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Fast Numerical Power Loss Calculation for
High-Frequency Litz Wires

Stefan Ehrlich , Hans Rossmanith, Marco Sauer, Christopher Joffe, and Martin März

Abstract—This article presents a fast numerical calculation
method of realistic power losses for high-frequency litz wires.
Explicitly, the imperfect structure of litz wires is considered when
calculating losses due to an excitation current (skin losses) and
external magnetic fields (proximity losses). Calculations of litz
wires with more than 1000 strands were performed on a personal
computer and have been validated by measurements up to 10 MHz.
In the calculation, the impact of the bundle structure on skin and
proximity losses is examined. The method allows to select a suitable
litz wire for a specific application or to design a litz wire considering
realistic twisting structures.

Index Terms—Bundle level, litz wire, numerical calculation,
partial element equivalent circuit (PEEC), power losses, proximity
effect, real litz wire behavior, simulation, skin effect.

I. INTRODUCTION

THE shortening of time to market is a permanent demand for
product development. Thereby, engineers face increasing

requirements for system efficiency and the resource-saving use
of materials due to environmental and climate protection. In
order to achieve the optimum solution, virtual prototyping and
the associated system optimization are inevitable. In power
electronic systems, the passives, in particular inductive com-
ponents, take up a considerable part of the installation space and
costs. Increasing the switching frequencies seems promising to
reduce the size of passive components. With higher frequencies,
frequency-dependent losses, especially winding losses, come
into focus for system design and optimization. Their time-
efficient and exact prediction is decisive for the aforementioned
requirements. Winding losses of round wires or foils are de-
termined with a reasonable calculation effort. By contrast, the
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loss calculation of litz wires using numerical methods such as
finite-element method (FEM) is very time consuming due to
their complex bundle structure and twisting.

Beyond numerical calculations, some very fast analytical
methods have been presented in the literature. All these methods
[1]–[3] are based on a separate calculation of skin, internal prox-
imity, and external proximity losses due to their orthogonality in
circular litz wires [4]. Subsequently, all particular loss compo-
nents are summed up [5], which is an accurate approximation for
a large number of strands when a complex stranding structure
does not cause dominant losses on bundle level. Therefore, skin
and proximity losses are modeled by considering the packing
of the strands with a fill factor [2], [3]. For a high number of
turns, proximity losses dominate in coil windings and the losses
caused by the skin effect may be neglected with the asymptotic
approximation in [2], [6]. According to the authors in [2], the
ideal number and diameter of strands is determined on the basis
of this modeling, even if there is a significant skin effect on
bundle level, as these loss mechanisms are independent of each
other.

Analytical methods like Ferreira [4] use the Bessel func-
tion solution derived for an isolated cylinder to calculate the
proximity losses in the individual strands of litz wires as if a
set of packed cylinders would behave the same. It has been
demonstrated that this approach is incorrect, because the bound-
ary conditions are different. However, for strand diameters,
small compared to a skin depth, as is a good choice in litz
wire, [4] is an adequate approximation [7]. Homogenization
methods of the winding material [8]–[10] were developed to
address the aforementioned limitations of [4]. Starting from a
unit cell, effective parameters such as conductivity and complex
permeability are derived. Homogenization methods are used to
accelerate calculation performance of FEM [11] when calculat-
ing the field distribution in the winding window, because with
effective material parameters, individual strands of a litz wire
need not be resolved. For certain conductor geometries, method
[12], which is based on the analytical solution of the magnetic
vector potential and therefore requires no meshing, offers a
faster alternative to FEM. It is more accurate than classical
homogenization techniques, because no simplifications of the
problem are assumed.

For the selection of a litz wire, manufacturability, costs, as
well as availability are major objectives. To seriously consider
these objectives, nonideal loss properties and thus the complex
twisting structure of a litz wire have to be investigated. None
of the described methods is suitable for this purpose. The real
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litz wire behavior is measured and modeled in [1] using the
analytical loss formulation of an ideal litz and a round wire.
Although nonideal litz wire losses have been measured, those
effects are not specified in current data sheets. Further analytical
methods are [13], [14], where [13] examines the impact of the
pitch length and pitch direction on proximity losses. However,
a realistic packing of strands into bundles results in a noncir-
cular shape of the bundles. In this case, the calculation of the
bundle or sub-bundle diameters is unclear. This seems to be
a methodological shortcoming of [13], as the diameter affects
the accuracy of the result. Furthermore, it is mandatory for the
method in [13] that bundle level effects are small enough to
neglect self-shielding effects.

Numerical methods provide a solution to this problem and
with the partial element equivalent circuit (PEEC) method prob-
ably the most promising one. It has its origins at IBM [15],
[16] and was further developed at the Massachusetts Institute of
Technology for the calculation of losses in high-frequency litz
wires [17]. The PEEC method is based on approximating the
field problem with an electrical equivalent circuit and solving
an equation system. Although computing time is reduced with
this method in comparison to FEM, the discretization of the
investigated structures with cuboids still leads to a large number
of elements. Accordingly, loss calculations of litz wires with a
high number of strands are not feasible on a personal computer
[17], [18]. A major step toward reducing the computing time is
the adoption of thin conductors in analogy to the antenna theory
[19]. Thereby, strands are considered as single discretization
elements [20], [21]. However, this eliminates the ability to model
the eddy currents within individual strands, which was included
in [17]. Hence, there is a need for separate eddy current models.
While in [19] an integral formula of the vector potential of an
entire strand is indicated, an explicit analytical derivation of the
vector potential for a single numerical element is not shown.

For the analysis of proximity losses in a particular transformer
or inductor, all described methods still require the external mag-
netic field or at least the quadratic mean value of the magnetic
field amplitude in the winding window. Only in a few special
cases, the magnetic field can be determined analytically. In order
to determine the external magnetic field with short computing
times, as achieved with a static FEM simulation [18], the follow-
ing assumptions are made: the eddy currents in the strands do not
perturb the external magnetic field, and the impact of unequal
current distribution in particular bundles on the magnetic field
is small. Based on the magnetic field and the specified litz wire
currents, the losses are calculated either analytically [7], [13]
or numerically, for example, using the PEEC method [18] (also
known as SlicerPro).

In this article, we introduce a fast numerical power loss
calculation for high-frequency litz wires, in analogy to the PEEC
method. From the authors’ point of view, the method is most
similar to [21], even though the exact derivation of the equation
system is not shown there. Thus, this article shows the first
analytical formula of the vector potential for each numerical
strand element. Based on the complex twisting structure, the
equivalent circuit for the numerical calculation of strand currents
is derived directly from this vector potential. Combining the

numerical calculation method of strand currents and the ana-
lytical formulas presented in Section II, realistic power losses
of litz wires with more than 1000 strands are calculated on a
personal computer. Due to the reduction of the computational
time, which is shown in Table III, this method is also regarded
as a continuation of Zhang’s work [17] to calculate realistic litz
wire structures. Just like [17], this numerical approach needs a
detailed modeling of the inner litz wire structure. Therefore, we
present an approach for an algorithm to calculate twisted litz
wire structures. Although modeling the exact packing density
at the lowest twisting level of a litz wire still needs mathemat-
ical refinements, the shown modeling of the litz wire structure
already gives very accurate results compared to measurements.
Skin losses as well as proximity losses are validated separately
for this numerical calculation model in Sections III and IV.
To the authors’ knowledge, a separate validation of skin and
proximity losses in the numerical model have not yet been
investigated to this extent in the literature. When investigating
the performance differences between constructions with respect
to skin and proximity losses, a precise information about the
inner litz wire structure in the simulation is provided, which is a
significant contribution compared to [21]. External fields in the
winding window and near air gaps are computed with FEM as
shown in [18].

II. THEORY OF THE FAST NUMERICAL CALCULATION METHOD

In the following section, a method (SEEC: strand element
equivalent circuit) for the fast calculation of losses in high-
frequency litz wires analogous to the PEEC method is intro-
duced. It most closely resembles the method according to [21],
which is based on the numerical elements of [19]. Starting from
the discrete modeling of the litz wire structure, an equation
system for the calculation of the strand currents is derived. In the
equation system, both the internal and external magnetic fields
are considered.

A. Magnetic Vector Potential of a Strand Element

Litz wires are composed of twisted bundles, which in turn
consist of twisted bundles in a recursive manner or single
strands, as Fig. 1(a) shows for a (7 × 7)49 litz wire. Due to
electromagnetic induction, the currents in the strands of a litz
wire affect each other. To take induction effects into account
when determining strand currents, the electromagnetic vector
potential is used. Whereas in round conductors, the current
direction corresponds to the conductor direction, the current
conducting twisted strands change their direction along the axis
of the of a litz wire [cf. Fig. 1(a)]. Regardless of this, only the
vector potential component parallel to the axis direction �e1 of a
litz wire is relevant, the current in a strand section is assumed
to be �e1 – paralleled. All strand elements contribute only to
this vector potential component, so that a magnetic flux density
component parallel to �e1 cannot be derived. This simplification
has no major impact on the loss calculation in typical windings,
because components of the magnetic vector potential orthogonal
to the strands will not cause equalizing currents through the
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Fig. 1. Figure shows (a) structure of a (7 × 7)49 litz wire with twisted bundles
and single strands. The first number inside the brackets indicates the top bundle
level with seven bundles and the second number indicates the strand level with
seven strands. The subscript number (here 49) describes the total number of
strands in the litz wire. To model the electrical behavior of a single strand (b)
in the fast numerical calculation, many strand elements are connected in series
(c). All strand elements have a radius of re and a length of 2le.

individual strands. However, eddy currents within the strands
can be calculated analytically in case of a significant influence.

For the investigation of entire windings of inductive compo-
nents, where the sections [cf. Fig. 1] have different orientations
in space, it is assumed that the litz wire winding is �e1 directed.
The vector potential on a section of the litz wire is defined as
follows:

�Alitz (�r litz) = A (w1, w2, w3)�e1

where �rlitz = w1�e1 + w2�e2 + w3�e3 . (1)

For the numerical calculation of strand currents, the complex
litz wire structure, which is formed by a high number of radially
and azimuthally permuted insulated strands [21], is modeled
with strand elements in form of small cylinders with the radius
re and the length 2le, as shown in Fig. 1. To minimize losses
in litz wire applications, the strand radius re is chosen to be
small compared to the skin depth of the operating frequency
range of a litz wire. If eddy currents are induced within the
strands by an external magnetic field at higher frequencies, a
magnetic field similar to that of a line dipole is generated and

superimposed on the exciting field. These dipole fields mainly
contribute to the external field of adjacent strands and decrease
with the inverse square of the distance. However, for strand
diameters small compared to a skin depth, as is a good choice
in litz wire, it is acceptable to neglect these effects. The current
Ie through a strand element in �e1-direction is homogeneous for
lower frequencies. Eddy currents within the strands at higher
frequencies will be dealt separately in this article.

If a local Cartesian coordinate system with the
coordinates s1, s2, s3 [cf. Fig. 1(c)] is placed in the center of
a strand element, the strand element with the current Ie has the
same vector potential �Ae, o outside the element as a line current
element placed in its center. Using the Biot–Savart formula
for the magnetic vector potential of a line current element,
the following magnetic vector potential results, where μ0 is
the vacuum permeability, Ie is the current through the strand
element, and ρe is the distance from the center of a strand
element:

�Ae, o =
μ0Ie
4π

∫ le−le

ds√
ρ2e + (s1 − s)2

�e1

=
μ0Ie
4π

⎡
⎣ln

⎛
⎝
√

ρ2e + (s1 − le)
2 − (s1 − le)√

ρ2e + (s1 + le)
2 − (s1 + le)

⎞
⎠
⎤
⎦�e1,

ρe =
√

s22 + s23 . (2)

Within the cylindrical strand elements, the magnetic vector
potential �Ae,ı is derived from an integration over a homogeneous
spatial current density of cylinder hulls with an infinitesimal
length 2le and a radius ρe.

�Ae,i =
μ0Ie
4π

⎡
⎣ 2π

πr2e

∫ re

ρe

ln

⎛
⎝
√

r2 + (s1 − le)
2 − (s1 − le)√

r2 + (s1 + le)
2 − (s1 + le)

⎞
⎠

rdr +
π ρ2e
πr2e

ln

⎛
⎝

√
ρe2 + (s1 − le)

2 − (s1 − le)√
ρe2 + (s1 + le)

2 − (s1 + le)

⎞
⎠
⎤
⎦�e1,

ρe =
√

s22 + s23. (3)

The integral is evaluated to simplify the numerical calculation
of the vector potential of an element.

�Ae,i

=
μ0Ie
4π

⎡
⎢⎢⎢⎢⎢⎢⎣

ln

(√
r2e+(s1−le)

2−(s1−le)√
r2e+(s1+le)

2−(s1+le)

)

+ s1−le
r2e

(√
ρ2e + (s1 − le)

2 −
√

r2e + (s1 − le)
2

)

− s1+le
r2e

(√
ρ2e + (s1 + le)

2 −
√

r2e + (s1 + le)
2

)

⎤
⎥⎥⎥⎥⎥⎥⎦
�e1

(4)

Equations (2) and (4) provide the contribution of a single
strand element to the vector potential of a closed current loop
consisting of several such elements. As already indicated in
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Fig. 2. Initial position of all strands in a litz wire cross-section: Litz wires
are composed of several twisted bundles in a recursive manner or of single
strands. (5 × 4 × 3)60 litz wire, which is composed of (a) five twisted bundles
at top bundle level, (b) four twisted bundles at a middle bundle level, and
(c) three twisted strands at the lowest bundle level (strand level).

Fig. 1(b), the strand currents at the interfaces of the elements
within a strand are continuous Ie,11 = Ie,12 = Ie,13.

B. Numerical Stranding of Litz Wires

For the presented numerical calculation of the losses in high-
frequency litz wires, the complex structure of a litz wire is
modeled discretely. Therefore, a �e1-directed litz wire is sub-
divided into sections with the infinitesimal length 2le of a strand
element [cf. Fig. 1(b) and (c)]. In a section, the magnetic vector
potential is evaluated only in the center of a particular strand
element, where s1 = 0 is valid in the local coordinate system.
Thus, the strand positions are also determined in the center of a
strand element on a cross-sectional area perpendicular to the �e1
direction.

The stranding procedure for each section of the litz wire is
as follows. First, an initial position of all strands in the litz wire
cross-section is determined. Thereby, sub-bundle positions are
defined by their center coordinates relative to the corresponding
bundle center. The sub-bundles are initially placed on a circle
around the bundle center, which is applied recursively down to
the lowest bundle level (cf. Fig. 2). Once all bundle positions
have been determined, an optimization procedure analogous to
the placement of components on a printed circuit board begins.
Optimized bundle positions are obtained by minimizing an
objective function with penalties if partial sub-bundles overlap
or exceed the specified cross-section of the litz wire as well
as penalties for a large distance of the sub-bundles from their
starting positon. Now all bundle positions are fixed. For litz
wires with a large number of strands, strand positions will not
be part of the optimization, but are placed on a regular lattice
within a circular cross-section of the lowest level bundle. The
next section along the �e1-direction of the litz wire uses starting
positions for each sub-bundle of the recursive twisting steps,
which are rotated by a certain angle around the bundle center.
The strand positions are likewise rotated and the bundle position
optimization procedure starts again. The individual strands of
successive sections are assumed to be electrically connected.

As an example, an arbitrary cross-section of a litz wire with
a (7 × 4 × 35.7)1000 twisting structure is considered. The
decimal number with one digit after the decimal point (here
35.7) represents the average number of strands per sub-bundle.
Comparing with the cross-section view of a cut litz wire under
the microscope [cf. Fig. 3(b)], it can be seen that in the model the
strands are more densely packed into idealized round bundles

Fig. 3. Individual strand positions in the cross-section of a
(7 × 4 × 35.7)1000 × 0.071 mm (strand diameter) litz wire are shown
as they are positioned (a) in the model and (b) for a real litz wire. The twisted
sub-bundles of the middle bundle level have the same color in (a). The contours
of the bundles are visible in the real litz wire, cf. (b). One bundle of the top
bundle level is located in the center of the litz wire.

within the strand level, but have more space between the partial
sub-bundles, cf. Fig. 3(a). This approximation may affect the
accuracy of the method for large diameters of bundles on strand
level.

Litz wires with a high number of strands have several twisting
levels (e.g., the litz wire in Fig. 2 with three twisting levels) for
two main reasons. On the one hand, the number of strands, which
a twisting machine can handle, is limited. On the other hand, if
more than five bundles or strands are twisted, there is a group of
sub-bundles or strands that stay in the center of a bundle, hence
other groups never appear in the center along the entire length of
the litz wire (cf. Fig. 3). Such bundles are not permuted radially,
resulting in a dramatically increase of skin losses [21]. To model
this litz wire structure, it is not feasible to arrange all sub-bundles
or strands on a circle at the same distance from the bundle center,
as in Fig. 2(a). Instead, these types of sub-bundles are arranged
on several concentric circles around the bundle center before
the optimization procedure is started. By the optimization, the
bundles are placed in the cross-section of a litz wire according
to the penalties mentioned above, but they remain close to their
starting positions. Thereby, some bundles are closer to the center
of the corresponding bundle than others.

Only one litz wire of a particular length, the so-called unit cell,
of the entire litz winding is discretely built-up for the numerical
calculation. Ideally, the length of this unit cell is chosen as the
least common multiple of the pitch lengths of all recursively
twisted bundles. To avoid extremely long unit cells, a small
deviation from the real pitch length in the model is allowed, in
order to minimize the length of the unit cell (cf. Table II). Even
an accepted deviation of 5% leads to short unit cells, which is
sufficient for the simulation. Note that a unit cell always repre-
sents only one possible variant of a given litz wire and it cannot
be guaranteed that bundle positions of this variant correspond to
those of a real litz wire. Hence, it is valuable to model unit cells
with various degrees of freedom. This enables to differentiate
which results apply only to the positions of the chosen unit cell
and which apply for a real litz wire. Approximately 25 sections
within this unit cell provide accurate calculation results. Before
calculating losses, the bundle structure has to be created just
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TABLE I
CPU TIME ON A PERSONAL COMPUTER (CPU-TYPE: INTEL CORE I7-3632QM;

NUMBER OF CORES: 4; RAM MEMORY: 7.8 GB) TO SET UP A UNIT CELL

WITH 25 SECTIONS FOR SEVERAL LITZ WIRES

The stranding procedure is implemented in the programming language MATLAB.

once for a new litz wire. According to Table I, the calculation
time of a unit cell is about 1 min for a litz wire with 1000 strands.

Again, it should be emphasized that all strand elements and
their currents are assumed to be �e1 -directed, parallel to the litz
wire direction. Only this �e1 -component of the vector potential
is evaluated. In summary, the modeling considers the most
important structural properties of a litz wire, such as multiple
bundle levels, pitch lengths, as well as pitch directions. Bundle
configurations with center bundles (cf. Fig. 3), with a noncircular
shape and “hollow” litz wire structures in which strands are
wound on the outer diameter of a dielectric core (cf. [22]) are
also viable with the presented modeling approach. Nevertheless,
mathematical refinements are necessary, in particular to acceler-
ate the stranding procedure, if the exact packing density at strand
level of a litz wire has to be modeled.

C. Calculation of Strand Currents

For the calculation of winding losses, it is sufficient to
restrict the investigations to sinusoidal currents and voltages
with different frequencies, due to the linearity of the problem.
Using the Fourier expansion, arbitrary periodic waveforms are
represented in the complex notation. To connect a litz wire
with other electronic components, all strands are electrically
connected at their ends, e.g., by solder joints. As all strands
are connected in parallel and all strand currents interact with
each other by electromagnetic induction, equalizing currents
are generated between the single strands. A correlation of the
induced voltage vn and the strand currents in is established
by integrating the magnetic vector potential An along a single
strand n with a path element dw1. For the numerical calculation,
each integral is a summation of the magnetic vector potentials
along the axis of the litz wire with K sections of the length lnk
[cf. Fig. 1(a)]

vn = jω ∫ An dw1 = jω

K∑
k=1

lnkAnk (5)

where ω is the angular frequency. The total magnetic vector
potentialAnk at strand n on strand element k is a superposition of
the external vector potential Ank,ex due to an external magnetic
field and the sum of all outer vector potentialsAnk,o, cf. (2) from
the strand elements in the litz wire including its own inner vector
potential Ank,i, cf. (4). Excluding some specific situations,

Fig. 4. Equivalent circuit diagram of a litz wire with N strands.

especially with air gaps, the external magnetic field may be
assumed as homogeneous over the cross-section of a litz wire.
Evaluating the field in the center of the litz wire cross-section
is reasonable. A magnetic field component parallel to �e1 is
neglected here, as it has no influence on the equalizing strand
currents [13]. So, the external magnetic vector �Aex potential is
determined directly from the external magnetic field �Hex

�Aex = A nk,ex (w1, w2, w3)�e1 = μ0

(
H e2w3 −H e3w2

)
�e1

where �Hex = H e2 (w1)�e2 +H e3 (w1)�e3 . (6)

For the calculation ofAnk in the center of the particular strand
element according to (2), (4), the following applies:

�Ae,o = Ank,o (s1, ρnk)�e1 and �Ae,ı = Ank,i (s1, 0)�e1. (7)

With these �e1 -components of the magnetic vector potential,
(5) is written as:

v n = jω
K∑

k=1⎡
⎣lnk Ank,ex + lnk Ank,ı +

NK∑
η=1,η �=nk

lnkη Ankη,o

⎤
⎦

= v n,ex + v n,int. (8)

The voltages v n in the single strands are induced by external
magnetic fields (v n,ex) and internal strand currents (v n,int).
The electrical behavior of a litz wire is described by the equiv-
alent circuit diagram in Fig. 4. In a litz wire, the dc resistance
of all N strands may not be identical in general. Due to the first
construction step, where often more than 20 strands are twisted
together, some strands may have a shorter path in the middle of
the bundle than in outer positions of the bundle. Assuming the
same resistance Rn = NRdc for all strands, where Rdc is the
dc resistance of the litz wire, however, has only a minor effect on
litz wire losses [21]. If a differentiation of the resistances would
be necessary, the individual dc resistors might be obtained from
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the positioning of the strands in a unit cell. The ac resistance
of the strands is of secondary relevance, because at lower fre-
quencies the dc resistance and at higher frequencies the inner
proximity losses, due to the magnetic field of all strands in the
litz wire, are dominant over the strand skin losses.

The voltage vn induced in a single strand n is represented by
a current-controlled voltage source. At both nodes of the circuit,
all strand currents in are added up to the current of the litz wire i.
An additional voltage source v0 in a fictive return path allows
adjusting current i to the given value. According to Kirchhoff’s
current law, the following applies:

i =
N∑

n=1

in =
N∑

n=1

v 0 − v n

Rn
. (9)

Assuming identical dc resistances Rn = NRdc for all
strands, a mathematical transformation of (9) results in an ex-
pression for the fictive voltage v0

v0 = Rdc i+ v where v =
1

N

N∑
n=1

vn . (10)

By applying Kirchhoff’s voltage law for the equivalent circuit
in Fig. 4 and using (10) and (11) is derived in matrix notation,
where I is the vector of the strand currents, V is the vector of
induced voltages in the strands, and 1 is a vector with N identical
components 1

I =
1

Rn
(1v 0 −V) =

1

NRdc
(Rdc 1 i−V + 1 v)

where V = [v 1, v 2, . . . , v n, . . . , v N]
T

I = [i 1, i 2, . . . , i n, . . . , i N]
T

1 = [1, 1, . . . , 1, . . . , 1]T. (11)

In (11), the total current i, the dc resistance Rdc, as well as
the number of strands N are known parameters. The voltages vn
depend on the magnetic vector potential, which again depends
on the strand current in [cf. (2), (4), and (8)]. If the external
magnetic field is also known, all quantities with the exception
of the strand currents are determined. To calculate the strand
currents, the linear equation system

M · I = b and I = [i 1, i 2, . . . , i m, . . . i N]
T

b = [b 1, b 2, . . . , b n, . . . b N]
T (12)

is solved with the Software MATLAB. Thereby all known
quantities are summarized in the vector b

b = Rdc 1 i− V ex + 1 v ex

where v ex =
1

N

N∑
n=1

v n,ex

V ex =
[
v 1,ex , v 2,ex , . . . , v n,ex , . . . , v N,ex

]
T.

(13)

Any terms linked with the strand currents are found in the
quadratic matrix M

M

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝

Rn · · · 0
...

. . .
...

0 · · · Rn

⎞
⎟⎠

NxN

+

⎛
⎜⎜⎜⎜⎜⎜⎝

ζ
11

· · · ζ
1m

...
. . .

...
ζ n1 · · · ζ

nm

· · · ζ
1N

. . .
...

· · · ζ
nN

...
. . .

...
ζ
N1

· · · ζ
Nm

. . .
...

· · · ζ
NN

⎞
⎟⎟⎟⎟⎟⎟⎠

NxN
⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where along row n, the influence of the strand currents
[i1, i2, . . . , im, . . . iN] on the induced voltage of strand n is
evaluated. According to (14), all induced voltages vnm,int of the
K sections, which are caused by the strand current m, forming
the strand n are summarized in ζ

nm

ζ
nm

=
vnm,int

im
. (15)

For all calculations of strand currents, the strand elements
have an equal length lnk = 2le and an equal radius of a litz
wire strand re = rs, cf. Fig. 1. In the following, strand currents
are assumed to be known.

D. Loss Calculation in Litz Wires

Using the frequency-dependent ac resistance of a single
strand Rstrand,ac and the strand currents from (12), the losses in
the litz wire strands Pcurr are calculated

Pcurr =
∑
m

|im|2Rstrand,ac where Rstrand,ac = NRdc Ds

Ds =
1

2
Re

{
αrsI0 (αrs)

I1 (αrs)

}
, α = (1 + j)

√
πfκμ0 .

(16)

The single strand skin factor Ds describes the increase of the
resistance of a single strand due to the skin effect determined
with Bessel functions I0, I1 [1], f is the frequency, κ is the
conductivity, and N is the number of the litz wire strands. Eddy
currents generated within the individual strands due to the prox-
imity effect are thus ignored. Internal and external proximity
losses within the strands must therefore be calculated separately
and added up. The proximity losses within a strand depend on
the amplitude of the total incident magnetic field Ĥ , including
the internal and external field [13]. With small diameters, Ĥ is
unlikely to change significantly over the cross-section of the
strands and the Bessel function solution [4], [7] derived for
homogeneous magnetic fields, is used to calculate the proximity
losses PH−field,e in a given strand element

PH−field,e =
1

κ
2leDpĤ

2

where Dp = 2πRe

{
αrsI1 (αrs)

I0 (αrs)

}
. (17)

Herein, Dp is the proximity factor of a single strand [1]. Not
considering self-shielding effects due to eddy currents within the
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strands is reasonable, because litz wire using strands sufficiently
small compared to skin depth nearly eliminates the self-shielding
effects. The internal field at a given strand element is the superpo-
sition of all contributions �Heo generated by the strand elements
of a unit cell except the strand elements of the considered strand.
The field �Heo results from the curl operation of the magnetic
vector potential (2):

�Heo =
1

μ0

(
∇× �Ae, o (s1, ρe)

)
=

− 1

μ0

∂

∂ρe

(
�Ae, o (s1, ρe) · �e1

)
�eϕ

where ρe =
√

s22 + s23 and�eϕ = − s3
ρe
�e2 +

s2
ρe
�e3. (18)

The field components �Heo,e2 and �Heo,e3 generated by a single
strand element result from (18) and (2) as follows:

�Heo,e2 =
Ie
4π

⎛
⎝ s1 − le√

(s1 − le)
2 + ρ2e

− s1 + le√
(s1 + le)

2+ρ2e

⎞
⎠ s3
ρ2e

�e2

�Heo,e3 =−Ie
4π

⎛
⎝ s1 − le√

(s1 − le)
2 + ρ2e

− s1 + le√
(s1 + le)

2 + ρ2e

⎞
⎠ s2
ρ2e

�e3 .

(19)

For the calculation of the internal field at the individual strand
elements the strand currents I are used. As mentioned before,
the external magnetic field over the cross-section is considered
to be only a function of w1 in the direction of the litz wire.
The superposition of all magnetic fields results in Ĥ and the
proximity losses of a given strand element are determined using
(17). Analogously, the losses of all remaining strand elements
are calculated and finally summed up to total losses PH−field.
Note that a separate calculation of the losses in (16) and (17)
is valid for all types of litz wire consisting of strands with a
round cross-section [4], [7]. The assumption that magnetic fields
of eddy currents within the strands compensate each other at
neighboring strands is no longer valid for highly oblong cross-
sections of the litz wire and for small numbers of strands [7]. It
is expected that the method is very accurate for typical litz wires
with a round or rectangular cross-section.

In the case of litz wires with a round cross-section, the proxim-
ity lossesPH−field due to the internal and external magnetic field
may also be determined separately [7]. Those losses only depend

on the quadratic mean value of the field amplitude Ĥ2. As the
internal magnetic field of a straight round wire section with a
homogeneous current density in the center of the cross-section
is zero, the external field corresponds to the total field in the wire
center. Thus, after a static FEM simulation with homogeneous
current densities as in [18], the external magnetic field on a
center path of the wire is known. So we recommend to calculate

the quadratic mean value Ĥ2
ex along the litz wire path. The

quadratic mean value for the internal field Ĥ2
in should be

computed over all strand elements of a unit cell to ensure that

Fig. 5. Schematic work flow of the SEEC method.

the entire twisting structure of the litz wire is considered.

PH−field =
1

κ
llitzNDp

(
Ĥ2

int + Ĥ2
ex

)

where Dp = 2πRe

{
αrsI1 (αrs)

I0 (αrs)

}
. (20)

In this equation, llitz is the length of the litz wire. Total losses
Ptot are calculated as follows:

Ptot = Pcurr + PH−field. (21)

E. Summary of the Method

In Fig. 5, the introduced SEEC method is sketched in a flow
chart starting with the numerical stranding of a litz wire. In
the numerical stranding, the positions of the individual strands
are calculated for a unit cell. The coordinates of a unit cell are
calculated only once, so reading from a memory is feasible in
case of multiple calculations. An external magnetic field along
an �e1 -directed winding is calculated, e.g., by an FEM simu-
lation [18]. Due to periodically repeating twisting structures,
this external magnetic field can always be mapped to a unit cell
of the litz wire. Based on the positions of a unit cell and the
external magnetic field contributions, the system of equations is
set up and solved afterwards. The strand currents are calculated
to determine the losses in the litz wire strands Pcurr as well as
the internal magnetic field. The lossesPH−field are caused by the
magnetic field external to a certain strand, composed of internal
and external magnetic field.

While the sweep of a frequency range requires only the
repetitive solution of the equation system for each scanning
point, the system of equations must also be set up repetitively if
the litz wire properties are varied.
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TABLE II
SPECIFICATIONS OF THE LITZ WIRES (LW 1-14) INVESTIGATED WITH THE PROPOSED MODELING APPROACH

The number of strands N, the diameter of the strands ds, the twisting structure, the diameter of the litz wire, the pitch length, as well as the
length of a unit cell are listed. Some of the simulated litz wires are also available as prototypes, allowing to provide data on exact pitch lengths
(real, black). From this data, pitch lengths for the simulated litz wires (calc., grey) are derived. The notation for the pitch lengths is based on
that of the twisting structure, where the last number is the pitch length of the first twisting step. Note that a deviation of 5% from the real
pitch lengths in the model is allowed to minimize the length of the unit cell. The structure in a cross-section of the litz wire is described by
the configuration (config.) and can be found in Fig. 6.

III. MODELING AND VALIDATION OF SKIN EFFECT

According to [1]–[4], in many cases, skin and proximity losses
can be calculated separately. Thus, the two effects are validated
separately for the numerical model introduced in Section II.
First, the skin effect in real litz wires is examined in detail in
the model assuming a �e1-directed litz wire. In the numerical
calculation, the litz wires are excited with a sinusoidal current
of the amplitude i = 1 A and all external magnetic fields Ĥex

are zero. In order to include the entire litz wire structure, a
unit cell is used. The detailed specifications of the litz wires
investigated in this article are summarized in Table II and the
structure of the litz wire is shown in Fig. 6 by means of a
cross-section.

The strand currents are calculated for a litz wire with the fast
numerical method. As shown in Fig. 7, the (7 × 7)49 litz wire
(lw 1) has a sub-bundle located in the center which does not
change its position radially along the axis of the litz wire. In
analogy to the current displacement in round conductors with
increasing frequency, the outer bundles carry higher current
densities than the inner bundles (cf. Fig. 7). With higher rms
values of the current densities in the outer bundles, the losses
also increase according to (16). Imperfect twisting at top bundle
level causes high strand currents [21], which is confirmed in
Fig. 8. Within a (4 × 3 × 20.4)245 litz wire (lw 2) [cf. Fig. 8(a)],
sub-bundles do not remain in the center of the litz wire and strand
current amplitudes are reduced compared to the (7 × 35)245 litz
wire (lw 6) [cf. Fig. 8(c)]. For an ideal (4× 3× 20.4)245 litz wire
without inner bundles, current densities in all bundles would be
expected to be equal.

Therefore, the question arises whether the different current
densities calculated in the bundles of Fig. 8(a) are in line with
reality. The calculation with the proposed method confirms the
assumption that with the symmetrical configuration lw 4 [cf.
Fig. 8(b)], a similar current density occurs in all bundles. In
this article, a symmetrical configuration is generated by packing
the specific group of strands or sub-bundles into the smallest
possible bundle with a round cross-section for each twisting
step. In case of symmetrical packing, the radius of the modeled
litz wire becomes larger than with a realistic litz wire. Using
the numerical stranding procedure described in Section II, the
strands can instead be placed within the cross-section with the
realistic diameter of a litz wire without overlap. The difficult
question whether the numerical modeling of the individual
strand positions corresponds exactly to the case of a real litz wire
is not answered in this article. It is concluded from Fig. 8(a) and
(b) that the exact placement of strands in a litz wire actually has
an effect on current densities in the bundles. In the following,
the influence of the placement is not assumed to be crucial if
symmetrical packing and numerical stranding (cf. Section II)
give similar losses.

The frequency-dependent increase of skin losses is described
by the skin factor, which is defined as follows:

Dskin =
Pcurr (f) + PH−field (f)

|i|2Rdc

where Ĥ2
ex = 0 A/m .

(22)

For validation, the numerical calculation ofDskin is compared
with measurements. All measurements related to the skin effect
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Fig. 6. Structure of different litz wires is shown by a cross-section of a modeled unit cell. Thereby, the twisted sub-bundles of bundle level 1 have the same color.
Although the twisting structure (cf. Table II) is the same, different configurations are examined for a validation of the numerical method.

Fig. 7. Amplitude of the current density Ĵ in the strands of a type 7 × 7 litz
wire (lw 1) with 49 strands, calculated using the fast numerical method at a
frequency of (a) 10 kHz and (b) 100 kHz.

were done using the small signal impedance analyzer, Agilent
4294A. For the measurement, pieces (approx. 50 cm) of the litz
wires with soldered ends were connected in a loop to the adapter
(16047E Lead Component Test Fixture) of the impedance ana-
lyzer as shown in [1]. In keeping with [7], the measurements and
calculations yield values forDskin, which lie between a perfectly
twisted litz wire (ideal litz wire) and a round wire. Deviations
between measurements and numerical calculations are less than
20% up to frequencies of 10 MHz (cf. Fig. 9). These might be

based on the error of Bessel function approach, on further named
simplifications of the SEEC method or on the deviation of the
modeled unit cell from a real litz wire. Due to the higher current
densities in the single strands of the outer bundles (cf. Fig. 8),
the ac resistance of the (7 × 35)245 litz wire is up to 50% higher
compared to the (4 × 3 × 20.4)245 litz wire. The measured
and calculated skin factor of the (4 × 3 × 20.4)245 litz wire is
close to an ideal litz wire. Additionally, the results with PEEC
method in Fig. 9 show a slight deviation to the calculations with
SEEC method in the range from 50 kHz to 1 MHz. The reasons
for a deviation and the simulation conditions are described in
Table III.

The calculated skin losses of the unit cells of lw 2–5 behave
almost identically for the entire frequency range up to 10 MHz
(cf. Fig. 10). However, the litz wires lw 3–5 differ from lw 2
by the pitch lengths or the pitch direction of the topmost twist-
ing step. Their common feature is the same twisting structure
(4 × 3 × 20.4)245. Although the distribution of the strand
currents differs from that of lw 2 [cf. Fig. 8(a) and (b)], litz
wire lw 4 with a symmetrical structure has similar skin losses.
It would appear that the different losses of the individual bundles
in Fig. 8(a) are the same in total.

To verify these results, further structures of litz wires with
1000 strands (lw 7–13) are considered using the SEEC. In
practice, a perfect radial permutation, which is characteristic
of an ideal litz wire, is difficult to realize with more than six
bundles [21]. In Fig. 11, it is shown that even litz wires (cf.
lw 7) with five bundles in the top level may have significantly
higher losses than the ideal litz wire. One explanatory approach
is that the manufacturer has given priority to the packing factor
over keeping symmetrical bundle positions. As a result, a bundle
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Fig. 8. Amplitude of the current density Ĵ in the strands of (a), and (b)
type (4 × 3 × 20.4)245 × 0.1 mm and (c) type (7 × 35)245 × 0.1 mm litz wire,
calculated using the fast numerical method at 100 kHz. Note that the current
density does not only depend on the cross-section shown but on the whole unit
cell.

Fig. 9. Measurement and numerical calculation of the frequency-dependent
skin factor Dskin for different twisting structures of a litz wire consisting of 245
strands with a diameter of 0.1 mm (cf. Table II). In addition, the analytic results
for a perfectly twisted (ideal) litz wire and a round conductor with the same
dc resistance are visualized. The results are compared with the PEEC method.
Computation times for lw 6 using SEEC and PEEC can be found in Table III.

Fig. 10. Numerical calculation of the frequency-dependent skin factor Dskin

for different structures (unit cells) of a litz wire consisting of 245 strands with a
diameter of 0.1 mm (cf. Table II).

Fig. 11. Measurement and numerical calculation of the frequency-dependent
skin factor for different twisting structures of a litz wire consisting of 1000
strands with a diameter of 0.071 mm (cf. Table II). The skin factor Dskin is
plotted for frequencies up to 10 MHz.

slipped into the middle. If this effect is also considered in the
model (see configuration 4), deviations between measurements
and numerical calculations are less than 20%. Nevertheless, the
stranding of the bundles is a manufacturing problem. If the
manufacturer is able to better control the positions of the outer
bundles in the top twisting step, this results in a structure without
a central bundle and with a high packing density. The skin factor
of such a (5× 5× 40)1000 litz wire should be close to an ideal litz
wire. This is confirmed by the numerical calculations with two
unit cells of this litz wire (cf. Fig. 12), one with symmetrical
(lw 10) and one with a more realistic arrangement of the top
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Fig. 12. Numerical calculation of the frequency-dependent skin factor for
different configurations (cf. Fig. 6) of a litz wire consisting of 1000 strands (cf.
Table II). The skin factor Dskin is plotted for frequencies up to 10 MHz. In
addition, the analytic results for a perfectly twisted (ideal) litz wire and a round
conductor with the same dc resistance are visualized.

Fig. 13. Fast numerical calculation of the frequency-dependent skin factor for
different twisting structures of a litz wire consisting of 1000 strands (cf. Table II).
The skin factor Dskin is plotted for frequencies up to 10 MHz. In addition, the
analytic results for a perfectly twisted (ideal) litz wire and a round conductor
with the same dc resistance are visualized.

bundles (lw 9). Furthermore, the numerical calculations, e.g.,
lw 7 and 8, support the fact that the pitch lengths have a minor
effect on skin losses (see Fig. 12). The comparison of the litz
wires with central bundle (lw 11 and 12) verifies that the exact
placement of the individual strands is of secondary relevance,
even if a variation of up to 15 % is determined for skin losses
(see Fig. 13). The twisting of groups of five bundles seems to
be more difficult to control than groups of four, which would
be preferable from this point of view. Furthermore, this (4 × 4
× 62.5)1000 twisting structure shows a similar performance to a

“well twisted” (5× 5× 40)1000 structure in Fig. 13. Note that the
number of strands of a bundle at strand level is technologically
limited. If the number of strands as well as the strand diameter
are given and the number of bundles in a single twisting step
is limited, the remaining degree of freedom is to increase the
number of twisting steps. However, the maximum number of
bundle levels is subject to costs and manufacturability of a litz
wire. Depending on the application, more than five bundles in a
single bundle level may therefore be reasonable.

For the skin effect, we conclude the following. In order to
obtain a perfect radial permutation of the bundles, probably
no more than five bundles should be twisted in a step. The
proposed method calculates these results on the basis of the
current sharing between the individual strands depending on the
complex twisting structure. Using different unit cells, it could
be shown that pitch lengths and pitch directions have a minor
effect on skin losses, which is also demonstrated in [21]. For
the litz wires examined, skin losses differ by up to 15% due to
a variation of strand positions. This is also a good confirmation
with method [13], which requires orders of magnitude less
computing time due to its analytical formulation and provides an
accurate prediction of skin losses. In contrast to [13], however,
the proposed technique also works well for more widely spaced
strands, as the local magnetic field of strand currents external
to a particular strand is considered. Furthermore, the method
can be used for types of litz wire with a nonideal structure such
as lw 7 and with rectangular cross-sections. Measurements and
calculations for litz wires with 1000 strands (cf. Fig. 11) match
as well as for litz wires with 245 strands (cf. Fig. 9). Compared
to previous numeric approaches [17], [18], the SEEC method
based on strand elements requires computation time reduced by
an order of magnitude. Losses of a litz wire with 1000 strands are
calculated in about 2 min on a personal computer (cf. Table III).

The total calculation time includes the time to set up the
unit cell/model and to solve the system of equations. The
SEEC method is implemented in the programming language
MATLAB. For the calculation and comparison with the PEEC
method, a discretization level 3 was selected, which implies that
each strand is resolved with 13 filaments. Using this level, a devi-
ation of 10% from a reference loss simulation with discretization
level 8 has been verified for a frequency 100 kHz and an average
square magnetic field of 1000 A/m [23]. In contrast to the SEEC,
the accuracy of the PEEC method is highly dependent on the
discretization level of an individual strand. Note that for both
methods, the same pitch lengths, the same lengths of the unit
cells, and number of cross-sections in a unit cell are used (cf.
Table II). A direct comparison of the accuracy of the two methods
is not feasible because an exactly identical positioning of the
strands cannot be ensured. Nevertheless, the example shows that
PEEC method requires a much higher computation time than
SEEC and calculation results of SEEC and PEEC are similar in
Fig. 9.

IV. MODELING AND VALIDATION OF PROXIMITY EFFECT

Besides the skin effect, the proximity effect has a significant
impact on losses in real litz wires. For the investigation of
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TABLE III
CPU TIME ON A PERSONAL COMPUTER (CPU-TYPE: INTEL CORE I7-3632QM;
NUMBER OF CORES: 4; RAM MEMORY: 7.8 GB) TO CALCULATE LOSSES FOR

SEVERAL LITZ WIRES AS A FUNCTION OF FREQUENCY (40 FREQUENCY

POINTS) USING THE PROPOSED NUMERICAL METHOD (SEEC) AND USING

PEEC ACCORDING TO [17]

The total calculation time includes the time to set up the unit cell/model and to solve the
system of equations. The SEEC method is implemented in the programming language
MATLAB. For the calculation and comparison with the PEEC method, a discretization
level 3 was selected, which implies that each strand is resolved with 13 filaments. Using
this level, a deviation of 10% from a reference loss simulation with discretization level
8 has been verified for a frequency 100 kHz and an average square magnetic field of
1000 A/m [23]. In contrast to the SEEC, the accuracy of the PEEC method is highly
dependent on the discretization level of an individual strand. Note that for both methods,
the same pitch lengths, the same lengths of the unit cells, and number of cross-sections in
a unit cell are used (cf. Table II). A direct comparison of the accuracy of the two methods
is not feasible because an exactly identical positioning of the strands cannot be ensured.
Nevertheless, the example shows that PEEC method requires a much higher computation
time than SEEC and calculation results of SEEC and PEEC are similar in Fig. 9.

the proximity effect with the help of the numerical model,
an �e1 -directed litz wire with soldered ends is assumed. The litz

wire is exposed to a homogeneous sinusoidal magnetic field Ĥex

perpendicular to�e1 over its length llitz. The total litz wire current
i is zero. Nevertheless, the exciting magnetic field generates
equalizing currents between single strands, producing losses
(Pcurr). The frequency-dependent increase of proximity losses
is determined by the proximity factor Dprox, which is defined
as follows (here, κ is the conductivity of copper):

Dprox =
Pcurr (f) + PH−field (f)

1
κ llitzĤ

2
ex

where i = 0 A . (23)

The numerical calculation of Dprox is validated in Figs. 14
and 15. All measurements related to the proximity effect were
conducted using the measurement setup specified in [1], which
consists of a magnetic circuit of U93/76/30 cores (material
Ferroxcube 3F4) with air gaps. In this setup, the DUTs are
exposed to a homogeneous magnetic field and the impedance
of the excitation coil is measured. The numerical calculations of
the proximity effect, which are also shown in [13], [17], [21],
are compared to measurements using a custom-made setup. The
tendencies of the numerical calculation are in good agreement
with the measurement, cf. Figs. 14 and 15. Thereby, all results
are generated as a function of the frequency and at a given length
of the litz wire.

Calculations also show litz wire lw 6, which has a poor
performance in case of skin loss due to the middle bundle,
even performs better than lw 2 with regard to the proximity
effect. On the other hand, lw 5 has the worst performance
regarding proximity losses, but has low skin losses. These results

Fig. 14. Measurement and numerical calculation of the frequency-dependent
proximity factor for type (7 × 35)245 litz wire lw 6 (two bundle-levels) with a
length llitz = 0.155 m (cf. Table II). In order to model the entire litz wire, the
structure of the unit cell is periodically continued. The bundles on strand level
and top level are twisted in the same direction. Therefore, pitch lengths are both
positive.

Fig. 15. Measurement and numerical calculation of the frequency-dependent
proximity factor for various type (4 × 3 × 20.4)245 litz wires with a
length llitz = 0.155 m (cf. Table II). In order to model the entire litz wire,
the structure of the unit cell is periodically continued. The bundles on strand
level and middle bundle level are twisted in the same direction. In case of lw 5,
14, the bundles on top level are twisted in the opposite direction.

are explained by the absolute pitch length lu,a of a bundle
level u

1

lu,a
=

umax∑
k=u

1

lu
where u ∈ [1, umax] . (24)

Thereby, lu defines the pitch length of twisting step u and
umax the maximum number of twisting steps. The absolute twist
rate of a sub-bundle 1/lu,a is the rotation relative to the global
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coordinates of the litz wire. Due to the recursive twisting of
sub-bundles, twist rates add up for positive pitch directions and
subtract for negative pitch directions. Accordingly, the absolute
pitch length l2,a of sub-bundles in the coordinates of litz wire
lw 5 is infinite. As a result, the magnetic flux is not cancelled over
the length of the sub-bundles and high losses due to equalizing
currents will occur. Note that choosing the length of a unit cell
equal to the smallest common multiple of all pitch lengths lu, a
sub-bundle with the rate 1/lu,a also receives an integer rotation
in a unit cell. Because this applies to all twisting steps and the
litz wire length llitz corresponds approximately to the length
of two unit cells, lw 14 demonstrates almost ideal proximity
losses. A change in the twisting direction does not necessarily
have to cause excessive proximity losses, as long as the absolute
pitch lengths of sub-bundles do not become too long, cf. Fig. 15.
Generally, changing the pitch direction leads to an increase in
absolute pitch lengths.

In accordance with the insights provided in [17], [21], it was
found that the proximity factor Dprox, which refers to the sum
of N individual strands, decreases with increasing length of the
litz wire, and reaches the constant value above a certain length
(cf. Fig. 16):

Dprox = NDp. (25)

According to (20), the proximity losses within strands are
proportional to the total length of the litz wire llitz and to the
mean square of the magnetic field strength along the axis of the
litz wire

PH−field ∼ llitzĤ2
ex. (26)

Further proximity losses Pcurr are caused by induced equal-
izing currents between single strands, which are driven by the
voltages v n (see Fig. 4). When considering the proximity effect,
these voltages strongly depend on the external magnetic field
strength along the litz wire and it applies: v n ≈ v n,ex. Although
the twisting of the bundles partly compensates the magnetic
flux, a certain magnetic flux remains between the strands, which
contributes to the induced voltage of a particular strand v n,ex.
These voltages are independent of llitz when at least one unit cell
is considered. They can vary significantly when a litz wire with
a certain number of twist pitches is exposed to a low magnetic
field in most of its length but to a strong field in a half pitch. The
losses Pcurr are determined as follows:

Pcurr =
1

Rn

N∑
n=1

|v − v n|2 ∼ 1

llitz

N∑
n=1

∣∣v ex − v n,ex

∣∣2 . (27)

The loss ratio Pcurr/PH−field decreases with the inverse
square of litz wire length llitz

Pcurr/PH−field ∼ 1/l2litz . (28)

Conclusively, the proximity losses above a minimum litz
length of the litz wire can be calculated independently of the
bundle structure using the analytical formula (25) of a perfectly
twisted litz wire. Furthermore, it is apparent from Fig. 15 that

Fig. 16. Numerical calculation of the frequency-dependent proximity factor
for a type (5 × 5 × 40)1000 litz wire (cf. Table II). The bundles on various
bundle levels are twisted in the same direction. Therefore, all pitch lengths are
positive.

TABLE IV
CPU TIME ON A PERSONAL COMPUTER (CPU-TYPE: INTEL CORE I7-3632QM;
NUMBER OF CORES: 4; RAM MEMORY: 7.8 GB) TO CALCULATE LOSSES FOR

SEVERAL LITZ WIRES AS A FUNCTION OF FREQUENCY (40 FREQUENCY

POINTS) TO CALCULATE THE MINIMUM LENGTH AT WHICH EQUALIZING

CURRENTS HAVE A NEGLIGIBLE EFFECT ON PROXIMITY LOSSES

We consider already 10 scanning points to be sufficient to estimate this minimum length
of a litz wire.

the losses due to equalizing currents have an effect primarily at
low frequencies. This is already mentioned in [2], [6].

Equalizing currents cannot be ignored in applications with
short windings compared to the absolute pitch lengths lu,a of a
litz wire. For the selection of a suitable litz wire, the proposed
numerical calculation method can be used to determine the
minimum litz wire length at which equalizing currents have a
negligible effect on losses. Unlike sampling in the frequency
range (cf. Fig. 13), the matrices of the equation system (12)
must be calculated repetitively for each litz wire length as in
Fig. 16. This requires the CPU times to solve a single frequency
point multiplied by the number of scanning points of the litz
wire length, cf. Table IV.

Nevertheless, it is recommended to perform scans and vari-
ations over a wide range of values using analytical methods
such as [13], because of the lower computational effort. The
SEEC method is suitable to calculate realistic litz wire structures.
A noncircular shape of the bundles and equalizing currents in
the individual strands due to bundle effects are no limitation.
Proximity losses depend strongly on pitch lengths and bundle
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positions. Although the calculations in this article only use one
special configuration of the complex bundle structure, calcula-
tion errors caused by variations of the strand positions compared
to a real litz wire almost cancel out over the length of a unit cell.
Thus, experiment and calculation match quite well.

V. CONCLUSION

The SEEC method presented in this article allows the investi-
gation of losses for litz wires with a complex twisting structure.
In the examples that have been presented, skin and proximity
losses are calculated on a personal computer. With regard to the
skin effect, it is found that the radial permutation of the bundles
over the cross-section along the axis of a litz wire has a strong
impact on skin losses. By contrast, the exact pitch lengths and
directions of particular twisting steps are less relevant. It has
been shown that imperfect radial permutation of five bundles
in the top bundle level may result in significantly increased
losses if the bundle positions are not precisely controlled during
the manufacturing process. In order to avoid excessive losses
with regard to the proximity effect, the absolute pitch lengths
in the individual bundle levels must be short compared to the
total length of the winding. Changing twisting direction at some
bundle level generally increases the absolute pitch lengths. The
proposed method is accurate for typical litz wires with a round
and rectangular cross-section. The local magnetic field is calcu-
lated from the strand currents. It may therefore be considered that
the method is accurate even for strong bundle level effects, for
noncircular shapes of the bundles, as well as more widely spaced
strands in a bundle. Numerical calculations using the SEEC and
measurements of skin and proximity losses show quite good
agreement up to a frequency of 10 MHz. Especially with regard
to lower frequencies, short windings compared to the absolute
pitch lengths and the manufacturing costs, the numerical method
is feasible to select a suitable litz wire for a specific application
or to design a litz wire considering realistic twisting structures.
In certain cases, however, the losses of a real litz wire can be
calculated more quickly. Above a minimum winding length,
where equalizing currents are negligible, proximity losses may
be calculated independently of the bundle structure with an
analytical formula [1], [4], [7]. Scans and variations over a wide
range of values predicting the worst case for, e.g., manufacturing
variations should still be performed with analytical methods
such as [13] if the computational effort is a strong restriction.

To further improve the calculation accuracy of the SEEC
method, algorithms for the design of twisting structures need
to be enhanced to produce a realistic packing density even
for a bundle of strands. As an outlook, it would be valuable
to model constructions with cylindrical bundles and various
degrees of deviation from these. Such modeling would allow
even more general conclusions with regard to individual twisting
parameters.

ACKNOWLEDGMENT

The authors would like to thank Dr. Andreas Roßkopf for his
valuable scientific input and discussions.

REFERENCES

[1] H. Rossmanith, M. Doebroenti, M. Albach, and D. Exner, “Measure-
ment and characterization of high frequency losses in nonideal litz
wires,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3386–3394,
Nov. 2011.

[2] C. R. Sullivan, “Optimal choice for number of strands in a litz-wire trans-
former winding,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 283–291,
Mar. 1999.

[3] J. Mühlethaler, “Modeling and multi-objective optimization of inductive
power components,” Dissertation, Dept. Elect. Eng., Eidgenössische Tech-
nische Hochschule Zürich, Zürich, Switzerland, 2012.

[4] J. A. Ferreira, “Analytical computation of AC resistance of round and
rectangular litz wire windings,” IEE Proc. B Elect. Power Appl., vol. 139,
no. 1, pp. 21–25, Jan. 1992.

[5] J. A. Ferreira, Electromagnetic Modelling of Power Electronic Converters.
Berlin, Germany: Springer Science & Business Media, 1989.

[6] C. R. Sullivan and R. Y. Zhang, “Simplified design method for litz wire,”
in Proc. 29th IEEE Annu. Appl. Power Electron. Conf. Expo., 2014,
pp. 2667–2674.

[7] M. Albach, Induktivitäten in Der Leistungselektronik: Spulen, Trafos Und
ihre Parasitären Eigenschaften. Wiesbaden, Germany: Springer Vieweg,
2017.

[8] X. Nan and C. R. Sullivan, “An equivalent complex permeability model for
litz-wire windings,” IEEE Trans. Ind. Appl., vol. 45, no. 2, pp. 854–860,
Mar./Apr. 2009.

[9] H. Rossmanith, M. Albach, J. Patz, and A. Stadler, “Improved char-
acterization of the magnetic properties of hexagonally packed wires,”
in Proc. 14th Eur. Conf. Power Electron. Appl., Aug./Sep. 2011,
pp. 1–9.

[10] A. Stadler and C. Gulden, “Copper losses of litz-wire windings due
to an air gap,” in Proc. 15th Eur. Conf. Power Electron. Appl., 2013,
pp. 1–7.

[11] D. C. Meeker, “An improved continuum skin and proximity effect model
for hexagonally packed wires,” J. Comput. Appl. Math., vol. 236, no. 18,
pp. 4635–4644, 2012.

[12] T. Delaforge and H. Chazal, “Formal solution based on the magnetic
potential for round conductive area,” IEEE Trans. Magn., vol. 54, no. 12,
pp. 1–8, Dec. 2018.

[13] C. R. Sullivan and R. Y. Zhang, “Analytical model for effects of twisting
on litz-wire losses,” in Proc. IEEE 15th Workshop Control Model. Power
Electron., 2014, pp. 1–10.

[14] K. Umetani, J. Acero, H. Sarnago, O. Lucia, and E. Hiraki, “Simple
fully analytical copper loss model of litz wire made of strands twisted in
multiple levels,” in Proc. IEEE Appl. Power Electron. Conf. Expo., 2019,
pp. 1257–1264.

[15] A. E. Ruehli and P. A. Brennan, “Efficient capacitance calculations for
three-dimensional multiconductor systems,” IEEE Trans. Microw. Theory
Techn., vol. 21, no. 2, pp. 76–82, Feb. 1973.

[16] A. E. Ruehli, “Equivalent circuit models for three-dimensional multi-
conductor systems,” IEEE Trans. Microw. Theory Techn., vol. 22, no. 3,
pp. 216–221, Mar. 1974.

[17] R. Y. Zhang, J. K. White, J. G. Kassakian, and C. R. Sullivan, “Re-
alistic litz wire characterization using fast numerical simulations,” in
Proc. 29th Annu. IEEE Appl. Power Electron. Conf. Expo., 2014,
pp. 738–745.

[18] A. Rosskopf, E. Bär, C. Joffe, and C. Bonse, “Calculation of power losses
in litz wire systems by coupling FEM and PEEC method,” IEEE Trans.
Power Electron., vol. 31, no. 9, pp. 6442–6449, Sep. 2016.

[19] G. Cerri, V. M. Primiani, and S. A. Kovyryalov, “Modelling of a litz-wire
planar winding geometry for an accurate reactance evaluation,” IET Sci.,
Meas. Technol., vol. 4, no. 4, pp. 214–219, 2010.

[20] L. Giussani, M. Bechis, C. de Falco, and L. Di Rienzo, “An integral
formulation for an array of wires in a 3-D magneto-quasi-static field,”
IEEE Trans. Magn., vol. 54, no. 7, pp. 1–8, Jul. 2018.

[21] T. Guillod, J. Huber, F. Krismer, and J. W. Kolar, “Litz wire losses: Effects
of twisting imperfections,” in Proc. IEEE 18th Workshop Control Model.
Power Electron., 2017, pp. 1–8.

[22] B. A. Reese, R. Joseph, and C. R. Sullivan, “Improved litz-wire designs
for the MHz range,” in Proc. IEEE 18th Workshop Control Model. Power
Electron., 2017, pp. 1–8.

[23] A. Rosskopf, “Calculation of frequency dependent power losses in
inductive systems with litz wire conductors by a coupled numeric
approach,” Dissertation, Dept. Inf. Technol. Elect. Eng., Friedrich-
Alexander-Universität, Erlangen, Germany, 2018.



2032 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 36, NO. 2, FEBRUARY 2021

Stefan Ehrlich received the B.Sc. and the M.Sc.
degrees in electrical engineering from the Friedrich-
Alexander-University Erlangen-Nuremberg, Erlan-
gen, Germany, in 2012 and 2015, respectively. He
is currently working toward the Ph.D. degree in
electrical engineering with the Fraunhofer Institute
for Integrated Systems and Device Technology IISB,
Erlangen, Germany.

His research interests include electromagnetic field
theory, characterization, and modeling of inductive
components.

Hans Rossmanith received the Dr.-Ing. degree from
Erlangen University, Erlangen, Germany, in 1990.

From 1993, he was a Scientific Assistant with the
Department of Electrical Engineering, Electronics
and Information Technology, Friedrich-Alexander-
University, Erlangen-Nuremberg, Bavaria, Germany.
In 1999, he joined the Chair for Electromagnetic
Fields. His research interests include electromagnetic
field theory, electromagnetic compatibility, and nu-
merical field calculation.

Marco Sauer received the B.Sc. degree in electri-
cal engineering from the University of Erlangen-
Nuremberg, Erlangen, Germany, in 2019.

He conducted his bachelor’s thesis on the design
of transformers for LLC resonant converters with the
Chair of Power Electronics, University of Erlangen-
Nuremberg, and in cooperation with the Fraunhofer
Institute of Integrated Systems and Device Technol-
ogy, Erlangen.

Christopher Joffe received the diploma degree in
mechatronics from the Dresden University of Tech-
nology, Dresden, Germany, in 2011, and the Ph.D.
degree from the Friedrich-Alexander-University
Erlangen-Nuremberg, Erlangen, Germany, in 2019.

He is currently working with the Department of Ve-
hicle Electronics, Fraunhofer Institute for Integrated
Systems and Device Technology, Erlangen, Germany,
where he is a Team Leader of the group RF Power
Electronics and EMC. His research interests include
inductive power transfer systems, resonant convert-

ers, application of new semiconductor devices, and EMC simulation.

Martin März received the Diploma degree in elec-
trical engineering in 1988, and the Ph.D. degree in
microwave excitation of CO2 lasers from the Institute
of Microwaves and Photonics at the University of
Erlangen-Nuremberg, Erlangen, Germany, in 1995.

He started his career in the semiconductor division
with Siemens (later Infineon AG), Munich, Germany.
Since 2000, he has been the Head with the Power
Electronics System Department, Fraunhofer Institute
of Integrated Systems and Device Technology IISB,
Erlangen, where he has been the Deputy Director

since 2012, the Acting Director since 2018. In 2016, he was appointed as a
Full Professor to the newly established Chair of Power Electronics. His research
interests include innovative technologies for power electronics with a focus on
very high power density and efficiency, thermal management, and cognitive
power electronics.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


