6312 0.5773 0.5714
N22 11 8 11 0.5662 0.5616 0.5567
N20 12 8 10 0.5642 0.5815 0.5750
N13 13 10 7 0.5403 0.5589 0.5542
N8 9 7 14 0.5386 0.5416 0.5395
N17 11 7 12 0.5299 0.5827 0.5769
N23 11 11 8 0.5163 0.5 0.5
N7 10 9 11 0.5065 0.5205 0.5190
N2 10 10 10 0.5063 0.5 0.5
N29 7 7 16 0.5020 0.5 0.5
N5 10 9 11 0.4808 0.5205 0.5190
N1 9 9 12 0.4671 0.5 0.5
N9 7 10 13 0.4576 0.4377 0.4416
N25 11 9 10 0.4525 0.5407 0.5375
N27 7 13 10 0.4447 0.3778 0.3875
N4 9 10 11 0.4273 0.4795 0.4810
N24 7 11 12 0.4179 0.4173 0.4231
N15 9 15 6 0.4146 0.384 0.3929
N21 11 11 8 0.4082 0.5 0.5
N10 5 10 15 0.4073 0.3958 0.4
N14 9 14 7 0.4051 0.4018 0.4096
N26 6 9 15 0.4010 0.4375 0.44
N19 10 13 7 0.3938 0.4411 0.4458
N16 8 13 9 0.3324 0.3992 0.4074
N12 5 14 11 0.3314 0.3152 0.3291
N6 5 14 11 0.2916 0.3152 0.3291

In TABLE VI, we count the votes of all nodes and calculate
the fuzzy values of our model and Xu’s model. Then we
sort the nodes according to our weighted fuzzy values in the
descending order. Since 5 nodes needs to be chosen, from
Table VI, the nodes N11, N18, N30, N28 and N3 will be
selected. However, in the case of Xu’s model, the nodes N28,
N11, N30, N18 and N17 will be selected. By comparing our
model with Xu’s model, we can see that in our model there
are no situations that two different nodes share the same fuzzy
value. However, in Xu’s model, there are several nodes with
the same fuzzy value. For example, the nodes N2, N23 and
N29 share the same fuzzy value 0.5 in Xu’s model. But these
three nodes have different fuzzy values in our model, which
allows us to directly sort them and therefore improve the
sorting efficiency. By comparing the experimental results of
our unweighted fuzzy value with Xu’s fuzzy value, it can be
found that when the yes votes are more than the no votes,
the unweighted fuzzy value in our model is greater than that
in Xu’s model. And when the yes votes are less than the no
votes, the fuzzy value in our model is smaller than that in Xu’s
model. This means that our proposed conversion formula will
bias the abstention votes in favor of the side with the larger
number of the votes.

Through the TABLE VI, we can also analyze that when
the number of the yes votes of the nodes is the same, the
fuzzy value of nodes with more abstention votes is also high.
This shows that although the sum of the yes votes and the
no votes is the influence factor of the abstention votes, the
main determining factor in the calculation is the number of
the abstention votes. At the same time, we also note that the
number of abstained votes is a part of the calculation of fuzzy
value, but not a decisive factor. Even though the number of
the abstention votes accounts for a large proportion, the size
of its fuzzy value depends on the number of the yes votes.
This is consistent with the actual situation.
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B. Large-scale Experiments

To analyze the influence that assigning weights to the nodes
has in the distribution of the fuzzy values, a large-scale version
is conducted. We generate 1000 nodes with each node’s weight
randomly chosen from [1, 1000000). Then we also make all
of the nodes vote favor, oppose or abstention in random and
compute the vague values for each node in our model and Xu’s
model. Finally, we use the new mapping Eq.(2) to compute
the corresponding fuzzy value of each node and study the
distributions of the fuzzy values in our model and Xu’s model,
respectively. Fig. 1 and Fig. 2 show the analyzed results.

Fig. 1. Distribution of the fuzzy values in our FW-DPoS model.

Fig. 2. Distribution of the fuzzy values in Xu’s model.

It can be seen from the above figures that the distributions
of the fuzzy values in our model and Xu’s model are both
subject to a normal distribution. However, the variances of the
two distributions seem to be different. To be more specific,
we use the hypothesis testing in statistics to study the two
distributions of the fuzzy values, denoted by X and Y :

X : samples from the fuzzy values in our FW-DPoS model,

Y : samples from the fuzzy values in Xu’s model.

C. Analysis of Hypothesis Testing

The improved model has been verified through the experi-
mental results. From Fig. 1 and 2 and the hypothesis testing
in the large-scale experiments, it can be concluded that

X ∼ N (0.5, σ2
1), Y ∼ N (0.5, σ2

2),

where

σ2
1 > σ2

2 .

We use several hypothesis testing methods to prove X and Y
are normally distributed, and the variance of X is greater than
the variance of Y , which implies this conclusion.

1) Apply KS-test to ensure the normality of X and Y :
Kolmogorov-Smirnov test (KS-test) can be used to determine
whether one dataset comes from a certain type of the distri-
bution. In this case, we intend to clarify that both X and Y
are subject to normal distribution. Since the KS-test has the
advantage of making no assumption about the distribution of
data, we now apply it to ensure the normality of X and Y , or

X,Y ∼ Normal Distribution.

First, we calculate the sample mean and the sample standard
deviation of X and Y :

X̄ = 0.50055, SX = 0.01863,

Ȳ = 0.50053, SY = 0.01499.

Then we standardize X and Y by setting Xstd = (X −
X̄)/SX and Ystd = (Y − Ȳ )/SY , set the significance level
α = 0.05 and the hypotheses to be as follows:

H0(X) : Xstd ∼ N (0, 1),

H1(X) : Xstd � N (0, 1),

H0(Y ) : Ystd ∼ N (0, 1),

H1(Y ) : Ystd � N (0, 1).

After using the scipy.stats.kstest module in Python to apply
the KS-test to the standardized X and Y , we obtain the testing
results:

KstestResult(statistic = 0.01792, p-value = 0.89925),

KstestResult(statistic = 0.02292, p-value = 0.66099).

The two p-values are both greater than 0.05, which indicates
the strong evidence for the null hypothesis. Thus we retain the
null hypotheses H0(X) and H0(Y ) and reject the alternative
hypotheses H1(X) and H1(Y ), and it means Xstd, Ystd ∼
N (0, 1).
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2) Apply T-test to estimate the means of X and Y: T-test is
a type of the inferential statistic used to determine if there is
a significant difference between the means of the two groups.
It is mostly used when the data sets have unknown variances.
In this case, we use T-test to show that X and Y are both
subject to the normal distributions with the mean = 0.5, or

X ∼ N (0.5, σ2
1), Y ∼ N (0.5, σ2

2).

First, we use X̄ = 0.50055, SX = 0.01863, Ȳ = 0.50053
and SY = 0.01499 to construct T-Statistics TX and TY :

TX =
X̄ − 0.5

SX/
√
n

=
0.50055− 0.5

0.01863/
√
1000

= 0.93358,

TY =
Ȳ − 0.5

SY /
√
n

=
0.50053− 0.5

0.01499/
√
1000

= 1.11808.

Then we set the significance level α = 0.05 and list the
hypotheses as follows:

H0(X) : X ∼ N (0.5, σ2
1),

H1(X) : X � N (0.5, σ2
1),

H0(Y ) : Y ∼ N (0.5, σ2
2),

H1(Y ) : Y � N (0.5, σ2
2).

Finally, we apply the T-test to X and Y to obtain the testing
results:

|TX | = 0.93358 < 2.24479 = T0.025(999) = Tα/2(n− 1),

|TY | = 1.11808 < 2.24479 = T0.025(999) = Tα/2(n− 1).

Since TX and TY are both smaller than Tα/2(n−1), we retain
the null hypothesis H0(X),H0(Y ) and reject the alternative
hypothesis H1(X),H1(Y ), which means X ∼ N (0.5, σ2

1) and
Y ∼ N (0.5, σ2

2).
3) Apply F-test to show the difference between the vari-

ances of X and Y: F-test is used to test if the variances of
the two fuzzy values X and Y are equal. And the two-tailed
version test method will be used to replace the F-test if the
variances are not equal. In this case, we use F-test to show
that there is a strong difference between the variances of X
and Y , or X ∼ N (0.5, σ2

1) and Y ∼ N (0.5, σ2
2), where

σ2
1 > σ2

2 .

First, we use SX = 0.01863 and SY = 0.01499 to construct
F-Statistics F :

F =
S2
X

S2
Y

= 1.54359.

Then we also set the significance level α = 0.05 and
suppose as follows:

H0 : σ2
1 ≤ σ2

2 ,

H1 : σ2
1 > σ2

2 .

Similarly, we apply the F-test to X and Y to obtain

F = 1.54359

> 1.10975 = F0.5(999, 999) = Fα(n− 1, n− 1).

Since F is larger than Fα(n − 1, n − 1), we accept the
alternate hypothesis H1 and reject the null hypothesis H0,
which means σ2

1 > σ2
2 .

D. Further Analysis of our FW-DPoS model

To make the results more obvious, we add Fig. 3 and Fig.
4 for comparison. Fig. 3 shows the distribution map of our
scheme after removing the weights, while Fig. 4 shows the
distribution map of Xu’s scheme after adding weights.

Fig. 3. Distribution of the fuzzy values in our model without weight.

Fig. 4. Distribution of the fuzzy values in Xu’s model with weight.

TABLE VII
THE COMPARISON OF FUZZY VALUES’ MEAN AND STANDARD DEVIATION

IN OUR AND XU’S MODELS FOR DIFFERENT CASES

Fig. 1 Fig. 2 Fig. 3 Fig. 4

Mean 0.50055 0.50053 0.50057 0.50051

Standard deviation 0.01863 0.01499 0.01628 0.01715

Improved mapping
√

×
√

×
Weight

√
× ×

√

We compute the mean and standard deviation of Fig. 3 and
Fig. 4. All results are shown in the TABLE VII

By comparing second and fourth columns of TABLE VII, it
can be concluded that the fuzzy value standard deviation of our
model with weight is greater than that of our model without
weight. This means that by adding weights to our scheme, the
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distribution of fuzzy values becomes more dispersed, which
is beneficial for more fair voting. Comparing third and fifth
columns simultaneously, the standard deviation of Xu’s model
with weight is greater than that of Xu’s model without weight.
After adding weights to Xu’s model, its fuzzy values will also
be more uniform.

We compare second and fifth columns in TABLE VII, as
well as third and fourth columns. The standard deviation in
our model with weight is greater than that in Xu’s model with
weight, and the standard deviation in our model without weight
is greater than that in Xu’s model without weight. It can be
seen that regardless of whether weights are added or not, the
fuzzy value distribution of our scheme is more uniform than
that of Xu’s model. So our proposed scheme has better fairness
and is conducive to DPoS voting.

E. Analysis of Experimental Results

Through the proof of the hypothesis testing, we get the
following conclusion:

X ∼ N (0.5, σ2
1), Y ∼ N (0.5, σ2

2),

where
σ2
1 > σ2

2 .

This means that both X and Y have the average values close
to 0.5. However, the variance of X is greater than that of Y ,
which implies that the distribution of X is more spread out
than that of Y .

This indicates that the strategy of adding weights makes the
distribution of the fuzzy value more uniform, which is helpful
in selecting the nodes by the sorting the fuzzy value. The
probability of the occurrence of the same value will become
less, and it will reduce the necessity of applying the lottery
algorithm. Thus, the improved model definitely leads to the
efficiency growth in the voting phase.

We further analyzed the data and found that in the context
of 1000 nodes, there was no situation where the fuzzy values
of nodes were the same in our model, while in Xu’s model,
there were 182 nodes with the same fuzzy values. This will be
detrimental to the sorting of nodes. Compared with Xu’s model
in the large-scale experiment, our scheme’s fuzzy values will
not be the same when there are a large number of nodes. That
is to say, as the number of nodes increases, we can sort them
directly based on the fuzzy values, without using the lottery
algorithm. After adding weights, the probability of each node
having the same fuzzy value is greatly reduced. As long as
the node weights are sufficiently random, an increase in the
number of nodes will not have a significant impact on the
scheme’s efficiency.

The advantages of our improved voting model can be seen
from the following aspects.

• 1) Better simulation of the real DPoS’s voting phase.
After adding weight values, our voting model is closer
to the real voting mechanism of DPoS, since the number
of the votes for each node in DPoS is different. To be
elected in the voting phase, the nodes need not only to
get the favor votes, but also to get the favor votes with

the high weights. This undoubtedly increases the fairness
of our voting model.

• 2) More theoretical analyses on the new mapping. The
new mapping Eq. (2) remains the fuzzy value 0.5 when
the favor votes and opposing votes are the same. We also
prove its monotonicity with tV (u) and fV (u).

• 3) More efficient selection of the nodes. We can see from
the experimental results that by adding weight values, the
variance of the distribution of the fuzzy value becomes
larger, which makes the fuzzy value closer to the uniform
distribution. As a result, this will improve the efficiency
of the node selection.

VII. CONCLUSION

An improved model called FW-DPoS on DPoS’s voting
phase in Blockchain is established. In this FW-DPoS model, a
more reasonable conversion formula from the vague set to the
fuzzy set is proposed. If there are more yes votes and no votes,
the participation rate will be higher, which implies that the
abstention votes can correctly contribute more in computing
the fuzzy value. In addition, in order to make the model closer
to the real voting situation, we add weights for voting. The
larger the weight is, the more significant its vote will be. By
introducing the concept “weight”, the probability of the same
fuzzy value will be reduced, and the use of random lottery
algorithm will be reduced. This makes the node selection
process more fair.

By analyzing the experimental results, our FW-DPoS model
is more efficient than Xu’s model. When the yes votes are
greater than the no votes, our fuzzy value will be greater than
Xu’s fuzzy value; when the yes votes are less than the no
votes, our fuzzy value will be less than Xu’s fuzzy value. In
this way, the nodes with more yes votes are easier to enter
the committee. When the affirmative votes remain the same,
the more abstention votes, the greater the fuzzy value of the
node. When the no votes are the same. The more abstention
votes the node has, the smaller the fuzzy value will be. Our
new model strengthens the influence factor of abstention vote,
making it increase with the increase of effective votes. That is
to say, abstention will be more likely to favor the party with
more votes. This is in line with the actual situation. In real life,
the nodes will judge their identity according to the number of
votes, which will affect the voting bias.

Our proposed model can be applied to the blockchain sys-
tem, especially in the alliance chain. Our scheme can alleviate
the decentralized problem of DPoS, make the members of
the committee more random, and improve the fairness of
the block. Meanwhile, our FW-DPoS model can be applied
to industrial blockchain systems, such as IoV Blockchain,
to improve the efficiency of the consensus algorithm by
replacing the originally used DPoS with our FW-DPoS. At
the same time, our FW-DPoS model can also be used in
the IoT blockchains to improve the security of the con-
sensus algorithms. In detail, the fuzzy values in our model
are more scattered, which makes our FW-DPoS fairer and
reduces the probability of the malicious nodes entering the
committee compared with the classical DPoS used in some
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IoT blockchains. However, we leave the problem of how to
further improve the decentralization of DPoS’s voting phase
as an open issue.
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