
1

Blockchain and Deep Learning for Secure
Communication in Digital Twin Empowered

Industrial IoT Network
Prabhat Kumar, Randhir Kumar, Abhinav Kumar, A. Antony Franklin, Sahil Garg and Satinder Singh

Abstract—The rapid expansion of the Industrial Internet of
Things (IIoT) necessitates the digitization of industrial processes
in order to increase network efficiency. The integration of Digital
Twin (DT) with IIoT digitizes physical objects into virtual repre-
sentations to improve data analytics performance. Nevertheless,
DT empowered IIoT generates a massive amount of data that is
mostly sent to the cloud or edge servers for real-time analysis.
However, unreliable public communication channels and lack of
trust among participating entities causes various types of threats
and attacks on the ongoing communication. Motivated from the
aforementioned discussion, we present a blockchain and Deep
Learning (DL) integrated framework for delivering decentralized
data processing and learning in IIoT network. The framework
first present a new DT model that facilitates construction of a
virtual environment to simulate and replicate security-critical
processes of IIoT. Second, we propose a blockchain-based data
transmission scheme that uses smart contracts to ensure integrity
and authenticity of data. Finally, the DL scheme is designed to
apply the Intrusion Detection System (IDS) against valid data
retrieved from blockchain. In DL scheme, a Long Short Term
Memory-Sparse AutoEncoder (LSTMSAE) technique is proposed
to learn the spatial-temporal representation. The extracted char-
acteristics are further used by the proposed Multi-Head Self-
Attention (MHSA)-based Bidirectional Gated Recurrent Unit
(BiGRU) algorithm to learn long-distance features and accurately
detect attacks. The practical implementation of our proposed
framework proves considerable enhancement of communication
security and data privacy in DT empowered IIoT network.

Index Terms—Blockchain, Deep Learning (DL), Digital Twin
(DT), Industrial Internet of Things (IIoT), Smart Contract.

I. INTRODUCTION

THE Industrial Internet of Things (IIoT) is a network of in-
telligent interconnected industrial devices, and computing

amenities deployed to achieve a highly efficient, autonomous,
and improved manufacturing and industrial processes [1]. The
success of IIoT depends on removing complexity from device

This work of Dr. Abhinav Kumar was supported in part by TiHAN Faculty
Fellowship. (Corresponding authors: Prabhat Kumar; Sahil Garg.)

Prabhat Kumar is with the Department of Software Engineering, LUT
School of Engineering Science, LUT University, Lappeenranta 53850, Finland
(Email: prabhat.kumar@lut.fi).

Randhir Kumar and Abhinav Kumar are with Department of Electrical
Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285,
India (e-mail: randhir.honeywell@ieee.org, abhinavkumar@ee.iith.ac.in).

A. Antony Franklin is with the Department of Computer Science and
Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502285,
India. (e-mail: antony.franklin@cse.iith.ac.in)

Sahil Garg is with the Resilient Machine Learning Institute (ReMI),
Montreal, QC H3C 1K3, Canada (e-mail: garg.sahil1990@gmail.com)

Satinder Singh is with the Ultra I&C Communications, Montreal, QC H4T
1V7, ´ Canada (e-mail: Satinder.Singh@ultra-tcs.com)

deployment, connectivity, and management [2]. For example,
IIoT allows the tracking of items as they transit from manu-
facturing to distribution in a supply chain. The rapid growth
of IIoT has coincided with the introduction of cyber-attacks
on vital infrastructure including smart factories, smart grids,
and so on [3]. An attacker can use powerful techniques and
tools to conduct malicious attacks, including Denial of Service
(DoS), Distributed Denial of Service (DDoS), Man-in-the-
Middle (MitM), firmware modification, false code injection
and can take complete control of the IIoT infrastructure [4].

Existing traditional security solutions proposed in articles
[5], [6], [7] designed various Intrusion Detection and Preven-
tion System (IDS/IPS) but were frequently introduced after
the asset became operational, rather during the initial design
process. As a result, attackers can gather detailed knowledge
of system behaviour and launch Advanced Persistent Threat
(APT) attacks by exploiting vulnerabilities in the system
infrastructure (e.g., smart grid management), that can even
threaten public safety [8]. Additionally, due to the hetero-
geneous IIoT devices and the complicated industrial setting,
making quick and intelligent decision in real-time is another
challenging issue.

The Digital Twin (DT) is a new digitalization technology
that generates a real-time digital simulation model of physical
objects. In IIoT context, DT can assist researchers in running
simulations to understand and analyze the behaviour of physi-
cal objects without actually manufacturing and deploying them
[9]. The DTs look for data discrepancies between the physical,
and virtual entities by collecting huge amount of data from all
phases of the product life-cycle and provide simulation data
to the physical entity so that it may improve its calibration
and testing procedures [10]. Such recurrent processes improve
DT models and their physical equivalents, allowing for more
accurate estimate, prediction, and optimization of industrial
operations. For instance, in smart grid management, DT collect
data for power status from various types of sensors and present
engineers with a virtual grid network layout to adapt real-time
analysis in decision-making and execution [11].

The DT approaches proposed in the articles [12], [13], [14],
[15], [16], [17] mostly used traditional cloud or edge-based
architectures to map Cyber–Physical Systems (CPSs) to living
digital models. However, DTs are data-driven and synchroniza-
tion of real-time data needs a transparent and trustable solution
among participating peers. Moreover, cloud/edge-based twins
mandate trusting a third party, e.g., a cloud service provider,
for IIoT data processing, which raises serious security and data

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

privacy (e.g., performing various privacy attacking techniques,
such as false-data injection, data poisoning and inference
ones) concerns [18]. For example, a malicious cloud might
expose or alter important industrial data without the owners
authorization. Similarly, cloud owners (upto 90%) do not
encrypt data before keeping it on their servers. Finally, a cloud
or edge can be affected by a single point of failure [19]. As
a solution to the above, blockchain and Deep Learning (DL)
has emerged as a promising solution where the current study
has been provided to ensure communication security and data
privacy in DT empowered IIoT network.

Blockchain use cryptographic hashing algorithms and dis-
tributed consensus protocols to enable safe and secure data
transfer [20]. The distributed ledgers of blockchain can help
DTs in auditability, accessibility, and traceability of design
data. The encrypted data of DTs stored in ledger can neither
be changed nor can be controlled by a central authority. This
functionality not only enables unparalleled levels of confidence
and data integrity, but it also makes the DTs audit process more
efficient and cost-effective [21]. Existing works presented in
articles [22], [23], [24], [25], [26], [27] mainly abstracted
blockchain as distributed and non-tampering ledger to store
entire transaction, making blockchain quite inefficient and
costly. Furthermore, only limited computational capability of
locking scripts has been exploited.

Smart Contracts (SCs) are programmable logic that can
be placed on a distributed network using modern blockchain
technology. Functions and state variables are used by SCs
to represent complicated business logic. Client requests are
wrapped in transactions to invoke functions of SCs [28]. To
keep state consistent, a primary node (also known as a miner)
first assembles and executes a batch of SCs transactions in
order, and then the remainder (known as validators) re-execute
them serially in the same order. SCs provide high availability
in the event of network node failures [29]. Furthermore, as
their code is recorded on all nodes, it is immutable, making
SC execution automatic, transparent, and the final output cryp-
tographically verifiable by all participant nodes. Recent works
presented in the articles [30], [31], [32] used SCs to manage
data record or to provide access. However, in accordance to
large-scale IIoT system their work are seriously limited in
terms of scalability and flexibility. In the proposed framework
InterPlenary File Systems (IPFS) platform is implemented as
an off-chain storage system to provide high throughput and
scalability during real-time data access by using minimal data
storage costs [33].

The authenticated and valid data from blockchain technol-
ogy can be further used to improve data analytic or utility
model such as IDS performance. Deep Learning (DL) has
become the mainstream technique to deal with unstructured,
heterogeneous, and large volume of IIoT data. Although vari-
ous DL-based IDS have been designed for attack identification
and achieved better performance than traditional machine
learning and statistical techniques [34]. There are two main
limitations of existing approaches. First, the methods presented
in [35], [36], [37] are purely based on supervised learning that
rely on expert knowledge to manually label the attacks. On
the other hand, IIoT network, necessitate a fast reaction time

to human engagement. As a result, manual data labelling is
challenging due to a lack of security expertise and a short
response time. Second, many researchers in [38], [39] focus
on using Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), Convolution Neural Network (CNN) and
other structures for attack classification. However, the length
of IIoT network sequences are usually long and therefore these
methods can not learn long dependent contextual association
information.

A. System Model

This subsection presents a brief discussion on the applied
DT empowered IIoT network and adversary model that are
used to design and analyze the proposed framework.

1) Digital Twin Empowered IIoT Network: The proposed
digital twin empowered IIoT network model is shown in Fig.
1, that consists of the following entities:

Trusted Authority (Ts): The Ts is a trustworthy entity
having adequate computing and communication resources. The
responsibility of Ts is to perform initialization of system
parameters and registration of all different communicating
entities prior to their placement in the network [28]. In
addition, Ts also generates and provides certificates to each
IIoT device and all edge/cloud nodes that include an identity,
public key, and private key.

Engineer and Domain Knowledge (EDK): The EDK is used
to gather, and provide information related to the system and
network components of IIoT and is considered independent
of any physical process. Furthermore, the data is generalized,
specified once and then shared across multiple organizations.
For example, industrial equipment manufacturers can provide
device templates that defines safety and security policies of
their devices. This can be used to derive the topological
environment and logical connections among individual compo-
nents of IIoT. Furthermore, when modeling a system, it is also
vital to think about defining hierarchical relationships between
components [40]. IIoT Twinning may also impose fine-grained
regulations and restrictions across all hierarchical levels due
to this modeling technique.

Generator (GR): The responsibility of GR is to convert the
specification into a virtual environment. Initially, the infor-
mation related to the specification is processed to retrieve the
network, and devices topological structure and their associated
security regulations. The virtual environment is then created
by producing digital objects and imposing their properties.
Finally, the parsed rules are kept in an abstract form for further
analysis by a security module, namely IDS.

Digital Twin Model (DTM):The DTM is a core component
of IIoT twinning with virtualized network infrastructure. It
provides a realistic simulation environment for the physical
processes and a runtime layout for virtual devices. Moreover,
the generated virtualized IIoT environment is similar to its
physical counterpart and provide various functionalities such
as physical device types, their network protocols and control
logic execution. The DT can be emulated by running the
control logic, or simulated when a physical component has
to be replicated. Once the virtual environment is generated

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

Historical
Data

Generator

M
LightTemperature FactoryMotor

Full Nodes

Trusted
Authority

Real-time Data

OfflineRegistration

Of
flin

e
Re

gis
tra

tio
n

Offline Registration

O
ffli

ne
Re

gi
st

ra
tio

n
Edge-Blockchain Layer

Basic Nodes

Engineer Knowledge

Domain Knowledge

Security and Safety
Rules

Network Setup

Device Templates

Physical Rules

Digital Twin Model

Virtual Environment

Intrusion Detection System
SimulationReplication

Device Testing

M
LightTemperature FactoryMotor

IIoT Device Layer

Cloud-Blockchain Layer

Edge Server

Blockchain

Cloud Server

Fig. 1: The proposed framework for Digital Twin Empowered IIoT Network

based on the specification and configuration of DTs, we
have two operation modes i.e., simulation and replication
available. The digital twins run independently of their physical
counterparts in simulation mode and enable users to exam-
ine process modifications, test equipment, and even improve
manufacturing operations, similar to virtual commissioning.
Additionally, security professionals can use this mode to
conduct security test in a virtual environment, avoiding the
risks associated with testing on a live system. On the other
hand, the replication mode replicates data including log files,
network connections, and sensor readings from the physical
environment. Furthermore, as shown in Fig. 1, sensors or
devices can be directly linked to the IIoT twinning architecture
available at edge nodes.

IIoT Device Layer: This layer consist various heterogeneous
IIoT devices denoted as Basic Nodes (BNs) (e.g., temperature
sensors, hydraulic motors, light sensors) with limited comput-
ing resources. These devices are deployed in the industrial
physical world to continuously gather and measure sensor
data (transactions). The generated data is relayed to the edge-
blockchain layer on a hop-by-hop forwarding basis.

Edge-Blockchain Layer (EBL): This layer consist powerful
nodes i.e., Full Nodes (FNs) (e.g., edge-computing servers,
industrial computer, data analysis server). As the IIoT devices
are close to EBL, the edge-based design is more delay efficient
than previous cloud-based IIoT architectures. Therefore, our
proposed framework integrates DT with edge nodes, and are
responsible for initial processing and creation of blocks in a
tamper-resistant manner using smart contract-based consensus
technique.

Cloud-Blockchain Layer (CBL): This layer consist various
distributed cloud Servers CS, which can be multiple resource
leasing platforms or websites. It is worth noting that the
CS in our model are distributed and not controlled by a
single entity. They build a cloud-based peer-to-peer network
and share a significant quantity of historical blockchain data.
Furthermore, each CS has a specific interface for receiving

blockchain data from EBL nodes. When a FN storage space
is full with blockchain data, it offloads the previous blockchain
data to the CBL. Whenever the CS reach a consensus, it sends
a ”completed” message to the offloading node, which then
contacts the other FNs to delete the specified blockchain data.

Intrusion Detection System (IDS): A DL-based IDS is
designed to decide whether a particular traffic sample is an
attack or normal in virtual environment of DT. Initially inputs
to the IDS is data generated from GR. Later sensor data
(transactions) from blockchain can be directly use to detect
intrusive events. The main advantage of our approach is that
the IDS provides a holistic security view of the physical
process.

2) Adversary Model: In the adversary model we follow the
widely accepted “Dolev-Yao (DY) threat model” [28] in DT
empowered IIoT network. According to the DY model, an
adversary named A can tamper information sent across an
insecure (public) channel between any two participant (i.e.,
GR and FN, BN and FN, FN and CS). A is capable of not
only eavesdropping on communications, but also of modifying,
deleting, or injecting false messages into the communication
channel. As a result, A can launch variety of attacks, including
the replay attack, MitM attack, and impersonation attack.
In addition to the DY model, we also consider ”Canetti
and Krawczyk’s model (CK-adversary model)” [41], which
is a more powerful model. In the CK-adversary model, an
adversary A is capable of compromising secret credentials and
hijacking session keys and session states in an ongoing session
between two participants in the network. As a result, even if
A hijacks a currently active session, he or she should not be
able to jeopardize past or future session keys created between
two entities. In addition, it is assumed that the GR, FN, BN
and CS are semi-trusted entities.

B. Research Contribution

The following are the major contributions in this paper:

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

• We propose a new generalized architecture for integrat-
ing digital twin with IIoT edge servers that collects
all industrial transaction records and thereby assist in
improving communication security and data privacy in
highly dynamic IIoT environment.

• A blockchain scheme is designed to securely transmit
(without modification or deletion) IIoT data from GR or
BNs to the CS by leveraging digital twin edge nodes. The
authenticated data collected at EBL are used to create,
validate and add blocks in the blockchain network with
the help of smart contract-based “Proof-of-Authentication
(PoA)” algorithm.

• The encrypted data is stored in IPFS-based off-chain stor-
age system to minimize communication and computation
overheads while ensuring scalability during real-time data
access.

• A novel DL-based intrusion detection scheme using val-
idated data obtained from blockchain is designed. The
former first contains a Long Short Term Memory-Sparse
AutoEncoder (LSTM-SAE)-based feature extraction tech-
nique to learn hidden feature structure and discriminative
representations. The obtained spatial-temporal represen-
tation of IIoT traffic flows is forwarded to the proposed
Multi-Head Self-Attention (MHSA)-based Bidirectional
Gated Recurrent Unit (BiGRU) to recognize intrusive
events.

The rest of this article is organized as follows. Section II
discuss the detailed functional components of our proposed
framework. The security analysis is performed in Section
III. The experimental results are provided and evaluated in
Section IV. Finally, Section V concludes this paper with future
direction.

II. PROPOSED FRAMEWORK FOR SECURE
COMMUNICATION

A. Blockchain Scheme

1) System Initialization Phase: This section presents sys-
tem initialization and assumed a trusted authority who is
responsible for registering all the entity of network. The trusted
authority (Ts) executes all the required parameters as discussed
below.

Step-1: The Ts select a non-singular elliptic curve Eqn(s, t)
in the form y2= x3+sx+t (mod q) in the galois field gf(q),
where q denotes large prime number over the condition 4s3 +
27t2 ̸=0 (mod q) for non-singularity with ω as infinity point
or zero point. Next, the Ts picks the base point B ∈ Eqn(s,t)
with the order is as closest as of q, say n i.e., n . B = ω, where
n . B denotes the scalar multiplicative elliptic curve point and
n ∈ Zq denotes the discrete algorithm to the base point B.

Step-2: The Ts choose a one-way cryptographic hash func-
tion i.e., collision resistant, say h(.). This can be computed
using secure hash algorithm (SHA-256) for security reason,
this provides 256-bit message digest.

Step-3: The Ts selects an identity IDTs and its master key
MTs

and also generates random private key PRTs
∈ Zq , where

Zq = {1, 2, 3, 4, . . . , q− 1}. The Ts then computes public key
as PBTs

= PRTs
. B.

Step-4: The Ts stores the PRTs and MTs as a secret keys
and disseminates public parameters like { Eqn(s, t), B, PBTs

,
h(.) }.

2) Enrollment Phase: This phase discusses about the reg-
istration of each entities which is deployed over the network.

Cloud Server Enrollment: The Ts registers the cloud server
(CLS) using following steps mentioned below.
Step-1: The Ts selects unique identity IDCLS and evaluates
the pseudo identity SIDCLS= h(IDTs

|| MTs
|| RTCLS),

where RTCLS denotes the enrollment timestamp of cloud
server. Further, Ts selects temporal identity TIDCLS and a
random secret PRCLS ∈ Zq and finds the respective public
key as PBCLS = PRCLS . B.

Step-2: The Ts creates a certificate for CLS as CRTCLS

= MTs
+ h (PBTs

|| PBCLS ||) * PRTs
(mod q).

Further, Ts preserve the cloud information i.e., (TIDCLS ,
SIDCLS ,CRTCLS , PRCLS , Eqn(s, t), h(.)) into memory and
shares the public key PBCLS as public.

Edge Server Enrollment:
Step-1: The Ts selects unique identity IDEG and evaluates

the pseudo identity SIDEG= h(IDTs
|| MTs

|| RTEG),
where RTEG denotes the enrollment timestamp of edge server.
Further, Ts selects temporal identity TIDEG and a random
secret PREG ∈ Zq and finds the respective public key as
PBEG = PREG . B.

Step-2: The Ts creates a certificate for EG as CRTEG =
MTs

+ h (PBTs
|| PBEG ||) * PRTs

(mod q). Further, Ts pre-
serve the edge information i.e., (TIDEG, SIDEG,CRTEG,
PREG, Eqn(s, t), h(.)) into memory and shares the public
key PBEG as public.

Generator Enrollment:
Step-1: The Ts selects unique identity IDGN and evaluates

the pseudo identity SIDGN= h(IDTs
||MTs

|| RTGN), where
RTGN denotes the enrollment timestamp of generator. Further,
Ts selects temporal identity TIDGN and a random secret
PRGN ∈ Zq and finds the respective public key as PBGN =
PRGN . B.

Step-2: The Ts creates a certificate for GN as CRTGN

= MTs + h (PBTs || PBGN ||) * PRTs (mod q). Fur-
ther, Ts preserve the generator information i.e., (TIDGN ,
SIDGN ,CRTGN , PRGN , Eqn(s, t), h(.)) into memory and
shares the public key PBGN as public.

IIoT node Enrollment:
Step-1: The Ts selects unique identity IDDi

and evaluates
the pseudo identity SIDDi= h(IDTs || MTs || RTDi), where
RTDi denotes the enrollment timestamp of IIoT devices.
Further, Ts selects temporal identity TIDDi

and a random
secret PRDi

∈ Zq and finds the respective public key as PBDi

= PRDi
. B.

Step-2: The Ts creates a certificate for Di as CRTDi =
MTs + h (PBTs || PBDi ||) * PRTs (mod q). Further,
Ts preserve the IIoT device (Di) information i.e., (TIDDi

,
SIDDi

,CRTDi
, PRDi

, Eqn(s, t), h(.)) into memory and
shares the public key PBDi

as public.
3) Authentication Phase: This phase discusses authentica-

tion process of IIoT nodes to Edge Server, Generator to Edge
Server, and Edge-server to cloud server. In this authentication
process each entity maintains session key before making

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

IIoT nodes (Di) Edge Server (FG)
Generate random number
dr1 ∈ Zq

with current timestamp CTS1

Compute L1= h (SIDDi || TIDDi ||
dr1 || CTS1)
L2= EPB˙FG(L1)
L3= h(L2 || CRTDi

|| SIDDi

|| TIDDi
|| CTS1)

M1={SIDDi
,T IDDi

,CTS1,L2,L3}−−−−−−−−−−−−−−−−−−−−−−→
(secure channel)

Verify |CTS∗1 - CTS1| < ∆T , if valid
textitCRTDi .B= PBTs + h(PBDi || PBTs), if valid
Fetch SIDDi

corresponding to TIDDi

from secure database
Computes L∗3= h (L2 || SIDDi

||
TIDDi

|| CRTDi
)

Verify L∗3= L3, if valid
Decrypt L1= DPRFG

(L2)
Selects a random number fgr1 ∈ Zq

with current time stamp CTS2

Computes FG1= h(SIDDi
|| SIDFG || fgr1 || CTS2)

Encrypt FG1 as FG2= EPB˙D˙i(FG1)
computes a session key SESFG= h(TIDnew

Di
|| L1 ||

FG1 || CTS1 || CTS2),
TID∗Di

= TIDnew
Di
⊕ h(SIDFG ||

TIDDi ||CTS2),
FG3=h(TID∗Di

|| FG1 ||
CRTFG || SIDFG || CTS2)
M2=TID∗

Di
,FG2,FG2,CRTFG,SIDFG,CTS2←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Verify | CTS∗2 - CTS2 | < ∆T
Verify if, CRTFG.B=PBTs

+ h(PBFG || PBTs
)

Decrypt the FG2 to get FG1= DPRDi
(FG2)

Computes FG∗3= h(TID∗Di
|| FG1 || CRTFG || SIDFG || CTS2)

if FG∗3= FG3 valid
Computes TIDnew

Di
= TID∗Di

⊕ h(SIDFG || TIDDi
|| CTS2)

Computes a session key SESDi
=h(TIDnew

Di
|| L1 || FG1 || CTS1 || CTS2)

Create current timestamp CTS3

Computes session key verification SESVDi
=h(SESDi

||CTS3)
Updates TIDDi

and TIDnew
Di

in secure database
M3=SESVDi

,CTS3−−−−−−−−−−−−−−−→
(using open channel)

Verify | CTS∗3 - CTS3 | < ∆T
Verify verifies SESVDi= h (SESVFG || CTS3) if valid
Updates TIDDi and TIDnew

Di

in its database securely.
Both Di and FG validate the session key
SESVDi

(=SESVFG)

Fig. 2: Authentication Process between IIoT nodes and Edge
Server

secure communications. This process ensures authorization
of the entities in the network. These are the following steps
needs to be executed to establish a session key during secure
communication.

(i) IIoT nodes to Edge server Authentication
Step-1: Di selects a random number dr1 ∈ Zq with current

timestamp CTS1 and computes L1= h (SIDDi
|| TIDDi

||
dr1 || CTS1). Next, Di encrypt the L1 as L2= EPB˙FG(L1).
Further, Di computes the L3= h(L2 || CRTDi || SIDDi ||
TIDDi

|| CTS1) and generates a access request message
M1={SIDDi

, TIDDi
, CTS1, L2, L3} and sent it to edge

server using open channel.
Step-2: once the message M1 is received at time CTS∗

1 ,
edge server checks the timestamp |CTS∗

1 - CTS1| < ∆T . If
the timestamp is valid then edge server verifies certificate using
CRTDi .B= PBTs + h(PBDi || PBTs) if it is also valid then
edge server fetches SIDDi

corresponding to TIDDi
from

secure database and computes L∗
3= h (L2 || SIDDi

|| TIDDi

|| CRTDi
) to check whether L∗

3= L3. if it is valid then edge
server decrypt L2 as L1= DPRFG

(L2).
Step-3: Next, edge server selects a random number fgr1 ∈

Zq with current time stamp CTS2 and creates new temporary
identity TIDnew

Di
and computes FG1= h(SIDDi

|| SIDFG

|| fgr1 || CTS2) and encrypt FG1 as FG2= EPB˙D˙i(FG1).
Further, edge server (FG) computes a session key SESFG=
h(TIDnew

Di
|| L1 || FG1 || CTS1 || CTS2), TID∗

Di
= TIDnew

Di

⊕ h(SIDFG || TIDDi ||CTS2), and FG3=h(TID∗
Di
|| FG1

|| CRTFG || SIDFG || CTS2) and construct a reply message
M2= {TID∗

Di
, FG2, FG2, CRTFG, SIDFG, CTS2} and

sent it to Di using open channel.

Generator (GN) Edge Server (FG)
Generate random numbergnr1 ∈ Zq

with current timestamp CTS1

Compute LGN1= h (SIDGN || TIDGN ||
dr1 || CTS1)
LGN2= EPB˙FG(LGN1)
LGN3= h(LGN2 || CRTGN ||
SIDGN || TIDGN || CTS1)
M1={SIDGN ,T IDGN ,CTS1,LGN2,LGN3}−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(secure channel)
Verify |CTS∗1 - CTS1| < ∆T , if valid
CRTGN .B= PBTs + h(PBGN || PBTs), if valid
Fetch SIDGN corresponding to TIDGN

from secure database
Computes LGN∗3 = h (LGN2 || SIDGN ||
TIDGN || CRTGN)
Verify LGN∗3 = LGN3, if valid
Decrypt LGN1= DPRFG

(LGN2)
Selects a random number fgr1 ∈ Zq

with current time stamp CTS2

Computes FG1= h(SIDGN || SIDFG ||
fgr1 || CTS2)
Encrypt FG1 as FG2= EPB˙GN(FG1)
computes a session key SESFG= h(TIDnew

GN || LGN1 ||
FG1 || CTS1 || CTS2),
TID∗GN= TIDnew

GN ⊕ h(SIDFG ||
TIDGN ||CTS2),
FG3=h(TID∗GN || FG1 ||
CRTFG || SIDFG || CTS2)
M2=TID∗

GN ,FG2,CRTFG,SIDFG,CTS2←−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Verify | CTS∗2 - CTS2 | < ∆T
Verify if, CRTFG.B=PBTs +
h(PBFG || PBTs

)
Decrypt the FG2 to get FG1= DPRGN

(FG2)
Computes FG∗3= h(TID∗GN ||
FG1 || CRTFG || SIDFG || CTS2)
if FG∗3= FG3 valid
Computes TIDnew

GN = TID∗GN ⊕ h(SIDFG

|| TIDGN || CTS2)
Computes a session key SESGN=h(TIDnew

GN ||
LGN1 || FG1 || CTS1 || CTS2)
Create current timestamp CTS3

Computes session key verification SESVGN=h(SESGN

||CTS3)
Updates TIDGN and
TIDnew

GN in secure database
M3=SESVGN ,CTS3−−−−−−−−−−−−−−−→

(using open channel)

Verify | CTS∗3 - CTS3 | < ∆T
Verify verifies SESVGN= h (SESVFG ||
CTS3) if valid
Updates TIDGN and TIDnew

GN

in its database securely.
Both GN and FG validate the session key
SESVGN (=SESVFG)

Fig. 3: Authentication Process between Generator and Edge
Server

Step-4: After receiving a reply message (M2) from edge
server at time CTS∗

2 , Di checks whether | CTS∗
2 - CTS2 |

< ∆T is valid timestamp or not. if it is valid then Di verifies
certificate by CRTFG.B=PBTs + h(PBFG || PBTs). Next,
Di decrypt the FG2 to get FG1= DPRDi

(FG2). Further, Di

computes FG∗
3= h(TID∗

Di
|| FG1 || CRTFG || SIDFG ||

CTS2) and check, if FG∗
3= FG3 then Di computes TIDnew

Di
=

TID∗
Di
⊕ h(SIDFG || TIDDi || CTS2) and computes a

session key SESDi=h(TIDnew
Di

|| L1 || FG1 || CTS1 ||
CTS2) and shares with FG. Next, Di selects a current times-
tamp CTS3 and computes session key verification SESVDi

using SESVDi
=h(SESDi

||CTS3) and updates the TIDDi

and TIDnew
Di

in secure database. Further, Di creates an
acknowledgment message M3={SESVDi , CTS3} and sent
it to FG using open channel.

Step-5: After getting acknowledgment message M3 at time
CTS∗

3 , then FG verifies the timestamp using | CTS∗
3 - CTS3

| < ∆T is valid timestamp or not. Next FG verifies SESVDi
=

h (SESVFG || CTS3). If it matches successful, the FG
establishes the session key SESVDi (=SESVFG) with Di. At
last, FG updates TIDDi and TIDnew

Di
in its database securely.

Fig.2 shows the entire authentication process between IIoT
nodes (Di) and Edge server (FG).

(ii) Generator to Edge server Authentication

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

Step-1: GN selects a random number gnr1 ∈ Zq with
current timestamp CTS1 and computes LGN1= h (SIDGN

|| TIDGN || dr1 || CTS1). Next, Di encrypt the LGN1 as
LGN2= EPB˙FG(LGN1). Further, GN computes the LGN3=
h(LGN2 || CRTGN || SIDGN || TIDGN || CTS1) and
generates a access request message M1={SIDGN , TIDGN ,
CTS1, LGN2, L3} and sent it to edge server using open
channel.

Step-2: once the message M1 is received at time CTS∗
1 ,

edge server checks the timestamp |CTS∗
1 - CTS1| < ∆T . If

the timestamp is valid then edge server verifies certificate using
CRTGN .B= PBTs

+ h(PBGN || PBTs
) if it is also valid then

edge server fetches SIDGN corresponding to TIDGN from
secure database and computes LGN∗

3 = h (LGN2 || SIDGN

|| TIDGN || CRTGN) to check whether LGN∗
3 = LGN3.

if it is valid then edge server decrypt LGN2 as LGN1=
DPRFG

(LGN2).
Step-3: Next, edge server selects a random number fgr1

∈ Zq with current time stamp CTS2 and creates new tem-
porary identity TIDnew

GN and computes FG1= h(SIDGN

|| SIDFG || fgr1 || CTS2) and encrypt FG1 as FG2=
EPB˙GN(FG1). Further, edge server (FG) computes a session
key SESFG= h(TIDnew

GN || LGN1 || FG1 || CTS1 || CTS2),
TID∗

GN= TIDnew
GN ⊕ h(SIDFG || TIDGN ||CTS2), and

FG3=h(TID∗
GN || FG1 || CRTFG || SIDFG || CTS2)

and construct a reply message M2= {TID∗
GN , FG2, FG2,

CRTFG, SIDFG, CTS2} and sent it to GN using open
channel.

Step-4: After receiving a reply message (M2) from edge
server at time CTS∗

2 , GN checks whether | CTS∗
2 - CTS2 |

< ∆T is valid timestamp or not. if it is valid then GN verifies
certificate by CRTFG.B=PBTs

+ h(PBFG || PBTs
). Next,

GN decrypt the FG2 to get FG1= DPRGN
(FG2). Further,

GN computes FG∗
3= h(TID∗

GN || FG1 || CRTFG || SIDFG

|| CTS2) and check, if FG∗
3= FG3 then GN computes

TIDnew
GN = TID∗

GN ⊕ h(SIDFG || TIDGN || CTS2) and
computes a session key SESGN=h(TIDnew

GN || LGN1 || FG1

|| CTS1 || CTS2) and shares with FG. Next, GN selects
a current timestamp CTS3 and computes session key veri-
fication SESVGN using SESVGN=h(SESGN ||CTS3) and
updates the TIDGN and TIDnew

GN in secure database. Further,
GN creates an acknowledgment message M3={SESVGN ,
CTS3} and sent it to FG using open channel.

Step-5: After getting acknowledgment message M3 at time
CTS∗

3 , then FG verifies the timestamp using | CTS∗
3 - CTS3 |

< ∆T is valid timestamp or not. Next FG verifies SESVGN=
h (SESVFG || CTS3). If it matches successful, the FG
establishes the session key SESVGN (=SESVFG) with GN .
At last, FG updates TIDGN and TIDnew

GN in its database
securely. Fig.3 shows the entire authentication process between
Generator (GN) and Edge server (FG). (iii) Edge server to
cloud server Authentication

Step-1: FG selects a random number fgr1 ∈ Zq with
current timestamp CTS1 and computes LFG1= h (SIDFG ||
TIDFG || fgr1 || CTS1). Next, FG encrypt the LFG1 as
LFG2= EPB˙CLS(LFG1). Further, FG computes the LFG3=
h(LFG2 || CRTFG || SIDFG || TIDFG || CTS1) and
generates a access request message M1={SIDFG, TIDFG,

Edge Server (FG) Cloud Server (CLS)
Generate random numberfgr1 ∈ Zq

with current timestamp CTS1

Compute LFG1= h (SIDFG || TIDFG || fgr1 || CTS1)
LFG2= EPB˙CLS(LFG1)
LFG3= h(LFG2 || CRTFG ||
SIDFG || TIDFG || CTS1)
M1={SIDFG,T IDFG,CTS1,LFG2,LFG3}−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(secure channel)
Verify |CTS∗1 - CTS1| < ∆T , if valid
textitCRTFG.B= PBTs

+ h(PBFG || PBTs
), if valid

Fetch SIDFG corresponding to
TIDFG from secure database
Computes LFG∗3= h (LFG2 || SIDFG ||
TIDFG || CRTFG)
Verify LFG∗3= LFG3, if valid
Decrypt LFG1= DPRCLS

(LFG2)
Selects a random number clsr1 ∈ Zq

with current time stamp CTS2

Computes CLS1= h(SIDFG || SIDCLS ||
clsr1 || CTS2)
Encrypt CLS1 as CLS2= EPB˙FG(CLS1)
computes a session key SESCLS= h(TIDnew

FG ||
LFG1 || CLS1 || CTS1 || CTS2),
TID∗FG= TIDnew

FG ⊕ h(SIDCLS ||
TIDFG ||CTS2),
CLS3=h(TID∗FG || CLS1 ||
CRTCLS || SIDCLS || CTS2)
M2=TID∗

FG,CLS2,CRTCLS ,SIDCLS ,CTS2←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Verify | CTS∗2 - CTS2 | < ∆T
Verify if, CRTCLS .B=PBTs

+ h(PBCLS || PBTs
)

Decrypt the CLS2 to get CLS1= DPRFG
(CLS2)

Computes CLS∗3= h(TID∗FG ||
CLS1 || CRTCLS || SIDCLS || CTS2)
if CLS∗3= CLS3 valid
Computes TIDnew

FG = TID∗FG ⊕
h(SIDCLS || TIDFG || CTS2)
Computes a session key SESFG=h(TIDnew

FG ||
LFG1 || CLS1 || CTS1 || CTS2)
Create current timestamp CTS3

Computes session key verification SESVFG=h(SESFG

||CTS3)
Updates TIDFG and TIDnew

FG

in secure database
M3=SESVFG,CTS3−−−−−−−−−−−−−−−→

(using open channel)

Verify | CTS∗3 - CTS3 | < ∆T
Verify SESVFG= h (SESVCLS || CTS3) if valid
Updates TIDFG and TIDnew

FG

in its database securely.
Both FG and CLS validate the session key
SESVFG (=SESVCLS)

Fig. 4: Authentication Process between Edge Server and Cloud
Server

CTS1, LFG2, LFG3} and sent it to cloud server using open
channel.

Step-2: once the message M1 is received at time CTS∗
1 ,

cloud server checks the timestamp |CTS∗
1 - CTS1| < ∆T .

If the timestamp is valid then cloud server verifies certificate
using CRTFG.B= PBTs

+ h(PBFG || PBTs
) if it is also valid

then edge server fetches SIDFG corresponding to TIDFG

from secure database and computes LFG∗
3= h (LFG2 ||

SIDFG || TIDFG || CRTFG) to check whether LFG∗
3=

LFG3. if it is valid then cloud server decrypt LFG2 as
LFG1= DPRCLS

(LFG2).
Step-3: Next, cloud server selects a random number clsr1

∈ Zq with current time stamp CTS2 and creates new tem-
porary identity TIDnew

FG and computes CLS1= h(SIDFG ||
SIDCLS || clsr1 || CTS2) and encrypt CLS1 as CLS2=
EPB˙FG(CLS1). Further, cloud server (FG) computes a ses-
sion key SESCLS= h(TIDnew

FG || LFG1 || CLS1 || CTS1

|| CTS2), TID∗
FG= TIDnew

FG ⊕ h(SIDCLS || TIDFG

||CTS2), and CLS3=h(TID∗
FG || CLS1 || CRTCLS ||

SIDCLS || CTS2) and construct a reply message M2=
{TID∗

FG, CLS2, CRTCLS , SIDCLS , CTS2} and sent it to
FG using open channel.

Step-4: After receiving a reply message (M2) from cloud

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

Algorithm 1 Smart contracts enabled Proof-of-Authentication
1: Input: Transactions (Txi), public key (PBDi), IIoT nodes (Di)
2: Output: Verification and Block creation .
3: function verify(Di, Txi, PBDi , CRTDi)
4: assert(V ERIFY (PBDi , IIoTNonce[message.sender],

CRTDi))
5: assert (Authenticate(SESVDi))
6: emit Event(message.sender, Txi, ”Allow”)
7: end function
8: function V ERIFY (Txi, nonce,CRTDi)
9: MessageSigned=message.sender || nonce || Txi

10: if (MessageSigned, CRTDi == owner) then
11: return true
12: else
13: return false
14: end if
15: end function
16: function Authenticate(SESVDi)
17: policies= sessionverify[SESVDi]
18: if policies is successful then
19: Block is created with Details such as TXBLOCK= {Txhash

i ,
IDDi , CRTDi , PBDi , BlockHash, CTSDi , nonce}

20: Finally, block is committed
21: end function

server at time CTS∗
2 , FG checks whether | CTS∗

2 - CTS2 |
< ∆T is valid timestamp or not. if it is valid then FG verifies
certificate by CRTCLS .B=PBTs + h(PBCLS || PBTs). Next,
FG decrypt the CLS2 to get CLS1= DPRFG

(CLS2). Further,
FG computes CLS∗

3= h(TID∗
FG || CLS1 || CRTCLS ||

SIDCLS || CTS2) and check, if CLS∗
3= CLS3 then FG

computes TIDnew
FG = TID∗

FG ⊕ h(SIDCLS || TIDFG ||
CTS2) and computes a session key SESFG=h(TIDnew

FG ||
LFG1 || CLS1 || CTS1 || CTS2) and shares with CLS.
Next, FG selects a current timestamp CTS3 and computes
session key verification SESVFG using SESVFG=h(SESFG

||CTS3) and updates the TIDFG and TIDnew
FG in secure

database. Further, FG creates an acknowledgment message
M3={SESVFG, CTS3} and sent it to CLS using open chan-
nel.

Step-5: After getting acknowledgment message M3 at time
CTS∗

3 , then CLS verifies the timestamp using | CTS∗
3 -

CTS3 | < ∆T is valid timestamp or not. Next CLS verifies
SESVFG= h (SESVCLS || CTS3). If it matches successful,
the CLS establishes the session key SESVFG (=SESVCLS)
with FG. At last, CLS updates TIDFG and TIDnew

FG in
its database securely. Fig.4 shows the entire authentication
process between Edge Server (FG) and Cloud server (CLS).

4) Smart Contract Verification and Block Addition Phase:
This phase includes verification of Di using its certificate
CRTDi

and SESVDi
based authentication. The verification

of Di is approached using smart contract based Proof-of-
Authentication (PoA). The detail of authentication process is
detailed in the Algorithm 1.

B. Deep Learning Scheme

1) Development of LSTMSAE-based Feature Extraction
Technique: The LSTMSAE is a combination of LSTM and
SAE. In fact, LSTMSAE is an AE with sparseness penalty

LSTM CELL
ENCODER

M

LSTM CELL
DECODER

L1 Regularization

Hidden Layer

Input Layer Output Layer

Industrial Sensors
or

Generator Data

Bi-GRU Layer 1

Multi-Head Self-
Attention

Bi-GRU Layer 2

Bi-GRU Layer m

H
id

de
n

La
ye

rs

Softmax

Normal Threat

BiGRU and MHSA-based
Intrusion Detection System:

O
ut

pu
t L

ay
er

s

Normalized Features

LSTMSAE-based Feature Extraction Technique

Fig. 5: The working architecture of proposed deep-learning
scheme for intrusion detection

item that uses LSTM to extract features. The extracted feature
from the industrial sensors or generator data is used by the
proposed BiGRU with MH-SA-based IDS to detect intrusion.
Assume there are m sensors in an industrial setting and each
sensor collectsN samples, the input variable matrix can be de-
noted as X , i.e., X = [X1,X2, ,XN] ∈ RN×m. The out-
put matrix of the hidden layer of a LSTMSAE-based feature
extraction technique is Å, i.e., Å =

[
Å1, Å2, , ÅN

]
∈

RN×d, where d is the dimension of the feature vector in the
hidden layer.

Long Short-Term Memory (LSTM:) The LSTM solves ”van-
ishing gradient” problem that classic Recurrent Neural Net-
works (RNNs) have during back propagation. In the first
stage, the LSTM structure generates decision vectors and picks
candidate data. The values for these vectors lies between 0 and
1, where LSTM ignores vectors close to 0 and retains vectors
with values close to 1. Specifically, LSTM produce the input
gate I by using previous LSTM units hidden state HT −1 and
input XT of current unit at step T .

IT = σ (WI [HT −1,XT] + BI) . (1)

The activation function is denoted by σ, the weighted matrix
is WI , and the bias between two connected components is
BI . In order to assess if the prior unit state CT −1 should be
kept as the current unit state, LSTM use forget gate FT with
HT −1 and XT as two input values.

FT = σ (WF [HT −1,XT] + BF) . (2)

where the forget gates weight and bias matrices are denoted
by WF , and BF respectively. The IT use XT and HT −1 and
is responsible to update the information in cell state C̃T .

C̃T = tanh (WC [HT −1,XT] + BC) . (3)

The current CT is connected to the previous CT −1 and the
input candidate CT is computed as

CT = FT ∗ CT −1 + IT ∗ C̃T (4)

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

Finally, LSTM use an output gate OT to identify the next
timesteps hidden state HT . The HT contains information
about the past stages, which is used to create predictions. A
two-step approach is used to obtain the HT for the subsequent
timestep:

OT = σ (WO [HT −1,XT] + BO) . (5)

HT = OT ∗ tanh (CT) (6)

where the output gates weight and bias matrices are repre-
sented as WO and BO, respectively.

LSTM Sparse AutoEncoder (LSTMSAE): The SAE is a form
of AE that consist an encoder and a decoder. The SAE use
the input input X to obtain a low-dimensional or latent pattern
X ′

, whereas the decoder use the hidden layer features to
reconstruct the input X . The encoding and decoding formula
is computed as

X ′
= S (W1X + B1) (7)

X̂ = S
(
W2X

′
+ B2

)
(8)

where X̂ is the output reconstruction of X . W1, B1 and
W2 B2 denotes weight matrix and bias vectors of encoding
and decoding layer, respectively. The nonlinear activation
functions, namely ReLU, sigmoid and tanh are denoted by
S(•). The AE model parameters (W1,W2,B1,B2) can be
learnt from a training set by reducing the following objective:{
Ŵ1, Ŵ2, B̂1, B̂2

}
= argmin

W1,W2,B1,B2

{LAE (W,B)}

= argmin
W1,W2,B1,B2

{ 1

2N
N∑
i=1

L
(
Xi, X̂i

)
+

λ

2

2∑
R=1

∥WR∥2F
}

(9)

where N denotes the total training samples and the hidden
layer size is denoted by R for the ith training sample Xi and
its associated reconstruction output X̂i. The error function is
denoted by L(•) and use cross entropy. The term λ improves
the generalization capability of the model and act as a reg-
ularization parameter. The Kullback Leibler (KL) divergence
function is used as the sparse constraint in SAE, which is
a kind of stacked AE. The KL divergence is calculated as
follows:

m∑
J=1

KL (ρ ∥ ρ̂J) =

m∑
J=1

{
(1− ρ) log

1− ρ

1− ρ̂J
+ ρ log

ρ

ρ̂J

}
(10)

where the sparsity parameter is denoted by ρ and for all
training samples in the jth neuron the average activation value
is denoted as ρ̂J . By adding a sparsity penalty term η to the
AE objective function we get SAE and is represented as

LSAE (W1,W2,B1,B2) = LAE (W,B) + η

m∑
J=1

KL (ρ ∥ ρ̂J)

(11)
where ρ is frequently a minimal integer, such as 0.05, to obtain
a sparse representation. In the LSTMSAE model, the LSTM
network is integrated with the SAE, which implies LSTM

handles the encoding and decoding, as illustrated in Fig. 5. By
constraining the latent space to be smaller in dimensionality
than the input, the LSTMSAE is forced to learn the most
important aspects of the training data.

2) Design of MHSA-based BiGRU for Intrusion Detection
System: In order to detect intrusion from the features extracted
by the hidden layer of the LSTMSAE technique, a BiGRU
is adapted as base model. Then, a Multi-Head Self-Attention
(MHSA) mechanism is introduced to capture long IIoT traffic
sequences. Finally, a feed-forward layer with the softmax
function is used to predict the probabilities for each class
present in the dataset. The output of LSTMSAE technique
is sequence of patterns Å, i.e., Å =

[
Å1, Å2, , ÅN

]
. The

ultimate production at time T is decided by the preceding
and next frames at time T − 1 and T + 1, respectively, in a
BiGRU arrangement. To be more specific, one GRU computes
the forward hidden state

−→H1,
−→H2, . . . ,

−−→HN), while the other
computes the backward hidden state

←−H1,
←−H2, . . . ,

←−−HN). The
final BiGRU output is then calculated as a concatenated vector
of forward hidden state outputs and backward processes, where
the −→ and ←− indicates the forward and backward processes,
respectively. The following are the BiGRU transition functions
in hidden units:
−→HT = F

(−→
ÅT ,
−−−→HT −1;

−−−→
ΘGRU

)

=



−→UT = σ
(−→WU •

[−−−→HT −1,
−→
ÅT
]
+
−→BU
)
,

−→RT = σ
(−−→WR •

[−−−→HT −1,
−→
ÅT
]
+
−→BR
)
,

−→CT = tanh
(−→WC •

[−→RT ∗
−−−→HT −1,

−→
ÅT
]
+
−→BC
)
,

−→FT =
(−−−−→
1− UT

)
∗ −−−→HT −1 +

−→UT ∗
−→CT .

(12)

←−HT = F
(←−
ÅT ,
←−−−HT +1;

←−−−
ΘGRU

)

=



←−UT = σ
(←−WU •

[←−−−HT +1,
←−
ÅT
]
+
←−BU
)
,

←−RT = σ
(←−−WR •

[←−−−HT +1,
←−
ÅT
]
+
←−BR
)
,

←−CT = tanh
(←−WC •

[←−RT ∗
←−−−HT +1,

←−
ÅT
]
+
←−BC
)
,

←−FT =
(←−−−−
1− UT

)
∗←−−−HT +1 +

←−UT ∗
←−CT .

(13)

where [•, •] represents connection between two vectors.
−→UT ,−→RT ,

−→CT ,
−→FT and

←−UT ,
←−RT ,

←−CT ,
←−FT , denotes update gate,

reset gate, candidate cell and final state for the forward and
backward process, respectively. The parameters for the forward
and backward phases are

−−−→
ΘGRU and

←−−−
ΘGRU , respectively,

which are shared across all time steps and learnt during model
training. • denotes two matrices multiplied by their elements,
∗ is the dot product operation of matrices.

−→WU ,
−−→WR,

−→WC and←−WU ,
←−−WR,

←−WC denotes parameter matrix from
[−−−→HT −1,

−→
ÅT
]

to
−→UT ,

−→RT
−→CT for forward pass and

[←−−−HT +1,
←−
ÅT
]

to
←−WU ,

←−−WR,
←−WC for backward pass.

−→BU ,
−→BR,

−→BC and
←−BU ,
←−BR,

←−BC
are the bias weights for forward and backward process. σ
and tanh are non-linear activation function of Sigmoid(•) and
Tanh(•). In summary, BiGRU hidden element representation

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

HT represents the concatenation of output produced from
forward and backward methods.

HT =
−→HT ⊕

←−HT (14)

The hidden state representation vector obtained from BiLSTM
layer HA = (H1,H2, . . . ,HT) is then sent to the MHSA
layer. MHSA consist three linear blocks for query, key and
value. Each linear block is made up of M separate linear
layers. Here, M is the total number of heads. The MHSA is
introduced to extract and learn long-term dependency patterns
from the input traffic sequence i.e., HA, that applies linear
transformation and creates Qi, Ki, Vi using ith linear layers.
Where i = [1, 2, . . . ,Z]. where Z denotes total number
of attention heads. The Qi, Ki, Vi are fed into scaled dot
product attention layer. For the ith head, the scaled dot product
attention Ai is as follows:

Ai = Softmax

(
Ki

TQi√
dq

)
Vi (15)

The query vector’s dimension is
√
dq . Using basic concate-

nation, we aggregate the attention output from all of the
heads and input it into the feed-forward layer having softmax
function.

M = Concat (A1,A2,Ai, . . . ,AZ)WO (16)

where Ai is a dq × T dimensional matrix. The final output
attention matrix M from the multi-head attention block will
have Z × dq × T matrix dimensions. Since the Concat(•)
operation is applied to the feature dimension of all the
matrices. Finally, in the last layer of proposed IDS we use
softmax function to identify attack and normal instances. Let
us assume that the MHSA block produces output denoted
as M = (M1,M2, . . . ,MT) using which the softmax
function φ generates network outcome as one-hot encoded C-
dimensional vector y. Then, we can determine the probability
p of a single input M belonging to a particular attack class
(y) using below Eq.

p
(
Ŷc = Yc | M

)
= φ (M)Yc =

expMc∑C
d=1 exp

Md

(C = 1, 2, . . . , c) (17)

In order to compute loss for each prediction at each timestamp
we use C-way cross-entropy loss that gives the probability
across C class labels using below Eq.

LOSS =
1

N
N∑
i=1

C∑
c=1

Yic log
(
Ŷic
)

(18)

where N represents the batch size, C represents the number
of classes, Y and Ŷ , represent the actual and predicted class
labels, respectively.

III. SECURITY ANALYSIS

Security analysis against different attack is discussed in this
section.

1) Message Authentication: The Ts validates a pseudo
identity (SIDDi) of IIoT nodes IDDi over the created mes-
sage M1={SIDDi , TIDDi , CTS1, L2, L3} while authentica-
tion. Thus, adversary cann’t create same message and signature
during a certain time interval.

2) Privacy-Preservation: The IIoT nodes share a message
D⟩⇕∫} = (TIDDi

|| CRTDi
|| RTDi

|| PBDi
) and pseudo

identity SIDDi
= h(IDTs

|| MTs
|| RTDi

), where RTDi

denotes the enrollment timestamp of IIoT devices. Next cer-
tificate is created CRTDi = MTs + h (PBTs || PBDi ||) *
PRTs

(mod q). As a result, knowing the true identification
of IIoT nodes, the attacker must complete this action within
a particular time frame. This procedure guarantees that the
system’s privacy is protected.

3) Replay Attack: The IIoT nodes share a message D⟩⇕∫}
= (TIDDi

|| CRTDi
|| RTDi

|| PBDi
) and pseudo identity

SIDDi= h(IDTs || MTs || RTDi). The Ts validates this mes-
sage with PBDi and RTDi . This entire computation process
prevent against valid message broadcasting to unauthorized
IIoT nodes. from unauthorized IIoT nodes IDDi

and thus this
process prevents from replay attack.

4) Man-in-the-Middle (MitM) Attack: The message created
by the IIoT nodes, i.e., D⟩⇕∫} = D⟩⇕∫} = (TIDDi

|| CRTDi

|| RTDi || PBDi) and pseudo identity SIDDi= h(IDTs ||
MTs || RTDi), where RTDi denotes the enrollment timestamp
of IIoT devices with authorized certificate CRTDi

for the
sent message D⟩⇕∫} . Thus, this process defend against MitM
attacks.

5) Impersonation Attack: To make a impersonation attack,
attacker must generates a message D⟩⇕∫} = (TIDDi

|| CRTDi

|| RTDi || PBDi) and pseudo identity SIDDi= h(IDTs ||MTs

|| RTDi) with authorized certificates CRTDi and timestamp
RTDi

. The exact message, certificates, and timestamp creation
is highly impossible to match. Thus, this computational pro-
cess prevent from an impersonation attack.

IV. PERFORMANCE ANALYSIS

This section evaluates the performance of proposed
blockchain and deep learning framework in DT empowered
IIoT network for security and privacy.

A. Experimental Setup

The simulations are carried on a Tyrone Windows 10 PC,
128 GB RAM and featuring an Intel(R) Xeon(R) Silver
4114 CPU @ 2.20 GHz (2 processors), and a 2 TB hard
disk. Keras API of Tensorflow was used to implement deep
learning approaches and scikit-learn library to implement
machine learning techniques. We used Ganache and Ethereum
to design a private blockchain and implement smart contract.
WEB3 Provider interface of Ethereum was used to connect
both blockchain networks. We deploy an Interplanetary File
System (IPFS) version 0.4.19 to store IIoT transactions. We
extensively experimented on two different network datasets
CICIDS-2017 and ToN-IoT denoted as DM and DN , re-
spectively. To speed up convergence during training, we pre-
processed datasets and performed a feature scaling step men-
tioned in [28], [29]. We divided the dataset into two subgroups

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

(a) Time analysis of registration by
varying IIoT nodes

(b) Upload time analysis by varying
Tx in IPFS-based off-chain storage
layer

(c) PoA based consensus for different
Tx

(d) Time analysis for block creation
by varying Tx

(e) Time analysis for block access by
varying Tx

(f) Time analysis for contract deploy-
ment by varying Tx

(g) Time analysis for non-repudiation
using digital signature creation by
varying Tx

(h) IPFS-based off-chain storage con-
sumption (in KB) for actual data

Fig. 6: Analysis of blockchain scheme

to assess model performance in the train-test-split evaluation.
The first subset, referred to as the ”training dataset,” fitted the
model, while the second, referred to as the ”testing dataset,”
evaluated the model. Finally, the efficiency is proposed IDS
is evaluated using five popular evaluation metrics, namely
ACcuracy (AC), PRecision (PR), Detection Rate (DR), F1
and False Alarm Rate (FAR) as discussed in [34].

B. Numerical Results of Blockchain Scheme

The privacy and security in the proposed framework is main-
tained using IIoT nodes registration and its authentication. The
registration and authentication process is performed against the
malicious behavior of nodes in the network. The analysis of
registration process is shown in Fig. 6a. The actual transactions

0 20 40
Epochs

0.88

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

0 20 40
Epochs

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Training Loss
Validation Loss

Fig. 7: Accuracy vs loss computed with the LSTMSAE method
on the DN dataset

0 20 40
Epochs

0.970

0.975

0.980

0.985

0.990

Ac
cu

ra
cy

Training Accuracy
Validation Accuracy

0 20 40
Epochs

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Lo
ss

Training Loss
Validation Loss

Fig. 8: Accuracy vs loss computed with the LSTMSAE method
on the DM dataset

upload with IPFS storage layer is shown in Fig. 6b. Fig. 6c, Fig
6d, and Fig 6e shows block mining, block creation, and block
access time, respectively. It can be noted from the figures that,
the execution time increases with increase in IIoT nodes in the
network. The Fig. 6f and Fig. 6g illustrates digital signature
and contract deployment time. The digital signature enables
non-repudiation in the entire network. Fig. 6h depicts actual
transaction storage size in KB. The IPFS storage layer is used
to calculate the size of different numbers of transactions. It is
also seen that as the number of transactions grows, the storage
size grows.

C. Numerical Results of Deep Learning Scheme

The results of DL scheme are discussed in this subsection.
Initially, the proposed IDS uses Adam optimizer with 0.0005
learning rate and a mini-batch size of 128 for 50 epochs.
Fig 7 and Fig 8 shows AC vs loss obtained on DN and
DM dataset, respectively. We see that the training and val-
idation AC gradually increases together indicating that the
trained model is not having a variance problem and can be
effectively generalized on the testing dataset. The training
and validation AC of the DN dataset grows progressively
and converges at 99.01% and 99.12%, respectively and also
the loss reduces consistently and converges at 0.0210% and
0.0201%, respectively. Similarly, the training and validation
AC progressively rises and converges at 99.82% and 99.92%,
respectively, while the loss steadily reduces and converges at
0.0291% and 0.0243%, respectively, with the DM dataset.
Table I and Table II report the class-wise experimental results
for each attack and normal classes in terms of PR, DR, F1-
score and FAR using DN and DM datasets, respectively. It

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

TABLE I: Class-wise (%) results for proposed IDS using DN dataset.
Parameters Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS

PR 99.90 97.43 99.96 95.39 89.06 100.00 97.41 99.48 99.51 95.82
DR 99.94 96.81 98.50 95.12 89.78 100.00 98.45 99.70 99.19 99.20
F1 99.41 97.55 98.73 95.75 89.41 100.00 98.71 99.02 99.20 98.41

FAR 0.00013 0.00211 0.00056 0.00201 0.00032 0.00000 0.00019 0.00014 0.00011 0.00232

TABLE II: Class-wise (%) results for proposed IDS using DM dataset
Parameters BENIGN DoS Hulk DDoS PortScan DoS GoldenEye FTPPatator DoS slowloris DoS Slowhttptes SSHPatator Bot Web Attack

PR 98.36 89.52 98.16 87.12 84.22 90.19 97.26 89.25 99.15 99.71 94.23
DR 98.74 99.89 94.50 89.99 95.14 71.43 97.52 96.24 91.41 36.81 02.19
F1 98.13 94.21 95.18 72.89 89.24 82.89 98.72 94.14 95.58 58.82 04.66

FAR 0.0957211 0.008810 0.000714 0.001561 0.000630 0.000021 0.000032 0 0.000014 0.000011 0.00010 0.00001

TABLE III: Comparison of multi-vector DR (%) with other baselines using DN dataset
Techniques Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS

NB 99.22 26.80 91.70 92.96 95.11 100.00 75.32 79.98 96.91 19.02
DT 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00
RF 99.98 90.40 91.97 93.53 0.00 100.00 97.81 99.40 95.74 85.47

Proposed IDS 99.94 96.81 98.50 95.12 89.78 100.00 98.45 99.70 99.19 99.20

TABLE IV: Comparison of multi-vector DR (%) with other baselines using DM dataset
Techniques BENIGN DoS Hulk DDoS PortScan DoS GoldenEye FTPPatator DoS slowloris DoS Slowhttptes SSHPatator Bot Web Attack

RF 100.00 95.00 100.00 97.00 50.00 72.00 0.00 55.00 0.00 0.00 0.00
DT 100.00 90.00 99.00 97.00 66.00 99.00 35.00 0.00 97.00 0.00 0.00
NB 55.00 89.00 98.00 50.00 99.00 100.00 60.00 77.00 97.00 76.00 08.00

Proposed IDS 98.74 99.89 94.50 89.99 95.14 71.43 97.52 96.24 91.41 36.81 02.19

is seen that the proposed IDS has obtained higher numerical
values for these metrics and has lowered FAR close to 0%.

D. Comparative Analysis

The performance of DL-based IDS is compared with three
contemporary ML techniques namely, Nave Bayes (NB), De-
cision Tree (DT) and Random Forest (RF). First, we use class-
wise DR based on DN and DM datasets. It can be observed
in Table III and Table IV the DR is better for most of the
classes compared with other techniques. An efficient IDS has
high values of AC, PR, DR, and F1. The obtained values for
these parameters are shown in Fig 9a and Fig. 9b. It is seen
that the proposed IDS has achieved 99.65%, 99.14%, 94.88%,
95.77% values for above parameters with DN and 99.45%,
88.16%, 79.74%, 83.12% with DM datasets, respectively. The
values are high compared to RF, DT and NB. The ability
of DL model (i.e., integration of LSTMSAE and MHSA-
based BiGRU) to simulate the spatial-temporal representations
inherent in DT empowered IIoT network data can justify
this performance. In addition, the integration of blockchain
in the network has helped in preventing malicious or low-
quality parameters allowing the IDS to be more efficient and
trustworthy than other competitors.

V. CONCLUSION WITH FUTURE DIRECTIONS

In this paper, we introduced a novel digital twin-enabled
IIoT network. We first presented the digital twin empowered
system model for IIoT network that includes IIoT devices,
edge servers, and cloud servers. We developed a blockchain
and deep learning integrated framework in the context of
digital twin empowered IIoT system that provides data privacy
and offers secure data communication. The blockchain features
such as, transparency, decentralization, and immutability ef-
fectively ensure the access control functions dependability and
auditability. We conducted extensive analysis on the Ethereum

(a) Comparison based on DN dataset (b) Comparison based on DM dataset

Fig. 9: Comparison with baseline techniques

test network to illustrate the scalability and effectiveness of
blockchain scheme. Additionally, we incorporated IPFS off-
chain storage system to store encrypted IIoT transactions.
Finally, extensive data-driven simulations using deep learn-
ing architecture show that we can take full advantage of
blockchain scheme to achieve the highest detection rate and
classification accuracy. The future research work will focus on
fine-grained credentials (read, write, execute, delegate, and so
on), as well as privacy-preservation (attribute-based signature
and zero knowledge proof), and the integration of federated
learning in digital twin-enabled networks.

REFERENCES

[1] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-
based deep learning in industrial internet of things,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4329–4341, 2020.

[2] S. Latif, M. Driss, W. Boulila, S. S. Jamal, Z. Idrees, J. Ahmad et al.,
“Deep learning for the industrial internet of things (iiot): A compre-
hensive survey of techniques, implementation frameworks, potential
applications, and future directions,” Sensors, vol. 21, no. 22, p. 7518,
2021.

[3] H. Yao, P. Gao, P. Zhang, J. Wang, C. Jiang, and L. Lu, “Hybrid intrusion
detection system for edge-based iiot relying on machine-learning-aided
detection,” IEEE Network, vol. 33, no. 5, pp. 75–81, 2019.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

[4] G. Falco, C. Caldera, and H. Shrobe, “Iiot cybersecurity risk modeling
for scada systems,” IEEE Internet of Things Journal, vol. 5, no. 6, pp.
4486–4495, 2018.

[5] K. Yu, L. Tan, S. Mumtaz, S. Al-Rubaye, A. Al-Dulaimi, A. K. Bashir,
and F. A. Khan, “Securing critical infrastructures: Deep-learning-based
threat detection in iiot,” IEEE Communications Magazine, vol. 59,
no. 10, pp. 76–82, 2021.

[6] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain,
“Machine learning-based network vulnerability analysis of industrial
internet of things,” IEEE Internet of Things Journal, vol. 6, no. 4, pp.
6822–6834, 2019.

[7] A. R. Javed, S. u. Rehman, M. U. Khan, M. Alazab, and T. R. G,
“Canintelliids: Detecting in-vehicle intrusion attacks on a controller
area network using cnn and attention-based gru,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 2, pp. 1456–1466, 2021.

[8] A. R. Javed, M. Usman, S. U. Rehman, M. U. Khan, and M. S. Haghighi,
“Anomaly detection in automated vehicles using multistage attention-
based convolutional neural network,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 7, pp. 4291–4300, 2021.

[9] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry:
State-of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15,
no. 4, pp. 2405–2415, 2019.

[10] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021.

[11] A. Saad, S. Faddel, T. Youssef, and O. A. Mohammed, “On the imple-
mentation of iot-based digital twin for networked microgrids resiliency
against cyber attacks,” IEEE transactions on smart grid, vol. 11, no. 6,
pp. 5138–5150, 2020.

[12] J. Liu, S. Zhang, H. Liu, and Y. Zhang, “Distributed collaborative
anomaly detection for trusted digital twin vehicular edge networks,” in
International Conference on Wireless Algorithms, Systems, and Appli-
cations. Springer, 2021, pp. 378–389.

[13] M. Groshev, C. Guimarães, J. Martı́n-Pérez, and A. de la Oliva,
“Toward intelligent cyber-physical systems: Digital twin meets artificial
intelligence,” IEEE Communications Magazine, vol. 59, no. 8, pp. 14–
20, 2021.

[14] W. Tärneberg, M. Gunnarsson, M. Kihl, and C. Gehrmann, “A cloud-
native digital twin with adaptive cloud-based control and intrusion
detection,” Electronic Communications of the EASST, vol. 80, 2021.

[15] W. Tärneberg, P. Skarin, C. Gehrmann, and M. Kihl, “Prototyping
intrusion detection in an industrial cloud-native digital twin,” in 2021
22nd IEEE International Conference on Industrial Technology (ICIT),
vol. 1. IEEE, 2021, pp. 749–755.

[16] Q. Qi, D. Zhao, T. W. Liao, and F. Tao, “Modeling of cyber-physical
systems and digital twin based on edge computing, fog computing and
cloud computing towards smart manufacturing,” in International Manu-
facturing Science and Engineering Conference, vol. 51357. American
Society of Mechanical Engineers, 2018, p. V001T05A018.

[17] Q. Qi and F. Tao, “A smart manufacturing service system based on edge
computing, fog computing, and cloud computing,” IEEE Access, vol. 7,
pp. 86 769–86 777, 2019.

[18] H. R. Hasan, K. Salah, R. Jayaraman, M. Omar, I. Yaqoob, S. Pesic,
T. Taylor, and D. Boscovic, “A blockchain-based approach for the
creation of digital twins,” IEEE Access, vol. 8, pp. 34 113–34 126, 2020.

[19] A. Khan, F. Shahid, C. Maple, A. Ahmad, and G. Jeon, “Toward smart
manufacturing using spiral digital twin framework and twinchain,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 2, pp. 1359–1366,
2022.

[20] P. Kumar, R. Kumar, G. Srivastava, G. P. Gupta, R. Tripathi, T. R.
Gadekallu, and N. N. Xiong, “Ppsf: A privacy-preserving and secure
framework using blockchain-based machine-learning for iot-driven smart
cities,” IEEE Transactions on Network Science and Engineering, vol. 8,
no. 3, pp. 2326–2341, 2021.

[21] I. Yaqoob, K. Salah, M. Uddin, R. Jayaraman, M. Omar, and M. Imran,
“Blockchain for digital twins: Recent advances and future research
challenges,” IEEE Network, vol. 34, no. 5, pp. 290–298, 2020.

[22] M. Keshk, B. Turnbull, N. Moustafa, D. Vatsalan, and K.-K. R. Choo,
“A privacy-preserving-framework-based blockchain and deep learning
for protecting smart power networks,” IEEE Transactions on Industrial
Informatics, vol. 16, no. 8, pp. 5110–5118, 2019.

[23] O. Alkadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, “A deep
blockchain framework-enabled collaborative intrusion detection for pro-
tecting iot and cloud networks,” IEEE Internet of Things Journal, vol. 8,
no. 12, pp. 9463–9472, 2020.

[24] Q. N. Tran, B. P. Turnbull, H.-T. Wu, A. de Silva, K. Kormusheva, and
J. Hu, “A survey on privacy-preserving blockchain systems (ppbs) and a

novel ppbs-based framework for smart agriculture,” IEEE Open Journal
of the Computer Society, vol. 2, pp. 72–84, 2021.

[25] O. Alkadi, N. Moustafa, and B. Turnbull, “A collaborative intru-
sion detection system using deep blockchain framework for securing
cloud networks,” in Proceedings of SAI Intelligent Systems Conference.
Springer, 2020, pp. 553–565.

[26] W. Liang, L. Xiao, K. Zhang, M. Tang, D. He, and K.-C. Li, “Data fusion
approach for collaborative anomaly intrusion detection in blockchain-
based systems,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[27] S. Suhail, R. Hussain, R. Jurdak, and C. S. Hong, “Trustworthy digital
twins in the industrial internet of things with blockchain,” IEEE Internet
Computing, pp. 1–1, 2021.

[28] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, and N. Kumar, “P2sf-
iov: A privacy-preservation-based secured framework for internet of
vehicles,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–12, 2021.

[29] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, T. R. Gadekallu, and
G. Srivastava, “Sp2f: a secured privacy-preserving framework for smart
agricultural unmanned aerial vehicles,” Computer Networks, vol. 187, p.
107819, 2021.

[30] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-
based access control for the internet of things,” IEEE Internet of Things
Journal, vol. 6, no. 2, pp. 1594–1605, 2019.

[31] M. Yutaka, Y. Zhang, M. Sasabe, and S. Kasahara, “Using ethereum
blockchain for distributed attribute-based access control in the internet
of things,” in 2019 IEEE Global Communications Conference (GLOBE-
COM), 2019, pp. 1–6.

[32] J. Hao, C. Huang, W. Tang, Y. Zhang, and S. Yuan, “Smart contract-
based access control through off-chain signature and on-chain evalua-
tion,” IEEE Transactions on Circuits and Systems II: Express Briefs, pp.
1–1, 2021.

[33] R. Kumar and R. Tripathi, “Towards design and implementation of
security and privacy framework for internet of medical things (iomt)
by leveraging blockchain and ipfs technology,” The Journal of Super-
computing, pp. 1–40, 2021.

[34] P. Kumar, G. P. Gupta, and R. Tripathi, “Tp2sf: A trustworthy privacy-
preserving secured framework for sustainable smart cities by leveraging
blockchain and machine learning,” Journal of Systems Architecture, vol.
115, p. 101954, 2021.

[35] A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “Ton iot
telemetry dataset: A new generation dataset of iot and iiot for data-driven
intrusion detection systems,” IEEE Access, vol. 8, pp. 165 130–165 150,
2020.

[36] T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and F. T. H.
den Hartog, “Ton˙iot: The role of heterogeneity and the need for
standardization of features and attack types in iot network intrusion
datasets,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[37] I. Ullah and Q. H. Mahmoud, “Design and development of a deep
learning-based model for anomaly detection in iot networks,” IEEE
Access, vol. 9, pp. 103 906–103 926, 2021.

[38] M. M. Hassan, S. Huda, S. Sharmeen, J. Abawajy, and G. Fortino, “An
adaptive trust boundary protection for iiot networks using deep-learning
feature-extraction-based semisupervised model,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 4, pp. 2860–2870, 2020.

[39] F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward edge-
based deep learning in industrial internet of things,” IEEE Internet of
Things Journal, vol. 7, no. 5, pp. 4329–4341, 2020.

[40] M. Eckhart and A. Ekelhart, “Towards security-aware virtual
environments for digital twins,” in Proceedings of the 4th ACM
Workshop on Cyber-Physical System Security, ser. CPSS ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
61–72. [Online]. Available: https://doi.org/10.1145/3198458.3198464

[41] R. Canetti and H. Krawczyk, “Universally composable notions of key
exchange and secure channels,” in International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2002,
pp. 337–351.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

Prabhat Kumar received his Ph.D. degree in In-
formation Technology, National Institute of Tech-
nology Raipur, Raipur, India, under the prestigious
fellowship of Ministry of Human Resource and
Development (MHRD) funded by the Government
of India in 2022. Thereafter, he worked with Indian
Institute of Technology Hyderabad, India as a Post-
Doctoral Researcher under project ”Development of
Indian Telecommunication Security Assurance Re-
quirements for IoT devices”. He is currently working
as Post-Doctoral Researcher with the Department of

Software Engineering, LUT School of Engineering Science, LUT University,
Lappeenranta, Finland. He has many research contributions in the area of
Machine Learning, Deep Learning, Federated Learning, Big Data Analytics,
Cybersecurity, Blockchain, Cloud Computing, Internet of Things and Software
Defined Networking. He has authored or coauthored over 20+ publications
in high-ranked journals and conferences. One of his Ph.D. publication was
recognized as a top cited article by WILEY in 2020-21.

Randhir Kumar received his Ph.D. degree in Infor-
mation Technology, National Institute of Technology
Raipur, Raipur, India in 2021. He is currently work-
ing as Post-Doctoral Researcher with the Depart-
ment of Electrical Engineering, Indian Institute of
Technology Hyderabad, India. He has published his
research article in leading journal and conferences
from IEEE, Elsevier, Springer, and John Wiley. He
has published more than 40 research article in the
reputed journals and conferences. His paper has
been published in some of the high impact factor

journals such as – IEEE Internet of Things, IEEE Transactions on Intelligent
Transportation Systems, IEEE Transactions on Network Science and Engi-
neering, IEEE Transactions on Green Communications and Networking, IEEE
Transactions on Industrial Informatics, IEEE COMSNETs, IEEE ICC, Com-
puter Networks, JPDC, and Transactions on Emerging Telecommunications
Technologies (ETT Wiley). He has qualified UGC-NET in the year of 2018.
He has been awarded as Best Engineer Trainee by Honeywell Technology,
India in the year 2009. His research interest includes cryptographic techniques,
information security, blockchain technology, and web mining. He is also an
IEEE Member.

Abhinav Kumar (Senior Member, IEEE) received
the B.Tech., M.Tech., and Ph.D. degrees in electrical
engineering from the Indian Institute of Technology
Delhi, India, in 2009 and 2013, respectively. From
September to November, 2013, he was a Research
Associate with the Indian Institute of Technology
Delhi. From December 2013 to November 2014, he
was a Postdoctoral Fellow at the University of Wa-
terloo, Canada. Since November 2014, he has been
with the Indian Institute of Technology Hyderabad,
India, where he is currently an Associate Professor.

His research interests include wireless communications and networking.

Antony Franklin (Senior Member, IEEE) is an
associate professor in the Department of Computer
Science and Engineering at the Indian Institute of
Technology Hyderabad (IITH), India. He received
his B.E. in electronics and communication engi-
neering from Madurai Kamaraj University, India,
in 2000, an M.E. in computer science and engi-
neering from Anna University, India, in 2002, and
Ph.D. in computer science and engineering from
the Indian Institute of Technology Madras, India,
in 2010. He was a senior engineer at the DMC

R&D Center, Samsung Electronics, South Korea between 2012 and 2015,
and a research engineer at the Electronics and Telecommunications Research
Institute (ETRI), South Korea between 2010 and 2012. His current research
is on the development of next generation mobile network architectures and
protocols, which includes Cloud Radio Access Networks (C-RAN), Mobile
Edge Computing (MEC), Multi-Radio Aggregation, Internet of Things (IoT),
and SDN/NFV. He has published over 50 articles in refereed international
journals and conferences.

Sahil Garg (S’15, M’18) received the Ph.D. de-
gree from the Thapar Institute of Engineering and
Technology, Patiala, India, in 2018. He is currently
a Research Associate at Resilient Machine Learning
Institute (ReMI) co-located with ÃL’cole de Tech-
nologie SupÃl’rieure (ÃL’TS), MontrÃl’al. Prior to
this, he worked as a Postdoctoral Research Fellow at
ÃL’TS, Montreal and MITACS Researcher at Eric-
sson, Montreal. He has many research contributions
in the area of Machine Learning, Big Data Analytics,
Knowledge Discovery, Cloud Computing, Internet of

Things, Software Defined Networking, and Vehicular Ad-hoc Networks. He
has over 80 publications in high ranked Journals and Conferences, including
50+ top-tier journal papers and 30+ reputed conference articles. He was the
recipient of the prestigious Visvesvaraya PhD fellowship from the Ministry
of Electronics & Information Technology under Government of India (2016-
2018). He has been awarded the 2021 IEEE Systems Journal Best Paper
Award; the 2020 IEEE TCSC Award for Excellence in Scalable Computing
(Early Career Researcher) and the IEEE ICC best paper award in 2018
at Kansas City, Missouri. He is currently a Managing Editor of Springer’s
Humancentric Computing and Information Sciences (HCIS) journal; and an
Associate Editor of IEEE Network Magazine, IEEE Transactions on Intelligent
Transportation Systems, Elsevier’s Applied Soft Computing (ASoC), and
Wiley’s International Journal of Communication Systems. (IJCS).

Satinder Singh is a data science director with REMI
Resilient Machine learning Institute and Director
advanced system with Ultra electronics Communica-
tion. He received a B.Eng from École de Technolo-
gie Supérieur (2003) related to wireless communi-
cations, digital signal processing. At Ultra commu-
nication, his earlier work involved development of
wireless communications hardware and waveforms
for tactical backhaul network presently deployed
with US army TRILOS program. Since taking lead-
ership of REMI, his interests are aligned with AI/ML

development for modern tactical network: situational and spectrum awareness,
development of AI/ML empowered waveforms, AI/ML assisted Auto-PACE,
Ease of Use and end user acceptance of Machine learning algorithms.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2022.3191601

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

