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Abstract—The future mobile communication system is expected to pro-
vide ubiquitous connectivity and unprecedented services over billions
of devices. The unmanned aerial vehicle (UAV), which is prominent in
its flexibility and low cost, emerges as a significant network entity to
realize such ambitious targets. In this work, novel machine learning-
based trajectory design and resource allocation schemes are presented
for a multi-UAV communications system. In the considered system,
the UAVs act as aerial Base Stations (BSs) and provide ubiquitous
coverage. In particular, with the objective to maximize the system utility
over all served users, a joint user association, power allocation and
trajectory design problem is presented. To solve the problem caused
by high dimensionality in state space, we first propose a machine
learning-based strategic resource allocation algorithm which comprises
of reinforcement learning and deep learning to design the optimal policy
of all the UAVs. Then, we also present a multi-agent deep reinforcement
learning scheme for distributed implementation without knowing a priori
knowledge of the dynamic nature of networks. Extensive simulation
studies are conducted and illustrated to evaluate the advantages of the
proposed scheme.

Index Terms—Trajectory design, Resource allocation, Multi-agent rein-
forcement learning, Deep learning, UAV, Drone.

1 INTRODUCTION

1.1 Background and Motivation
The increasing demand for high quality wireless services
urges the future wireless communication system to pro-
vide ubiquitous connectivity and coverage over all kind
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of mobile devices. The diversity of network applications
also poses strict requirements on network capacity, service
latency and energy consumption for trillions of mobile de-
vices. To realize the vision of essentially unlimited access to
wireless data anywhere and anytime for anything, the recent
emerging unmanned aerial vehicle (UAV)-based flying plat-
forms are able to break the limitations of traditional network
infrastructure [1], which urges to rethink the development
of next generation communication systems. The UAV, also
known as drone, has attracted many attentions due to its
prominent in flexibility, easy and low cost deployment [2].
Because of its high flying attitude, the UAV-based platform
can establish the effective Line-of-Sight (LoS) links with
the ground-users (GUs), thus to reduce the energy con-
sumption for reliable connectivity [3]. Therefore, an UAVs-
based flying mobile communication system provides a cost-
and energy-efficient solution with limited territorial cellular
infrastructure for the GUs.

Developing an UAV-enabled wireless communications
system has received attracted a large amount of research
interests. To date, majority of the works have dedicated
on the single UAV two-dimension (2-D) or 3-dimension (3-
D) deployment/placement optimization problems, with the
assumption that UAV can serve as aerial quasi-static base
stations (BS) or relay. Although adding a single UAV into
the cellular network has shown its potential on performance
enhancement, it has limited communications, caching and
computing capability in general, which is not preferred for
mission-critical services and a large number of GUs. Corre-
spondingly, deployment of a swarm of UAVs is motivated.
In the multi-UAV communication system, multiple UAVs
may cooperatively serve the GUs in a large area. Moreover,
different GUs could be served simultaneously with lower
latency and higher throughput, which could address some
throughput- and latency-related problems brought by a
single-UAV system.

On the other hand, current works on the multi-UAV
network usually focus on the proposals of trajectory design
and resource allocations in a static manner considering the
UAVs can act as BSs. In order to provide long-term effec-
tive connectivity and reliable coverage, UAV-based network
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with high mobility needs to be carefully designed and
different UAVs should autonomously work as a team and
their interactions should be explored. Therefore, establish-
ing an efficient, smart and autonomous multi-UAV network
emerges as a research topic with profound importance while
is still under-investigated. Addressing such a topic is typi-
cally challenging. First, due to its high cost and limited com-
munication capability, the mobility/route of different UAVs
should be designed and coordinated with high accuracy
to cover a large area over a long run. Moreover, fairness
is also critical for the UAV network as the UAVs should
move around to ensure the communication coverage. In
addition, the energy consumption issues should be seriously
considered as the UAVs are typically with limited energy
supply and should be recharged from time to time. Last but
not the least, the UAVs are usually deployed to where the
network access is limited to execute mission-critical services.
Certain degree of autonomy or self-organizing is highly
preferred.

To address the aforementioned problems, and develop a
smart and autonomous multi-UAV communication systems,
we propose to leverage deep reinforcement learning (DRL)
framework, which recently demonstrates a potential on
improving the performance of wireless network. Due to
the fact that RL can enable UAVs to choose their policies
for optimizing the objectives without a priori knowledge
of the environment, it is suitable to address the trajectory
control and resource allocation in the multi-UAV wireless
networks. Specifically, we consider that all the UAVs share
the same spectrum to serve the GUs. By focusing on the
downlink of the network, i.e. transmissions from the UAVs
to GUs, the objective of this work is to maximize the system
utility among all the GUs by jointly optimizing the power
allocation, user association, and UAV trajectory in a given
finite period. Addressing the formulated joint optimiza-
tion is challenging, because the transmit power allocation,
user association, and UAV trajectory design optimizations
are actually coupled. Correspondingly, for the formulated
problem, the DRL is able to provide a promising solution
because it can solve the problem of high dimensionality in
state-action space and also handle the time-varying envi-
ronment [4]. The DRL uses Deep Neural Networks (DNNs)
to the decision making process, which can offer significant
performance improvement to many learning problems with
limited or even zero knowledge. Moreover, developing de-
centralized approaches is becoming more needed than ever
due to the complexity of the multi-UAV wireless networks.
Though it can be very challenging to design them, decen-
tralized approaches scale well, as they typically incur little
to no communication and computational overhead while
still performing relatively well. Thus, we also consider the
decentralized feature of multi-UAV system, and propose to
utilize the multi-agent DRL to design a distributed algo-
rithm [5], which enables the way towards an autonomous
UAV communications system.

1.2 Related works

The research on the UAV-based wireless communication
systems have mainly concentrated on the UAV placement
and resource optimization [3]- [19], with the assumptions

that UAV can serve as aerial BSs or aerial relay to support
GUs. For the trajectory design, the altitude of the UAV can
be optimized with or without the horizontal location based
on different considerations and QoS requirements. In [3],
the authors aim to maximize the communication coverage
by optimizing the altitude of the a single UAV wireless net-
work. The authors of [6] utilize stochastic geometry-based
approach to analyze two-tier wireless network consisting of
BSs and aerial BS. General probabilistic LoS and NLoS prop-
agation models are assumed and coverage probability and
spectral efficiency are derived with the consideration of the
height of the aerial BS. In [7], the authors jointly optimize the
altitude of UAVs, the duration of transmission phases and
the antenna configuration to maximize the coverage, under
the assumptions of UAV and ground BS with distributed
access points and multiple antennas.

In contrast, there are several papers working on the
two-dimensional (2-D) trajectory design (e.g. the horizontal
positions) of the UAV by fixing its altitude. To address the
problem of control over a group of UAVs in a long term,
the authors of [8] utilize the deep reinforcement learning to
minimize the energy consumption of the overall network
while maintaining the reliable connectivity. In [10], the au-
thors consider the UAV flies to a given location for certain
mission and it needs reliable communication with BSs at
each time slot. The aim is to minimize the completion time
of the UAV by 2-D trajectory optimization, subject to the
connectivity constraint of BS-UAV link. The authors of [11]
investigate the cooperation of a group of UAVs, and propose
mode selection between UAV-to-infrastructure and UAV-to-
UAV modes for data delivery. Then the resource allocation
and speed optimization are propose to maximize the uplink
data rate. In [12], the authors investigate the UAV-based
secure communication. A two-UAV system is considered
where one is for data transmission and the other one is to
jam the eavesdroppers on the ground. The minimum worst-
case secrecy data rate of the GUs is optimized by designing
UAVs’ trajectories and user scheduling.

As for the 3-D trajectory design, in [13], both periodic
and temporal operation modes are considered for the UAV
system. In each case, the aim is to minimize the duration
of UAV flight or mission completion time. In [14], the
authors propose to maximize the minimum throughput
of all the GUs in order to achieve fair performance. The
route design, power allocation and user scheduling schemes
are presented. The authors of [15] consider UAV provides
services for a group of GUs in a dynamic channel scenario,
and propose a transmit power allocation and 3-D trajectory
design optimization scheme to maximize the minimum
throughput of the group in a given time duration. In [16],
a drone-based small cell placement problem is explored to
maximize the overall system utility. In [17] and [18], by
considering joint optimization of the mobility and location
of the UAVs, transmit power allocation and user association
schemes are presented to improve reliability of the uplink.
The authors of [19] investigate the trajectory design and
resource allocation problem for maximizing the throughput
of a solar powered UAV system over a given time period.

In general, the (deep) multi-agent reinforcement learn-
ing has been explored to address control-related problems
[20]- [23]. There are increasing efforts to investigate the
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potential of multi-agent reinforcement learning (MARL)
on the resource allocations in the wireless communication
system. The authors of [24] utilize the MARL to address the
power allocation problem in D2D communications, while
the MARL-based approach is applied to address computa-
tion offloading and interference coordination in [27]. The
authors explore the MARL on improving the secure perfor-
mance of wireless network in [28]. In addition, the spectrum
access problems in different types of wireless network are
addressed via MARL in [29] and [30]. Recently, MARL-
based schemes have been gradually applied to the UAV
networks [31] [32]. The authors of [31] has utilized the
MARL to present distributed trajectory design of multi-
UAV network. In [32], MARL-based scheme is also applied
for trajectory design when considering a UAV-assisted edge
computing system.

As one can observe, there is a lack of works utilizing
learning-based schemes on the proposal of joint optimiza-
tion of trajectory design, power allocation and user as-
sociation, to effectively and efficiently operate multi-UAV
network. Moreover, there is spare study towards an au-
tonomous multi-UAV communication system, which is of
profoundly importance towards fully utilizing UAVs in the
development of wireless communication system.

1.3 Contribution
In this work, our main target is to utilize collaborative
machine learning, i.e., DRL-based scheme and multi-agent
DRL-based scheme to tackle the problem of power allo-
cation, user association and trajectory design for multi-
UAV communications system. Bearing in mind the above
mentioned works, main contributions of this paper are
summarized in the following.

• A multi-UAV communication system is considered
to serve multiple GUs. A central base controller is
assumed to carry out the learning process. With the
objective to maximize the system utility, the prob-
lem of trajectory design, user association and power
allocation is investigated. To address the problems
related to the high dimensionality in state space,
we first propose a machine learning-based strategic
resource allocation algorithm which comprises of
reinforcement learning and deep learning to explore
the optimal policy of all the UAVs. The proposed
centralized DRL process can be carried out at the
central base and the UAVs are controlled via the
signaling exchange with the base.

• Because the UAV-based network is expected to solve
mission-critical problems in reality, an autonomous
communication system is preferred. Thus, we further
consider a complex scenario and propose to de-
centralize the considered multi-UAV system. In this
setting, no UAVs can observe the underlying Markov
state. Instead, each UAV only obtains a private ob-
servation correlated with that state. The UAVs are
able to utilize dedicated limited-bandwidth channel
to communicate with each other, and are fully coop-
erative and share the goal of maximizing the system
utility. However, due to the partial observability and
limitation of communication channel, the UAVs have

Fig. 1. UAV System Model

to find a communication protocol which is able to
coordinate their behavior and policy.

• Consequently, we propose to utilize the centralized
learning and decentralized execution. A deep multi-
agent reinforcement learning is proposed where the
UAVs are considered as the agents. In the proposed
scheme, learning is performed via the centralized al-
gorithm, while during execution, the UAVs can com-
municate through the dedicated limited-bandwidth
channel and learn the communication protocol.

1.4 Organization
The reminder of this paper is organized as follows. In
Section II, the system model is depicted. Section III present
the problem formulation and we propose the DRL-based
resource allocation and trajectory design algorithms in Sec-
tion IV. In Section V, we conduct the performance evaluation
through simulation study. Section VI concludes this work.

2 SYSTEM MODEL AND ASSUMPTION

2.1 System Model
The system model is depicted in Fig. 1. There are M > 1
UAVs sharing the same frequency spectrum and serving
a group of U > 1 GUs. The UAV swam and GU set are
denoted as M and U , respectively. Apparently, we have
|M| = M and |U| = U . All the UAVs provide services to the
users in consecutive time slots. We denote the time slot as
t, and t ∈ {1, 2, ..., T}. The overall period is denoted as T .
In this work, we consider a 3-D Cartesian coordinate system
where the fixed location of each GU u denoted by horizontal
and vertical coordinates, e.g., φu = [xu, yu]T ∈ R2×1, u ∈ U .
All UAVs are assumed to fly at a fixed altitude dh = H
above ground and the coordinate of UAV m at time t is
denoted by ψm(t) = [xm(t), ym(t)]T ∈ R2×1. We consider
there is a base controller carrying out the proposed learning
process, which can be satellite or BS. In addition, the UAVs
are able to communicate within the swam.

We consider all the UAVs will fly back to the base so the
trajectories should satisfy the following constraint
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ψm(1) = ψm(T ). (1)

In addition, the trajectories of the UAVs are also sub-
jected to certain constraints of speed and distance, which
are

‖ψm(t+ 1)− ψm(t)‖ ≤ Vmax, (2)

‖ψm(t)− ψj(t)‖ ≥ Smin, (3)

where Vmax is the maximum speed of the UAV and Smin is
the minimum inter-UAV distance to avoid certain interfer-
ence or collision. Accordingly, the distance between UAV m
and user u in time slot t is given as

dm,u(t) =
√
H2 + ‖ψm(t)− ψu‖2. (4)

2.2 Path Loss Model

As a flexible flying platform, the UAV is able to establish
a LoS link with the GUs. However, due to the fact that the
changes of practical environment (rural, suburban, urban
etc) are usually unpredictable, the randomness associated
with the LoS and Non-LoS (NLoS) in a certain time should
be taken into consideration when designing the UAV sys-
tem. Accordingly, it is practical to consider the GU connects
with the UAV via a LoS link with certain probability which
we refer as LoS probability. The LoS probability will depend
on the environment, the position of the UAV and GU. One
commonly used expression can be given as

ρlosm,u(t) =
1

1 + ξ1 exp[−ξ2(θm,u(t)− ξ1)]
, (5)

where ξ1 and ξ2 are constant, the value of which the value
depend on the carrier frequency and environment. θm,u(t)
is the elevation angle, and we have

θm,u(t) =
180

π sin(H/dm,u(t))
. (6)

The LoS and NLoS path loss models between the UAV m
and user u is given as

L̂m,u(t) =

{
η1(

4πfcdm,u(t)
c )α, LoS link,

η2(
4πfcdm,u(t)

c )α, NLoS link,
(7)

where η1 and η2 are the excessive coefficients in LoS and
NLoS links, respectively. fc is the carrier frequency, α is the
path loss exponent, and c is the speed of light. Given the
locations of the UAVs and GUs, it is difficult to determine
whether a LoS or NLoS path loss model should be used in
the considered UAV system. Thus, we consider an average
over both the LoS and NLoS links, i.e.,

Lm,u(t) = ρlosm,u(t)η1(
4πfcdm,u(t)

c
)α

+ (1− ρlosm,u(t))η2(
4πfcdm,u(t)

c
)α.

(8)

2.3 Transmission Model

To express the user association between UAVs and GUs, a
binary variable βm,u(t) is defined as the user association
indicator, which is

βm,u(t) =

{
1, if GU u associates with UAV m,
0, otherwise.

(9)

In this work, we assume that one GU can only receive
from one UAV in a given time slot, i.e.

∑M
m=1 βm,u(t) ≤

1. In addition, The transmit power of the UAV m for u is
denoted as pm,u(t) and the channel gain between UAV m
and user u is denoted as hm,u(t). Then, the data rate of GU
u is expressed as

Ru(t) =
M∑
m=1

βm,u(t) log2 (1 + γm,u (t)) , (10)

In (10), due to the fact that multiple UAVs can cause inter-
ference to GU u, γm,u(t) modelled as Signal to Interference
and Noise Ratio (SINR) of the link between m and u, which
is

γm,u(t) =
pm,u(t)hm,u(t)L−1m,u(t)∑M

j=1,j 6=m pj,u(t)hj,u(t)L−1j,u(t) + σ2
, (11)

where σ2 is the noise variance. Note that essentially the
trajectory of the UAVs, transmit power and channel state
are continuous. Then after partitioning and and quantizing
their values into different levels within their ranges, in each
time slot t, the values of these variables can be understood
as discrete counterparts.

3 PROBLEM FORMULATION

3.1 Utility Function

As there are multiple UAVs sharing the same frequency
resources, the transmit power of one UAV may bring ad-
ditional interference to the users served by other UAVs,
which is shown in (11). Moreover, the association factor
and trajectory also affects the data rate of the users, which
can be observed by (4) and (10). Therefore, in the following,
we consider to jointly optimize these three parameters. We
have B = {βm,u(t),∀m,u, t} which is the association policy
between UAVs and GUs, Ψ = {ψm(t),∀m, t} which is tra-
jectory of the UAVs and essentially determines the path loss,
and P = {pm,u(t),∀m,u, t} which is the transmit power
allocation. Based on the analysis, we can define the utility
function Υsys(B,Ψ,B) of the overall multi-UAV system as
follow.

Υsys(P,Ψ,B) = log

(
T∑
t

U∑
u

Ru(t)

)
. (12)

3.2 Problem formation

In order to maximize system utility, in this work, we jointly
optimize transmit power allocation P , trajectory design
Ψ, and user association B. With the above analysis, the
formulated problem P1 can be expressed as follows,
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P1 : max
P,Ψ,B

Υsys(P,Ψ,B), (13)

s.t. C1 : βm,u(t) ∈ {0, 1},

C2 :
M∑
m=1

βm,u(t) ≤ 1

C3 : 0 ≤ pm,u(t) ≤ pmaxm ,

C4 : ψm(1) = ψm(T ),

C5 : Ru(t) ≥ Rminu .

(14)

C1 and C2 are the user association constraints, which
ensure that one GU can only be served by one UAV in a
time slot. The maximum transmit power constraint is given
in C3, which means that the transmit power of the UAV
should be smaller than its maximum power. C4- C5 is to
ensure the minimum data requirement of each GU.

P1 is a non-convex combinatorial integer programming
problem and it is NP-hard. In general, a brute-force-like
scheme can be employed to find the optimal solution with
high computational cost, which however, is infeasible for
a large scale system. In addition, the optimization problem
needs to obtain the complete information of the future in
order to achieve the optimal solution for the next time slot,
which means absence of prior information may degrade
its achievable performance. Therefore, we intend to utilize
the RL-based algorithm to achieve near-optimal solution
without aforementioned prior knowledge.

4 CENTRALIZED DEEP REINFORCEMENT
LEARNING-BASED SOLUTION

In this section, we will utilize the DRL-based algorithm
to address the formulated problem. We first introduce the
basics of DRL, including the defined specific state, action
and reward. Then, the single agent DRL is utilized where the
base controller acts as the agent and control the behaviors
of the UAVs, and we refer the scheme as centralized DRL
(CDRL).

4.1 RL Framework Formulation
The RL problem comprises of a single or multiple agents
and an environment. The agent can take actions based on
a chosen policy to interact with the environment. Briefly,
there are three elements in the RL framework: action a, state
s and reward r. In our considered system, the agent can
be the UAV central base controller or UAV itself, and the
environment consists of all the GUs. The agent chooses an
action at from the action space at time slot t, which decides
trajectory and resource allocation. After applying an action,
the agent receives a reward or punishment from the envi-
ronment. This scheme aims at maximizing the cumulative
received rewards within interactions.

4.2 State, Action and Reward
We define state space, action space and reward of the DRL-
based framework at time slot t of the considered system as
follows. For the considered DRL framework, the decision
will be carried out at the central base controller.

4.2.1 State
As for the centralized scheme, the central base should know
all information about UAVs, e.g., association state, transmit
power and trajectory state. The we define the state at the
time slot t consists of the data rate Rt and battery level
Et. The battery level can decide the transmit power. The Rt
comprises of both the channel state (essentially the location
of UAV ) and the UAV-GU association. Then the state at the
time slot t is

st = [E1
t , R

1
t , ..., E

M
t , R

M
t ]. (15)

4.2.2 Action
In the considered system, the action consists of multiple
parts, i.e., the user association strategy B, power allocation
factors P and the trajectory design Ψ. The action space A
should be the combination of all the possible values of these
factors.

4.2.3 Reward
After executing the chosen action, the agent will obtain a
reward in certain state in each time slot. As shown in (17),
to enforce the agent to take proper action, the definition of
the reward is compulsory. In general, the reward should be
related to the objective function. According to the formu-
lated problem in P1, the objective is to maximize the overall
system utility while the QoS of each GU should be satisfied.
In order to transform the objective function to a reward, we
consider the following points.

• The main objective of P1 is to maximize the overall
system utility. As the target of the RL is to obtain
reward maximization, the defined reward needs to
be positively related to the objective function.

• To meet the QoS requirements of GUs, the loss of
the throughput of the GUs from their required QoS
should decrease the reward.

Accordingly, the immediate reward is defined as

r(st, at) = ϕaΥsys + ϕb
(
Ru (t)−Rminu

)
, (16)

where ϕa and ϕb are the weights of two parts.

4.3 Q-Learning Method

Q-learning is one of the classical RL schemes that records
the Q-value. In the considered system, the base controller
first watches the state st ∈ S and selects an action at ∈ A
at each time slot t according to a stochastic policy π. Then
the base controller transmits control signals to the UAVs,
obtains the reward r(st, at), and transitions to the next state
st+1. Q-learning advocates a value function Q(st, at) that is
the expected cumulative future discounted reward at state
st and chooses action at. Then, each pair of state-action has
a value Q(st, at) for time slot t. For each time slot, the
base controller calculates Q(st, at), the value of which is
considered as a long-term reward and stores it in a Q-table.
Q(st, at) is expressed as:

Q(st, at) = E [r̂t|st, at] , (17)
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Algorithm 1 Q-learning method
1: Initialize Q(s, a)

2: for each episode do
3: Initialize s of each UAV randomly.
4: for each time do
5: Choose an action at from all actions of state st
6: Execute chosen at, observe reward and next state

st+1

7: Q(st, at)← κr(st, at)+κξmaxat+1
Q(st+1, at+1)+

(1− κ)Q(st, at)
8: Let st ← st+1.
9: end for

10: end for

where r̂t =
∑T
t ξr(st, at). We define $ as the discount

parameter and 0 ≤ $ ≤ 1. Note that if $ tends to 0,
the base controller mainly takes the immediate reward into
consideration and if $ tends to 1, the future is the focus
of the base controller. In each step, the value of Q(st, at) is
iterated. When the optimal policy π(st) = maxat Q(st, at)
that maps the state and action is satisfied, the optimal
action-value function Q∗(st, at) is achieved. It obeys the
Bellman optimality equation:

Q∗(st, at) = r(st, at) + ξmax
at+1

Q∗((st+1, at+1)|st, at), (18)

where at+1 and st+1 are the action and state of the next
time slot, respectively. With a defined learning rate κ, the
procedure of Q-learning scheme in shown in Algorithm 1,
where ξ is the time-varying learning rate.

4.4 Proposed Centralized DRL Solution

Although simply advocating Q-learning may obtain the
solution of P1, it is not ideal. When using Q-learning, we
need to obtain and store its corresponding Q-value in a
Q-table for each state-action group as presented. However,
in the considered UAV system, due to its mobility feature,
there is a very high possibility that a thousands of states
exist. Then, if all the values are stored, the matrix of Q-table
would be very large. Then it can be difficult to get enough
samples to traverse each state, which results in the failures
of the algorithm. Therefore, instead of calculating Q-value
for each pair, a DNN is used here to estimate Q(s, a) which
is the main idea of Deep Q-Network (DQN).

DQN uses a neural network (NN) Q(s, a; θ) to represent
Q-function, where θ is the weights of the NN. By updating
θ at each iteration, the Q-network is trained to approximate
the real Q-values. When it is applied to Q-learning, NN
improve the performance of flexibility at the cost of stability
[4]. In this context, DNN is proven to be with a more ro-
bust learning scheme and it has three major improvements
comparing with the Q-learning.

The first one is that DNN is with multiple layer. The
hierarchical layers of convolution filters in the DNN can be
used to exploit the local spatial correlations. By such, the
high-level features of input data are extracted. The second
one is that experience replay can store its experience tuple
e(t) = (st, at, rt, st+1) at time slot t into a replay memoryO.
The relay can randomly sample batches Ô from the memory

Fig. 2. Flow of the proposed DQN-based scheme

to train the DNN. Such a process enables DQN to learn from
different past experience rather than from the current one.
In addition, while using one network for estimating the Q-
values, the target Q-values that compute the loss of each
action in the training process can be generated by a second
network. Such a procedure is able to make the DQN stable.

As presented, DQN uses NN with parameter θ to repre-
sent Q(st, at) in each iteration. θ and policy π are updated
according to the mini-batch of Ô which is taken from
experience memory O to train the DQN in a online manner.
DQNs are optimized by minimizing

L(θ) = E[yt −Q(st, at; θ)
2] (19)

where yt is the target Q-value, and it is given as

yt = r(st, at) + max
at+1

Q∗(st+1, at+1; θ−). (20)

In (20), θ− is a target network parameter that is frozen
for some iterations when the online network −Q(s, a; θ) is
updated by gradient descent. Specially, the base controller
chooses at at time slot t according to ((18)), obtains reward
rt and goes to the next state st+1. Accordingly, the base
controller has a experience replay memory O to store the
vector (st, at, rt, st+1). We can utilize the greedy policy
in order to balance the exploration and exploitation. That
is, we aim to balance the reward maximization based on
the known information with choosing new actions to get
unknown information. Algorithm 2 presents the process and
the flow is shown in Fig. 2.

5 MULTI-AGENT DEEP REINFORCEMENT
LEARNING-BASED SOLUTION

The proposed CDRL-based scheme assumes that the UAV
base actually performs the learning process and coordinate
the actions of the entire UAV swam. However, on the way
towards a smart UAV system, it is expected that the UAVs
can be autonomous at a certain level. Thus, in the follow-
ing, we focus on a setting with centralized learning but
distributed execution towards establishing an autonomous
UAV wireless communication system. Before we introduce
the proposed scheme, some preliminaries are presented.
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Algorithm 2 DQN-based online method
1: Initialize replay memory O
2: Initialize parameter of the DNN θ with random weights

3: for each episode do
4: Initialize the considered wireless UAV network
5: Receive the initial observation on the state s1.
6: for each time slot t do
7: Randomly select an action at with probability ε,

otherwise, select at = arg maxaQ(x, a; θ).
8: Execute chosen at, observe reward and st+1

9: Store (st, at; rt, st+1) in replay memory O
10: Sample a random batch of Z vectors (si, ai; ri, si+1)

from O
11: Obtain the target Q-value yi from the target DQN,

as follows,

yi = ri + ξmax
al+1

Q(si+1, arg max
a′

Q(si+1, a
′
, θ), θ−)

12: Update the main DQN by minimizing the loss
function L(θ),

L(θ) =
1

Z

∑
i

(yi −Q(si, ai, θ))
2).

13: Perform a gradient descent step on L(θ) with re-
spect to θ.

14: end for
15: end for
16: Output: the optimal resource allocation policy, i.e., the

user association strategy B, trajectory design Ψ, and
power allocation P

5.1 Preliminary

5.1.1 Independent DQN
The single agent DQN can be extended to multi-agent
cooperative settings. In this setting, the global state st can
be observed by the agents. Then, the each agent chooses
an individual action amt and obtains a group reward rt
which is shared among all the agents. A platform combining
independent Q-learning with DQN has been proposed . In
this framework, each agent m learns its own Q-function
Qm(s, am; θmi ) independently and simultaneously. In [33],
it is shown that there may be some convergence prob-
lems in independent Q-learning (since individual learning
may result in non-stationary environment for the others).
Nevertheless, it has been successfully applied to practical
problems [33].

5.1.2 Deep Recurrent Q-Networks (DRQN)
For both DQN and independent DQN, it is assumed full
observability, i.e., the global state st is the input. However,
in practice, the dynamic environments are usually partially
observable, i.e., the global state st cannot be observed.
Instead, each of the agents can only obtain an observation
ot which is correlated with global state. In [34], the DRQN
is proposed to address single-agent and partially observable
case. In this work, instead of obtaining Q(s, a) with a feed-
forward network, Q(o, a) is approximated with a recurrent

NN that maintains an internal state and aggregates all the
personal observations over some time slots. This is done by
adding a hidden state ht−1 as the input, and it results in
Q(ot, ht−1, at; θ).

5.2 Assumption
In this case, we turn to investigate the formulated problem
with different UAVs as multiple agents and partial observ-
ability is considered. The objective of maximizing the same
discounted group rewards r(t) are shared among all the
UAVs. Although the global state st is not observable to the
UAVs, each UAV m has its own observation omt . In each
time slot, each UAV selects an action am ∈ A that has
impact on the environment and a communication action
ςm ∈ Ω that is observed by other UAVs but does not
directly affect the environment/reward. Such settings are of
interests because usually in the multi-UAV system, partial
observability is a practical case. We concentrate on the case
with centralized learning and decentralized execution. This
is to say, communications between UAVs and base controller
is not limited during centralized learning while during
execution the UAVs can communicate only via a dedicated
signaling channel with limited-bandwidth. Then, during
decentralized execution, each UAV uses its own copy of the
learned network, evolving its own hidden state, selecting its
own actions, and communicating with others only through
the communication channel.

Towards an self-organized and autonomous system in a
dynamic environment, the UAV must develop and agree on
a communication protocol as the environment can change
fast and the configured communication protocol may not
work effectively .

Intuitively, the space dimension of communication pro-
tocols is extremely high, since they are the mappings from
the histories of observation-action to sequences of communi-
cation signals over number of UAVs. Therefore, discovering
an effective protocol is challenging. In addition, due to
the UAVs’ requirement of coordinating the transmission
and decoding of communication messages, exploring within
this space becomes more difficult. For example, if a UAV
transmits something useful to another UAV, it can obtain
a positive reward only when receiving UAV successfully
decodes and takes action accordingly. If the receiving UAV
cannot decode the message correctly, the sending UAV will
be hindered from transmitting again. Therefore, positive
rewards can be achieved iff transmitting and decoding are
successful, which is difficult to be achieved via a random
search.

5.3 Proposed decentralized solution
In this following, we propose the reinforced inter-UAV
learning which combines independent Q-learning with
DRQN to select environment and communications actions.
Each UAV’s Q-network is denoted as Qm(omt , ς

m
t−1, h

m
t , a

m),
which conditions on that UAV’s individual hidden state
and observation. To avoid |Ω||A| outputs, we divide the
Q-network into Qma for the environment action and Qmς
for the communication action, respectively. By utilizing ε-
greedy policy, the action selector separately picks am(t) and
ςm(t) from Qa and Qς , respectively. Correspondingly, only
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Fig. 3. The proposed reinforced inter-agent learning scheme

|Ω|+|A| outputs are required for the network and the action
selection requires maximizing overA and Ω, but not Ω×A.

We use modified DQN to train Qma and Qmς . The fol-
lowing two essential modifications are made to the DQN
to guarantee the performance. First, as multiple UAVs’ si-
multaneous learning can mislead the experience and render
it obsolete, the experience replay is disabled to avoid non-
stationarity. Second, to take into consideration of the partial
observability, the actions a and ς of each UAV are feed in
as the inputs of the next time slot. In Fig. 3, the informa-
tion flows between UAVs and the network are presented
together with how the action selector can process the Q-
values to find proper actions. As shown, in order to choose
environment action am and communication action ςm, all
Q-values are passed to the action selector. For the selected
actions, the gradients (red arrows in the figure) are calcu-
lated using DQN, and flow only through one single UAV’s
Q-network. Although the considered setting allows a cen-
tralized learning, as the each UAV is treated independently,
the overall process is not a centralized learning procedure.
In addition, all the UAVs are equally treated during the
proposed decentralized execution process.

The proposed scheme can be extended to improve the
centralized learning by parameter sharing among the UAVs.
Such an extension only needs to learn one network and then
used by all UAVs. However, because each UAV still has
different observation, the UAVs can still behave differently
and thus go to different hidden states. Moreover, each
UAV obtains own index as input which allows them to
specialize. The DQN is able to ease the learning process
of a common policy while permitting the specialization.
Sharing the parameters among all the UAVs also signifi-
cantly decreases the amount of parameters that needs to
be learned, which can also hasten the speed of learning.
By sharing the parameters, the UAVs learn two Q-functions
Qa(omt , ς

m′

t−1, h
m
t−1, a

m
t−1, ς

m′

t ,m, amt ) and Qς()̇, for a and ς ,
respectively, where amt−1 and ςmt−1 are the last action inputs
and ςm

′

t are messages from other UAVs. During the exe-
cution process, each UAV uses own copy of the learned
network, chooses own actions, evolves into own hidden
state, and communicates with the others via the signalling
channel.

6 SIMULATION RESULTS AND DISCUSSIONS

In this section, simulations are conducted to verify the
advantages of the proposed single agent (CDRL) and multi-

TABLE 1
Key Simulation Parameters

Notations Description Value
fc carrier frequency 2 GHz
α Path loss exponent 2
M number of the UAVs 2− 9
U number of the GUs 10− 50
$ learning rate 0.01
ξ Discount factor 0.8
η1 excessive coefficient for LoS 3 dB
η2 excessive coefficient for NLoS 23 dB
Pmax
m maximum transmit power 23 dBm

Fig. 4. Locations of UAVs and GUs in a 3-D snapshot

agent DRL-based (MADRL) resource allocation schemes for
multi-UAV networks. The setup of whole networks are
mainly based on the parameters in [16], [25]. Some of the
key notations for communications can be found Table 1. The
initial locations of the UAVs are randomized. The maximum
transmit power of each UAV is the same. Based on this
setting, the system utility, 3-D trajectory design and UAV-
GU association are analyzed.

The 3-D and 2-D snapshots of the UAVs’ locations and
their associated GUs resulting from the proposed scheme
are presented in Figs. 4 and 5. In both figures, 50 GUs are
uniformly located and 9 UAVs are deployed to provide
services. In Fig. 5, the 2D locations of UAV are marked in
number. In this case, all GUs are able to connected with
the UAVs and receive data from the associated UAVs by
using the proposed scheme. The 3-D locations/trajectory of
the UAVs and the UAV-GU association results are obtained
based on the locations of the GUs and its minimum data
rate requirement.

In Fig. 6, the optimized trajectories of the UAVs are
illustrated. In Fig. 6a, we plot the trajectory of four UAVs
by using the proposed MADRL scheme, while in Fig. 6b,
the trajectory of one UAV is obtained by using the proposed
CDRL scheme. It is observed that for the case of four UAVs,
most of the users can be served by the UAVs. However,
due to the limited battery capability, there are still some of
users cannot be served by the UAVs. It can also be found
that four UAVs can cooperate with each others through the
proposed multi-agent learning scheme, and the users can be
associated with individual UAV accordingly. As for the case
of single UAV, due to the limited battery capability, the UAV
has to come back after serving some of the users. Thus, only
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Fig. 5. Association of UAVs and GUs in a 2D snapshot

some of the users can be associated with the UAV.
In Fig. 7, we present the total utility versus the number of

episodes with different number of UAVs when considering
MADRL. As shown in the figure, our presented scheme
shows a fast convergence speed for all of the cases. Besides,
increasing the number of UAVs can lead to the increase of
system utility. In Fig. 8, we present the total utility versus the
number of episodes with different number of UAVs when
considering CDRL. We can obtain similar performance as
presented in Fig. 7. Nevertheless, for CDRL, when the
number of UAVs becomes larger, it takes a bit longer time to
converge. This may due to the fact that the CDRL needs to
collect relative information in a centralized manner, which
cost more time.

In Fig. 9 and in Fig. 10, we compare the throughput
and utility performance of traditional Q-learning scheme,
the proposed CDRL and the proposed MADRL. As we can
observe from Fig. 9, as the number of UAVs increases, the
total throughput of all these three schemes become larger.
This is mainly due to the fact that the increase of the
number of UAVs results in a better service coverage, and
can provide better data services to the GUs. Similar situation
can be observed from Fig. 10 when we investigate the utility
performance. In addition, we can also find that both of
the proposed schemes outperform the traditional Q-learning
scheme, the centralized scheme obtain the best performance.
This is mainly due to the fact that when the central controller
can obtain all the relevant information, such as CSI and
position of UAV, it can carry out more accurate decision
via deep learning schemes. Nevertheless, the MADRL has
a close performance to the CDRL, which demonstrates its
effectiveness.

We have compared the proposed CDRL with two
commonly-used baseline methods, "Benchmark" and
"TRRA". The "Benchmark" is the random UAV deployment
scheme where the whole area is equally separated to a
number of parts according to the number of UAVs. Then
each UAV has its responded area, and then randomly flies
within each area and serve the GUs. The "TRRA" refers
to the traditional RRA scheme, where the power allocation
is according to the waterfilling scheme and the association
ignores the minimum data requirement. From Fig. 11, it is
found that the system utilities of all three schemes increase

with the number of UAVs. This is due to the fact that a larger
number of UAVs can ensure more GUs being served with
required data rate. Moreover, when the number of UAVs is
sufficiently large, it turns out that there are less GUs who
cannot be served and the increase of system utility becomes
slow. It can also be observed the proposed scheme can
obtain the best performance among all three, which shows
the importance of adopting DRL and the development of
power allocation and UAV association schemes.

7 CONCLUSION

In this work, to establish a smart and autonomous multi-
UAV wireless communication system, novel DRL-based
trajectory design and resource allocation schemes are pre-
sented. In the considered system, the UAVs act as aerial
Base Stations and provide ubiquitous coverages. Specifi-
cally, aiming at maximizing the defined system utility over
all served GUs, a joint design of trajectory, user association
and power allocation problem is presented. To address the
formulated problem, we first propose a machine learning-
based algorithm which comprises of reinforcement learn-
ing and deep learning to learn the optimal policy of all
the UAVs. Then, we also present a multi-agent deep rein-
forcement learning scheme for decentralized implementa-
tion without knowing a priori knowledge of the dynamics
of networks. Extensive simulation studies are conducted
to demonstrate advantages of the proposed schemes are
demonstrated. Future work is to improve the multi-UAV
system performance via energy efficiency and delay opti-
mization in the proposed framework.
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