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Abstract—Most traction drive applications lack accurate tem-
perature monitoring capabilities, ensuring safe operation through
expensive oversized motor designs. Classic thermal modeling re-
quires expertise in model parameter choice, which is affected by
motor geometry, cooling dynamics, and hot spot definition. More-
over, their major advantage over data-driven approaches, which
is physical interpretability, tends to deteriorate as soon as their
degrees of freedom are curtailed in order to meet the real-time
requirement. In this article, deep recurrent and convolutional
neural networks (NNs) with residual connections are empirically
evaluated for their feasibility on predicting latent high-dynamic
temperatures continuously inside permanent magnet synchronous
motors. Here, the temperature profile in the stator teeth, winding,
and yoke as well as the rotor’s permanent magnets are estimated
while their ground truth is available as test bench data. With an
automated hyperparameter search through Bayesian optimization
and a manual merge of target estimators into a multihead ar-
chitecture, lean models are presented that exhibit a strong esti-
mation performance at minimal model sizes. It has been found
that the mean squared error and maximum absolute deviation
performances of both, deep recurrent and convolutional NNs with
residual connections, meet those of classic thermodynamics-based
approaches, without requiring domain expertise nor specific drive
train specifications for their topological design. Finally, learning
curves for varying training set sizes and interpretations of model
estimates through expected gradients are presented.

Index Terms—Deep learning, functional safety, monitoring,
neural networks (NNs), permanent magnet synchronous motor
(PMSM), supervised machine learning, temperature estimation,
thermal management.

I. INTRODUCTION

THE permanent magnet synchronous motor (PMSM) is an
appropriate option in various industry applications due to

its high torque and power densities along with a high degree
of efficiency. However, temperature-sensitive components are
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prone to failure under high thermal stress and must be monitored.
Among those, the stator winding insulation and the permanent
magnets are particularly noteworthy for being susceptible to
heat, as the former may melt and the latter tends to irreversibly
demagnetize in overload operation. Nowadays, hot spots in the
stator are monitored with thermal sensors, which are irreplace-
ably embedded although their functionality degrades with age.
Moreover, thermal sensors cannot be applied in the rotor due
to its rotation and intricate structure without considerably high
effort that would make production costs soar. Hence, a costly
safety margin in embedded material is the today’s measure
against excessive heat. Consequently, the overload potential of
a PMSM is never fully utilized. This problem, together with the
constant cost pressure in the automotive sector, drives the inves-
tigation of sufficiently accurate real-time temperature estimation
methods.

A. State of the Art

Various temperature estimation techniques were proposed and
developed for decades. Among the most successful, lumped-
parameter thermal networks (LPTNs) denote equivalent circuit
diagrams approximating inner heat transfer by building on ther-
modynamic theory [2], [3]. Most notably, they are noninvasive,
require no additional hardware, and achieve high estimation
accuracy with comparably few model parameters, which is
necessary for the real-time requirement. Then again, designing
a high-performance, low-order LPTN is only possible by in-
corporating experimentally measured data, which marginalizes
the LPTN’s physical interpretability. In addition, short LPTN
runtimes tradeoff the amount of monitorable hot spots directly.
At the same time, expert domain knowledge is mandatory for a
feasible LPTN parameterization, which strongly depends on the
motor geometry and the cooling system.

Among estimation techniques that infer thermal behavior
from electrical parameter estimates, there are to be mentioned
those based on fundamental wave flux observers [4] and on high-
frequency signal injection [5], [6]. Like LPTNs, both require
sophisticated modeling efforts, i.e., the precise identification
of the motor and inverter. Moreover, whilst for the former
approach it has been shown that estimation accuracy suffers
from lower accuracy at low motor speed, the latter technique
monitors the high-frequency impedances of both, stator winding
and the permanent magnets, to infer the thermal condition,
which comes with additional losses on the system and may
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Fig. 1. Simplified scheme of the whole process from data acquisition at the
test bench over model training up to the applied temperature monitoring in the
field.

prove unsuitable in some applications due to electromagnetic
interference [7].

A neural network (NN) or black-box approach, however, is
independent of motor sheet information through being data-
driven, i.e., being fitted on empirical measurements exclusively,
and, for the same reason, does not suffer estimation degradation
during operation points where physical model assumptions are
violated. Especially recurrent NNs (RNNs) and convolutional
NNs (CNNs) image the state of the art in various computer
science domains, and are particularly useful in many sequence
learning tasks [8], [9]. Their function approximation properties
bode well for achieving high estimation accuracy without having
to retrieve domain expertise. Fig. 1 sketches the big picture from
the process of recording data up to the final application of NNs
for online temperature monitoring.

B. Contribution

Introducing deep learning to the temperature estimation task
in embedded systems comes with the following main challenges.

1) In contrast to LPTNs, many hyperparameters on top of the
actual model parameters (weights) determine the training
outcome. These need to be tuned automatically in order
to not lose the autonomy of self-adaptivity as opposed to
“design by an expert.”

Fig. 2. Sequence learning with RNNs. For each observationxT at timeT there
is a prediction ŷT . Past information is retained through the RNN’s memory cells
and recurrent connections.

2) Generally, increasing the model order improves modeling
capacities but compromises real-time computation. An
appropriate tradeoff is to be opted for.

3) Having trained an NN, its estimates are difficult to inter-
pret. It is desirable to be able to track deviations back to
their causative input signals.

4) Real-world data are a limited resource as it costs time
and money. How much data is necessary for an expedient
regression accuracy?

Building on [1], this article investigates contemporary NN
topologies on their ability to approximate latent and highly
fluctuating temperature profiles inside PMSMs from commonly
available electrical and thermal quantities. Hyperparameters that
define the NN architecture and their weights’ optimization as
well as regularization are extensively optimized in a Bayesian
search. This article sets itself apart from prior work by propos-
ing a unifying model estimating all target temperatures with
a minimal amount of parameters. Moreover, learning curves
for varying training set sizes and input feature attribution by
means of expected gradients to the eventual target temperature
estimates are presented. Subject of all investigations is the data
set1 from [1] and [10]. In the following, we will briefly report
on the utilized machine learning pipeline including basics of
the investigated NN topologies. All code and more details are
available at [11] to assist related work.

II. NN ARCHITECTURES

A. Recurrent Architectures With Memory Blocks

Various breakthroughs in research domains such as speech
recognition [12], machine translation [13], or wherever long-
term memory is required [14] were reported to be successful due
to RNNs and their particular recursive structure. Their recursive
property enables preservation of past observations (see Fig. 2),

1[Online]. Available: www.kaggle.com/wkirgsn/electric-motor-temperature
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Fig. 3. Sequence learning with TCNs. Each prediction ŷT is informed by
the current observation xT and a finite set of past observations (framed blue),
denoting the network’s receptive field.

which is disregarded by most other machine learning algorithms,
e.g., feed-forward NNs (FNNs). A crucial building block of pop-
ular RNN topologies is the so-called long short-term memory
(LSTM) block that applies gating functions to its forward and
recurrent connections [15]. A further simplified version of an
LSTM is the gated recurrent unit (GRU) [16]. The major chal-
lenge in training recurrent NNs is the exploding and vanishing
gradient problem, which is addressed by these memory blocks.
Both memory block types were reported to perform similarly
well on various sequence learning tasks without any significant
advantage being observed over the other [17].

Although RNNs have been studied on the temperature estima-
tion task in PMSMs before in [18], they are coevaluated in this
article’s hyperparameter search in order to ensure comparability
to the following newer topology.

B. Temporal Convolutional Networks

RNNs were dominating the field of sequential learning prob-
lems for years and, thus, have been commonly associated with
them. However, CNNs, which were prevalent in the image pro-
cessing domain, have been discovered to be of superior behavior
over RNNs recently, even in classic long-term memory sequen-
tial problems [9], [19]. The architectural details rendering this
possible were proposed by [9], who coin this certain topology
temporal convolutional network (TCN), see Fig. 3. It inherits
recent advances of applications on sequential data, e.g., causal
and dilated convolutions, but distilled to a simpler form than
previously facilitated.

Causality in a convolution denotes the correlation of past
observations only, i.e., no contemplation of future observations
at any single point in time. The term dilation pertains to the fact
that receptive fields of a filter are distributed apart from each
other over the sequence rather than being adjacent, effectively
expanding the TCN’s scope. This enables TCNs to detect crucial
events further in the past, potentially outperforming the long

TABLE I
TEST BENCH PARAMETERS

memory capability of established RNN memory blocks. The
receptive field depends on the number of hidden layers nl, the
length of the filter lkernel and the dilation rated in each layer. Since
each filter is convolved with the full sequence over a sliding
window of length w, it is said that a TCN has shared weights in
contrast to an equivalent fully connected FNN. This reduces the
total amount of trainable model parameters. All activations in
subsequent layers are the sum of all filters at that time. Padding
with zero ensures that layers and the CNN-output are of the same
size as the input. A key distinguishment to RNNs is the fact that
CNNs and TCNs do not maintain inner memory cells.

C. Residual Connections

Residual or skip connections denote the element-wise ad-
dition of the activations at the input x and output of a layer
or group of layers f(·) within a network to a new output o
[20]. Effectively, partial flowing information takes a shortcut
and bypasses a set of NN layers

o = x+ f(x). (1)

This scheme can be repeated for subsequent layers arbitrarily.
The effect on the accumulated gradients is such that the NN
weights are trained to not reconstruct the target trajectory from
scratch anymore, but rather to learn the difference between the
target temperature profile and the corresponding input signals.

III. TEST SETUP AND VALIDATION

The dataset consists of 140 h multivariate measurements
sampled at 2 Hz from a three-phase automotive traction
PMSM (52 kW) mounted on a test bench, which is torque-
controlled while its motor speed is determined by a speed-
controlled load motor 210 kW and fed by a two-level IGBT
inverter (Semikron: 3xSKiiP 1242GB120-4DW). Furthermore,
a dSPACE DS1006MC rapid-control-prototyping system is de-
ployed on the test bench. All measurements were recorded by
dSPACE analog-digital-converters, which have been synchro-
nized with the control task. The most important test bench
parameters are compiled in Table I. Fig. 4 shows the test bench
with an exemplary PMSM of similar characteristics.
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Fig. 4. Test bench with an exemplary PMSM of similar characteristics.

Fig. 5. Frequency of set operation points. Brighter areas are visited more often.

All temperatures are measured with embedded thermocouples
(type K—class 1), and the rotor temperature, which is repre-
sented by the average permanent magnet surface temperature
across four sensors, is transmitted via a telemetry unit. Further
details on the test setup can be found in [2].

An operation point heatmap can be seen in Fig. 5. Among
excitation profiles with longer constant operation evident as
bright dots in the upper half-plane (motoric mode), a substan-
tial amount of profiles denote random walks covering the full
operation range in order to capture as much thermal behavior as
possible.

All input and output signals are compiled in Table II. It is to
be noted that only those quantities are considered as input that
are readily available in most mass-produced drive applications
like automotive or automation through their electronic control
units and corresponding sensors, which is the reason why, for
example, torque is not included here.

In all experiments, Keras [21] with a Tensorflow-backend is
utilized. Experiment runtimes are reported for computations on
NVIDIA GeForce GTX1080Ti graphic cards.

TABLE II
MEASURED INPUT AND TARGET PARAMETERS

A. Data Preprocessing and Feature Engineering

Data representations are to be standardized mandatorily for
NN training. Here, the mean is subtracted from each feature,
and all observations are further scaled to exhibit unit standard
deviation in the training set.

The exponentially weighted moving average (EWMA) and
standard deviation (EWMS) of all input signals x are adhered to
the original input space from Table II. As a result, the following
two quantities are available for every signal xt at each time step
t as additional regressors

μt =

∑t
i=0 wixt−i
∑t

i=0 wi

and σt =

∑t
i=0 wi(xi − μt)

2

∑t
i=0 wi

(2)

where wi = (1− α)i with α = 2/(s+ 1) and s being an arbi-
trary span. Multiple, differently spanned EWMAs and EWMS’
lead to various smoothed versions of all time-series and their
standard deviation, which denote strong linear regressors [10].
Only four possible values for the span in EWMA and EWMS
calculation are simultaneously explored in order to limit memory
demand. To this end, the total amount of input quantities denotes
108 features, which is the same for all experiments.

B. Cross Validation

The mean squared error (MSE) is reported between the
predicted and real temperature profile (ground truth). The full
dataset is split into the following three parts: The training set
for training NNs; a validation set of around five hours on which
the generalization error is monitored after each iteration over the
training set to apply early stopping [8]; and a seven-hours test set
to eventually cross validate an NN’s true generalization error on.
All NN weights are optimized via the backpropagation algorithm
(more specifically, Adam [22]), and the learning rate is divided
by ten after there is no improvement anymore in training set loss
for ten consecutive epochs. This amounts to a geometrically
decreasing learning rate schedule, which is known to prevent
learning from premature convergence [8].

IV. BAYESIAN OPTIMIZATION OF HYPERPARAMETERS

Most machine learning algorithms encompass not only pa-
rameters that are tuned during data fitting, but also preconfigured
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TABLE III
HYPERPARAMETER SEARCH INTERVALS AND RESULTS

hyperparameters that affect overall training. Commonly, grid
search or random search is conducted to find a well-performing
set of hyperparameters. In this article, however, the search takes
advantage of previously evaluated points in the hyperparameter
space via Bayesian optimization [23]. Hyperparameters are opti-
mized with the scikit-optimize framework [24] where Gaussian
processes act as surrogate model.

Four independent searches are conducted. SearchΞ optimizes
RNNs on stator temperatures exclusively, whereas search Φ
stands for RNNs on rotor temperatures; Ψ for TCNs on sta-
tor temperatures; and Ω for TCNs on rotor targets. Table III
compiles the considered hyperparameters, their search interval
as well as their optima. In the following, not already mentioned
entries are illuminated: Regularization is controlled via weight
decay [25], which denotes an �2 norm penalty term on the weight
matrices; dropout [26], [27], which randomly nullifies unit acti-
vations within layers; gradient clipping and normalization [28],
which mitigates the exploding and vanishing gradient problem;
and gradient noise on layer activations [29]. For each layer, there
are nunits nodes. The truncated backpropagation through time
(TBPTT) length is unique to RNNs, and defines the ratio of
forward passes per backward pass during backpropagation.

A. Experimental Results

Table IV compiles a summary of the four searches. In absolute
numbers, the found optima for both, RNNs and TCNs, achieve
state-of-the-art scores on the task of temperature estimation for
the stator and rotor on the designated test set. The MSE of all
found optimal models is below 4k2 and the L∞-norm is also
always below 9k, surpassing the accuracy of a recent state-
of-the-art LPTN (MSE: 5.73k2 [3]). However, this increased
regression accuracy comes with magnitudes of more model
parameters, which is below 50 for the mentioned LPTN.

It becomes evident that the TCN searches achieved better
performing models in terms of the MSE than the RNN searches.
Notably, one of the four searches ended up with an especially

TABLE IV
SEARCH RUNTIME AND MODEL PERFORMANCE

small topology with an only slightly degraded score compared
to the other optima. This indicates that also fewer parameters in
an NN offer sufficient modeling capacity, which is investigated
in the following sections.

V. OPTIMIZATION INTO A UNIFIED MODEL

Having analyzed the hyperparameter searches, it is further
elaborated on a single model predicting all four temperatures
instead of either stator or rotor quantities in an attempt to
further reduce the model size. While adding a mere fourth target
neuron to the final stator layer for the rotor estimation was not
successful, introducing multiple heads with their own distinct
layers has proven fruitful. Fig. 6 illustrates such a topology for
a TCN. Note that four branches—one for each component—are
likewise possible but would increase the model size significantly
for a merely slight accuracy gain. Merging the stator and rotor
estimation into one single model with shared layers directly
reduces the required amount of parameters in contrast to two
separate models that are to be run in parallel.

A. Line Search on Number of Units Per Layer

Since relatively small models of this certain topology al-
ready show strong performance, an optimal tradeoff between
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Fig. 6. Left: Single-head TCN. Right: multihead TCN with two heads.

Fig. 7. Test set estimation accuracy based on the mean over all target temper-
atures with varying model sizes. Each topology was evaluated ten times with
different random seeds.

model size and estimation performance is desirable. Pursuing
an insightful Pareto-front, the number of neurons per layer
is varied from 2 to 128, keeping the amount of layers fix at
one joint residual hidden layer and one subsequent multihead
layer, followed by a dense output layer each, as shown in
Fig. 6. All other hyperparameters are kept as has been found
optimal in the previous Bayesian optimization. The resulting
performance curve is depicted in Fig. 7. It becomes evident
that in general, again, the TCN performs better than the RNN
in terms of the overall MSE as well as training consistency.
Moreover, the mean estimation performance tends to improve
with more hidden units per layer for the TCN, while the RNN
has an optimal plateau within the contemplated interval. The
deteriorating performance in case of the RNN for more than
64 units might be due to overfitting, which starts to take place
with increasing model complexity. Since the regularization pa-
rameters are kept constant here, regularization strength for the
RNN seems to not suffice, whereas the TCN retains its gen-
eralization ability. The optimal tradeoff between small model

sizes and consistently high estimation performance appears to
be at 16 hidden units per layer for the considered two-headed
architecture.

B. Architecture Details and Performance

In conclusion, the optimal model architectures consist of the
following.

1) TCN: One shared convolution block of 16 kernels of filter
size 2 applied on a four-second sliding time window over
108 input features; two convolution blocks of 16 dilated
kernels of filter size 2 each for the stator and rotor part
applied on top; the stator head is completed with a three-
neuron-layer for three stator signals and the rotor head
with a one-neuron-layer, correspondingly. The graphical
representation is best seen in Fig. 6 with nl = 2.

2) RNN: One shared LSTM layer of 16 neurons applied on
108 input features per time step. The output of this layer is
added with the output of a 16-neuron FNN layer applied on
the current time step as residual connection. Similar to the
TCN’s two-head system, two dedicated residual LSTMs
with 16 neurons each are applied on the shared LSTM
layer that finish in a three-neuron FNN and a one-neuron
FNN for stator and rotor, respectively.

This amounts to around 7 k trainable parameters for the
TCN and 14 k for the RNN, which denote significant model
size reductions compared to the previously found architectures,
where 387 k and 852 k parameters, respectively, were necessary
(see Table IV). Consequently, runtimes decrease as described in
the following section. The optimal unified models achieve mean
MSE scores across the four component temperatures of 3.42k2

and 8.7k2 for the TCN and RNN structure, respectively.
The estimation and ground truth of such composed models

across the four targets is depicted in Fig. 8 for the TCN instance.
It becomes evident that ϑPM and ϑSY are estimated the most pre-
cise in terms of both, the MSE and maximum absolute deviation
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Fig. 8. Estimation on the first test set profile (out of two) with the optimal multihead TCN and 16 units per layer. Ground truth in green, prediction in blue, and
the residual in red. The bottom four plots show selected input variables to highlight the high dynamics of the drive cycle.

‖e‖∞, while ϑST is slightly weaker and ϑSW is estimated with
the highest but still decent deviations.

Thus, it appears that the TCN tends to better predict those
time series with a larger time constant in this particular setting.
A possible reason for this is the certain choice of span values in
EWMA/S generation. Reweighting target temperatures during
training help to center this unbalanced accuracy across targets
but comes with a worse overall MSE and ‖e‖∞, therefore, it is
not investigated further.

C. Runtime on Embedded-Like Hardware

Since NNs comprise substantially more parameters than con-
ventional white- or grey-box models, all optimal topologies’
runtime on embedded-like hardware has been quantified. In this
article, a Raspberry Pi 3 Model B+ with Raspbian Stretch 9.8
and tensorflow 1.13 were utilized to measure runtime during
inference. The models’ inference runtime median across 10 000
iterations is shown in Table V along with the corresponding
best model’s training time on a GPU (RTX2060 Super) or
CPU (i7-9800X), whichever was faster, for 100 epochs with
tensorflow 2.3. Taking into account that the used dataset is
sampled at 2Hz, an estimation would be necessary every half
second at maximum, which is feasible even for the bigger NN
topologies by a large margin.

D. Interpreting Feature Importance With Shapley
Additive Explanations (SHAP)

In the following, input parameter importance is interpreted
with approximate SHAP [30]. Shapley values are a take on
feature importance evaluation by identifying feature attributions
to certain predictions through classic equations from cooper-
ative game theory. SHAP values approximate Shapley values
by computing them from a conditional expectation function of

TABLE V
RUNTIMES

the original model. SHAP values themselves can be approxi-
mated for deep NNs through expected gradients, which combine
SHAP and the integrated gradients algorithm [31]. Here, the
full training set acted as background data to determine the
model’s expected estimation and the attribution is aggregated
on deviations from that within estimations on the test set from
Fig. 8. Violin plots of the six most impactful features in terms
of their absolute SHAP value for the optimal TCN’s feature
attributions are shown in Fig. 9. Red and blue areas mark high
and low feature values, respectively. High absolute SHAP values
indicate a corresponding high impact on the actual estimation.
As expected, for the stator head, the coolant and its filtered
versions are among the most important input representations.
More specifically, the coolant EWMA with a relatively short
span of 11 min clearly dominates the attribution, which allows a
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Fig. 9. Optimal multihead TCN’s input attribution of the most impactful features. Left: stator head. Right: rotor head.

Fig. 10. MSE on the fix test set with an increasing training set size. Lines
denote mean MSE across ten random subsets.

slight inference on the system’s overall thermal properties. The
rotor head, on the other hand, shows a more uniform distribution
of absolute attributions, but still, the most impactful features are
consistently among the voltage quantities. The coolant seems to
have a relatively minor effect. Moreover, it becomes obvious that
the rotor estimation relies more heavily on longer spans among
the EWMAs than the stator head, which is explainable due to
the rotor temperature’s larger time constant. These observations
give rise to the question, how differently filtered signals might
be incorporated into an NN with dynamic spans. This remains
an interesting investigation for future research.

E. Learning Curves

Industries that lack excessive amounts of data have an in-
creased interest in ascertaining how much samples are needed
to achieve a certain regression accuracy. NNs are known to
exhibit a better scalability with more data than other machine
learning (ML) methods, but an insufficient mapping in case of
too few samples (underfitting) is likewise possible. Learning
curves are plotted in Fig. 10. Here, the two-headed, optimal
TCN is iteratively cross-validated against the constant-size test
set whereas the available training set is virtually varied from
5% to 100% in order to assess the regression performance with
random subsets of the original data. Randomness is induced
by permuting the measurement session order from which the
first profiles are considered ten-fold at full length to retain the

time dependency. Overall, it becomes evident that the estimation
performances start to converge to their minimum at around 63
h for most targets, except for the stator winding temperature
estimation, which seems to not cease to benefit from more data.
Note that the standard deviation, which is not depicted here, also
decreases substantially with more data.

VI. CONCLUSION AND OUTLOOK

It has been shown that deep residual NNs that pertain to purely
data-driven approaches, achieve state-of-the-art estimation per-
formance on the task of monitoring important component tem-
peratures in a PMSM in real-time, as measured on embedded-
like hardware. Optimal architectures were found automatically
during the Bayesian optimization of topology-defining hyper-
parameters, and manual model size reductions were achieved
including the unification of all targets’ estimates in one model. A
method from representation importance literature for attributing
model estimates to their most impactful input representation has
been applied and shown useful. Eventually, it has been evaluated
that decent performances are achievable also with around 60
hours of records, which denotes half the available data.

The presented data-driven modeling technique is by design of
general form and can be easily adapted to different motor types,
temperature targets (i.e., motor components) or even neighbor-
ing domains (e.g., battery systems) without the necessity of
domain expert knowledge, provided that there exists a statistical
relationship between input and output signals.

It is still an open question how well NNs may generalize across
different motors from the same or even different manufacturers
(transfer learning). Investigating this requires an enormously
large dataset exhibiting this diversity, and is yet to be recorded.
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