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Abstract—Online measurements of the battery impedance pro-
vide valuable information on the battery state-of-charge and state-
of-health, which can be utilized for improving the safety and
the performance of the associated system. The electrochemical-
impedance spectroscopy (EIS) is widely used for battery impedance
measurements, but it is not the most applicable solution for online
measurements due to its slowness and complexity. These drawbacks
can be improved using broadband signals, such as pseudorandom
sequences (PRS), which are fast and easily implementable. How-
ever, the nonlinear behavior of batteries have a significant effect on
the impedance measurements and the selection of the PRS signal.
Majority of the PRS signals are applicable for measurements of
linear systems, but also signals for nonlinear system identification
do exist. Moreover, the reduced accuracy and signal-to-noise ratio
of the PRS signals compared to the EIS make the filtering of the re-
sults as well as the amplitude design important aspects. This paper
demonstrates the use of two PRS signals, the pseudorandom binary
sequence (PRBS), and a ternary sequence with better toleration
to battery nonlinear effects, with comprehensive amplitude and
filtering design for battery impedance measurements. It is shown
that the ternary sequence provides accurate measurements and the
effects of nonlinear dynamics of the battery impedance are reduced
with respect to the PRBS measurements. The results are referenced
and validated to practical EIS measurements in various operating
conditions for lithium-iron-phosphate (LiFePO,) cell.

Index Terms—Batteries, energy storage, impedance measure-
ment, real-time systems.

I. INTRODUCTION

HE use of lithium-ion (Li-Ion) batteries in electric vehicles
and stationary storage applications have become extremely
popular in recent years. This is mainly due to their high energy
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and power density, high efficiency, long lifetime, and continu-
ously reduced price [1], [2].

The Li-ion batteries are usually equipped with a battery-
management system (BMS) that monitors the battery conditions
to ensure its safe operation [3]. Typically, the BMS monitors the
battery current, voltage, and temperature, which are further used
to estimate the battery state. The battery state is expressed by dif-
ferent state parameters such as the state-of-charge (SOC) and the
state-of-health (SOH). The SOC indicates the remaining charge
that can be drawn from the battery [4]. The SOH indicates the
remaining useful life of the battery for the application [5]. How-
ever, the accurate estimation of the SOC and the SOH is difficult
due to their nonlinear dependence to the monitored quantities.

For the battery state-estimation and modeling purposes, the
battery ac impedance has recently gained much research interest,
since it has significant relation to the battery aging [6]—[8] and
the SOC [9]-[12] as well as to the temperature [13]. In the
impedance-based state estimation, the impedance is typically
fitted to an equivalent circuit model and the state estimation is
based on the variations in the model parameters [9]-[11], [14].
Therefore, the impedance online measurements have recently
become important to utilize the impedance for the state estima-
tion of Li-ion batteries. The impedance is conventionally charac-
terized by the electrochemical-impedance spectroscopy (EIS),
which utilizes a sinusoidal excitation [14]-[16]. The method
provides accurate measurements but comes with high complex-
ity and long measurement time, which makes it challenging to
be utilized in online applications. For online use, methods such
as simplified EIS [17]-[19], square-sweep [20], steps [21]-[24],
multisines [24], [25], and pseudorandom sequences (PRS) are
studied. Especially the PRS methods are attractive alternatives
due to their low complexity, low measurement time, and rela-
tively good accuracy. The PRS signals are studied in [20], [26],
and [27], where the two-level pseudorandom binary sequence
(PRBS) is applied for battery impedance measurements but are
reported to suffer from reduced measurement accuracy under
battery nonlinearities. However, the excitation performance for
nonlinear systems can be improved with multilevel PRS signals
[28]-[31]. From such PRS signals, a three-level ternary se-
quence have been studied in [32] for battery impedance measure-
ment, where it showed to provide accurate results under battery
nonlinearities.
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The low measurement time of the PRS signals compared to
the EIS method comes at the expense of reduced accuracy and
signal-to-noise ratio (SNR) since the signal power is divided
into several frequency harmonics instead of one fundamental
harmonic [28]. The SNR of the PRS is given by the length and
the amplitude of the signal that together determine the power
content of the signal. Increased amplitude of the PRS increases
also the SNR, but this can introduce more nonlinear effects in
the battery and can be even limited by the application [33]. The
SNR can also be increased by shortening the sequence length, but
this will reduce the bandwidth of the measurements by making
the frequency resolution more sparse. In addition, filtering can
be applied to smooth the measurements and increase the SNR.
The moving-average filter (MAF) is a good alternative due to its
simplicity but careful window design is required to keep the data
uncorrupted [34]. Thus, the PRS frequency content, amplitude
design, and the effect of filtering needs to be carefully studied
to obtain reliable results.

This paper provides a comprehensive study of fast impedance
measurement techniques for Li-ion batteries using two different
PRS excitation signals, the PRBS and the ternary sequence, with
optimized amplitude and MAF design. The performance of both
PRS methods are studied in various operating conditions for
lithium—iron—phosphate (LiFePOy,) battery cell. The results are
validated by means of EIS reference data with error analysis
based on the root-mean-square error (RMSE). Moreover, a
linear Kronig—Kramers compliance test is applied to analyze
the quality of the measured impedances [35].

The rest of the paper is organized as follows. The impedance
characteristics and relation to battery state parameters are intro-
duced in Section II. The generation algorithms and properties of
the PRS signals are studied in Section III. The experiments,
including the amplitude and filtering design, are presented
in Section IV. The performance validation is carried out in
Section V, and the conclusions are drawn in Section VI.

II. INTERNAL IMPEDANCE RELATION TO BATTERY STATE

The impedance of a battery is a parasitic quantity that resists
the current flow through the battery. The impedance introduces
a voltage drop to the battery open-circuit voltage whenever any
current is applied to the battery. The impedance is a frequency-
dependent quantity and can be represented in frequency
domain as

Voat(J
o) = I:((j:j)) (1)

where Vi, (jw) is the battery terminal voltage, vy (jw) is the
battery current, and w is the angular frequency.

The impedance is typically represented in the Nyquist-plane
(commonly known as complex-plane) shown in Fig. 1 from
which usually three or four main regions can be detected caused
by different electrochemical phenomenons. The diffusion part at
low frequencies represents the effect of the solid-state diffusion
of Li-ion between the electrodes, which results in a constant
slope. The charge-transfer region represents the charge-transfer
phenomenon at the electrode surfaces. It is usually formed as
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Fig. 1. Impedance Nyquist plot from LiFePOy cell.
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Fig. 2. Impedance Bode plot from LiFePOy cell.
one or more semicircles mostly depending on the battery chem-
istry and temperature at the medium frequencies. The ohmic
region represents the region where the impedance intersects the
real-axis. At the very high frequencies (>10 kHz), an inductive
region can also be detected, which is caused by the inductance
of the wires and current collectors of the battery. Moreover, the
shape of the impedance in the described regions also varies as a
function of the temperature, the SOC and the SOH [7], [25]. The
corrosion on the electrolyte and on electrodes, lithium plating,
and especially the formation of the solid-electrolyte-interface
layer increase the impedance as the battery ages. The increase in
the temperature accelerates the chemical reactions in the battery,
thus, reducing the magnitude of the impedance. However, high
temperatures also accelerates the aging of the battery, which will
eventually increase the impedance magnitude in the long run
[7]. The impedance also changes as the function of the SOC,
especially at very low and high SOC values [8], [13].
Alternatively, the impedance can be also represented as a
Bode diagram with separate magnitude and phase responses as
shown in Fig. 2. The benefit of the Bode diagram is the provided
frequency information, which cannot be seen in the Nyquist-
plane. The same information about the impedance behavior is
still provided in the Bode diagram where the bounds for each
region are given by the phase behavior. The Bode diagram can be
an effective tool for optimizing the bandwidth and the resolution
of the measurements to include only the parts of the impedance
that are in the range of interest.

III. INTERNAL IMPEDANCE MEASUREMENT TECHNIQUES

A typical device under test measurement setup is illustrated
in Fig. 3, where z(t) is the excitation injected to the system



2550

EXCITATION RESPONSE
x(t 1
(®) o) v,

Fig. 3.

Sine
sweep

AAY

Square
sweep

I

step
I

Multisines

Excitation

Typical block diagram of the system impulse response measurement.
signals

Single-
— frequency
methods
for —

system |-

identification

| _|Broadband
methods

Pseudo-Random
Sequences

e LT

Fig. 4. Different excitation signals used for system identification.

input, which generates the corresponding output response y(t).
Together, the z(t) and y(t) defines the system impulse-response
g(t). For the system measurement, it is important that the excita-
tion signal x(¢) is a predefined signal with known frequency re-
sponse characteristics in order to generate any reliable response
for the system output.

The different excitation signal types are illustrated in Fig. 4
in which the excitation signals can be roughly divided into
two categories. These are the single-frequency signals and the
broadband signals. Single-frequency signals have energy at one
fundamental frequency while broadband signals have energy
at multiple frequency harmonics. The single-frequency sweeps
have higher measurement time than broadband signals due to the
fact that the specified frequencies must be excited with separate
signals at different fundamental frequency. However, the SNR
is a lot higher because the energy of the signal is concentrated
on the fundamental frequency [28].

For the battery impedance measurements, the excitation is
typically injected as the current reference for a battery. The
conventional method for battery impedance characterization is
the EIS method in which a sine-sweep excitation is utilized
[14]-[16]. The EIS provides accurate and reliable results and is
widely used for offline applications. Due to the single-frequency
characteristics, the EIS is not the most practical for online mea-
surements and simplifications are required in order to reduce the
complexity and measurement time [17]-[19]. The complexity
of the signal can be reduced by using a square-sweep instead of
sine-sweep [20] but the method is still very slow. The measure-
ment time can be significantly reduced by the broadband meth-
ods shown in Fig. 4. From such methods, the step-based methods
are the easiest to implement but the accuracy is drastically
reduced, especially for the high-frequency response [21]-[24].
To achieve both the low measurement time and low complexity,
multisines [24], [25] and PRS signals [28], can be utilized.
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Especially the PRS signals are attractive for online applications
since the number of required signal levels can be reduced to
the minimum of two levels (the PRBS), which significantly
reduces the complexity of the signal implementation. Moreover,
the accuracy is also relatively high. As a drawback, the operation
of the PRBS is limited for identification of linear systems, which
is a challenging aspect for battery impedance measurements due
to the nonlinear behavior of batteries [20], [26]-[28]. However,
PRS signals with three levels (ternary sequence) can be designed
in a way that the nonlinearities at specific frequency harmonics
can be reduced yielding to improved accuracy of the nonlinear
system measurements [28]-[30], [32]. The generating algo-
rithms of both PRS signals, the PRBS and the ternary sequence,
are carefully studied and presented in the following sections.

A. PRBS Method

The PRBS signal used in this paper is the maximum-length
binary sequence (MLBS). The MLBS theory is based on the
linear recurrence relation algorithm [28] defined as

s(i)=» Cps(i—r), mod?2 2)
r=1

which yields to a binary sequence with possible values of 0
and 1. The variable C' contains the coefficients of the arbitrary
primitive polynomial of order n in modulo 2. It should be noted
that any primitive polynomial coefficients can be used and the
selection is up to the user. The n determines the length of the
MLBS period as N = 2" — 1. The first n elements in s must
be initialized to any combination of 0 and 1 excluding the zero
vector. The sequence is typically remapped to values —1 and 1
to give zero mean for the sequence. In order to avoid confusion,
the term PRBS is used over the MLBS in the following parts of
the paper [28].

B. Ternary-Sequence Method

The ternary sequence used in this paper is the quadratic-
residue ternary (QRT) sequence [29], [30]. The QRT sequence
can be obtained for any sequence length N for which N/2 is a
prime. The sequence is formed by means of a quadratic residue
algorithm. That is, v(i),¢ = 1, 2...N, is mapped to signal levels
1, —1, and O as follows:

v(i) = 1 if ¢ is square modulo N/2
v(i) = —1 if ¢ is not square modulo N/2
v(i) =0 if i = 0 modulo N/2.

The sequence v(z) is now formed by two consecutive subse-
quences from which the QRT sequence can be obtained by
inverting the alternate elements in v(7) as

sorr(i) = —1""t0(i) i =1,2..N, modulo N/2. (3)

As a result, the generated QRT sequence sgrr has three signal
levels and zero power at all even-order harmonics. For the sake
of simplicity, the QRT sequence is treated as a ternary sequence
in the following parts of this paper.
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C. Properties of the Presented Sequences

In time-domain, the difference between the PRBS and ternary
sequence is that the ternary sequence is implemented with one
extra signal level, as shown in Fig. 5(a). The differences in fre-
quency domain are more characteristic as illustrated in Fig. 5(b),
where normalized power spectrums of the sequences with simi-
lar amplitude and length are given. The ternary sequence has no
power at even-order harmonics; thus, the nonlinear distortion at
these harmonics will not affect to the nonzero harmonics and
the measurements [29], [30]. The power at the first frequency
harmonic in Fig. 5(c) is determined for the PRBS as

2
Prras(1) = 2+ D @)
where A is the amplitude and N is the length of the sequence.
The corresponding power for the ternary sequence is given as

4A2

-
From (4) and (5), it is observed that the power of the ternary
sequence is approximately twice the power of the PRBS, which

can also be seen from Fig. 5(b) [28], [29]. Thus, the SNR is also
doubled according to

PTemary(l) = &)

-Psignal

SNR = (6)

noise

It can be concluded from (4)—(6) that, for similar values of
N, the amplitude of the ternary sequence can be reduced by
a factor of 1/ V2 to obtain equal SNR than the PRBS. This
gives more freedom for the amplitude design of the ternary
sequence. Besides the amplitude, /N also has significant effect
on the signal power and SNR but is typically more significant
design parameter to obtain desired measurement bandwidth
and resolution. However, the number of possible N values is
significantly higher for the ternary sequence than for the PRBS.
This also gives more freedom for the ternary sequence to design
the power and frequency content of the signal [36].

For both PRS signals, the frequency content is determined
by the generation frequency feen, Which is theoretically the
maximum frequency that the sequence has energy at. Due to
the decreasing power of the nonzero harmonics toward higher
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frequencies [see Fig. 5(b)], the usable bandwidth of the mea-
surements is less than fe, in reality. The guideline for ap-
propriate bandwidth is given in [28] equaling to ~0.45 * fgen.
Together, IV and f,, determines the frequency resolution of the
sequences as

f gen
N

which is also the lowest frequency at which the signal has energy.
For the battery impedance measurements, f.s is important pa-
rameter because it determines also the minimum time consumed
for the whole measurement as tyess = 1/ fres. This becomes
especially important when measuring the diffusion region of the
impedance realized at very low frequencies, which correspond
to long response time.

fres =

)

IV. EXPERIMENTS

The measurements were carried out with the ternary sequence
and the PRBS injections for a LiFePO, battery cell with a
nominal voltage of 3.3 V and a capacity of 2.5 Ah at three
different temperatures, which were 24, 34, and 41 °C. The setup
configuration is shown in Fig. 6(a) where the bidirectional power
supply is used to inject the excitations as the current reference.
The excitations are configured to have zero offset to keep the
SOC at a steady state during the measurements, thus, minimizing
the nonlinearities of the measured impedance. The changing
current direction within the excitation pulse is considered not to
affect the measurements since the dynamics of the impedance are
similar during charging and discharging [23]. The voltage and
current measurements, 7meas and vmeas, are recorded as vectors
whose lengths are equal to the excitation length given as the
current reference i..¢. In the frequency-response-analysis block,
the voltage and current measurements are applied by discrete
Fourier transform to obtain the impedance frequency spectrum.
The filtering of the results is implemented with a MAF. Both
PRS signals were generated by a software available in [30].

The laboratory setup and the used equipment are shown in
Fig. 6(b). The excitations were injected by the data-acquisition
(DAQ) device as the current reference to a bidirectional power
supply. The data are also recorded from the measurement probes
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TABLE I
INJECTION PARAMETERS FOR SENSITIVITY ANALYSIS

Seen N frequency band fs
Ternary-sequence || 7kHz | 32762 | 210mHz — 3.15kHz | 35kHz
MLBS TkHz | 32767 | 210mHz — 3.15kHz | 35kHz

by the DAQ, which is connected to the computer where data are
postprocessed. The measurements were carried out by applying
the measurement sweep over the whole SOC and considering
a SOC resolution of 10%. The desired SOC level was reached
by discharging the battery with a current of 1 C. The SOC was
monitored by the coulomb-counting method [26]. Before each
measurement sweep, the battery is left on hold for 30 min to
allow the battery voltage to reach its thermo-dynamic stability.
The EIS reference measurement were carried out with a separate
EIS analyzer setup.

Before validating the PRBS and the ternary-sequence mea-
surements to the EIS reference, the amplitude sensitivity analysis
and filtering design are carried out for both PRS signals in
the following sections. The design parameters of both PRS
injections for the amplitude design are listed in Table I, where
the f; denotes the sampling frequency. The generation frequency
and sequence lengths were selected to cover a bandwidth that
captures the end of the diffusion part, as well as, the beginning
of the ohmic region of the used LiFePOy, cell.

A. Sensitivity Analysis

The effect of the amplitude sensitivity to the impedance
measurements is investigated by the standard deviation (STD)
of the impedance magnitude over the used frequency spectrum.
The STD is mathematically defined as

1 N
g = \/N Zi:l(zi - chan)2 (8)

where Z; is the ith sample of the measured impedance, Zcan
is the average over the whole measured impedance, and NNV is
the length of the measured impedance vector. The STD can be

(a) Measurement setup configuration for the experiments. (b) Laboratory setup.

regarded as an rms-value of the measurement deviation around
the Zyean. Therefore, it is an equally informative indicator than
the SNR for measuring the accuracy of the measurements.
However, the STD provides the information about the noise in
the measurements, which is why it is used for the amplitude
sensitivity analysis instead of the SNR given in (6).

The STD is analyzed at different excitation current amplitudes
as C-rates, which corresponds the current normalized by the ca-
pacity of the battery. The current of 1 C was determined to be the
upper limit for the amplitude design due to the protection limits
of the power supply that are violated with higher currents. The
measured impedance STD as a function of C-rate is illustrated
at varying temperatures and SOC values in Fig. 7(a) and (b),
respectively. The temperature affects to the STD by increasing
it as the temperature increases while the SOC does not have
noticeable impact on the STD. Moreover, the STD of the ternary
sequence is lower than that of the PRBS.

Due to the observations made above, the amplitude design of
the injections is based on the STD at worst case temperature,
which is at 41 °C. To have a better understanding of the STD,
the STD is normalized by the mean value of the measured
impedance magnitude illustrated in Fig. 7(c). For the currents
greater than 0.4 C, the normalized STD is not significantly
reduced and the selection guideline was selected to choose the
current at which the normalized STD is 5% for both PRS signals.
According to Fig. 7(c), the 5% point equals 0.55 C = 1.375 A
for the ternary sequence and 0.8 C = 2 A for the PRBS. The
ratio of the amplitudes is very close to 1/ V2 2 0.707 for each
STD values, which results from the increased SNR of the ternary
sequence as discussed in Section III-C.

B. Filtering of the Measurement Results

The simple MAF is used for filtering the measurement data
due to its simplicity and relatively good performance [34]. In-
stead of time-domain filtering, the MAF is applied to frequency-
domain data in order to ensure the uniqueness of the PRS
signals. This significantly changes the design guidelines and
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performance of the MAF compared to time-domain filtering.
The simple MAF is defined as

d

1
oar(i) = 57 > ai+k) )
k=-—d

where M is the window length, 7 is the element index in the
dataset, and
M—-1
2

which represents the delay of the MAF. The MAF enhances
the SNR of the measurements by a factor v/M since the noise
in the measurements is expected to have white-noise Gaussian
distribution [36]. However, the MAF in (9) cannot be applied to
the first d elements in the data. Therefore, the estimates for the
first d data points are obtained by increasing the window starting
from M = 1 until the desired M is reached. The algorithm is
mathematically expressed as

d—

(10)

i—1

z(i+k)i=1.d
(1)

which is changed to (9) for ¢ > d. The effect of the MAF delay
for the impedance plot is illustrated in Fig. 8, where several
different window sizes are applied to ternary-sequence battery
impedance measurements at 41 °C. Each window will follow
the black curve, i.e., (11), until the index corresponding to d is
reached. Therefore, if there are changing trends in the data during
the effect of d, the curve will be dislocated. This is especially
the case for the end of the diffusion part, which is lifted from
the average of the unfiltered data for higher windows than 21.
The same occurs also for the top of the semicircle for very high
windows. Thus, the selection of the optimal window length is
highly depending on the data indices at the end of the diffusion
region and the top of the semicircle. The data indices at these
points are illustrated in Fig. 9, where unfiltered impedance data at
different temperatures are shown as bode plot. The yellow curve
in Fig. 9 corresponds the impedance in Fig. 8 and shows that the
end of the diffusion region is taking place at 25th data index while
the top of the semicircle is obtained at a 200th data index. Fig. 8
shows that the window lengths greater than the foregoing indices

(1)

_ 1
war(d) = 57—
k=—

%107
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Fig. 8. Impedance Nyquist plots obtained with ternary sequence at 41 °C and
at 50% of SOC with different MAF window lengths. The colored indices ¢
represents the data index where the corresponding MAF starts to adapt to the
data.
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Fig. 9. Bode plot representation of the unfiltered impedance data obtained
with the ternary sequence at 50% of SOC. Colored markings ¢p represents the
end of the diffusion part indices and ict the top of the semicircle indices of the
impedance at the corresponding temperature.

are dislocating the corresponding part of the impedance plot.
Thus, in order to prevent the data from dislocating, the window
size should not exceed the data index at which the corresponding
region bound is reached. However, it can be seen from Fig. 9
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24°C, (e) at 34 °C, and (f) at 41 °C.

TABLE II
INJECTION PARAMETERS FOR MEASUREMENTS AND
PERFORMANCE VALIDATION

I | EIS | Temary | PRBS ||
Amplitude 0.7A-2A 1.375A 2A
First measured freq. || 206mHz | 220mHz 220mHz
Last measured freq. 3.7kHz 3.15kHz 3.15kHz
Soen - 7kHz 7kHz
fs - 35kHz 35kHz
N - 32767 32762
MAF window - 25 and 120 | 50 and 240
Measurement time 1 min 4.7s 4.7s

that the indices of the impedance region bounds will change
as a function of the temperature and the window length can be
difficult to be selected adaptively.

Based on the abovementioned discussion, the MAF of two
fixed-length overlapping windows are used for the filtering. The
window sizes are selected according to the smallest indices at
the end of the diffusion part and at the top of the semicircle in
Fig. 9 at41 °C. This yields to first window equaling to 25 for the
ternary sequence. This will slightly affect to the smoothing of
the measurements at 24 and 34 °C by dislocating the end of the
diffusion region. The latter window is selected to be sufficiently
smaller than the indice at the top of the semicircle to ensure the
good performance of the MAF. Therefore, the window size of
120 is selected for the latter window for the ternary sequence.
The windows for the PRBS can be twice as long due to the twice
as dense frequency resolution. Therefore, the window lengths of
50 and 240 are used for the PRBS. An overlap of 25% is con-
sidered for the windows to minimize the transient effect when
the windows are changed. With the designed configurations, the

~
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Impedance (12)
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Fig. 11. Impedance Bode plot measured with different excitations at 41 °C
and 50% of SOC.

SNR can be maximized while minimizing the dislocation of the
measurements results.

V. RESULTS AND VALIDATION

The design parameters for the measurements and validation
are listed in Table II. The accuracy of the results in Fig. 10 is
validated by the RMSE given as

Zineas (1) > ’

1 N
€err = \/N Zi:l <1 — Zref(i)

where Zeas 1S the measurements of the PRBS and the ternary se-
quence, and Z,s is the EIS reference data. Due to the logarithmic
frequency distribution, the EIS impedance results are realized
with only 35 data points, which is much less than the impedance

12)
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Fig. 12.  (a) Fitted impedances from the Kronig—Kramers test compared to the measured impedances at 25 °C and 50% of SOC. (b) Real-part residuals from the

Kronig—Kramers compliance test applied to impedance measurements at 25 °C and 50% of SOC. (c) Imaginary-part residuals from the Kronig—Kramers compliance

test applied to impedance measurements at 25 °C and 50% of SOC.

TABLE III
RMS ERRORS OF THE PRS MEASUREMENTS WITH RESPECT TO THE EIS
RESULTS AT VARIOUS SOCS AND TEMPERATURES

[_PRBS | [ [ I
SOC 30% | SOC 50% | SOC 80%
W°C | 83% 7.3% 7.4%
3#°C | 68% 5.1% 43%
4°C | 63% 4.0% 3.2%
[[_Ternary | [ \ I
SOC 30% | SOC 50% | SOC 80%
#°C | 29% 2.1% 2.3%
3#C | 21% 1% 0.5%
a°C | 1.6% 0.7% 1%

measurements with the designed PRS signals whose harmonics
are linearly distributed. Therefore, the frequency harmonics in
the PRBS and the ternary-sequence impedance results that are
closest to each corresponding harmonics in the EIS data are
chosen to be applied in (9).

The validity of the applied PRS measurements is also ana-
lyzed by applying linear Kronig—Kramers compliance test to
the measurements [35]. In the test, the impedance data are fitted
to a linearized impedance model from which the residuals of
the real- and imaginary parts are observed. According to the
test, the data can be regarded corrupted if the residuals are
following a clear trace whereas uncorrupted data are realized
with white noise distribution of the residuals. The test is a useful
tool for validating how well the impedance can be linearly fitted,
which also indicates the usability of the results for battery state
estimation [24]. The method is applied by using a software
introduced in [24].

The results from the PRS measurements referenced to the
EIS measurements are illustrated in Fig. 10 at different SOCs
and temperatures. It can be observed that the PRS results are
matching relatively well to the EIS reference data at all tem-
peratures and SOC values. The biggest differences are observed
at the diffusion region where all excitations are differing from
each other, which makes the comparison of the PRS signals
challenging. However, the magnitude spectrumin Fig. 11 reveals
the improved accuracy of the ternary sequence at the diffusion
region, where it shows better match to the EIS than the PRBS.
The performance is also validated by the measurement errors
in Table III, which are comprehensively smaller for the ternary
sequence than for the PRBS. Moreover, the results of the linear

Kronig—Kramers compliance test shown in Fig. 12 reveals the
better compliance of the ternary-sequence results. The test was
applied to the measurements at 25 °C, which listed the greatest
error in Table III. The residuals from the test in Fig. 12(b)—(c)
are having a white-noise distribution for the ternary sequence,
which validates the validity of the measurements. For the PRBS,
a clear trace can be observed particularly from the imaginary
part residuals, as illustrated in Fig. 12(c), which indicates that
the measurement data is corrupted at low and medium fre-
quencies. This can also be seen from the impedance plots in
Fig. 12(a), where systematic error is observed on most parts of
the impedance curve for the PRBS fit while the ternary-sequence
fit is matching the measurements accurately. Moreover, the
magnitude of the residuals are comprehensively smaller for the
ternary sequence than for the PRBS.

It can be observed that the errors in Table III are generally
slightly increasing as the temperature is decreased. This may
indicate that the performance of both PRS signals may be
insufficient at very low temperatures at which the performance of
the PRS signals should also be validated. However, the measure-
ments were not possible to be performed at lower temperatures
due to the lack of appropriate laboratory devices. Nevertheless,
the errors are still very small and the error increase can be
explained by the differences in the measurement setups since the
EIS was performed with a commercial EIS analyzer. For more
reliable comparison, the EIS should have been applied with the
same setup that the PRS signals but this was not possible due
to the limitation of the bidirectional power supply used for PRS
measurements. Moreover, the slightly increased error can also
be explained by the MAF window length that, for the sake of
more relevant comparison between the PRS, was optimized for
the measurements at 41 °C.

The significant benefit of PRS signals over the EIS is the
reduced measurement time, which was over 12 times faster
for both PRS signals. Moreover, the complexity of the PRS
signals is very low since only two and three signal levels are
required. From the applied PRS signals, the ternary sequence
showed better performance at the low-frequency region even
with lower excitation amplitude. With the increased bandwidth
and accuracy of the measurements, the ternary sequence holds
the potential to be scaled for other Li-ion chemistries. Thus, the
ternary sequence is attractive alternative for the conventional
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EIS for utilizing the impedance measurements in online battery
applications.

VI. CONCLUSION

This paper demonstrated the use of two PRS excitation
signals, the PRBS and the ternary sequence, for fast battery
impedance measurements. Both sequences were comprehen-
sively designed and validated to reliable EIS reference mea-
surements in various operating conditions for a LiFePO, battery
cell. The measurement time with both PRS signals was only
4.7 s, which is 12 times less than that of the EIS for which
the measurement time was 1 min. The complexity of the PRS
signals is also significantly lower than for the EIS, and the PRS
signals could be implemented to an application with low-cost
microprocessors. The practical measurements showed that the
performance of the ternary sequence is higher, especially at the
low frequencies where the PRBS results were slightly distorted.
Another advantage of the ternary sequence is that the signal
allows using smaller injection amplitude compared to the PRBS.
Moreover, the linear Kronig—Kramers compliance test validated
the performance of the ternary sequence. By contrast, the PRBS
measurements were found to be corrupted mostly due to the
nonlinear distortion affected to the measurements, especially at
the diffusion region of the battery impedance. By considering the
aforementioned aspects, the ternary sequence is a very attractive
alternative for battery impedance measurement and practical for
online battery applications in electric vehicles and in stationary
energy storages with scalability to other Li-ion chemistries.
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