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Abstract—This paper proposes a new methodology for auto-
mated design of power electronic systems realized through the use
of artificial intelligence. Existing approaches do not consider the
system’s reliability as a performance metric or are limited to reli-
ability evaluation for a certain fixed set of design parameters. The
method proposed in this paper establishes a functional relationship
between design parameters and reliability metrics, and uses them
as the basis for optimal design. The first step in this new frame-
work is to create a nonparametric surrogate model of the power
converter that can quickly map the variables characterizing the
operating conditions (e.g., ambient temperature and irradiation)
and design parameters (e.g., switching frequency and dc link volt-
age) into variables characterizing the thermal stress of a converter
(e.g., mean temperature and temperature variation of its devices).
This step can be carried out by training a dedicated artificial neu-
ral network (ANN) either on experimental or simulation data. The
resulting network is named as ANN1 and can be deployed as an
accurate surrogate converter model. This model can then be used
to quickly map the yearly mission profile into a thermal stress
profile of any selected device for a large set of design parameter
values. The resulting data is then used to train ANN2 , which be-
comes an overall system representation that explicitly maps the
design parameters into a yearly lifetime consumption. To verify
the proposed methodology, ANN2 is deployed in conjunction with
the standard converter design tools on an exemplary grid-
connected PV converter case study. This study showed how to find
the optimal balance between the reliability and output filter size in
the system with respect to several design constraints. This paper
is also accompanied by a comprehensive dataset that was used for
training the ANNs.

Index Terms—Artificial intelligence, automated design for
reliability (ADfR), power electronic systems.

I. INTRODUCTION

THE use of power electronic converters has become om-
nipresent nowadays. They are the key enablers of tech-

nologies, such as renewable energy systems, electrical vehicles
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and their charging infrastructure, variable speed drives, as well
as uninterruptible power supply systems and microgrids [1], [2].
Much like any other system, power converters are prone to fail-
ures. Such failures cause downtimes that often require costly
maintenance procedures, especially if the power electronic sys-
tem is located in the remote or offshore location. Moreover,
such failures may also have catastrophic consequences in mis-
sion critical applications or significantly reduce the energy yield
of renewable energy systems [3], [4].

Redundancy has historically been one of the most attractive
approaches to provide the failure-tolerant capability to power
electronic systems [5]. While being highly effective in this re-
gard, redundant design will normally significantly increase the
cost and size of the system, thus compromising its competitive-
ness in the market. Another scheme is to select the individual
components in the converter (e.g., switching devices, inductors,
and capacitors) with sufficient thermal and electrical stress mar-
gin, thus expecting their low failure rates and, consequently, high
reliability of the overall system. However, with this approach,
the quantitative reliability metrics of individual devices are not
taken into account, and for this reason, it is also not possible to
automatically design the system for prespecified lifetime.

To circumvent the drawbacks of aforementioned methods, the
research in reliability of power electronic systems has recently
experienced a paradigm shift toward the so-called design for
reliability (DfR) approach [6], [7]. The key idea here is to take
the reliability metrics explicitly into account during the design
process. Since the most vulnerable part of power converters is
semiconductor devices, the most attention in this research area
has been dedicated toward studying their failure modes. To this
end, it has been observed that the most common failure modes
are associated with packaging, i.e., with die-attach solder fa-
tigue and bond wire damage. Both of these modes are caused by
junction temperature cycles and the mean junction temperature
of the device during operation. Manufacturers of semiconduc-
tor devices have also carried out comprehensive temperature
cycling tests and discovered functional relationships between
the amplitude and mean value of the junction temperature, and
the device lifetime consumption (LC) [8].

Therefore, the research focus in the DfR area has mostly been
on investigating the thermal loading of power devices [9]–[11].
These investigations can be carried out either experimentally
or using detailed simulations models, which have been shown
to match excellently the experimental results [12], [13]. The
main principle is to expose the power converter to a mission
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profile that represents its realistic operating condition and ex-
tract the corresponding thermal profile of one or more devices
(i.e., the junction temperature data). The mission profile is usu-
ally characterized by an ambient temperature and current flow-
ing through the power converter over a certain period of time
[14]. The rainflow counting algorithm can then be deployed to
count the number of junction temperature swings and to extract
their amplitudes as well as mean values from the given thermal
profile. Final step is to associate every cycle with its cumulative
damage (e.g., using [8] or other device LC data from the relevant
manufacturer), and calculate the overall LC over a period of time
using the Miner’s rule [9]. Assuming that all other components
in the system are significantly more reliable, the LC of power
devices is hence normally considered as the representation of
the whole system’s LC [15]–[18]. It is also possible to combine
LCs of several components in the system to assess the system
level LC [19].

Nevertheless, the LC estimation procedure in all the DfR ap-
proaches mentioned in the existing literature are made on power
electronic systems whose design parameters are already fixed.
This means that every time a designer would like to check how
different design parameters affect the lifetime of power elec-
tronic system, he would need to perform the time-consuming
simulations or experiments all over again. Moreover, with ex-
isting methods, it is not possible to specify a certain lifetime of
the power electronic system as a design goal and then explic-
itly obtain the design parameters that guarantee the specified
LC. In other words, there is no possibility to reverse the design
process.

The aim of this paper is to bridge this research gap by building
upon the principal DfR concepts and develop a fully automated
design for reliability (ADfR) tool. The key enabling method-
ology for this development is artificial intelligence, and more
particularly the artificial neural networks (ANNs). It is well
known that ANNs are universal function approximators, i.e.,
they can approximate any given input/output data relationship
with arbitrary precision [20]. Here, we take advantage of this
capability for two different purposes. First, we use it to build a
surrogate model of the power converter that is able to estimate
the thermal stress of any device in the converter as a function
of design parameters and the mission profile several orders of
magnitude faster compared to running the detailed simulation
model. Such a surrogate model, labeled as ANN1 , has similar
functionality as a look-up table (LUT) reported in e.g., [18], but
consumes significantly lower amount of memory, thus allowing
to embed any design parameter as an input to the model. In
addition, it has much better capability to generalize nonlinear
input/output data relationship, thereby providing more precise
estimates of the junction temperatures. The second purpose of
ANN is to establish the functional relationship between design
parameters and yearly LC in a network labeled ANN2 . Again,
this process resembles the ones presented in [16]–[18], but here
the LC evaluation is systematically repeated for a large number
of design parameter variations to generate the training data for
ANN2 which, after training, gives an explicit functional rela-
tionship between design parameters and LC, thus providing a
key basis for ADfR. ANN2 can consequently be used either

Fig. 1. System configuration and control structure of a two-stage single-phase
grid-connected PV system. Here, PI is proportional-integral, PR is proportional-
resonant, PLL is phase-locked loop, and PWM is pulsewidth modulator.

individually or in conjunction with other design tools, e.g., if it
is desirable to balance the reliability of the system with other
metrics such as cost, weight/volume, or others.

The rest of the paper is organized as follows. Section II
describes the power electronic system under consideration, i.e.,
the single-phase grid-connected H-bridge PV inverter, although
the proposed methodology is generic and thus applicable to
any other converter topology. In Section III, the conventional
system design and reliability evaluation methodologies are
briefly revised, while Section IV provides the background
about the ANNs. In Section V, the proposed design procedure
is described step by step. The procedure is then verified in
Section VI, where switching frequency and dc-link voltage
reference of the grid-connected PV inverter that provide the
optimal balance between the reliability and size of the system,
are found via proposed approach. Finally, the conclusion of the
paper is given in Section VII.

II. DESCRIPTION OF THE CASE STUDY

A. System Description

The design methodology proposed in this paper is verified on
a power electronic system case study that involves a two-stage
grid-connected single-phase PV inverter with rated power of
10 kW, as shown in Fig. 1. The system comprises a dc–dc boost
converter, which operates the maximum power point tracking
algorithm and a full-bridge dc–ac converter that regulates the
intermediate dc link voltage vdc and grid side current using
cascaded linear control loops. The correct angle for the current
controller is provided by a phase-locked loop.

Table I indicates the design parameters of the system. These
parameters have a strong influence on its performance, size/cost
and reliability, and should therefore be carefully selected.
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TABLE I
PARAMETERS OF THE TWO-STAGE SINGLE-PHASE PV SYSTEM (FIG. 1)

In a case study analyzed in this paper, some of the listed
parameters are considered to be fixed while others are des-
ignable. For instance, the switching frequency of the inverter
fsw, reference dc link voltage v∗

dc, and LCL filter parameters
(Lf , Cf , Lfg) are chosen as designable parameters. By looking
at the relationships between these parameters, it is intuitively
clear that higher fsw will yield a lower switching ripple, thus
permitting the usage of a smaller filter. However, higher switch-
ing frequency will also result in higher switching losses, thereby
causing larger junction temperatures of the power devices and
shortening their lifetime.

While the aforementioned design tradeoff between the relia-
bility and size of the system is well known, the existing research
works fail to establish explicit relationships between these two
metrics and to embed them as a part of the design process. More
particularly, the works labeled under the DfR alias (e.g., [17],
[18]) assume predetermined design and only provide lifetime
prediction for a given design and mission profile. Therefore,
it would be more appropriate to label the methods proposed
in these works as reliability evaluation methods. On the other
hand, the works that consider optimal design of power electronic
systems (e.g., [21]–[24]) do not take into account the reliability
of the system as a performance metric. The aim of this paper is
to fill this knowledge gap by providing a holistic design method-
ology that simultaneously takes into account the performance,
reliability, and size/cost of the system.

B. Mission Profile

Besides the design parameters, the mission profile in which
the power converter is operated has a notable impact on the junc-
tion temperatures of power devices. Mission profile character-
izes the operating conditions, such as the ambient temperature
and the power processed by the converter. As shown in [18],
mission profiles can vary significantly according to geographic
location.

In this paper, a yearly mission profile recorded in Aalborg,
Denmark has been used for the considered case study, as shown
in Fig. 2. It can be seen from the figure that the profile involves
yearly irradiation and ambient temperature data. Depending on
the particular PV panel characteristics, which can be found in
the manufacturer data-sheet, such data can easily be translated
into the power processed by the inverter Pin, assuming that the
maximum possible power is always extracted. Pin and Ta can

Fig. 2. Yearly mission profile from the PV installation site in Aalborg,
Denmark with a sampling rate of 1 min/sample. (a) Solar irradiation. (b) Ambi-
ent temperature.

then be used for obtaining the junction temperatures from the
detailed simulation model, as detailed in Section III-B.

III. RELIABILITY OF THE POWER ELECTRONIC SYSTEM

In principle, the reliability of power electronic system can be
improved in the following three ways [6]: First, by selecting a
suitable topology of the converter, i.e., the one that either min-
imizes the number of components or that provides redundancy
in case of failures, second, by choosing high-quality individual
components in the system that are less likely to fail, and third,
by reducing the stress level of the components [6].

A. Design Tradeoff

In this paper, it is assumed that the circuit topology of the
converter is fixed and that the type of components most prone
to failures, i.e., the switching devices, are preselected. To this
end, the main design goal from a reliability point of view is
to minimize the stress level on the switching devices. As men-
tioned before, lower fsw leads to lower switching loss, which
in turn induces lower temperature swings and hence leads to
longer lifetime for the devices. However, lower fsw also results
in higher harmonic distortion and in a slower dynamic response
of the converter, while it also requires bulkier and more expen-
sive passive filters. Similarly, higher vdc increases the switching
losses and causes higher switching ripple [22], but the higher it
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is, the more control bandwidth it provides [25]. In this respect,
it is clear that fsw and vdc are two key design parameters that
affect the reliability, performance, and size (cost) of the system.
Therefore, these two parameters should be explicitly selected to
yield the best balance between these metrics.

In order to provide a framework for truly optimal design, the
well-known conventional design procedure (as in e.g., [21] and
[22]) is here combined with the LC of the system, which can be
considered as its reliability metric. The methodology for evaluat-
ing the LC of power devices is described in the following section.

B. Lifetime Evaluation Procedure

It is well known that the power devices are the most vul-
nerable components of power electronic converters. Depending
on the mission profile (Ta and Pin) and design parameters (vdc,
fsw, heat sink parameters, and others), these devices will expe-
rience junction temperature swings that cause their wear out.
The temperature swings occur due to changing switching and
conduction losses caused both by the varying loading (mission
profile) and the sinusoidal shape of the inverter current. For
a given operating condition, the thermal stress on the device
can be characterized by the mean temperature value Tjm, the
amplitude of oscillation ΔTj , and the period of oscillation tON.

The concrete values of Tjm, ΔTj , and tON can be extracted
from the detailed simulation model of the converter and its as-
sociated thermal network. However, it is unfeasible to run the
detailed simulation for the whole yearly mission profile period.
For this reason, an approximate model of the converter that can
quickly translate the mission profile and design parameters into
junction temperatures, is commonly developed. The develop-
ment of such model using artificial intelligence methodology is
described in the following section.

For numerous types of devices, empirical models that quantify
the effect of each cycle on the lifetime of the device have been
constructed based on experimental data. An example of one
such model is given in [8].

Nf = A × (ΔTj )α × (ar)β1 ΔTj +β0 ×
[
C + (tON)γ

C + 1

]

× exp

(
Ea

kb × Tjm

)
× fd (1)

where Nf is the number of cycles that a device can tolerate
before failure if stressed with a certain ΔTj , Tjm, and tON. The
other parameters required to evaluate (1) can be obtained exper-
imentally. An exemplary set of parameters is taken from [8] and
it is shown in Table II.

The inverse of Nf indicates the level of damage that a device
sustains under certain stress conditions. In line with this, the
total LC over a certain period can then be estimated using the
Miner’s rule as follows:

LC =
∑ ni

Nfi
(2)

where ni is the number of cycles that result in incremental
damage 1/Nfi. Therefore, in order to find out the total LC that
occurs over a certain time period, it is necessary to count the

TABLE II
PARAMETERS OF THE LIFETIME MODEL OF AN IGBT MODULE

total number of temperature cycles and associate each cycle
with a corresponding Nfi.

For a grid-connected PV system, two basic types of junction
temperature cycles can be identified. The first type of cycles is
caused by the mission profile and they are normally extracted
from the yearly junction temperature data using the rain-flow
counting algorithm. Such an algorithm extracts all the cycles and
associates each one of them with a specific ΔTj , Tjm, and tON,
thus enabling the usage of (1). The second type is a repercussion
of injecting the sinusoidal current at fundamental frequency into
the grid. Therefore, this type has a fixed period tON, while given
ΔTj and Tjm can be extracted from the converter model and
the rain-flow counting data, respectively. Therefore, the total
LC can be calculated by adding the two contributions. It should
also be noted that the parameters in (1) are usually not deter-
ministic and can vary within certain ranges. If these effects are
taken into account, the overall LC is normally evaluated us-
ing the Monte Carlo analysis and represented as the probability
distribution function [26]. However, the consideration of the pa-
rameter variations in (1) is out of the scope of this paper, and
will be considered in the future work.

IV. ANN-BASED MODELING

A. Motivation for Using the ANNs

As explained in the previous section, it is essential to
establish a simple model of the converter that would be able to
translate the yearly mission profile data into a yearly junction
temperature variation. The state-of-the-art approaches deal with
this task by simulating the detailed model of the converter with
associated thermal network for several selected combinations
of Pin and Ta and extracting the corresponding ΔTj and Tjm.
These data are then fed to the LUT that serves as a surrogate
model of the converter.

However, there are several fundamental limitations asso-
ciated with this approach. First, LUTs are not suitable for
high-dimensional data mapping, since they suffer from the
inefficient use of memory space. This is particularly restricting
if one would seek to construct a more complicated surrogate
model of the power electronic system, where it would be
required to map both the mission profile and design parameters
to the junction temperatures. Second, LUTs are unable to learn
general nonlinear relationships between the input data and out-
put data, since they are based on linear interpolation. While the
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second issue could be improved by using more data points, this
would not be feasible in high-dimensional spaces due to limited
memory. For these reasons, LUTs have been only used to map
mission profile data (i.e., Pin and Ta ) to junction temperatures,
assuming that all other design parameters are fixed [18].

In order to come around this difficulty, in this paper, we
propose the usage of a forward ANN to serve as a more fast, ac-
curate, and flexible surrogate model of the converter. It has been
shown in [20] that forward ANN is a universal function approx-
imator, i.e., that the parameters in its structure can be adjusted
in such a way to approximate any nonlinear input/output data
relationship with arbitrary precision. For this reason, ANN has
better generalization capability than LUT, and can thus better
approximate the responses to input samples that are outside the
training dataset. Another advantage of ANN is that the number
of training parameters (i.e., weights and bias terms) can gen-
erally be several orders of magnitude lower than the number
of data points. For this reason, ANN has much lower mem-
ory requirements than LUT. In particular, the evaluation of the
ANN used in this paper was found to be around four orders
of magnitudes faster than the LUT. Finally, ANN is based on
a nonparametric regression model. In this case, designer does
not need to know anything about the relationship between input
and output data, because the ANN will learn them automat-
ically during the training process. This is particularly useful
in multidimensional spaces where parametric nonlinear regres-
sion approaches are not suitable, since it is difficult to guess
the structure of the function that best models input–output data
relationships.

The following section provides a brief theoretical introduction
to ANNs.

B. ANN Principle

Numerous types of ANNs have been proposed in the
literature [27]. Particular network choice depends mostly on
the nature of relationships between inputs and outputs in
the data. When outputs depend on historical values of the
inputs and outputs, recurrent neural networks are the most
suitable. In the case study of this paper, the relationship
between design parameters and mission profiles with the
junction temperatures is static. For this reason, forward ANN
has been selected for the case study here. Forward ANNs
are the most commonly used deep-learning algorithms and
have been applied already to various electrical engineering
problems, from predicting the voltage distortion in electrical
distribution networks [28], to designing the microwave filters
[29], [30].

A forward ANN comprises an input layer, one or more hidden
layers, and an output layer. Each of these layers comprises a
number of neurons that process the information coming from
neurons in the layer below. To calculate the output of a certain
neuron γl

i in layer l, the outputs of all the neurons zl−1
j (j =

[1..Nl−1 ]) in the layer below l − 1 are multiplied with given
weights ωl

ij and the bias term bl
i is then added. The result is

processed through an activation function σ that usually takes
the form of a sigmoid function, i.e., σ(γ) = 1/(1 + e−γ ), to

generate the output zl
i . This output then becomes one of the

inputs for the layer above, l + 1, and the same procedure is
repeated to calculate the output of other neurons in layer l.

In the input layer, z1
i takes the form of inputs. On the other

hand, the output layer typically uses the linear activation func-
tion to allow any numerical value, as opposed to being limited
to [0,1] range as the sigmoid function. To sum up, the complete
signal flow of the ANN can be described as follows:

(1) Layer 1 (input):

z1
i = xi i = 1, .., N1 (3)

where xi are the inputs.
(2) Layers l = 2, .., L − 1 (hidden):

zl
i = σ

⎛
⎝Nl−1∑

j=1

wl
ij z

l−1
j + bl

i

⎞
⎠ i = 1, .., Nl . (4)

(3) Layer L (output):

yi = wL
i zL

i i = 1, .., NL (5)

where yi are the outputs.
It has been shown in [20] that forward ANN is an universal

function approximator, i.e., that the weights and bias terms in its
structure can be adjusted so as to approximate any input/output
data relationships with arbitrary precision. These parameters are
adjusted during the training process, normally using the back-
propagation algorithm. This algorithm takes advantage of the
continuous differentiability of the ANN to find out the direc-
tion in which the wl

ij and bl
i parameters should be adjusted in

each training iteration to reduce the error between the measured
output data and prediction made by the ANN from previous it-
erations [31]. Back-propagation is a well-known algorithm that
is available in standard softwares like MATLAB.

It is important to notice that, before starting the training pro-
cess, the structure of the network should be defined (i.e., the
number of layers and the number of neurons in each layer). To
this end, if too few neurons are used, the strong nonlinear rela-
tionships may not be captured. On the other hand, over-fitting
may occur in ANNs with too many neurons. However, up un-
til now, an analytic method for selection for proper number of
neurons has not been established. Therefore, they are usually
selected using trial-and-error and this approach is also used in
this paper.

Next section presents the development of two ANNs that are
used in the proposed optimal design procedure, which is detailed
in Section V.

C. Deployment of ANNs for Fast and Flexible LC Evaluation
of the PV Inverter

This section elaborates the development of two dedicated
ANNs, one that serves as a surrogate model of the converter and
one that translates the design parameters into a yearly LC.

1) ANN1: Surrogate Model of the PV Inverter: The purpose
of this network is to map the operating conditions and design
parameters into the junction temperatures and is labeled as
ANN1 . The data required to train this network is collected
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Fig. 3. Structure of the ANN1 . For simplicity, weights and bias terms are
omitted from the figure. The inputs to the ANN1 are highlighted with green
color, while the outputs with yellow.

by running a detailed simulation model of the converter
numerous times to cover some specific range of input parameter
variations. After each simulation, corresponding Tjm,i,data and
ΔTj,i,data are extracted.

Concerning the structure of the network, it has been empir-
ically chosen to comprise an input layer, two hidden layers,
and an output layer, and it is shown in Fig. 3. Therefore, there
are 4 layers (L = 4) in total. The number of neurons in the
input layer is 4 (N1 = 4) since there are two design param-
eters v∗

dc and fsw and two mission profile parameters, Pin and
Ta . The number of layers in the two hidden layers are 5 and 3,
respectively (N2 = 5, N3 = 3). Finally, the output layer com-
prises 2 neurons (N4 = 2) because it is of interest to find out
two values that characterize the junction temperature, i.e., its
mean value Tjm and the amplitude of oscillation at fundamental
frequency ΔTj .

After specifying the datasets and structure of the network,
ANN1 was trained using the train command, which is a part of
MATLAB’s Deep Learning Toolbox. Trained ANN1 can now be
used to translate the tunable design parameters and the mission
profiles given in Fig. 2 into a junction temperature of the in-
verter’s devices for any given combination of design parameters
v∗

dc and fsw. Next, ANN1 is put to use in order to create ANN2 ,
as detailed below.

2) ANN2: Mapping of Design Parameters to Lifetime of the
Inverter: Besides ANN1 , another network labeled as ANN2
is trained. This network serves as the overall representation
of the system that maps the LC for a given yearly mission
profile and design parameters. The data required to train this
network is collected by running the cycle counting and per-
forming the Miner’s rule on a yearly junction temperature data
(obtained by evaluating ANN1 on a yearly mission profile data)
for numerous combinations of design parameters fsw and v∗

dc,
as shown in Fig. 5. Therefore, ANN1 is automatically embed-
ded in ANN2 . Once the network is trained, instead of running
the rainflow counting algorithm every time when the LC esti-
mate is needed, the LC can simply be obtained by evaluating
ANN2 .

The structure of this particular network is shown in Fig. 4.
It was empirically selected to have an input layer, two hidden
layers, and an output layer. The number of neurons in the in-

Fig. 4. Structure of the ANN2 . For simplicity, weights and bias terms are
omitted from the figure. The inputs to the ANN2 are highlighted with green
color, while the outputs with yellow.

put layer are 2 (N1 = 2) since there are two design parameters
v∗

dc and fsw. The number of layers in the two hidden layers are
5 and 3, respectively (N2 = 5, N3 = 3). Finally, the output
layer comprises 1 neuron (N4 = 1) because our design inter-
est is in one performance indicators, i.e., the converter yearly
LC for a certain mission profile. After specifying the datasets
and structure of the network, ANN2 was again trained using
the train command. Trained ANN2 can now be deployed as
a basis for the optimal design and combined with other de-
signed methodologies, as described in the following section
that provides the overall framework of the proposed design
approach.

V. PROPOSED AUTOMATED DESIGN APPROACH

The complete workflow of the proposed design approach is
shown in Fig. 5. It can be seen that the procedure is split into
a training phase that comprises four steps and an optimization
stage with a single step. The training phase steps have been de-
scribed in detail in the previous section and are only graphically
summarized in Fig. 5. The ultimate result of this phase is trained
ANN2 that serves as the basis for optimal design, since it can
explicitly map the design parameters to yearly LC.

Nevertheless, minimization of the LC often needs to be bal-
anced with other metrics of the system. In this paper, the idea
is to optimize the tradeoff between the LC and the system size,
while respecting the performance metrics defined by relevant
standards. To account for the power electronic system size in
quantitative fashion, the standard methodology for the LCL fil-
ter design of grid-connected converters is adopted here (e.g., as
suggested in [21] and [22]).

Similarly like with LC, the required LCL filter parameters are
also dependent on the fsw and vdc. The first step is to select the
inductance of the converter side inductor Lf , which is normally
done in accordance with maximum permissible ripple in the
converter current, as follows [22]:

Lf =
vdc

6fswΔILmax
. (6)

where ΔILmax is usually selected to be 10% of the rated converter
current. The filter capacitor Cf is then selected to limit the
reactive power consumption of the filter. Usually, its value is
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Fig. 5. Flow diagram of the proposed artificial intelligence based design optimization of the power electronic system.

limited to 5% of the base capacitance value, as follows:

Cf ≤ 0.05 · Pn

ωgE2
n

. (7)

where Pn is the rated power of the converter, ωg is the grid
angular frequency, while En is the grid voltage amplitude. The
attenuation of the harmonics from the converter side current
depends also on the grid side inductor Lfg, as follows:

ig
ic

= ka =
1

1 + r(1 − Lf Cf ω2
sw)

. (8)

where ka is a required attenuation.
The (8) then provides the basis for the selection of Lfg

Lfg =
sqrt(1/k2

a) + 1
Cf ωsw

. (9)

It can be seen from (9) that the higher the Cf , the lower Lg is
needed to achieve the same level of attenuation. Therefore, it is
of interest to set the Cf at the upper limit in order to reduce the
size of the Lg , which has a more dominant influence on the size
of the system. It is also proposed in some references to initially
select Cf at a value lower than maximum in order to allow
sufficient headroom for iterative re-engineering the design if the

resonance frequency of the filter does not meet the following
mandatory requirement [21]:

10fg < fres =
1
2π

√
Lf + Lfg + Lg

Lf (Lfg + Lg ) Cf
< 0.5fsw. (10)

Finally, the resonant frequency is taken into account to derive
the value for the damping resistor that is connected in series
with the capacitor, as follows:

Rf =
1

6πfrefCf
. (11)

To sum up, the standard LCL filter design methods take fixed
fsw and vdc as inputs and provide the Lf , Cf and Lfg as outputs
using the set of (6)–(10). It should also be noted that (6)–(10)
can be used when generating the data for training ANN1 , as
indicated in Fig. 5. Considering that there is not much freedom
in designing Cf , it is proposed here to use the total size of
inductors (Ltot = Lf + Lfg) alongside with the yearly LC (pre-
dicted by ANN2) to formulate the overall fitness function, as
follows:

fsys(w1) = LC2
ann + w1 · (Ltot)2 . (12)
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where w1 is the parameter that is used to balance the importance
of the two terms. By using different values of w1 , a Pareto front
that characterizes the relationships between the reliability and
size of the system can be constructed.

The case-study analysis in the next chapter is carried out us-
ing the fitness function (12). However, it is important to notice
that this particular fitness function is only exemplary and any
other one can be easily adopted within the framework of pro-
posed design methodology. For example, detailed calculation of
total volume and power losses of the LCL filter has been car-
ried out in [23] using comprehensive models of inductive power
components. Consequently, a Pareto front indicating a tradeoff
between volume and power loss of the filter has been derived. On
the other hand, the LCL grid filter of a multimegawatt medium-
voltage neutral-point-clamped converter for a wind turbine is
designed using the selective harmonic elimination PWM in [24]
to improve the converter efficiency. Design considerations con-
cerning filter volume and efficiency could easily be embedded
with the design process proposed in this paper by expanding
the fitness function (12). Similarly, effect of alternative modula-
tion schemes on converter efficiency could easily be considered
by embedding any type of modulator in the simulation model
from which the data is extracted. Consequently, the converter
power loss could then be embedded in the fitness function (12)
as well. Nevertheless, since research on advanced modulation
schemes and detailed modeling of inductive components is out
of the scope of this paper, these design considerations have not
been considered in the case study carried out in the following
section.

VI. CASE STUDY

In order to verify the proposed design methodology, a case
study for a PV system located in Denmark has been carried out.
As already shown in Section II-B, irradiance and temperature
data sampled minute by minute was available from a location in
Aalborg/Denmark.

A. Data Extraction, Normalization, and Training

First and most computationally demanding step in the pro-
posed method is to extract the data required to train ANN1 .
A detailed simulation model of the grid connected inverter
with associated heat sink and thermal networks was used
for this purpose. The model was simulated for 3 s in order
to ensure that the mean junction temperature converges to
a steady-state value. Such simulation took around 2 min in
real time.

In this paper, the design and mission profile parameters were
swept using five values for each parameter except for the dc link
voltage, where three values have been used (since the tempera-
tures have been observed to rise linearly with the increasing dc
link voltage). The main reason why this number of data points
was enough to represent the power electronic system at hand
is a monotonically increasing nature of underlying functional
relationships between input and output data. For instance, if the
converter processes higher amount of power, Tjm and ΔTj will
both be higher. Similarly, higher ambient temperature, higher

switching frequency and higher dc link voltage will also cause
increased temperatures of devices. Because of the monotoni-
cally increasing nature, the strong nonlinearity in these relation-
ships is avoided and it turned out that it is possible to represent
accurately the system only with limited number of data points.
In this paper, the following parameter sweep values were used:

Pin = [1000, 3000, 5000, 7000, 10 000] W

Vdc = [450, 500, 550] V

fsw = [3000, 5000, 7000, 10 000, 15 000] Hz

Ta = [−10, 0, 15, 25, 35] ◦C. (13)

Overall number of data points was thus 375 and the same
number of simulations needed to be carried out to extract Tjm

and ΔTj . All the results were obtained in approximately 1 h
on a workstation with 24 parallel cores using MATLAB’s Par-
allel Computing Toolbox. The overall dataset can also be ac-
cessed in MATLAB (please find data375.mat in the Active
Content/Multimedia, where variables Tmean and deltaT cor-
respond to the mean temperature and amplitude of temperature
swing, respectively).

This dataset was then randomly divided into three datasets,
i.e., the training set (70% of data, corresponding to 263 data
points), the validation set (15% of data, corresponding to 56 data
points), and the testing set (15% of data, corresponding to 56
data points). It should be noted that the precision of ANN turned
out to be highly robust to data division ratios. Namely, empirical
investigation has shown negligible differences in ANN precision
if the training set was kept between 15% and 90% of overall
data. Regular normalization technique was then deployed on
the extracted data. To this end, the largest value of each data
point was used as its norm and all other values of the same data
type were then divided by the norm prior to the training. This
procedure prevented the possibility of having different scales of
input data, as all data points were in the [0, 1] range.

Consequently, ANN1 was trained and passed the next stage,
where it was used to generate data for yearly mission profile (see
stage C., in Fig. 5). Here, the fsw was swept from 3 to 15 kHz with
a step of 1 kHz, whereas v∗

dc was swept from 450 to 550 V with
a step of 10 V. Therefore, the total number of data points was
143. The whole data collection process was executed in less than
25 s, again by using MATLAB’s Parallel Computing Toolbox.
As mentioned before, 50 Hz junction temperature cycles were
counted automatically while the other cycles were counted using
a rainflow counting algorithm. As with ANN1 , this dataset was
randomly divided into three datasets, i.e., the training set (70%
of data, corresponding to 101 data points), the validation set
(15% of data, corresponding to 21 data points), and the testing
set (15% of data, corresponding to 21 data points). Data was
also normalized. Finally, ANN2 was trained on a given data and
passed forward to the optimization phase.

B. Design Optimization
After the training phase was accomplished, trained ANN2

was used in the optimization stage together with conven-
tional design procedure, as indicated at the bottom of Fig. 5.
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Fig. 6. Pareto front of optimal designs obtained by sweeping the parameter
w1 from (12) from 0 to 25. The three black diamonds correspond to w1 = 0.1,
w1 = 1, and w1 = 10, respectively (plots of corresponding fitness functions
are shown in Figs. 7–9).

Fig. 7. Plot of the fitness function (12) for w1 = 0.1. The optimum is achieved
for fsw = 3870 Hz and v∗

dc = 550 V, resulting in yearly LC of 0.342% and
Ltot = 6.89 mH.

Fig. 8. Plot of the fitness function (12) for w1 = 1. The optimum is achieved
for fsw = 5784 Hz and v∗

dc = 540.5 V, resulting in yearly LC of 0.482% and
Ltot = 3.3 mH.

In particular, the minimum of the fitness function (12) was cal-
culated for different parameter values of w1 , which was swept
from 0 to 25. As an example, three arbitrary points correspond-
ing to three different w1 (for w1 = 0.1, w1= 1, and w1 = 10,
respectively) have been selected from a given curve. The super-
high-fidelity plots of associated fitness functions (together with
optimal design parameters and corresponding total filter in-
ductance, as well as LC) are given in Figs. 7–9, respectively.
The respective minimums have been found using an exhaustive
search algorithm, which is feasible for this case study, since the
evaluation of ANN2 is computationally extremely light (around

Fig. 9. Plot of the fitness function (12) for w1 = 10. The optimum is achieved
for fsw = 8370 Hz and v∗

dc = 498 V, resulting in yearly LC of 0.679% and
Ltot = 1.83 mH.

0.1 μs). For comparison, a commonly used LUT that comprises
the same dataset turned out to be significantly more computa-
tionally intensive as it took approximately 800 μs to evaluate it.
While this time can still be considered relatively short, it would
quickly present a limitation when sweeping through the whole
design space with high fidelity.

Fig. 6 shows the Pareto front that shows the yearly LC
and the filter size corresponding to minimums of many fitness
functions obtained by sweeping the parameter w1 from 0 to
25. The obtained Pareto front clearly illustrates the tradeoff be-
tween the yearly LC and size of the system and provides the
formal framework for optimal design. Considering fast evalu-
ation of the fitness function (12), each of the four-megapixel
plots shown in Figs. 7–9 were generated in less than 0.5 s. The
optimal solution was then simply obtained by finding the lowest
value in the given plot, which can be done in MATLAB almost
instantaneously using the embedded min function.

It also needs to be noted that if more design parameters should
be considered, the computational burden of the exhaustive
search method might become too high. If this happens, there are
several alternative ways to do the minimization. One possibil-
ity may be to evaluate fitness function sequentially, with higher
and higher fidelity. Another option could be to apply advanced
approaches, such as evolutionary optimization. This would not
impose strict limitation on the number of design parameters, but
would bring risk of getting stuck in local minimums.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, an artificial intelligence aided methodology for
design optimization of power electronic systems has been pro-
posed. The fundamental idea behind the method is to substitute
the key two steps of the system’s standard reliability evalu-
ation procedure with dedicated ANNs that serve as fast and
accurate approximations of these steps. As shown in Fig. 5,
the first one, ANN1 , is trained to act as a surrogate model of
the power electronic converter that can map the operating con-
ditions and design parameters into junction temperature(s) of
the converter’s power devices. The other one, ANN2 , is then
trained using both ANN1 and any given mission profile (e.g.,
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yearly) to serve as an overall system representation that maps
the design parameters into a LC. Since ANN can be evalu-
ated extremely fast (around 1 μs), numerous design parameter
combinations can be tested almost instantaneously in order to
shed light on their influence of design goals. Here, this capabil-
ity was exploited in order to formally investigate the influence of
two exemplary design parameters, i.e., fsw and v∗

dc on the trade-
off between the filter size in the single-phase grid-connected PV
system and the LC of the devices in the converter. With aid of
proposed methodology, this tradeoff was represented with the
Pareto curve that provides the precise design limitations of the
system and allows one to analytically find the optimal fsw and
v∗

dc in accordance to desired position on the Pareto curve. This
provides a clear improvement over the state of the methods that
can only evaluate the LC for a fixed design and allows powerful
design optimization capability. Possible interesting directions
for the future work could be to look at more design parame-
ters (e.g., heat sink parameters, modulation strategy, etc.). This
would prolong the data extraction process, but the trained neural
network could then be used for more comprehensive design op-
timization. Another research direction could be to embed more
performance metrics, such as the volume and cost of the sys-
tem. Finally, it would be interesting to investigate the proposed
system design procedure on types of power electronic con-
verters that exhibit unequal thermal stress distribution among
their devices.
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