1880

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

CPU Scheduling in Data Centers Using
Asynchronous Finite-Time Distributed
Coordination Mechanisms

Andreas Grammenos ““, Themistoklis Charalambous

Abstract—We propose an asynchronous iterative scheme that
allows a set of interconnected nodes to distributively reach an agree-
ment within a pre-specified bound in a finite number of steps. While
this scheme could be adopted in a wide variety of applications, we
discuss it within the context of task scheduling for data centers. In
this context, the algorithm is guaranteed to approximately converge
to the optimal scheduling plan, given the available resources, in a
finite number of steps. Furthermore, by being asynchronous, the
proposed scheme is able to take into account the uncertainty that
can be introduced from straggler nodes or communication issues
in the form of latency variability while still converging to the tar-
get objective. In addition, by using extensive empirical evaluation
through simulations we show that the proposed method exhibits
state-of-the-art performance.

Index Terms—CPU, distributed coordination, finite-time

termination, optimization, ratio consensus, scheduling.

I. INTRODUCTION

LOUD computing provides software and hardware re-
C sources on demand via the Internet and has become the
predominant model for application deployment. The backbone
of modern Cloud infrastructure consists of a network of data
centers, each equipped with thousands of server machines, run-
ning diverse application workloads, supporting uncoordinated
and heterogeneous users and their applications [1]. Data center
resource management is the fundamental task of allocating
resources (e.g., CPU, memory, network bandwidth, and disk
space) to workloads such that their performance objectives are
satisfied and the overall data center utilization is kept high [2].
Notably, even slight deviations from the desired objectives can
have substantial detrimental effects with millions of dollars in
revenue potentially lost [3]. Therefore, scheduling in data centers

Manuscript received 6 January 2022; revised 6 November 2022; accepted 1
January 2023. Date of publication 11 January 2023; date of current version 16
June 2023. Recommended for acceptance by Chi Harold Liu. (Corresponding
author: Themistoklis Charalambous.)

Andreas Grammenos is with the Department of Computer Science and Tech-
nology, University of Cambridge, Cambridge CB2 1TN, U.K., and also with
Alan Turing Institute, London NW1 2DB, U.K. (e-mail: ag926 @cl.cam.ac.uk).

Themistoklis Charalambous is with the Department Electrical and Com-
puter Engineering, School of Engineering, University of Cyprus, 1678 Nicosia,
Cyprus, and also with the Department of Electrical Engineering and Automa-
tion, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland
(e-mail: themistoklis.charalambous @aalto.fi).

Evangelia Kalyvianaki is with the Department of Computer Science and
Technology, University of Cambridge, Cambridge CB2 1TN, U.K. (e-mail:
ek264 @cl.cam.ac.uk).

Digital Object Identifier 10.1109/TNSE.2023.3236214

, Senior Member;, IEEE, and Evangelia Kalyvianaki

is the most fundamental operation responsible for allocating
resources to workloads while satisfying their performance re-
quirements [4]. In doing so, scheduling aims to find the best
placement of jobs within the available compute nodes that
maximizes the overall utilization of resources and which can
ultimately lead to a massive reduction in operational and capital
costs.

More formally, scheduling can be viewed as an optimization
problem in which workloads are allocated to server machines
such that a performance goal is optimized while all constraints
are satisfied [5], [6]. In this paper, we focus on minimizing
the sum of CPU utilization across servers. In other words, the
workload should be shared proportionally across servers based
on their hardware, such that they all use the minimum percentage
of their capacity and essentially the total workload at each server
node is balanced and proportional to its available resources.
The main reason for this formulation is to avoid overloading
specific servers and so to efficiently serve workloads. Solving
a scheduling optimization problem in such a large-scale sys-
tem in a centralized fashion is challenging due to the size of
the network and the dynamic nature of resource requirements
of incoming and existing workloads. In general, centralized
approaches in multi-component systems require the collection
of measurements or other information to a central location
(at possibly high communication and computational cost), the
computation of quantities of interest at this central location,
and then the dissemination of these quantities to (a subset of)
the components. This approach, as it is the case in Clouds, is
often inefficient. This is because centralised approaches focus
the entire load towards a single node. This can not only be
a point of failure, but also create congestion in the network
causing often causing delays and spikes in response times [4],
[71, [8]. Cooperative distributed coordination algorithms have
therefore received tremendous attention, especially during the
last two decades. Several diverse research communities (e.g.,
biology, physics, control, communication and computer science)
have made several contributions that have resulted in many
recent advances in so called consensus-based approaches (see,
for example, [9]) and in distributed computation of functions
of geographically dispersed data, also known as in-network
computation (see, for example, [10] and references therein).
Classical approaches in distributed coordination algorithms
typically assume timely and reliable exchange of information
between neighboring components of a given multi-component

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2525-5101
https://orcid.org/0000-0003-4800-6738
mailto:ag926@cl.cam.ac.uk
mailto:themistoklis.charalambous@aalto.fi
mailto:ek264@cl.cam.ac.uk

GRAMMENOS et al.: CPU SCHEDULING IN DATA CENTERS USING ASYNCHRONOUS FINITE-TIME DISTRIBUTED COORDINATION MECHANISMS

system. These assumptions are not necessarily valid in practical
settings due to varying delays that might affect transmissions
at different times, as well as possible changes in the underly-
ing interconnection topology (e.g., due to unexpected cluster
changes as nodes randomly fail and/or abnormal runtime be-
haviors due to software or configuration faults and resource
contention) [1], [11]. In this work, we propose a distributed
coordination protocol to overcome these limitations. To this end,
we posit a novel scheme that takes in account these potential
latency variations in the form of explicit delays in the com-
munication links during planning, while still remaining asyn-
chronous in its operation and we guarantee that it will converge in
finite-time.

A. Contributions

For the context of this work, we formulate the CPU scheduling
as a distributed optimization problem and solve it using dis-
tributed coordination mechanisms. More concretely, the contri-
butions of the paper are as follows.

¢ First, using existing theory from optimization, we provide

the closed form solution, which requires the knowledge of
global parameters, such as, the total capacity of the network
and the total incoming workload.

e Second, it is shown that the problem can be solved in a

distributed fashion.

® When the updates of the nodes are synchronous, we adopt a

mechanism which uses a well-known consensus algorithm
(namely, ratio consensus) proposed in [12], with which an
approximate solution is reached in a finite number of steps.
® When the updates of the nodes are asynchronous, we
adopt a mechanism, of similar flavor to the one proposed
in [13], in which finite-time average consensus is achieved
in the presence of bounded time-varying delays. More
specifically, our proposed algorithm allows the nodes to
distributively compute the optimal value to within an error
bound in a finite number of steps. The methodology builds
upon (i) robustified ratio consensus [14], [15], a distributed
iterative algorithm in which each node maintains two state
variables where the ratio of the states converges asymptot-
ically to a constant that is equal for all the nodes, and (ii)
asynchronous max —consensus algorithm [16].

¢ Finally, numerical examples and evaluations show the ef-

ficacy of the proposed solutions.

The main benefit of our approach is that the global opti-
mization problem is decomposed into local objectives and the
problem is then solved in a distributed manner via our proposed
distributed coordination mechanisms, which provide a way for
the nodes to terminate iterations simultaneously, while ensur-
ing at the same time that the worst-case error lies within the
pre-specified bound. These properties make these mechanisms
suitable for applications in which (repeated) optimization prob-
lems have to be solved fast and in a finite number of steps.
Moreover, contrary to methods such as ADMM our scheme
requires significantly less resources for its computation to reach
similar objectives as can be seen from the results put forth in

1881

recent studies [17], [18]. This property can be particularly use-
ful as most scheduling operations assume minimal processing
latency to reach a solution for the optimal placement of tasks.
To the best of our knowledge, this is the first algorithm with
finite-time termination guarantees that can handle delays and
provide asynchronous consensus.

B. Related Work

1) Data Center Scheduling: Centralized data center sched-
ulers such as [19], [20], [21], [22], [23], [24], as well as
the well known centralized approaches of Google’s Borg and
Kubernetes [25] and Microsoft’s Resource Central [2], are
able to provide optimized scheduling decisions under spe-
cific constraints and goals. More recently, there have been
some centralized schedulers that tackle utilisation optimiza-
tion focusing on energy efficiency [26], [27], [28]. However,
they require continuous transferring of resource information at
the centralized scheduler which increases data center network
traffic. Furthermore, centralized schedulers typically lack of
large-scale scalability and they can be a single point of fail-
ure. In contrast, our distributed approach requires each node
to send its estimated utilization to its out-neighbors only re-
ducing therefore the total amount of information sent and
uses the most up-to-date resource estimates for more accurate
scheduling.

Popular decentralized schedulers such as [4], [7], [8], [29],
[30], as well as the most recent primary autoscaler that Google
uses on its internal cloud [31], aim to tackle data center scalabil-
ity by allowing different scheduling decisions to occur in parallel
by multiple schedulers. Such approaches span a wide spectrum
of schedulers’ coordination—from schedulers operating inde-
pendently from each other (e.g., [8]) to schedulers sharing some
global resource information (e.g., [4], [29])—and they also differ
in the way they detect and resolve conflicts in the allocation
of shared resources. We remark that, while these solutions
exhibit good empirical performance, lack formal guarantees and
largely work by using heuristics [32]. Unfortunately, this can
be problematic when volatile or unpredictable workloads are
encountered [8]. Additionally, state sharing can be problematic
in case of delays as such schedulers attempt to globally infer
the state of the cluster and normally are not able to tolerate
delays. This in turn can lead to suboptimal performance [33].
In contrast in our distributed approach all nodes/schedulers
coordinate asynchronously by design to find optimal allocations
at scheduling time without facing any conflicts.

Multi-resource allocation of tasks to data center nodes is
known to be a APX-Hard [21]. Most scheduling approaches
employ heuristics to solve the problem in reasonable time-
frames [4], [21], [22], [34]. Fewer approaches tackle the prob-
lem using appropriate centralized solvers (e.g., IBM’s CPLEX
in [22]) albeit for small problem sizes compared to today’s data
center sizes of thousands of nodes. Such approaches highly
depend on the compute and memory capacity of the centralized
solver to handle hundreds of thousands of constraints typically
present in such problem formulations.

1882

Our approach is to formulate the problem of CPU task
scheduling in data centers as a distributed optimization one to
solve it using distributed coordination mechanisms. An approx-
imate (not accurate) solution can be computed in a finite number
of steps and is guaranteed to complete while exhibiting graceful
scaling. These properties enable its application to data center
sized scheduling problems containing even tens of thousands of
participating nodes.

2) Distributed Finite-Time Average Consensus: A distrib-
uted system or network consists of a set of components (nodes)
that can share information via connection links (edges), forming
a directed interconnection topology (directed graph). In general,
the objective of a consensus problem is to have all agents agree
upon a certain (a priori unknown) quantity of interest that is
typically a function of some values that the nodes initially
posses. When the agents (asymptotically) reach an agreement
to the same value, we say that the distributed system (asymp-
totically) reaches consensus. Such problems include network
coordination problems involving self-organization, formation of
patterns, parallel processing, and distributed optimization. The
problem of convergence of discrete-time consensus algorithms
was initially targeted by Tsitsikis et al. [35] and subsequently by
many other researchers (see, for example, [36], [37], [38], [39],
[40], [41]). Convergence of consensus algorithms can usually be
established under relatively weak requirements. Common chal-
lenges include the handling of node failures, transmission delays
on the transfer of data between agents, packet losses in wireless
communication networks, and inaccurate sensor measurements.
As a result, it is imperative to address agreement problems that
consider networks of dynamical agents, possibly with directed
information flow, under delays and/or changing topologies. One
of the most well known consensus problems is the so-called
average consensus problem in which agents aim to reach the
average of their initial values (see, for example, [42], [43]).
This work is based on synchronous and asynchronous finite-time
average consensus algorithms. There have been several works
on synchronous finite-time average consensus algorithms due
to their use i) in resource-constrained applications (such as
wireless sensor networks) since they save energy and compu-
tational resources, and ii) in applications in which the result
of the consensus algorithm is used in real-time to perform other
subsequent tasks (such as smart energy networks). Nevertheless,
there have not been any works for the asynchronous case when
consensus is achieved in a finite number of steps.

The model of asynchrony considered herein allows for
heterogeneous, but bounded computation and communication
delays, thus quantifying the degree of asynchrony by a bound on
the time-delays. It is highlighted that the nodes are not required
to know the bound for the execution of the algorithm. Finite-time
average consensus in the presence of delays in directed graphs
has been studied mainly by [44] for exact average consensus
and more recently by [45] for approximate average consensus.
Moreover, the bound provided has linear dependency to the
maximum delay within the network multiplied with its diameter.
This is a powerful result, as not only allows its applicability
in traditional data centers where consensus can be achieved
quickly but also in delay tolerant networks. This particular

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

category includes numerous types of networks with some
notable examples being collaborative autonomous agents,
mobile phones, IoT clusters, and others.

C. Organization

The remainder of the paper is organized as follows. In Sec-
tion II, we give the necessary notation and describe the model of
the system. In Section III, we provide the necessary background
knowledge needed for the development of our results. In Sec-
tion IV, we first provide the problem under consideration and
then we modify it so that it is formulated as a distributed coordi-
nation. Next, in Sections V and VI we propose a synchronous and
an asynchronous finite-time distributed algorithm, respectively,
that solve the problem approximately. In Section VII, we demon-
strate the efficacy of our proposed algorithms. In Section VIII,
we provide a quantitative discussion of the contributions herein
and discuss our findings. In Section IX we draw conclusions and
discuss possible directions for future work.

II. NOTATION AND SYSTEM MODEL
A. Notational Conventions

The set of real (integer) numbers is denoted by R (Z) and
the set of non-negative real (integer) numbers is denoted by R ;-
(Z.4). Vectors are denoted by small letters whereas matrices are
denoted by capital letters. A7 denotes the transpose of matrix A.
The i™ component of a vector x is denoted by x;. For A € R"*",
a;; denotes the entry in row 4 and column j.

In multi-component systems with fixed communication links
(edges), the exchange of information between components
(nodes) can be conveniently captured by a graph G(V, £) of order
n (n > 2), where V = {vy,va,...,v,} is the set of nodes and
&€ CV x Visthesetof edges. Anedge from node v; tonode v; is
denoted by ¢j; = (vj,v;) € £ and represents a communication
link that allows node v; to receive information from node v;.
A graph is said to be undirected if and only if €;; € £ implies
€5 € €. A digraph is called connected if there exists a path
from each vertex v; of the graph to each vertex v; (v; # v;).
The diameter D of a graph is the longest shortest path between
any two nodes in the network.

In digraphs, nodes that can transmit information to node v;
directly are said to be in-neighbors of node v; and belong to the
set Nj” = {v; € V| gj; € £}. The cardinality of ", is called
the in-degree of v; and is denoted by D; = |N|. The nodes
that receive information from node v; belong to the set of out-
neighbors of node v;, denoted by /\/j+ ={veV|g;ef}
The cardinality of /\/f, is called the out-degree of v; and is
denoted by Dj' = |/\/J+|

In the type of algorithms we will consider, we will associate
a positive weight p;; for each edge €;; € £ U {(v;,v;) |v; €
V}. The nonnegative matrix P = [p;;] € RI*" (with pj; as the
entry atits jth row, ¢th column position) is a weighted adjacency
matrix (also referred to as weight matrix) that has zero entries
at locations that do not correspond to directed edges (or self-
edges) in the graph. In other words, apart from the main diagonal,

GRAMMENOS et al.: CPU SCHEDULING IN DATA CENTERS USING ASYNCHRONOUS FINITE-TIME DISTRIBUTED COORDINATION MECHANISMS

the zero-nonzero structure of the adjacency matrix P matches
exactly the given set of links in the graph.

B. System Model

In our setup, we assume a set V of server compute nodes,
denoted by v; € V, which also operate as resource schedulers;
this is a frequent occurrence in modern data-centers. All partici-
pating schedulers are interconnected with bidirectional commu-
nication links and, thus, the network topology forms a connected
undirected graph.

A job is defined as a group of tasks and 7 as the set of all jobs
to be scheduled. Each job b; € J, j € {1,...,|J|} requires
pj cycles to be executed and their individual estimated cost is
assumed to be known before the optimization starts. The time
horizon of the optimization (denoted by 7},) is defined as the
time period for which the optimization is considering the jobs
to be running on the server nodes, before the next optimization
decides the next allocation of resources. Hence, the CPU capacity
of each node, considered during the optimization, is computed
as

max
Ur

= ¢;Th, (D

where ¢; is the sum of all clock rate frequencies of all processing
cores of node v; given in cycles/second. The CPU availability
for node v; at optimization step m (i.e., at time m7T}) is given
by

avail
i

[m] := mnax

T)

— u[m, @)

where u;[m] is the number of unavailable/occupied cycles due
to predicted or known utilization from already running tasks on
the server over the time horizon T}, at step m.

Assumption 1: Since the time horizon 7} is a parameter
chosen, we assume that the time horizon is chosen such that the
total amount of resources demanded at a specific optimization
step n, denoted by p[m] := 3, 1¢ 7(m) £5[m], is smaller than
the total capacity of the network available, given by 73%![m] :=
Yoo ey Tl [m], ie., plm] < 7 [m).

This assumption indicates that there is no more demand than
the available resources. In case this assumption is violated, the
solution will be that all resources are being used and some
workloads will not be scheduled, due to lack of resources.
The workloads selected to be discarded are arbitrary and the
purging does not adhere to any particular priority policy; the
jobs are scheduled on a first-come, first-scheduled basis. A more
sophisticated priority mechanism could be deployed whose task
would be to allocate a subset of the requests only, based on
some optimization problem (taking into account deadlines, etc).
However, since the prioritization problem is out of the scope of
this paper, this problem will be addressed separately.

In particular, in the context of this work, we focus on CPU
utilization as it is one of the most important and precious re-
source for many workloads. We note that while communication
costs are also important, as data center networking becomes
faster, we believe that CPU remains the most important resource.
Notably, forecasting resource demands can be challenging and
costly [25], [29], without necessarily providing the expected

1883

gains. Further, there are certain types of commonly encoun-
tered jobs (e.g., recurring batch processing workloads) that have
known a-priory demands. In fact, such workloads are frequently
encountered in enterprise environments as such current data
center scheduler’s (e.g., Google’s Kubernetes [46]) operate on
known resource demands.

III. PRELIMINARIES
A. Average Consensus

In a synchronous setting, each node v; updates and sends
its information to its out-neighbors (and also receives sim-
ilar information from its in-neighbors) at discrete times
t(0),¢(1),t(2),.... We index nodes’ information states and any
other information at time ¢(k) by k. We use z;[k] € R to denote
the information state of node v; at time ¢;. In our setup, each
node v; updates and sends its information regarding its input
workload ¢; (¢; is the summation of workloads at node v;),
estimated needed utilization for other tasks u;, and capacity
;% to its out-neighbors.

At each step, node v; updates its information state x;[k] by
combining the available information received by its neighbors
x;[k] (v; € j\/j’) using a weighted linear combination, i.e.,

ik +1] = pj[Kla; () + > pulklailk], k>0, 3)
me/\/j’

where z;[0] € R is the initial state of node v;. The positive
weights p,;[k] capture the weight of the information inflow from
node v; to node v; at time k (note that unspecified weights in
P correspond to pairs of nodes (v;, v;) that are not connected
and are set (without loss of generality) to zero, i.e., p;;[k] = 0,
Veji ¢ E). If we let z[k] = (z1[k] x2[K] z,[k])T and
P[k] = [pji[k]] € R"*", then (3) can be written in matrix form
as

zlk + 1] = Plk]z[k], “4)

where z[0] = (21[0] 22[0] ... 2,[0])7 = x. In this work, we
consider a static network; as a result, the graph remains invariant.
In this case, the weights can be chosen to be constant for all times
k (i.e., pjilk] = p;i Yk), and equation (4) can be expressed as

z[k + 1] = Px[k]. 5)
We say that the nodes asymptotically reach average consensus
if im0 ;K] = w for all v; € V. The necessary and

sufficient conditions for (5) to reach average consensus are
the following [43]: (a) P has a simple eigenvalue ,(P) =1
with left eigenvector 17 and right eigenvector 1, and (b) all
other eigenvalues of P (;(P), j # i) have magnitude less than
1 (JA;(P)| < 1). If P >0 (as in our case), the necessary and
sufficient condition is that P be a primitive doubly stochastic
matrix.

B. Ratio Consensus

Dominguez-Garcia and Hadjicostis in [47], propose an algo-
rithm that solves the average consensus problem in a directed
graph in which each node v; distributively sets the weights on

1884

its self-link and outgoing-links to be p;; = 1-&-#’ Y(vi,v5) € €,

so that the resulting weight matrix P is column stochastic, but
not necessarily row stochastic. Average consensus is reached by
using this weight matrix to run two iterations with appropriately
chosen initial conditions. The algorithm is stated below for the
specific choice of weights mentioned above (which assumes
that each node knows its out-degree). Note, however, that the
algorithm also works for any set of weights that adhere to the
graph structure and form a primitive column stochastic weight
matrix.

Lemma 1 ([47]): Consider a strongly connected graph
G(V,€&). Lety;[k] and z;[k] (forallv; € Vand k = 0,1,2,...)
be the result of the iterations

zjk +1] = pjja;[k] + Z pjizilk], (6a)
me/\/j’
yilk+1] = pjulkl + > pjiwilk], (6b)

v; E/\/{

1-&-# forv; € ./V'j‘”' (zeros otherwise), and the initial
j

conditions are x[0] = (x(1) 20(2) ... zo(|V|))¥ = 70 and
y[0] = 1. Then, the solution to the average consensus problem
can be asymptotically obtained as

ZU@GV Lo (Z)
v

wherep;; =

lim yu;[k] =

k—o00

VUJ' S V,
where p;[k] = z;[k]/y; k] .

C. Synchronous max —consensus

It is desired that each node v; € V of a network reaches con-
sensus on the maximum value of the initial states/measurements
under the assumption that all the nodes have a single real-
valued state that they update based on local received states.
Each node should reach the value ,a.x = max,, ey 2;[0]. The
max — consensus algorithm is a simple algorithm for computing
the maximum value (of, e.g., initial measurements in a sensor
network) in a distributed fashion [48]. When the updates are
synchronous, in the absence of communication noise (as it is
the case in this work), max — consensus can be done by having
eachnode v; €)V update the state value with the largest received
value in every iteration; the update rule is as follows:

{ai[k]}-)

max

zilk+1] =
J[] v €N U{v;}

It has been shown (see, e.g., [16, Theorem 5.4]) that this al-
gorithm converges to the maximum value among all nodes in
a finite number of steps s, s < D. Similar results hold for the
min —consensus algorithm.

D. Optimization Problem

In a network G = (V,€) of N = |V| nodes, each node is
endowed with a scalar quadratic cost function f; : RY ~ R.
Most cases consider a quadratic cost function of the form:

fi(z) = %ai(z —pi)%, (8)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

where a;; > 0 and p; € R (in our case it is the demand in node
v; and it is a non-negative number). Parameter z is a function
of the workload and it will be explained shortly. The global
function f : RY — R is the sum of the cost function (8) of
each node v;. The main goal of the nodes is to allocate the jobs
in order to minimize the cost function in a distributed fashion,
by communicating with their neighbors only. Each node is thus
required to solve the following optimization problem:

2~ argmin 3 £(), ©
v; €Y
where Z is the set of feasible values of parameter z. The solution
of (9) in closed form can be expressed as
= ey QP
Z’L}i ey Qg

Note that by setting «; = 1 for all v; € V, the solution is the
average consensus.

(10)

IV. PROBLEM FORMULATION
A. Problem Statement

In our case, we are interested in finding a solution in which the
total workload at each server node is balanced. This translates to
having all server nodes having the same percentage of capacity
being utilized during the execution of the tasks, i.e.,

wi[m] +u;[m] wj [m] 4+ u;[m]
,n.;nax - 7.‘.;_naux

= 7/)[7”] + tiam] Yo, v; € V
- iy Vg)

max
qrma

(1)

where w;[m] is the optimal workload to be added to server node
v; at optimization step m, T = ZU ey T and w[m] =
Zviev U [m]

The aim of this work is to find the optimal solution at every
optimization step m via a distributed coordination algorithm run
for a finite number of steps.

B. Modification of the Optimization Problem

To achieve the requirement set in (11), we modify (8) accord-
ingly. Let

z[m] == w

12)

For simplicity of exposition, and since we consider a single
optimization step, we drop the index m. Then, the cost function
fi(2) in (8) is given by

1 . i i ?
and the solution to problem (9) according to (10) is
max PitUi
= EWGV U max _ £+ Uor (14)

ﬂ—max

Doy T
In other words, the nodes find the proportion of workload that
each of them should have. From that each node is able to deduce

GRAMMENOS et al.: CPU SCHEDULING IN DATA CENTERS USING ASYNCHRONOUS FINITE-TIME DISTRIBUTED COORDINATION MECHANISMS

L Tm]
o
N Lt -

Ty

Fig. 1. At every optimization step of horizon 7}, the resource allocation
optimization requires 7. [m] steps to converge. Note that T [m] is much smaller
in duration that the time horizon of the optimization.

the workload w; to receive, i.e.,

P ot max

w; — U;. (15)

7
7TH1€LX

V. A SYNCHRONOUS DISTRIBUTED ALGORITHM

The solution that we are aiming for should satisfy the balance
conditionin (11). Foreach node to be able to compute the optimal
workload w; in (15), the total workload p, the total estimated
utilization needed for other tasks wu, and the total capacity
of the network 7™%* are needed. For solving the problem in
a distributed fashion we assume the following:

Assumption 2: The graph is static and strongly connected.

This assumption is, in general, valid even for large data-
centers, since their topology is not expected to change for
prolonged periods of time and remains mostly static, since
failures are rare. Also, fault diagnostic mechanisms can be
used to detect such failures and restore the connectivity of the
network. Moreover, changes in the network can be handled by
our algorithm, provided that the number of outgoing links can
be found at each node in a distributed fashion, either because
the links are bidirectional or because specific recovery schemes
are deployed; see, for example, [49], [50].

Under Assumption 2, running the ratio consensus algo-
rithm (6a) with initial conditions y;[0] = ¢; + u; and z;5[0] =
TMaX we obtain

lim y[k] = lim P¥y[0] = c17y[0] = c(p + o),

k—ro0 k—o00
lim y[k] = lim P*z[0] = c172[0] = en™>,
k—o00 k—o0

where c is a vector (the left eigenvector of column matrix P).
Therefore,

i(p+ o) _ p+ Uit

C] ﬂ-max 7-‘-11134)(

T = 1 SR
i) = 00 =

A. Finite-Time Implementation

Since the optimization is repeated periodically, the consensus
algorithm should stop way before the beginning of the next opti-
mization cycle, since the resources should be allocated and have
the tasks allocated (and process as many of them as possible)
before the next bunch of tasks arrives; see Fig. 1. However, often
it is impossible or undesirable to predetermine the number of
steps needed to stop the iterations. Towards this end, we deploy
an algorithm that allows the nodes to distributively stop iterations
in a finite number of steps, tolerating some deviation from the

1885

@ t3(1) t3(2)

time » .
t4) t(5) #(6) £(7)

Fig.2. A simple example of a network consisting of 3 nodes. In the timeline of
each node, blue ticks indicate an iteration for node v; and the arrows indicate the
transmissions. The time in between transmissions is the processing delay. The
time from the beginning of the transmission to the end (arrow) is the transmission
delay.

exact optimal solution. Before we proceed with the finite time
implementation, we make the following assumption:

Assumption 3: The diameter of the network D is known to
all server nodes.

Under Assumption 3, Cady et al. in [12] proposed an algo-
rithm which is based on the ratio-consensus protocol [47] and
takes advantage of min- and max-consensus iterations to allow
the nodes to determine the time step, ko, when their ratios,
{w;[ko]|v; € V}, are within e of each other.

First, we present the synchronous case, in order to demon-
strate the main idea before we present the asynchronous case.
Towards this end, we adopt the algorithm proposed by Cady
et al. in [12] mutatis mutandis. More specifically, the algorithm
makes use of the following ideas:

e Each node v; runs ratio consensus iteration, as described

in Lemma 1; in our case, we use initial conditions y;[0] =
(j + u; and Z][O] = W;—Ilax.

¢ Atthe same time, each node maintains two auxiliary states,
m;[k] and M k], which are updated using min- and max-
consensus, respectively.

e Every D steps (where D is the diameter of the graph) each
node checks whether |M;[k] —m;[k]| < e. If this is the
case, then the ratios for all nodes are close to the asymptotic
value and it stops iterating. Otherwise, m;[k| and M;[k]
are reinitialized to y;[k].

The algorithm, adopted to our case, is described in Algo-
rithm 1 for digraphs (which means it holds for undirected graphs
as well, that we consider in this case).

Remark 1: The number of iterations needed for the distributed
algorithm to terminate at optimization step m, T.[m], is a
multiple of the diameter of the network. As it will be shown
in the simulations, the distributed algorithm converges fast and
it only needs a fraction of the optimization step of horizon 7},;
see an illustration in Fig. 1.

VI. AN ASYNCHRONOUS DISTRIBUTED ALGORITHM

Resource allocation in data centers gives rise to large-scale
problems and networks, which naturally call for asynchronous
solutions. Let ¢(0) € R the time at which the iterations for

1886

Algorithm 1: Distributed Finite-Time Termination for Ratio
Consensus.
Input: A strongly connected digraph G = (V, £). Each
node v; € V knows its out-degree /\/f. Initial values are
y;[0] = £; + u; and z;[0] = 71", and tolerance .

set

M;[0] = o0, m;[0] = o0, flag,[0] = 0, u; = g
set p; = ﬁ, Vo € N;7 U {v;} (zero otherwise)
for k > 0 do

while flag;[k] = 0 do
if £ mod D = 0and k # 0 then

if |M;[k] — m;[k]| < e then
set flag;[k] = 1
end if .
set M; (k] = m; [k] = p;[k] = 244
end if

broadcast to all v; € J\/’f:
pujy; K], pujzslk], M;lk], my k]
receive from all v; € ./\/j’:
pjivilk], pjizilk], M;[k], m;[k]
compute
Yilk] = e Uty Pidtilk]
Zj [k] — Zviej\/’j’u{vj} Pjizi [k]
M] [k} — maxvie/\/j’u{v]-} Mi [k}
m; [k] — minvlef\/j’u{vj} mi [k]
end while
end for

the optimization start. We assume that there is a set of times
T = {t(1),1(2),t(3), ...} at which one or more nodes transmit
some value to their neighbors. A message that is received at
time #(k1) and processed at time t(ks3), k2 > ki, experiences a
process delay of t(k1) — t(k2) (or a time-index delay ko — k1).
In Fig. 2, we show through a simple example how the time steps
evolve for each node in the network; with ¢;(k) we denote the
time step at which iteration £ takes place for node v;.

Assumption 4: There exists an upper bound B on the time-
index steps that is needed for a node to process the information
received from another node.

A. Asynchronous max —consensus

When the updates are asynchronous, for any node v; € V, the
update rule is as follows [16]:

zjftj(k+1)] =

max

ilt; k “1‘92“ k s
me/\/;[tj(k+1)]u{vj}{x [J() J(I}

where x;[t;(k) + 0;;(k)] are the states of the in-neighbors
Ny [tj(k + 1)] available at the time of the update. Variable
0;;(k) € R, evaluated with respect to the update time ¢;(k), is
used here to express asynchronous state updates occurring at the
neighbors of node v;, between two consecutive updates of the
state of node v;. It has been shown in [16, Lemma 5.1] that this
algorithm converges to the maximum value among all nodes in
a finite number of steps s, s < BD.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

B. Asynchronous (Robustified) Ratio Consensus

An adaptation of the above approach to a protocol where
each node updates its information state x ;[k + 1] by combining
the available (possibly delayed) information received by its
neighbors z;[s] (s € Z,s < k, v; € N;7) using constant posi-
tive weights p;; was developed in [15]. Integer 7j; (k| > Ois used
torepresent the delay of a message sent from node v; tonode v; at
time instant k. We require that 0 < 7;;[k] < 7;; < Tforallk > 0
for some finite 7 = max{7;; }, 7 € Z. . We make the reasonable
assumption that 7;; [k] = 0,Vv; € V, atall time instances k (i.e.,
the own value of a node is always available without delay). Each
node updates its information state according to:

zjlk +1] = pjja;[k] + Z ijim[k — g jilr],
’U/L'ENJT r=0

for k > 0, where z;[0] € R is the initial state of node v;; pj;
Ve;; € € form P = [p;;] that adheres to the graph structure, and
is primitive column stochastic; and

foe(r) = {1, if 7j;[k] = 7, 6

0, otherwise.

Lemma 2: [15, Lemma 2] Consider a strongly connected
digraph G(V,). Let y;[k| and z;[k] (for all v; € V and k =
0,1,2,...) be the result of the iterations

yilk + 10 =piylkl + DY wilk = rlIpjilr], (A7)

Ui 6./\/7 r=0

Zlk+ 1 =pjzk + D> Y zilk =l jilr], (18)

V4 GN; r=0

with (0] = (yo(1) %0(2) .- yo(IV])" =yo and 2[0] = 1;
Iy ji is an indicator function that captures the bounded delay
7;:|k] on link (v;, v;) at iteration k (as defined in (16), 7;;[k] <
7). Then, the solution to the average consensus problem can be
asymptotically obtained as

. Zv[<y Yo (E)
dim k] = =25

where 1, [k] = y;[k]/z; [k].

s Vﬂj € V7

C. Finite-Time Asynchronous Ratio Consensus

As it is the case for the synchronous distributed algorithm
(see § V), the consensus algorithm should terminate before the
next optimization step and in a distributed fashion. In what
follows, we propose a distributed termination protocol for the
asynchronous case, based on the one used for the synchronous
case. We believe, that this is the first termination algorithm that
can handle delays and perform asynchronous consensus.

The proposed termination algorithm has the same principles
as before [12]. However, in order to make the ideas put forth
in [12] applicable into the asynchronous case we expand upon

GRAMMENOS et al.: CPU SCHEDULING IN DATA CENTERS USING ASYNCHRONOUS FINITE-TIME DISTRIBUTED COORDINATION MECHANISMS

Algorithm 2: Distributed Finite-Time Termination for
Asynchronous Ratio Consensus.

Input: A strongly connected digraph G = (V, £). Each
node v; € V knows its out-degree ./\fj+. Initial values are
y;[0] = £; + u; and z;[0] = 73", and tolerance e.

set

;[0
set pij = 1w Vor € NjT U {v;} (zero otherwise)
fork > 0do

while flag;[k] = 0 do
if & mod (14 7)D = 0 and k # 0 then

if |M;[k] — m;[k]| < € then
set flag;[k] = 1
end if .
set M;[k] = mj;[k] = u;[k] = ?ZH
end if

broadcast to all v; € ./\fj*:
puiy; k] pijz;k], Mkl my[k]
receive from all v; € N [k]:
pjiyilk], pjizilk], Milk], m;lk]
compute)
YilkIpiiyi (K] + 220, enrs Dm0 Ysilk

zilkl<pjjzilk }+Zv1€j\f Zr Ozjl[k Ik —r jilr]
M;[k]max,, e x u{v,}{M[(k) +0:5(k)]}

}

my [k max,, ex oo, {malt; (k) + 91] (k)]
end while
end for

— [Lg—r jil7]

them using several innovations. More concretely, when com-
pared to the synchronous case the aforementioned innovations
are outlined below:

e The min and max —consensus algorithm converge in (1 +
7)D steps [16].

* Every (1 + 7)D steps each node checks whether | M;[k] —
m;[k]| < e. If this is the case, then the ratios for all nodes
are close to the asymptotic value and it stops iterating.
Otherwise, m;[k] and M;[k| are reinitialized to p;[k].

The algorithm is described in Algorithm 2 or digraphs; note

that this implies it also holds for undirected graphs as well, that
we consider in this case.

Theorem 1: Algorithm 2 converges in finite time.

Proof: From Lemma 2, we know that limy .. p;[k] =

(2 u,ev ¥0(£))/V, for all v; € V. Therefore, it follows that

Z vy Yo (6)
li eV IINT) 1
e
which means that essentially limy,_,., M[k] = W Ad-
ditionally, k exists, such that for all £ > kq, we have
l
wilk] — Zwenv)lyo() ‘ <€ Vv eV (20)

1887
Therefore, it follows that
> veev Yo(£)
L€V TN 21
ma ji; (k] — v <, (21)

In turn, this implies that there exists kg, such that for all k& > kg,

2 ey l/o(ﬁ)’
— | <€
VI

Similar arguments hold for m[k]. Since {M[r(1 + 7)D]},ew
and {m[r(1 4+ 7)D]},en are sub-sequences of sequences that
converge (due to the fact that asynchronous max — consensus
converges within (1 + 7)D steps), then they converge to the
same limit. Therefore, there exists rg, such that for all » > rg,
|M[r(1+7)D] —m[r(l+7)D]| < e.

Remark 2: We stress that similar results were proposed
in [13] for guaranteeing convergence to approximate average
consensus in a finite number of steps, allowing for time-varying
bounded delays in information transmission and reception be-
tween agents. Nevertheless, apart from the fact that our results
are obtained for an optimization problem for CPU scheduling,
there are some additional differences:

® we use the consensus algorithm in the concept of asyn-
chronous operation, rather than synchronous operation
with delays, despite the fact that the mathematical analysis
relies on similar concepts;

e the window used for updating the min/max value of the
agents is different (for us this is (1 + 7)D while for them
is(14+7)D 4+ 7), and

e we show via simulation that the lemmas (and, hence, the
proofs) in [13] are incorrect (see also the discussion in
Section VIII).

‘M[k] _ 22)

VII. SIMULATIONS

To validate our scheme, we divide our evaluation into three
separate segments. The first focuses on simulating the perfor-
mance using a simple, easy to understand, network of five nodes.
The second one presents a thorough quantitative evaluation
using simulations for various randomly generated graphs and
latencies. The last one, provides a large scale evaluation with net-
work graphs and simulation parameters that would be applicable
in large scale data centers having thousands of nodes. To our
knowledge this is the first work that tackles the problem at this
scale in this setting while also providing a thorough evaluation
and theoretical guarantees. All experiments are computed on
a workstation using an AMD 3970X CPU with 32 cores at
4.0 GHz, 256 GB 3600 MHz DDR4 RAM, and Matlab R2022b
(build 9.13.0.2080170)".

A. Evaluation Using a Small Network

The digraph is comprised out of |V| =5 vertices and has
a diameter equal to D = 4; for helping exposition the exact
digraph is shown in Fig. 3.

ITo foster reproducibility both code and datasets used for our numerical
evaluation are publicly available at: https://github.com/andylamp/federated-
capacity-consensus.

https://github.com/andylamp/federated-capacity-consensus
https://github.com/andylamp/federated-capacity-consensus

1888

©)

O)
)

Fig. 3. The strongly connected digraph network comprised out of five nodes
which is used to evaluate the validity of our results though an indicative, small-
scale example.

100 120

0 20 40 60 80
Iterations
Fig. 4. A simple example of a network of five nodes as described in Fig. 3

when the links experience time-varying delays with maximum delay (7) of 4.
The figure shows the evolution of the converge ratios across all nodes along with
the min —consensus (dashed blue) and the max —consensus (dashed red).

All node are set with equal capacities and the workload vector
p is set to p=[1,2,3,4,5] in all runs. Further, we set the
convergence threshold for the absolute difference of the quantity
|M;[k] — m;[k]| < etoe = 1075. Throughout our experiments,
at each interval the workload to be scheduled is generated for
each node independently. Concretely, each randomly chooses
a job cost from a uniform distribution bounded between an
acceptable cost range which is provided upon initialisation.
These values are then concatenated to generate a workload
vector which has a value between that range for each of the
nodes.

Then in order to study the impact of increased delay in the
number of total iterations required, we evaluate our proposed
algorithm when using 7 = [4, 9]. We start by showing the results
for 7 =4 in Fig. 4. In this figure, we observe that converge
happens after 120 iterations whichis 4(1 + 7) D, meaning thatin
total four rounds are required. Following, we shift our attention
to Fig. 5 in which we show the results of the same experiment
when using a delay value of 7 = 9. Concretely, we see that the
increased delay has an impact on the total iterations required
to converge increasing them by a factor of about ~ 1.6 when
compared to the previous experiment.

We see that both figures converge in multiples of (1 + 7)D
which requires six rounds when having 7 = 5 and four rounds

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

80 100

100
Iterations

200

150

Fig. 5. Converge ratios, when using the network of five nodes as described
in Fig. 3 when the links experience time-varying delays with maximum delay
(7) of 9. The min —consensus and max —consensus are depicted by the dashed
blue and red lines respectively.

when using 7 = 10. Notably, as delay grows the round size
increases linearly assuming we operate on the same graph (hence
the diameter D remains the same). Indeed, the round size for
7 = 5 1s 20 iterations whereas in the case of 7 = 10 the round
size is 40 iterations. Quantitatively speaking, we observe that
as the round size increases the number of rounds required to
converge decreases. We conjecture that this can be attributed to
the fact that as the round size increases the information has an
elongated iteration window to propagate throughout the graph
which in turns helps to converge with fewer rounds. However,
since the results are simulated centrally even if the aggregated
simulation cost is large, the amortised cost (e.g. the actual
computation that would be required per node) is practically very
low - even in the presence of large delays.

Remark 3: Note that there are some nodes v; € V for which
the state j¢;[k'] is larger than the maximum M (k), where &' > k
and £ mod D = 0 (note that this constitutes a counterexample
to Lemma IV.2 in [45]). Despite the fact that the ratio is not
monotonically decreasing (due to the nonlinearity imposed by
the ratio), the main properties that guarantee the convergence of
this algorithm is that the ratio is guaranteed to converge and the
max-consensus algorithm converges within (1 + 7)D steps.

B. Evaluation Using Varying Delays and Network Sizes

The previous example is indicative on how our scheme per-
forms in a tangible, small-scale scenario. In this section, we eval-
uate the performance of our proposed algorithm across a broader
range of parameters reflecting realistic deployments, as such our
generated topologies attempt to replicate ones that would be in
real data-centers. To that end, we create a test suite monitoring
both convergence and actual simulation execution time for vary-
ing graph sizes and delays. check this again: Concretely, for a
given amount of trials, graph size dictated by |V|, and a range
of delays upper bounds we create a random graph for different
unique pairs (|V|, 7). The values considered for graph sizes
and delays upper bounds are |V| = [20, 50, 100, 200, 300, 600]
and 7 = [1, 5,10, 15, 20, 30], respectively, which result in the

GRAMMENOS et al.: CPU SCHEDULING IN DATA CENTERS USING ASYNCHRONOUS FINITE-TIME DISTRIBUTED COORDINATION MECHANISMS

800 w
-++N=20
-+N=50
600 N=100
7 +N=200
£ -+N=300
Z 400 N=600
200
0 = L L L L
1 5 10 15 20 30
Delay (7)
Fig.6. Total number of iterations required to converge for each unique (|V|, 7)

pair averaged across 10 trials. The x-axis shows the different delays (7) while
each line represents the number of nodes (|V]) that exist within each graph.

evaluation of 36 unique (|V|, 7) pairs. More specifically, for
each unique (|V|, 7) pair we perform 10 trials and average
the results for each pair. We also note, that throughout our
experiments,. More concretely, as long as we are able to generate
aconnected random graph, all trial instances converge within the
maximum iteration limit set; this value is set to 4000 iterations
across all runs. Additionally, while the randomly generated
network topologies are guaranteed to be strongly connected and
of relatively low diameter they are not necessarily assured to
be fat-tree and/or spine-leaf compliant topologies. We begin by
presenting the number of iterations required to converge, on
average, across 10 runs for each (|V|, 7) pair; results are shown
in Fig. 6.

Fig. 6 indicates that smaller networks require more itera-
tions than larger ones to converge, which are still multiples
of (14 7)D. At first glance this observation might seem as
counter-intuitive, however, we conjecture that such behaviour
is encountered because the round size for smaller networks is
smaller thus the system has fewer iterations to reach a steady
state within each round. Indeed, similarly to the delay, recall
that each round length is dictated by (1 + 7)D; thus, fixing the
delay 7 and increasing the diameter D—as is the case when the
graph network grows—results in linear inflation of the round
size. Notably, even if the round size increases this does not mean
that the execution time is less. In fact it is quite the opposite since
the total simulation time is higher as the network size increases.
However, the extrapolated actual cost per node is much less.
This is because, the workload for each can be parallelized and
is asynchronous.

Fig. 7 shows the average execution time required to converge
and the average iteration execution time for the same exper-
iments discussed previously. As we can see from Fig. 7, the
execution time scales exponentially as both delay and graph
size increase. More importantly, this graph shows in practice
that larger graphs take more time to converge than smaller ones
given the same delay even if the actual rounds to converge are less
as graph size increases. This is because, as we noted previously,
even if the iterations are fewer each iteration within a larger graph
takes significantly more time to complete in practice. However,

1889

40 L +N=2O
-+N=50
N=100
—307 -+-N=200 I
p 5 -+-N=300
g0+ N=600 1
&= 1

0.25 ‘
N=20
i HN=50 1
02 N=100
- HN=200
_ 001]
=015 -N=300

Fig.7. Top (Fig. 7(a)), we present the total execution time required to converge
for each unique (|V|, 7) pair averaged across 10 trials. The z-axis shows the
different delays upper bounds (7) while each line represents the number of nodes
(]V]) that exist within each graph. Bottom (Fig. 7(b)), we show the average
iteration time for each of the different configurations. (a) Total simulation time.
(b) Iteration time.

as a general trend we observe that regardless of the network size
used in our experiments, if the delay remains below 7 = 10,
then it converges relatively quickly. Conversely, it seems that
for delays greater than 7 = 15 then the time to converge scales
exponentially.

C. Data Center Scale Evaluation

Previous examples evaluate the performance of the algorithm
in practical small-scale deployment. However, these experi-
ments do not capture the scale of modern data centers which
contain thousands of server machines. To that end, to evaluate
the data center scalability of our scheme we perform experiments
on thousands of nodes. We assume that in data centers most
nodes are few hops away from each other, so we use graphs
with a small diameter [51]. Further, we assume that the latency
within data centers is near zero as shown before in order to
satisfy the needs of modern workloads [52], [53]. To sum up,
in order to provide a realistic data center scale representation,
we create a simulation configuration that scales to thousands
of nodes; considers graphs of a small diameter; and finally
assumes low, even if variable, network delays upper bounds.
Concretely, the values considered for the graph sizes and delays
upper bounds are |V| = [20, 200, 500, 1000, 5000, 10000] and
7 =11, 2, 3,45] respectively; which result in the evaluation of

1890

2.2

Iterations

Fig. 8. Example run of a network comprised of 1000 nodes having a diameter
equal to 2 and using a delay upper bound 7 of 1. The network converges to the
optimal solution in very few iterations.

150
+N=20
-+N=200
N=500
L, 100 H+N=1000
g -+N=5000
= N=10000
g
~ 50 1
0 Il Il Il
1 2 3 4 5
Delay (7)
Fig. 9. Mean iterations to converge for different network sizes and delay

values. Delay plays a larger role in smaller networks (< 200 nodes) whereas as
network size increases the delay impact is lower.

30 unique {(|V|, T) pairs. We note, however, that in order for
modern data centers to maintain very low network communica-
tion delays, it is desirable to have just a couple of hops between
nodes and, hence, we consider graphs with small diameter [51],
[54]. As previously, for each unique (|V|, 7) pair we perform 5
trials and average the results for each pair.

Fig. 8 illustrates the results of an example run of a network
size of 1000 and a delay 7 = 1. We can see that our scheme is
able to converge to the optimal solution in very few iterations.
This is attributed to the diameter of the graph which was equal
to D = 2 and to low delays (7 = 1).

In the next data center scale experiment we vary the number
of nodes from 20 to data center scale of 10000. We also vary
the upper bound on the delay 7. Results are shown in Figs. 9
and 10. Fig. 9 shows the converge scaling with respect to the
iterations required as the delays upper bound and network size
grow. Fig. 10 shows the average total simulation time and per
iteration time required per each network size and delays upper
bound. Note, that the simulation indicates the aggregated times
required to complete each round since for the context of this work
we simulate our scheme centrally for all networks. In practice, in
areal system, the actual execution cost per node would be much

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

——-N=20 ——N=20

120 7| ——N=200 5 ——N=200

100 N=500 N=500
——-N=1000 4 —F—N=1000
—1—N=5000
N=10000

= w

— g0 |-F-N=s000 0% —~

& I N=10000 g of 002

& & ,l 001
, 07

Fig. 10. The above figures show the average time to converge (Fig. 10(a)) and
the average iteration time (Fig. 10(b)) in the data centre scale experiments. We
can see that as we increase the number of nodes, iterations take longer but overall
we require less iterations to converge. This can be attributed to the low diameter
of the graph, which allows more paths of communication between the nodes
as their overall count in each network topology increases. (a) Total simulation
time. (b) Iteration time.

50 150

——min —-min
40 ——max ——max
a mean Z 100 mean
2 30 —F-window o ——window
pe] =
= =
20 .
= = 50
10 —
0
20 200 500 1000 5000 10000 20 200 500 1000 5000 10000
Nodes Nodes

(@) (b)

Fig. 11. Converge statistics in the presence of both low (Fig. 11(a)) and higher
upper ((Fig. 11(b))) bounds on delays (7), equal to 1 and 5 respectively. As the
network size grows the window which the first (min) and the last (max) node
converges becomes zero. This indicates that as the network size grows we require
fewer iterations to converge and all nodes will converge at the same iteration.
Note, that as the delay scales delay results in an increase, on average, by a factor
of ~ 2x to the number of iterations required to converge. However, it is worth
pointing out that the window to converge remains still very low, and sometimes
zero as network size increases. (a) Delay 7 = 1. (b) Delay 7 = 5.

less since the workload would be executed asynchronously and
concurrently.

The same trend can be seen in the converge statistics in
Fig. 11(a) and (b). We define as the “min” the iteration in which
the first node successfully converges and the “max” the iteration
where the last node converges. Note, that mean is the “average”
converge iteration for all nodes and the converge “window” is
the difference between the “max’ and “min”. As we can see from
Fig. 11(a) and (b) the window size decreases as the network size
grows. In the presence of low delays (Fig. 11(a)) the window is
practically zero indicating that the “min” and “max” converge
iteration coincides.

Practically speaking, this indicates that the converge variabil-
ity is low in large networks and is expected to converge in few
iterations. This means that tasks can be scheduled in a timely
fashion and with optimal placement for the given set of jobs.
This is highly important for any modern data center scheduler
aiming to schedule thousands of jobs at-a-time on thousands of
nodes in a timely fashion.

VIII. DISCUSSION

In this paper, we proposed a finite-time asynchronous al-
gorithm for distributively computing a value which a network
of nodes can use to make local control decisions. Contrary to

GRAMMENOS et al.: CPU SCHEDULING IN DATA CENTERS USING ASYNCHRONOUS FINITE-TIME DISTRIBUTED COORDINATION MECHANISMS

prior work, our approach is able to operate asynchronously and,
as a consequence, also able to handle delays by construction.
To our knowledge this is the first proposed algorithm able to
provide finite-time guarantees in the combined delay tolerant
and asynchronous setting.

The proposed scheme uses the industry standard CPU uti-
lization model and is able to balance the workload allocation
such that each node is allocated tasks proportional to its ca-
pabilities. Concretely, this model defines that the utilization of
each CPU core is measured in the bounded range of [0, 100]
and indicates the utilization percentage for each individual core
within a specified machine [55]. This effectively allows us to
evenly distribute to load across all of the available network nodes
loading to better overall cluster utilization. Practically speaking,
it is standard practice in data centers to share the load across the
available nodes. We emphasize that our algorithm algorithm is
able to handle both regular workloads as well as bursty ones.
This is achieved because our optimization algorithm works in
buckets; where each bucket is filled with incoming jobs. At the
time of scheduling each job within the bucket is attempted to
be placed into a suitable node, while guaranteeing the balancing
of the overall cluster load. The time of scheduling is fixed to
be at regular intervals or if the bucket is filled. This behaviour
is beneficial for a number of reasons: firstly, bursty workloads
are able to be handled gracefully, and secondly, even if there are
not enough jobs within the bucket they will still be scheduled
in a timely manner. Note, that our experiments are designed to
reflect practical data center deployments which implies that the
network graphs considered will be of low diameter and have
good connectivity.

Interestingly, as per Algorithm 2 and a corollary of Theorem
1 the convergence rate is only bounded by the network diameter
and its maximum delay. More importantly, our particular setting
implies that packet loss is assumed to be minimal in such deploy-
ments but not delays. The delays can be attributed to processing
and communication delays. Experiencing processing delays is
common in data centers and in the presence of over-provisioned
or straggler nodes. Communication delays are mainly because
of re-transmissions due to packet losses. However, packet losses
are not so common and, for this reason, we do not consider them
in this work. Nevertheless, in case one wishes to consider packet
losses as well, this can be achieved by establishing probabilistic
guarantees for convergence based on the packet loss distribution.
However, that is beyond the context of this work and is left for
future work.

We note that our scheme is asynchronous but in order to
successfully operate it implies that the internal clocks of all
nodes are paced similarly. This requirement is necessitated as
each node needs to be able to recognize when the appropriate
iterations have elapsed. As noted previously these checks happen
every (14 7)D iterations. Consistent pacing of each node’s
clock ensures that the check for convergence at each node will
happen at roughly the same time [56]. However, this does not
imply that we actually need to synchronize each of the nodes’
time-zones nor their actual clocks but, rather, their internal
clocks must have similar pacing [57]. This is especially the case
after the introduction of High Precision Event Timers in the

1891

) 100 200 300 400
Iterations

Fig. 12. Violation in a network consisting of 20 nodes with a diameter equal
to D = 5 when using a delay of 7 = 20. Indicatively, circles indicate violations
of the claim in [13, Lemma 3.2].

low-level firmware of most commodity computers and servers
alike [58], [59]. Notably, this is common practice and present
in most modern computers as the clock pacing specification is
defined within the Advanced Configuration and Power Interface
(ACPI) specifications [60], [61]. In fact, to address these issues in
a standardized way hardware manufacturers created the Unified
Extensible Firmware Interface (UEFI) forum [62], which is
responsible for defining the characteristics and functionality
regarding the most basic, low-level functions that each modern
computer or server should support.

As aforementioned in Remark 2, a similar approach was
proposed in [13] in the context of average consensus with
bounded time-varying delays. Apart from the differences in the
application and the fact that we consider asynchronous operation
of the nodes, the approach is similar. However, for proving
convergence of their proposed algorithm they claim a form of
monotonicity of the maximum and minimum values of the states.
Specifically, it is claimed [13, Lemma 3.2] that if the value held
by an agent v; at the present instant of time is strictly lesser
(greater) than the maximum (minimum) over the current and
delayed values over a horizon 7T of all the nodal states, then, the
value of agent v; continues to be strictly lesser (greater) than
this maximum (minimum) for all future instants. Notably, we
found several examples of networks for which that statement
is not valid. Practical examples of networks that exhibit such
violations are presented in Figures 12 and 13.

Concretely, in Fig. 12 we present a violation that happens in
a network comprising of 20 nodes with a diameter D = 5 and
a delay 7 = 20. Interestingly, as we can observe in Fig. 13 this
violation is also observed when dealing with larger networks. In
this particular example presented below the issue is manifested
in a network of 50 nodes with a diameter of D = 4 and a delay
of 7 = 20.

Throughout our experiments we observed this behaviour to
be more frequent with medium sized networks that had delays
greater than 7 = 5. On the other hand, the diameter seems to be
not a major contributing factor; at least for the values considered
in our experiments (e.g., D between 1 and 10).

Our solution is able to gracefully handle this situation and
still converge into the optimal solution. The effectiveness of

1892

Iterations

Fig. 13. Another example of a violation using a larger network consisting of 50
nodes with a diameter equal to D = 4 when using a delay of 7 = 10. As in the
previous figure, circles indicate violations of the the claim in [13, Lemma 3.2].

our asynchronous finite-time algorithm was demonstrated on
CPU resource allocation in data centers, which can result in
better overall system utilization. However, one important aspect
of such approaches, including our own, is the way they com-
pare against more complex optimization problems. In particular
against ones that do not have a closed form solution and require
complex solvers to be approximated such as ADMM [18]. As
formulated, our problem is able to tackle placement of jobs
using the most commonly used CPU utilization model in prac-
tical deployments. Furthermore, due to its problem formulation
the problem admits a closed-form solution. This enables our
method to reach the optimization objective significantly faster
when compared to more sophisticated solvers such as ADMM;
especially as the network sizes scale [17]. Other approaches have
been proposed as well for the same problem formulation [63],
but the termination of the optimization cannot be synchronized
and re-initiating the optimization with the new requests is not
possible. More importantly, we note that our proposed method
could also be exploited across multiple domains where asyn-
chronous distributed coordination is desirable (e.g., distributed
frequency regulation in microgrids, decentralized computation
networks, and voltage control in distribution systems).

IX. CONCLUSION AND FUTURE DIRECTIONS
A. Conclusion

In this paper, we proposed a finite-time asynchronous al-
gorithm for distributively computing a value which a network
of nodes can use to make local control decisions. Contrary to
previously-proposed algorithms, our approach works also asyn-
chronously. We evaluated our proposed solution using networks
of varying delays and diameters which reflected practical data
center installations as per common deployment guidelines. The
effectiveness of our asynchronous finite-time algorithm was
evaluated against the CPU resource allocation in data centers.
In turn, more efficient allocation of resources can lead to better
overall system responsiveness and utilization.

B. Future Directions

Our work can be easily extended to more general convex
optimization problems, using gradient-consensus methods, as

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

in [45], but our solution will allow for asynchronous operation
and will be able to tolerate delays.

Part of ongoing research focuses on considering deadline
constraints and cases for which the workloads exceed the avail-
able resources and exploit the heterogeneity of resource units
available (e.g. CPU, GPU, and/or accelerators). In such instances
a more sophisticated rejection policy can take place based on
inferred resource demands, task priorities, or introduce partial
scheduling plans based on either priorities or further, more
complex, constraints.

REFERENCES

[1] L. A. Barroso, U. Holzle, and P. Ranganathan, “The datacenter as a com-
puter: Designing warehouse-scale machines, 3rd Edition,” Synth. Lectures
Comput. Archit., San Rafael, CA, USA: Morgan & Claypool Publishers.,
vol. 13, no. 3, 2018, pp. 1-189.

[2] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R.
Bianchini, “Resource central: Understanding and predicting workloads
for improved resource management in large cloud platforms,” in Proc.
26th Symp. Operating Syst. Princ., 2017, pp. 153-167.

[3] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and
N. DeBardeleben, “On the diversity of cluster workloads and its impact on
research results,” in Proc. USENIX Annu. Tech. Conf., 2018, pp. 533-546.

[4] E. Boutin et al., “Apollo: Scalable and coordinated scheduling for cloud-
scale computing,” in Proc. 11th USENIX Symp. Operating Syst. Des.
Implementation, 2014, pp. 285-300.

[5] P. Moritz et al., “Ray: A distributed framework for emerging Al applica-
tions,” in Proc. 13th USENIX Symp. Operating Syst. Des. Implementation,
2018, pp. 561-577.

[6] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J.
Wilkes, “Large-scale cluster management at Google with Borg,” in Proc.
10th Eur. Conf. Comput. Syst., 2015, pp. 1-17.

[7] B.Hindman et al., “Mesos: A platform for fine-grained resource sharing in
the data center,” in Proc. USENIX Symp. Netw. Syst. Des. Implementation,
2011, pp. 295-308.

[8] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proc. ACM Symp. Operating Syst.
Princ., 2013, pp. 69-84.

[9] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215-233, Jan. 2007.

[10] A. Giridhar and P. R. Kumar, “Toward a theory of in-network computa-
tion in wireless sensor networks,” IEEE Commun. Mag., vol. 44, no. 4,
pp. 98-107, Apr. 2006.

[11] P. A. Misra, M. F. Borge, I. Goiri, A. R. Lebeck, W. Zwaenepoel, and R.
Bianchini, “Managing tail latency in datacenter-scale file systems under
production constraints,” in Proc. EuroSys Conf., 2019, pp. 1-15.

[12] S.T. Cady, A. D. Dominguez-Garcia, and C. N. Hadjicostis, “Finite-time
approximate consensus and its application to distributed frequency regu-
lation in islanded AC microgrids,” in Proc. IEEE 48th Hawaii Int. Conf.
Syst. Sci., 2015, pp. 2664-2670.

[13] M. Prakash, S. Talukdar, S. Attree, V. Yadav, and M. V. Salapaka, “Dis-
tributed stopping criterion for consensus in the presence of delays,” IEEE
Trans. Control Netw. Syst., vol. 7, no. 1, pp. 85-95, Mar. 2020.

[14] C. N. Hadjicostis and T. Charalambous, “Asynchronous coordination of
distributed energy resources for the provisioning of ancillary services,”
in Proc. IEEE Annu. Allerton Conf. Commun., Control, Comput., 2011,
pp. 1500-1507.

[15] C. N. Hadjicostis and T. Charalambous, “Average consensus in the pres-
ence of delays in directed graph topologies,” IEEE Trans. Autom. Control,
vol. 59, no. 3, pp. 763-768, Mar. 2014.

[16] S. Giannini, D. D. Paola, A. Petitti, and A. Rizzo, “On the convergence of
the max-consensus protocol with asynchronous updates,” in Proc. IEEE
Conf. Decis. Control, 2013, pp. 2605-2610.

[17] T. H. Chang, W. C. Liao, M. Hong, and X. Wang, “Asynchronous
distributed ADMM for large-scale optimization x2014;Part II: Linear
convergence analysis and numerical performance,” IEEE Trans. Signal
Process., vol. 64, no. 12, pp. 3131-3144, Jun. 2016.

[18] W. Jiang, A. Grammenos, E. Kalyvianaki, and T. Charalambous, “An
asynchronous approximate distributed alternating direction method of
multipliers in digraphs,” in Proc. 60th IEEE Conf. Decis. Control, 2021,
pp. 3406-3413.

GRAMMENOS et al.: CPU SCHEDULING IN DATA CENTERS USING ASYNCHRONOUS FINITE-TIME DISTRIBUTED COORDINATION MECHANISMS

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: Fair scheduling for distributed computing clusters,” in Proc.
ACM SIGOPS 22nd Symp. Operating Syst. Princ., 2009, pp. 261-276.
M. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand, “Fir-
mament: Fast, centralized cluster scheduling at scale,” in Proc. Operating
Syst. Des. Implementation, 2016, pp. 99-115.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M.
Alizadeh, “Learning scheduling algorithms for data processing clusters,”
in Proc. ACM Special Int. Group Data Commun. (SIGCOMM Series),
Beijing, China, 2019, pp. 270-288.

A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and G.
R. Ganger, “TetriSched: Global rescheduling with adaptive plan-ahead in
dynamic heterogeneous clusters,” in Proc. 11th Eur. Conf. Comput. Syst.,
(EuroSys Series), 2016, pp. 1-16.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” SIGCOMM Comput.
Commun. Rev., vol. 44, no. 4, pp. 455-466, 2014.

Y. Wang and X. Zuo, “An effective cloud workflow scheduling approach
combining PSO and idle time slot-aware rules,” IEEE/CAA J. Automatica
Sinica, vol. 8, no. 5, pp. 1079-1094, May 2021.

B. Burns et al., “Borg, Omega, and Kubernetes: Lessons learned from
three container-management systems over a decade,” Queue, vol. 14, no. 1,
pp. 70-93, 2016.

H. Yuan, J. Bi, M. Zhou, Q. Liu, and A. C. Ammari, “Biobjective task
scheduling for distributed green data centers,” IEEE Trans. Autom. Sci.
Eng., vol. 18, no. 2, pp. 731-742, Apr. 2021.

H. Yuan, M. Zhou, Q. Liu, and A. Abusorrah, “Fine-grained resource
provisioning and task scheduling for heterogeneous applications in dis-
tributed green clouds,” IEEE/CAA J. Automatica Sinica, vol. 7, no. 5,
pp. 1380-1393, Sep. 2020.

H. Yuan, J. Bi, and M. Zhou, “Geography-aware task scheduling for
profit maximization in distributed green data centers,” IEEE Trans. Cloud
Comput., vol. 10, no. 3, pp. 1864—1874, Jul.—Sep. 2022.

M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,” in Proc.
8th ACM Eur. Conf. Comput. Syst., 2013, pp. 351-364.

V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another resource
negotiator,” in Proc. 4th Annu. Symp. Cloud Comput., 2013, pp. 1-16.

K. Rzadca et al., “Autopilot: Workload autoscaling at Google,” in Proc.
Fifteenth Eur. Conf. Comput. Syst., 2020, pp. 1-16.

Y. Gan et al., “An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems,” in Proc. 24th
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2019,
pp. 3-18.

M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian, W. Xiao, and F.
Yang, “Analysis of large-scale multi-tenant GPU clusters for DNN training
workloads,” in Proc. USENIX Annu. Tech. Conf., 2019, pp. 947-960.

R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni, “GRAPHENE:
Packing and dependency-aware scheduling for data-parallel clusters,” in
Proc. USENIX Symp. Operating Syst. Des. Implementation, Savannah,
GA, 2016, pp. 81-97.

J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms,” /[EEE Trans.
Autom. Control, vol. 31, no. 9, pp. 803-812, Sep. 1986.

R. Olfati-Saber and R. Murray, “Consensus problems in networks of agents
with switching topology and time-delays,” IEEE Trans. Autom. Control,
vol. 49, no. 9, pp. 1520-1533, Sep. 2004.

W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Trans. Autom.
Control, vol. 50, no. 5, pp. 655-661, May 2005.

L. Moreau, “Stability of multiagent systems with time-dependent commu-
nication links,” IEEE Trans. Autom. Control, vol. 50, no. 2, pp. 169182,
Feb. 2005.

D. Angeli and P.-A. Bliman, “Stability of leaderless discrete-time multi-
agent systems,” Math. Control, Signals, Syst., vol. 18, no. 4, pp. 293-322,
2006.

P-A. Bliman and G. Ferrari-Trecate, “Average consensus problems in
networks of agents with delayed communications,” Automatica, vol. 44,
no. 8, pp. 1985-1995, Aug. 2008.

K. Cai and H. Ishii, “Average consensus on general digraphs,” in Proc.
IEEE Conf. Decis. Control Eur. Control Conf., 2011, pp. 1956-1961.

A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, no. 6, pp. 988-1001, Jun. 2003.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

1893

L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65-78, Sep. 2004.

T. Charalambous, Y. Yuan, T. Yang, W. Pan, C. N. Hadjicostis, and M.
Johansson, “Distributed finite-time average consensus in digraphs in the
presence of time delays,” IEEE Trans. Control Netw. Syst., vol. 2, no. 4,
pp. 370-381, Dec. 2015.

V. Khatana, G. Saraswat, S. Patel, and M. V. Salapaka, “Gradient-
consensus method for distributed optimization in directed multi-agent
networks,” in Proc. IEEE Amer. Control Conf., 2020, pp. 4689-4694.

D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes,”
IEEE Cloud Comput., vol. 1, no. 3, pp. 81-84, Sep. 2014.

A.D. Dominguez-Garcia and C. N. Hadjicostis, “Coordination and control
of distributed energy resources for provision of ancillary services,” in Proc.
IEEE First Int. Conf. Smart Grid Commun., 2010, pp. 537-542.

J. Cortés, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726-737, Mar. 2008.

C. N. Hadjicostis, A. D. Dominguez-Garcia, and N. H. Vaidya, “Resilient
average consensus in the presence of heterogeneous packet dropping
links,” in Proc. IEEE Conf. Decis. Control, 2012, pp. 106—-111.

C. N. Hadjicostis, N. H. Vaidya, and A. D. Dominguez-Garcfa, “Robust
distributed average consensus via exchange of running sums,” IEEE Trans.
Autom. Control, vol. 61, no. 6, pp. 1492—-1507, Jun. 2016.

A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data center
topology design,” in Proc. 11th USENIX Symp. Networked Syst. Des.
Implementation, 2014, pp. 29-41.

C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in Proc. ACM Conf. Special Int. Group
Data Commun., 2015, pp. 139-152.

M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Ya-
suda, “Less is more: Trading a little bandwidth for ultra-low latency in the
data center,” in Proc. 9th USENIX Symp. Netw. Syst. Des. Implementation,
2012, pp. 253-266.

L. Popa, S. Ratnasamy, G. Iannaccone, A. Krishnamurthy, and I. Stoica,
“A cost comparison of datacenter network architectures,” in Proc. 6th Int.
Conf. Emerg. Netw. Experiments And Technol., 2010, pp. 1-12.

L. VMWare, “Performance Troubleshooting CPU Ready Time,” VMware,
Oct. 2018. [Online]. Available: https://learnvmware.online/2018/03/08/
performance-troubleshooting-cpu-ready-time/

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Proc. Concurrency: Works Leslie Lamport, 2019, pp. 179-196.
M. Nystrom, M. Nicholes, and V. J. Zimmer, “UEFI networking and pre-os
security,” Intel Technol. J., vol. 15, no. 1, pp. 80-100, 2011.

J. Ridoux, D. Veitch, and T. Broomhead, “The case for feed-forward clock
synchronization,” IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 231-242,
Feb. 2012.

P. Orosz and T. Skopko, “Performance, evaluation of a high precision
software-based timestamping solution for network monitoring,” Int. J. Adv.
Soft., vol. 4, no. 1, pp. 181-188, 2011.

U. Forum, “Advanced configuration and power interface (ACPI)
specification—ACPI specification 6.4 documentation,” 2021. [Online].
Available: https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/

V. Zimmer, M. Rothman, and S. Marisetty, Beyond BIOS: Developing
With the Unified Extensible Firmware Interface. Berlin, Germany: Walter
de Gruyter GmbH & Co KG, 2017.

“Unified extensible firmware interface specifications,” publication Title:
Unified Extensible Firmware Interface Forum, 2021. [Online]. Available:
https://uefi.org/

A. I. Rikos, A. Grammenos, E. Kalyvianaki, C. N. Hadjicostis, T. Char-
alambous, and K. H. Johansson, “Optimal CPU scheduling in data centers
via a finite-time distributed quantized coordination mechanism,” in Proc.
IEEE Conf. Decis. Control, 2021, pp. 6276-6281.

Andreas Grammenos received the B.Sc. degree
from the Technical University of Crete, Kounoupid-
iana, Greece, and the Ph.D. degree from the Depart-
ment of Computer Science and Technology, Univer-
sity of Cambridge, Cambridge, U.K., where he was
also affiliated with the Turing Institute. His research
interests include large scale Data and streaming an-
alytics with a focus on topics around distributed,
federated, & decentralized systems. He was a Found-
ing Member of COVID-19 Sounds, an audio based
study which builds predictive models for COVID-19

detection using crowdsourced smartphone respiratory recordings.

https://learnvmware.online/2018/03/08/performance-troubleshooting-cpu-ready-time/
https://learnvmware.online/2018/03/08/performance-troubleshooting-cpu-ready-time/
https://uefi.org/htmlspecs/ACPI_Spec_6_4_html/
https://uefi.org/

1894

Themistoklis Charalambous (Senior Member,
IEEE) received the B.A. and M.Eng. degrees in elec-
trical and information sciences from Cambridge Uni-
versity, Cambridge, U.K., and the Ph.D. degree from
the Control Laboratory of the Engineering Depart-
ment, Cambridge University. Following his Ph.D.,
he was a Postdoctoral Researcher with the Human
Robotics Group, Imperial College London, London,
U.K., the Department of Automatic Control of the
School of Electrical Engineering, KTH the Royal In-
stitute of Technology, Stockholm, Sweden, and with
the Department of Electrical Engineering, Chalmers University of Technology,
Gothenburg, Sweden. In January 2017, he joined the Department of Electrical
Engineering and Automation, School of Electrical Engineering, Aalto Univer-
sity, Espoo, Finland, as a tenure-track Assistant Professor. In September 2018,
he was awarded the Academy of Finland Research Fellowship and in July 2020
he was appointed as a tenured Associate Professor. In September 2021, he
joined the Department of Electrical and Computer Engineering, University of
Cyprus as a tenure-track Assistant Professor and he remains associated with
Aalto University as a Visiting Professor. His primary research targets the design
and analysis of (wireless) networked control systems that are stable, scalable,
and energy-efficient. The study of such systems involves the interaction between
dynamical systems, their communication, and the integration of these concepts.
As a result, his research is interdisciplinary combining theory and applications
from control theory, communications, network, and distributed optimization.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 4, JULY/AUGUST 2023

Evangelia Kalyvianaki recieved the B.Sc. the M.Sc.
degrees from the Computer Science Department, Uni-
versity of Crete, Rethymno, Greece, and the Ph.D.
degree from the Computer Laboratory, Cambridge
University, Cambridge, U.K. She is currently a Se-
nior Lecturer (Assistant/associate professor) with the
Department of Computer Science and Technology,
University of Cambridge and a Turing Fellow. Before,
she was a Lecturer with the Department of Computer
Science, City University London, London, U.K., and
a Postdoctoral Researcher with the Department of
Computing, Imperial College London, London. Her research interests include
cloud computing, Big Data processing, autonomic computing, distributed sys-
tems and systems research in general. She is interested in the design and
management of next generation, large-scale applications in the cloud.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

