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Abstract—Lithium–Sulfur (Li–S) battery technology is consid-
ered for an application in an electric-vehicle energy storage system
in this study. A new type of Li-S cell is tested by applying load
current and measuring cell’s terminal voltage in order to parame-
terize an equivalent circuit network model. Having the cell’s model,
the possibility of state-of-charge (SOC) estimation is assessed by
performing an observability analysis. The results demonstrate that
the Li–S cell model is not fully observable because of the particular
shape of cell’s open-circuit voltage curve. This feature distinguishes
Li-S batteries from many other types of battery, e.g., Li-ion and
NiMH. As a consequence, a Li-S cell’s SOC cannot be estimated
using existing methods in the literature and special considerations
are needed. To solve this problem, a new framework is proposed
consisting of online battery parameter identification in conjunction
with an estimator that is trained to use the identified parameters
to predict SOC. The identification part is based on the well-known
prediction-error minimization algorithm; and the SOC estimator
part is an adaptive neuro-fuzzy inference system in combination
with coulomb counting. Using the proposed method, a Li-S cell’s
SOC is estimated with a mean error of 4% and maximum error of
7% in a realistic driving scenario.

Index Terms—Adaptive neuro-fuzzy inference system (ANFIS),
lithium–sulfur (Li-S) battery, model identification, observability
analysis, state-of-charge (SOC) estimation.

I. INTRODUCTION

D EVELOPMENT of energy storage systems can be
considered as the heart of vehicle electrification process.

Different new technologies for batteries, fuel cells, ultraca-
pacitors, etc., are developing to be implemented in electric
vehicles (EVs). One such new energy storage technology is the
Lithium–Sulfur (Li-S) battery. Compared to incumbent Li-ion
technologies, Li-S batteries have higher specific energy, im-
proved safety, wider operational temperature range, and – when
productionized – a lower unit cost due to the wide availability
of sulfur, and consequently, Li-S is receiving serious research
attention. The technology has not been commercialized yet
because it suffers from limitations such as poor instantaneous
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power capabilities, high self-discharge, and short cycle life,
particularly in the presence of high discharge currents [1],
which are especially important for automotive applications [2].
Li-S technology has developed dramatically, though it has not
yet been deployed in a full-scale EV to date mainly due to its in-
sufficient power output and lifetime. There are, however, efforts
to improve battery chemistry and construction to mitigate these
problems. This work was undertaken as a part of an industrial
project, aiming to develop and deploy experimental Li-S cells
in an automotive application. Regardless of the state of develop-
ment of the chemistry, it is important to be able to operate cells
in practical applications, and this study is focused on Li-S cell
parameter identification and state-of-charge (SOC) estimation.

There are different methods in the literature for battery SOC
estimation [3]–[5]. Good reviews of these methods can be found
in [6] and [7]. The most widespread conventional method, used
as a benchmark for evaluation of other techniques, is “coulomb-
counting.” In this concept, an SOC is estimated by integrating
the load current; this way, capacity used and remaining can be
estimated. Assuming SOC0 as the initial SOC at time t0 , the
cell’s SOC at time t is calculated as follows:

SOC = SOC0 −
(∫ t

t0

γ i(τ)
Ct

dτ

)
0 < SOC < 1 (1)

where i(t) is the current (A) assumed positive for discharging
and negative for charging. γ is the cell’s coulombic efficiency
(dimensionless) and Ct is the total capacity (As). In this rep-
resentation, the SOC value is a number between 0 and 1 with
0 indicating a fully depleted state and 1 representing a fully
charged state.

Although coulomb-counting is quite useful, it cannot always
be used in practice because it can only start to estimate from a
given initial SOC value. In many applications, batteries do not
begin to discharge from fully charged state due to internal self-
discharge or being not originally fully charged [8]. Generally,
coulomb-counting suffers from accumulated errors caused by
initial SOC value errors, and noise and measurement errors [9],
[10]. Another problem is that the battery capacity (Ct) might
change under various conditions (e.g., temperature variation),
which can lead to errors when using coulomb-counting.

Another popular method for battery SOC estimation is the
use of look-up tables or polynomials, which relate SOC to the
battery’s parameters. The most common parameter for this pur-
pose is the battery’s open-circuit-voltage (OCV). This method
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Fig. 1. Li-S cell terminal voltage during slow discharge at C/30.

also suffers from limitations. All possible conditions should be
taken into consideration during the design process and the sys-
tem might not be able to handle new and unknown conditions
such as ageing effects. A large volume of test data is needed
to cover all the possible variables such as SOC, temperature,
ageing, current demand, and so on. Although, this method has
been used very successfully for some battery types in previous
studies, it is not easily applicable for a Li-S battery. The rea-
son is the large flat region in OCV-SOC curve of this type of
batteries as shown in Fig. 1.

Another group of existing SOC estimation algorithms are re-
cursive adaptive filters such as particle filter and Kalman filter-
based SOC estimators [11]–[15], which are particularly used
for automotive application as well [16]–[19]. In this category,
which is the most widely used technique of battery SOC estima-
tion, the estimator works based on the error between the battery
output (usually battery terminal voltage) and a battery model’s
prediction. The prediction error is usually large initially and it
decreases gradually after a number of steps. So an accurate bat-
tery model is needed in this method that is able to predict battery
terminal voltage well. The battery model contains the relation-
ship between SOC and other parameters. There are many studies
in the literature in which Li-ion battery models are used beside
an SOC estimator [20]–[22]. However, similar studies have not
been conducted for Li-S batteries yet. All of the developed Li-S
battery models are electrochemical, which are too complex to
be used in real-time applications. (The application of Kalman
filters in Li-S cell SOC estimation has been considered in our
project and results will be published in due course; however it
is not in the scope of this article.)

In this study, the possibility of building an SOC estimator for a
Li-S cell is investigated using a new approach. An observability
analysis is performed for SOC estimation, which demonstrates
the difference between Li-S and other battery types. The results
demonstrate that the common SOC estimation methods in the lit-
erature may not be applicable for Li-S cell because of its unique
features. To solve this problem, a combination of system identi-
fication technique, artificial intelligence, and coulomb-counting
is utilized in this study. Pure coulomb-counting is used as a
bench mark to evaluate the estimation results. Because of the
application of this study in EVs, the goal is to have a simple
and fast method that is applicable in real-time. So the mini-
mum number of parameters is considered for model identifica-
tion. The selected parameters are internal resistance and OCV.

TABLE I
SPECIFICATIONS OF LI-S CELL

Parameter Description

Type Rechargeable lithium-sulfur
pouch cell Remarks: Li
Metal Anode

Nominal dimension 145 mm × 78 mm ×
5.6 mm

Applications Recommended discharge
current: 680 mA

Nominal voltage 2.05 V
Capacity Typical: 3400 mAh when

discharged at 680 mA to 1.5
V at 30 °C

Charging condition 340 mA to 2.45 V at 30 °C
Recommended charging
condition in applications

340 mA constant current
(C/10) Charge termination
control recommended:
charge stop at 2.45 V or 11
h max charge time

Clamped charging voltage 2.45 V ± 0.05 V
Service life >95 cycles at 100% depth

of discharge >150 cycles at
80% depth of discharge

Weight Approx. 50.7 g
Ambient temperature range Charge/ Discharge: 5 °C to

80 °C Storage (1 year):
–27 °C to 30 °C

The identification results are then utilized for cell’s SOC es-
timation. Prediction-error minimization (PEM) algorithm and
adaptive neuro-fuzzy inference system (ANFIS) in combina-
tion with coulomb counting are used for model identification
and SOC estimation, respectively. The PEM is a fast identifi-
cation algorithm in which the prediction error (as a function of
the model’s parameters) is minimized using an iterative proce-
dure [23]. ANFIS is a powerful tool for modeling, prediction,
and control by integrating synergy of the artificial neural net-
work and the fuzzy logic. A fuzzy set (which works based on
fuzzy logic) is an efficient tool for modeling of a phenomenon
related to human knowledge by using linguistic labels that are
embedded in a number of membership functions. A fuzzy infer-
ence system (FIS) is a collection of fuzzy if-then rules, which
contains human expertise and knowledge. Because a FIS does
not have learning and adaptation capabilities, neuro-fuzzy tech-
niques have been developed in order to add this functionality to
FIS too. A hybrid learning approach is used in ANFIS structure
that combines the gradient-descent and the least squares meth-
ods for the parameter tuning. ANFIS has been used in a wide
range of applications and particularly, it has been used for bat-
tery SOC estimation in previous studies [24], [25]. In this study,
ANFIS has been used in combination with coulomb counting to
estimate SOC of Li-S battery chemistry for the first time.

II. EXPERIMENTAL TESTS ON LI-S CELL

The Li-S cells considered in this study were supplied by
OXIS Energy Ltd., Abingdon, U.K., [26] with the specifica-
tions in Table I. It should be noted that the tested cell in this
study was a prototype cell with lower energy density (around
140 Wh/kg) than the final product that is expected to have an
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Fig. 2. Cell test equipment.

Fig. 3. Load current (input) and Li-S cell’s terminal voltage (output) during
an experiment.

energy density more than 400 Wh/kg [26]. A Maccor Series-
4000 battery tester was used for all experiments. The battery
tester is a voltage/current device which can apply a current as
an “input” and measures the voltage as an “output” (or indeed
vice versa). The current and voltage limits are ±5 A and ±5 V
for each channel. The cell under test is contained inside an alu-
minum test box, which is connected to the equipment. The test
box is placed inside a Binder thermal chamber to set the desired
temperature during each test. The cell test equipment is depicted
in Fig. 2.

Experiments are conducted by applying consecutive dis-
charge current pulses to the battery and measuring terminal
voltage as the output. Each test starts from fully charged state
(2.4 V) and continues until the terminal voltage drops below the
cutoff voltage (1.5 V). Accordingly, cell parametrization is pos-
sible at different SOC levels. Between the consecutive pulses, a
“relaxation time” is allowed, during which the current is zero.
Data are collected in the time domain with a sampling rate of
1 Hz. The measurements available include time, temperature,
current, and terminal voltage. In Fig. 3, cell measurements in-
cluding load current (input) and terminal voltage (output), which
are recorded at 25 °C, are shown for an experiment.

III. LI-S CELL PARAMETER IDENTIFICATION

In this section, an equivalent-circuit-network (ECN) model is
parameterized using experimental data from Li-S cells. The goal

Fig. 4. Equivalent circuit battery models. (a) Internal resistance model.
(b) Thevenin model (1RC model).

of this study is not building a “descriptive model,” which is able
to accurately determine battery terminal voltage (output) subject
to a load current (input), but it aims at making a simple model
for SOC estimation. So, an ECN modeling approach [27]–[29]
is selected. A review on different battery modeling approaches
can be found in [27]. An ECN model is constructed by putting
resistors, capacitors, and voltage sources in a circuit to model the
battery’s performance. Here the simplest form of an equivalent
circuit battery model is used, which is the internal resistance
model (Rint model) [30]. As depicted in Fig. 4(a), the model’s
unknown parameters are cell’s ohmic resistance (RO ) and cell’s
OCV (VOC ). Load current (iL ) and cell’s terminal voltage (Vt)
are model’s measured input and output, respectively.

The PEM algorithm [23] is utilized as the identification al-
gorithm. For a sufficiently economical model structure, PEM is
fast enough to be used in real-time applications such as a battery
management system (BMS). In the identification procedure, the
model parameter vector (θ) is determined so that the prediction
error (ε) is minimized, which is defined as follows:

ε(tk , θ) = y(tk ) − ŷ( tk | tk−1 ; θ) (2)

where y(tk ) is the real output at time k and ŷ(tk |tk−1 ; θ) is
predicted value of the output at time k using the parameters θ.
The prediction error depends on the parameter vector, so an it-
erative minimization procedure has to be applied. Consequently
a scalar fitness function is minimized as follows:

EN (θ) = det

(
1
N

N∑
k=1

ε(tk , θ) εT (tk , θ)

)
. (3)

In this study, the parameters vector contains cell’s internal
resistance and OCV. The parameters are optimized so that the
least difference between measured terminal voltage (Vt) and
model’s output is achieved

θ = [RO , VOC] (4)

ε(tk , θ) = Vt(tk ) − V̂t( tk | tk−1 ; θ). (5)

The battery is a nonlinear system whose parameters change
slowly according to states and inputs, so the model’s parameters
need to be updated at regular “time intervals” or “SOC intervals.”
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Fig. 5. Li-S cell’s internal resistance and OCV at different SOC.

A short time history of battery input–output measurements is
used for parameter identification. Because of the variations of
power demand in an EV, a straightforward fixed time interval is
not suitable here. Instead, an application-specific combination
of an SOC interval and a time interval was designed and used
in order to prevent numerical problems at high discharge rates.
In this approach, the identification is repeated based on SOC
intervals (i.e., 1%) while a minimum time length is guaranteed
for the identification interval (i.e., 120 s). In this way, when
the length of the SOC window is less than the minimum time
window value, the identification interval is expanded to the
minimum time.

Li-S cell’s internal resistance and OCV are obtained for the
experiment described in previous section (see Fig. 3). Referring
to Fig. 1, the Li-S SOC range can be divided into two parts,
usually referred to as the “high plateau” (HP) and “low plateau”
(LP). There is a breakpoint at around 75% SOC that determines
the boundary between the two plateaus. This transition, which is
caused by a sudden change in electrochemical reactions inside
the Li-S cell, might shift slightly to the right or left under dif-
ferent discharge conditions. The identification results are also
in accordance with the expected pattern of OCV as illustrated
in Fig. 5. The final part of the OCV plot in Fig. 5 does not drop
as far as it could because the test is not continued to completely
depleted state since the experimental equipment stops test pro-
cedures at a cutoff voltage of 1.5 V to protect the cell from
damage.

The pattern of the Li-S cell’s internal resistance variation
versus SOC is depicted in Fig. 5. The internal resistance has its
least value at very high SOC and it increases as SOC decreases
within the HP until the breakpoint. In the LP, the curve is almost
parabolic and a minimum resistance point exists as illustrated
in Fig. 5. Independent of the application in SOC estimation, this
identification results are valuable for other applications such as
optimum charge/discharge of Li-S batteries and BMS design.

IV. SOC OBSERVABILITY ANALYSIS

In this section, an observability analysis is performed in order
to demonstrate the difference between Li-S cell and other battery

types. NiMH battery data [34] is used as another type of battery
for comparison. The goal is to investigate the possibility of
Li-S cell SOC estimation using the existing classical methods
in the literature. For this purpose, an equivalent circuit battery
model, called “Thevenin model” [33] or one RC network model
(1RC model), is used as illustrated in Fig. 4(b). In this structure,
Vt is battery’s terminal voltage, VOC is OCV, RO is internal
resistance, RP and CP are equivalent polarization resistance
and capacitance, respectively. The dynamic equations of such a
model are {

Vt = VOC − RO IL − VP
dVP

dt = − 1
RP CP

VP + 1
CP

IL .
(6)

Using the above differential equations, an observability analy-
sis would be possible by considering a state-space representation
of the model

y (t) = Cx (t) + Du (t)

ẋ (t) = Ax (t) + Bu (t) (7)

where y(t) ∈ RN is a time-dependent vector of measurable
outputs, u(t) ∈ RM is a time-dependent vector of inputs, x(t) ∈
RK is a time-dependent state vector, and the matrices A ∈
RK×K , B ∈ RK×M , C ∈ RN ×K , and D ∈ RN ×M define the
system’s behavior.

For model linearization, a method, which is proposed in [22],
is used here. Let X denote the state of charge, VP and X are
model’s states, current is the input and terminal voltage is the
output. For VP , it is easy to write it in the standard state-space
format; however, there is more to do for SOC. Using coulomb-
counting, an SOC is calculated by integrating the load current.
There is still one term in the output equation that is not match
with the standard form of state-space. OCV can be obtained as a
nonlinear function of X based on the identification results. Such
a nonlinear function can be divided into small linear parts us-
ing the gain scheduling method developed in [31]. Considering
ΔSOC as the SOC interval length, battery OCV can be written
for the ith SOC interval as follows:

VOC = ai . Xi + bi

where (i − 1).ΔSOC ≤ Xi ≤ i.ΔSOC . (8)

The coefficients a and b are obtained from OCV-SOC curve
and are constant at each small segment as illustrated in Fig. 6.
So OCV can be replaced by its linearized approximation in the
output equation as follows:

Vt = ai.X + bi − RO IL − VP . (9)

Consequently, the state-space representation of the battery
model is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
dVP

dt
dX
dt

]
=
[− 1

RP CP
0

0 0

] [
VP

X

]
+
[ 1

CP
η

Ct

]
IL

Vt − bi =
[−1 ai

] [VP

X

]
− RO IL .

(10)

To be observable, it must be possible to infer a system’s
internal state from its measurable outputs alone. For a system in
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Fig. 6. Piecewise linear approximation of OCV-SOC curves. (a) NiMH.
(b) Li-S.

state-space representation to be observable, it is necessary and
sufficient that the “observability gramian” has full column rank

Wo :=

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAK−1

⎤
⎥⎥⎥⎥⎥⎦

(11)

where K is the dimension of the state vector. If Wo has a
poor condition number (i.e., is close to not having full column
rank), then observability will be poor [32]. The battery model’s
observability matrix is obtained as follows:

Wo :=
[

C
CA

]
=
[ −1 ai

1
RP CP

0

]
. (12)

Since RP and CP are positive nonzero numbers in the battery
models, the only case in which the observability matrix is not
full rank is when ai be zero. This will never happen for a NiMH
battery model because of its OCV-SOC characteristics as shown
in Fig. 6. More details of the test data of NiMH battery can be
found in [34]. For a Li-ion battery model, an SOC is also observ-
able as discussed in [22]. However, our results demonstrate that
the system is not fully observable for the case of Li-S because
of the particular features of Li-S battery OCV curve. Indeed, the
coefficient ai can be zero for a Li-S battery. The whole range of
SOC of a Li-S battery can be divided into two parts called HP
and LP. Li-S cell SOC cannot be estimated using OCV curve in
LP because of its flat shape as depicted in Fig. 6. This is a unique
feature of Li-S battery, which distinguishes it from other battery
types. Preliminary results of this discussion has been presented

in [35], which is focused on the comparison between NiMH and
Li-S batteries from the control engineering point of view.

The above mentioned problem may be solved by using other
parameters in addition to OCV. In the following, a more general
mathematical formulation is presented to demonstrate the idea
of using other parameters for Li-S cell SOC estimation. Consider
the data required for a typical parameter identification study. Let
Θi be the set of parameters that have been identified; this could
be via PEM or any other method. Our parameter vector is

Θ =
[
Θ1 Θ2 · · · ΘN

]T
. (13)

The parameter identification process is the measuring device!
and the dynamic state, which we wish to infer, is SOC. It is
assumed that the parameters are functions of SOC by ignoring
other parameters such as temperature for the time being. Each
parameter is a function of

Θi = hi (X)

or expressed in a vector sense

Θ = h (X) . (14)

The dynamics of interest are solely the SOC dynamics, Here

Ẋ (t) = f (X, IL (t)) = − 1
Qcap

IL (t) (15)

where IL is the load current (amperes) and Qcap is the capacity
of the cell or battery (coulombs).

To determine the observability of the system, we must define
an “operating point,” say, (X̄, Ī), with a corresponding param-
eter set Θ̄. We can then define perturbation variables

Θ (t) = Θ̄ + θ̂ (t)

X (t) = X̄ + χ̂ (t)

I (t) = Ī + î (t) . (16)

We can then write down an expression for a linearized model

θ̂ (t) ≈

⎡
⎢⎢⎢⎣

∂h1/∂X
∂h2/∂X

...
∂hN /∂X

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
c

χ̂ (t) (17)

χ̂ ≈
(

∂f

∂X

)
︸ ︷︷ ︸

A

χ̂ (t) +
(

∂f

∂I

)
︸ ︷︷ ︸

B

î (t) (18)

noting that

∂f

∂X
= 0 ⇒ A = 0. (19)

We can then form the observability grammian for our system.
As we have one dynamic state

wo = c =

⎡
⎢⎢⎢⎣

∂h1/∂X
∂h2/∂X

...
∂hN/∂X

⎤
⎥⎥⎥⎦ . (20)
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The system will be observable if and only if this has full
column rank. Fortunately, “full rank” in this case means a rank
of one. In general, the SOC will be observable providing that

∂hi

∂Θi
�= 0 (21)

for at least one parameter Θi .
If we consider a battery model where the only parameter that

is estimated is the open-circuit voltage (Voc), then

Wo = [∂hVo c /∂X] (22)

where

Voc=hVo c (X) . (23)

This will have full rank unless the open-circuit voltage
“plateaus” and remains constant; unfortunately, with Li-S
cell, this is exactly what happens. During this part of the
charge/discharge cycle, the SOC is not observable from a mea-
surement of open-circuit voltage alone.

If instead we consider a scenario where a second parameter
is estimated, internal resistance (Ro) for example, then we get

wo =
[
∂hVo c /∂X
∂hRo /∂X

]
(24)

where

Ro = hRo (X) . (25)

This will have full rank unless

∂hVo c

∂X
=

∂hRo

∂X
= 0. (26)

If this occurs at all, this is a transient situation so there is no
prolonged loss of observability. Accordingly, it is clear that hav-
ing open-circuit voltage alone is insufficient for Li-S cell state
estimation, but adding other parameters like internal resistance
can make the system observable.

V. LI-S CELL SOC ESTIMATION USING ANFIS

As discussed in the previous section, a Li-S cell’s SOC es-
timation is more challenging than many other types of battery
because of observability limitations. For this reason, a frame-
work is developed in this study based on fast online battery
parameter identification. The idea is to identify battery param-
eters in real-time and use them as an indicator of SOC. So we
need to find the relationship between the identification results
and SOC by using a mapping tool, which is ANFIS. (It should
be noted that other mapping tools may also be applicable as well
as ANFIS.)

Before explaining the ANFIS structure, the proposed frame-
work is discussed as follows. It is demonstrated in the literature
that battery’s performance is a function of different factors such
as SOC, state of health (SOH) [36], and temperature. So gener-
ally cell’s parameters are functions of those variables as follows:

Pi = fi(SOC,SOH, T, ...) i = 1.. n. (27)

The number of parameters and variables that are used in a
battery model depends on the required precision. In some cases,

Fig. 7. Battery measurement, identification, and SOC estimation.

high-fidelity models are needed whereas a fast low-fidelity
model is desired in other cases. In this study, a simple and
fast model is needed for real-time SOC estimation. The idea of
SOC estimation is to find an inverse function, which is able to
predict SOC by using the identified parameters. Being aware
of the influence of SOH and temperature on our results, we
assume fixed values for these variables and plan to extend our
algorithms in our future works. So the following equations are
used for the sake of simplicity

Pi = fi(SOC) i = 1.. n. (28)

The battery parameters are obtained by using the system iden-
tification algorithm and, then a nonlinear function like g, in fol-
lowing equation, (i.e., ANFIS) is utilized for SOC estimation:

SOC = g (P1 , P2 , .., Pn ). (29)

Schematic of the whole procedure is depicted in Fig. 7, which
includes real-time measurement, identification, and SOC esti-
mation. The advantages of the proposed framework can be sum-
marized as follows.

1) It is a flexible framework that can be applied to various
battery types (It is demonstrated how it can even handle
the flat OCV curve of a Li-S cell).

2) Unlike coulomb-counting, it can start from any initial SOC
value and no initial condition data are needed to run the
estimator.

3) Unlike coulomb-counting, the whole battery capacity is
not needed for SOC calculation.

4) Unlike recursive adaptive filters, no time is needed for
convergence of the algorithm at the beginning.

5) The proposed method is simple and fast enough to be used
in real-time applications. In addition, ANFIS models are
adaptive and can be retuned very fast.

For Li-S SOC estimation, the experiments are performed on
three similar cells. The first is used for ANFIS training and the
other two are used for evaluation. During the training process,
ANFIS components including weight numbers and membership
functions (MFs) parameters are tuned. The ANFIS parameters
are optimized so that the least error exists between the real SOC
values (obtained by coulomb-counting) and ANFIS estimation.

Since the simplest ANFIS structure is desired, different struc-
tures are investigated by changing the number of inputs. First,
just one input is considered: OCV. The estimation results using
just OCV are demonstrated in Fig. 8 where the actual SOC and
ANFIS estimations are compared for (a) training data, (b) test
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Fig. 8. Actual SOC and ANFIS estimations using VOC . (a) Training data.
(b) Test data 1. (c) Test data 2.

Fig. 9. Actual SOC and ANFIS estimations using RO . (a) Training data.
(b) Test data 1. (c) Test data 2.

data 1, and (c) test data 2. It should be noted that the three test
data are obtained from three Li-S cells that makes the situation
much difficult. The estimation accuracy is fine at HP; however,
it is not satisfactory at LP because of the flat shape of OCV in
this area.

In the second structure, RO is used as the only input for
ANFIS. Fig. 9 depicts the results in this case, which are not
considered to be any better that the first case. This means that
RO also is not sufficient for SOC estimation and we need to

Fig. 10. Actual SOC and ANFIS estimations using VOC and RO . (a) Training
data. (b) Test data 1. (c) Test data 2.

increase the complexity. The obvious choice at this stage is to
use both RO and VOC at the same time. The results are much
better in this case as demonstrated in Fig. 10. Especially for the
training data [see Fig. 10(a)], the ANFIS structure is now able
to learn and build the relation between the parameters and SOC.
However, the test results are still not considered to represent
satisfactory performance. The reason can be explained using
the identification results shown in Fig. 5; in the HP, OCV is
sufficient for SOC estimation, whereas in the LP, OCV does not
provide useful information and the resistance curve alone ap-
peared to be insufficient for SOC estimation. There are a number
of possibilities here: essentially, more information is needed.
This information can be provided by trying more parameters
like RP and CP in Thevenin model for example [see Fig. 4(b)].
On the other hand, more complexity means less speed or more
computational effort in real-time applications. To keep the same
complexity while having more information for SOC estimation,
a novel solution is proposed in this study; the derivative of re-
sistance (with respect to SOC) is used as another input because
it contains additional information that improves the estimation
accuracy. So an SOC is determined by using the following three
inputs

SOC = g

(
RO ,

dRO

dSoC
, VOC

)
. (30)

The final structure of the inputs and output of ANFIS is il-
lustrated in Fig. 11. As mentioned before, the inputs of ANFIS
should be provided by the identification block (see Fig. 7). In
this case, the inputs, VOC , RO , and dRO /dSOC, must be first
identified and, then SOC is estimated as the output of ANFIS.
A generalized bell-shaped MF is selected for the inputs. A hy-
brid learning approach is used, combining the gradient-descent
method with the least squares estimate to tune ANFIS parame-
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Fig. 11. ANFIS structure using 3 inputs and 30 rules.

TABLE II
ANFIS SPECIFICATIONS

Parameter Description

Inputs RO , dRO /dSOC, VOC
Output SOC
Input MF type generalized bell-shaped
Output MF type Linear
Number of MFs 3, 2, 5
Number of rules 30
Training epoch number 500

Fig. 12. ANFIS inputs MFs after training.

ters. Other specifications of the designed ANFIS are provided
in Table II. As stated in Table II, the number of MFs used for
RO , dRO /dSOC, and VOC inputs are 3, 2, and 5, respectively.
MFs of the three inputs after training are illustrated in Fig. 12.
Using more MFs for each input is possible; however, our results
demonstrate that in this scenario, it would just increases com-
plexity of the system without further improving the accuracy.

Fig. 13. Actual SOC and ANFIS estimations using VOC , RO , and
dRO /dSOC. (a) Training data. (b) Test data 1. (c) Test data 2.

TABLE III
LI-S CELL SOC ESTIMATION ERROR USING ANFIS

Inputs Number Estimation Estimation Estimation
of Rules Error (%) in Error (%) in Error (%) in

Training Data Test Data 1 Test Data 2

VOC 9 Mean: 4.61 Mean: 6.38 Mean: 9.91
Max.: 22.21 Max.: 28.28 Max.: 45.25

RO 9 Mean: 8.88 Mean: 9.54 Mean:12.82
Max.: 35.55 Max.: 51.39 Max.: 36.98

RO , VOC 35 Mean: 1.74 Mean: 4.84 Mean: 7.81
Max.: 8.08 Max.: 25.61 Max.: 16.87

RO , VOC 30 Mean: 1.55 Mean: 3.93 Mean: 5.11
dRO /dSOC Max.: 8.23 Max.: 13.76 Max.: 13.77

The results demonstrate that using these three inputs, a Li-S
cell’s SOC can be estimated with a good accuracy. For the train-
ing data, the average (mean) and maximum estimation errors are
1.55% and 8.23%, respectively. The actual and estimated values
of SOC are compared in Fig. 13 for (a) training data, (b) test data
1, and (c) test data 2. For the two test data sets, error values are
a bit more than the training data set, which usually happens in
training such systems. Roughly, the proposed estimation method
can predict SOC value with average and maximum errors of 5%
and 14%, respectively. Table III contains all the estimation error
values for different ANFIS structures.

Generally, it is very difficult to predict the exact location of
the break point between HP and LP since it depends on many
factors. In addition, the total capacity values in the experiments
are different. The reason is the difference between the three cells
which are used here. Li-S cell’s capacity could change a lot under
different conditions. Even for one cell, the break point’s location
and total capacity can change due to variation in temperature,
discharge rate, etc., which make Li-S battery SOC estimation
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a challenging task. The result that is presented in Fig. 13 and
Table III is a first try for Li-S cell’s SOC estimation and there is
no similar work in the literature. In future works, the estimation
capability will be extended to cover different temperature and
ageing ranges.

VI. CASE STUDY: SIMULATION AND TEST OF LI-S CELL BASED

ON URBAN DYNAMOMETER DRIVING SCHEDULE (UDDS)

In a case study, performance of the proposed framework for
Li-S cell parameter identification and SOC estimation is eval-
uated in a more realistic scenario for EV application. For this
purpose, a new series of experimental tests were performed
based on EV power demand on UDDS also known as U.S. FTP-
72 (Federal Test Procedure) [37]. As the input of these tests,
a typical EV (i.e., Nissan Leaf) was simulated on UDDS drive
cycle. More details of EV modeling and simulation can be found
in [34] and [38]. The power demand signal was, then, scaled-
down to be applied to a single cell. Since the Li-S cells used
in this study are prototypes; they cannot deliver a high power
expected from an existing Li-ion or NiMH cell in the market.
This does not affect our results and conclusions because the
final cells will have same characteristics curves in shape. Aver-
age power of a single Li-S cell, which is used in this study, is
about 5 W. Assuming a maximum power demand of 60 kW in a
typical EV to move based on UDDS drive cycle, 12 000 of these
prototype Li-S cells are needed. Based on this calculation, the
power demand from a single cell is obtained by dividing the EV
power by the number of cells. The Li-S cell was tested using
scaled-down current profiles obtained from the EV simulation.
Like the pulse discharge test explained in Section II, current and
terminal voltage were recorded at sampling rate of 1 Hz.

Fig. 14 demonstrates a Li-S cell discharge test based on
UDDS drive cycle. UDDS speed profile is illustrated at top,
which is used to calculate the EV battery pack power demand.
A scaled-down current profile is depicted in Fig. 14(b) in which
the maximum current is around 1.2 A. Keeping same ratios, all
current values can be scaled up and down to investigate differ-
ent currents levels as well. In our tests, the maximum current
was not more than 2.4 A. Fig. 14(c) shows terminal voltage of
the Li-S cell during one UDDS cycle in response to the current
demand. In Fig. 14(d) and (e), current profile and cell’s ter-
minal voltage are illustrated during the whole test. Each test is
performed by repeating the UDDS cycle from 100% SOC to de-
pleted state. Test time, which depends on the current profile, was
more than 22 h in this case. A number of tests were conducted
at different temperature and current levels. Fig. 15 demonstrates
Li-S cell parametrization at 30 °C during three complete UDDS
tests. These tests are performed under same conditions just the
current level is higher in tests 2 and 3 as presented in Table IV.
Cell parameters, VOC and RO , are identified over the whole
tests to be used for SOC estimation by ANFIS. An error in the
identification part will lead to an error in SOC estimation as
well. The total SOC estimation error can be written as follows:

SOC estimation error = SOC estimation error due to
identification uncertainty + estimator (ANFIS) error

(31)

Fig. 14. Li-S cell discharge test based on UDDS drive cycle. (a) UDDS speed
profile. (b) Li-S cell current profile based on one UDDS cycle. (c) Terminal
voltage of a Li-S cell during one UDDS cycle. (d) Repeating UDDS current
profile. (e) Li-S cell’s terminal voltage during UDDS test.

Fig. 15. Li-S cell parametrization at 30 °C during UDDS tests.

TABLE IV
LI-S CELL SOC ESTIMATION RESULTS OF UDDS TESTS

Test 1 Test 2 Test 3

Temperature 30 °C 30 °C 30 °C
Maximum current 1.17 A 1.75 A 1.75 A
Average SOC estimation error 7.1% 6.2% 6.0%
Maximum SOC estimation error 20.9% 18.3% 21.1%

It is obvious in Fig. 15 that the identification accuracy de-
creases a bit at low SOC due to the fluctuations in ohmic
resistance. We have called this “identification uncertainty area,”
depicted in Fig. 19. The Li-S cell’s SOC estimation error in this
area is mainly due to the identification error.
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Fig. 16. Li-S cell SOC calculation using coulomb-counting and ANFIS esti-
mation at 30 °C during UDDS tests. (a) Test 1. (b) Test 2. (c) Test 3.

Fig. 16 demonstrates SOC estimation results during the
UDDS tests in Table IV. Coulomb counting is used here as
a benchmark for validation of the estimation results. It is as-
sumed that the total capacity, needed for coulomb counting, is
available; however, it is not in a real application. Ideally, the
total capacity is calculated after finishing each test. This is a
good theoretical method to evaluate the estimation results. On
the other hand, ANFIS SOC estimator can be used in a real ap-
plication because it does not need to know cell’s total capacity
in advance. Li-S cell SOC estimation results of UDDS tests are
presented in Table IV. The average and maximum error values
are a bit higher in comparison to the previous results presented
in Table III. This is due to more simplicity of the pulse discharge
data comparing to a real discharge profile for EV application.
Although the SOC estimation results are not perfect, they are
not bad as outcome of a first study in this area. Generally, Li-S
battery has much more complexities comparing to Li-ion and
this study is just focused on one aspect that is SOC observability
and estimation. Three main sources of error in Li-S cell’s SOC
estimation are as follows.

1) Shift in the breakpoint between high-plateau and low-
plateau around 75% SOC: this can happen due to temper-
ature change, high discharge rate, ageing, etc., and leads to
an error in SOC estimation between 65% and 85% SOC.

2) Flat shape of OCV curve: this can cause a challenge in
Li-S cell SOC estimation in the range of 15% to 75% SOC
due to poor observability of the system as discussed here.

3) Identification uncertainty: generally, an error in cell model
identification leads to an error in SOC estimation as well.
However, this effect is dominant at low SOC range since
the identification accuracy is less between zero and 30%
SOC.

VII. HYBRID TECHNIQUE FOR LI-S CELL SOC ESTIMATION

Performance of the ANFIS SOC estimator was investigated
in a real driving scenario in the previous section. The results
demonstrate that ANFIS estimation error can increase to 20%

in few points, which need to be improved. A solution which is
proposed in this section is a hybrid estimation technique, which
utilizes benefits of ANFIS and coulomb-counting methods at the
same time. Referring back to the disadvantages of the coulomb-
counting as discussed in the introduction section, this method is
not applicable in practice because it can only start to estimate
from a given initial SOC value, which is not always available
in real conditions. In addition, coulomb-counting suffers from
accumulated errors caused by noise and measurement errors [9],
[10]. Another problem is that the battery capacity (Ct) might
change under various conditions, which can lead to errors when
using coulomb-counting. On the other side, an ANFIS estimator
has been developed in this study, it suffers from fluctuations that
can lead to losing accuracy in a short time interval while the av-
erage accuracy is acceptable. In order to have the benefits of both
techniques, a new hybrid estimation technique is proposed here,
which is accurate and also applicable in real conditions. This
hybrid technique consists of both the ANFIS and the coulomb-
counting methods. A combination of these two would be able to
determine the initial SOC value itself and compensate the effect
of measurement noise and also it would have less fluctuations
due to use of coulomb-counting as a limiting bound for ANFIS.

Mathematically, the hybrid estimation technique is formu-
lated as follows:

SOCH =
W1 . SOCANFIS + W2 . SOCcoulomb−counting

W1 + W2
(32)

WR =
W2

W1
(33)

where SOCH is the value of SOC provided by the hy-
brid technique, SOCANFIS is the ANFIS estimation and
SOCcoulomb−counting is the value of SOC based on coulomb-
counting. It should be noted that the coulomb-counting is
restarted at each step by initializing from the previous estimation
value (SOCH ). Consequently, there is no accumulated error in
this technique. Two weight factors, W1 and W2 , are considered
to do a proper tradeoff between the two techniques. The weight
ratio (WR) determines the role of each technique in this formu-
lation. For example, a WR of 2 means that we trust two times
more on coulomb-counting estimation in comparison to ANFIS
estimation. This ratio can change over the whole range of SOC
depending on the uncertainties of both techniques. For exam-
ple, at the beginning, WR is considered to be zero (W1 = 1 and
W2 = 0) since coulomb-counting is not able to determine the
initial SOC. Particularly for Li-S cell, ANFIS estimation is more
reliable at high-plateau (SOC more than 80%) so the weight of
ANFIS is more in this area. On the other side, coulomb-counting
can help more after passing a number of iterations, especially in
the middle range of SOC.

In Fig. 17, Li-S cell SOC calculation using coulomb count-
ing and the hybrid technique are illustrated over UDDS test at
30 °C. The test started from 80% SOC, but the initial value
was not provided to any of the algorithms. Since the estima-
tion algorithms do not know about the initial condition, both are
started from 50% SOC. As demonstrated in the figure, the hybrid
technique is able to converge to a close bound around the right
value of SOC by using ANFIS capabilities. On the other hand,
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Fig. 17. SOC calculation using coulomb-counting and the hybrid technique
over UDDS test at 30 °C, starting from 80% SOC.

Fig. 18. Li-S cell SOC estimation over UDDS test at 30 °C using the hybrid
technique from different initial conditions. (a) 100%. (b) 85%. (c) 60%. (d)
40%. (e) 15%.

coulomb-counting continues from 50%, which is not accept-
able. Comparing the hybrid technique to ANFIS performance
(presented in Fig. 16), it is obvious that the fluctuations are de-
creased a lot and consequently, the maximum error is controlled
successfully by using coulomb-counting in combination of AN-
FIS. The proposed hybrid technique is tested at various initial
conditions and the estimation results are presented in Fig. 18 and
Table V. The results demonstrate that the proposed technique
is able to converge to the right value of SOC from any initial

TABLE V
LI-S CELL SOC ESTIMATION ACCURACY USING THE HYBRID TECHNIQUE

OVER UDDS TEST AT 30 °C WITH VARIOUS INITIAL SOC

Initial SOC (%) Average SOC
estimation error

Maximum SOC
estimation error

100 4.18 6.64
85 4.03 6.66
60 4.13 6.93
40 2.91 6.01
15 3.08 4.51

Fig. 19. Li-S cell parametrization at 15 °C, 20 °C, and 30 °C.

condition and is able to keep going in a limited bound around it.
Using this technique, a Li-S cell’s SOC can be estimated with
a mean error of 4%, and a worst-case error of 7% in a realistic
driving scenario.

VIII. EFFECT OF TEMPERATURE

To investigate the effect of temperature, similar tests are re-
peated at different temperature levels. A thermal chamber is
used to control the battery temperature during each test. Three
temperature values, 15 °C, 20 °C, and 30 °C, are investigated
in this study. Fig. 19 demonstrates the effect of temperature
on Li-S cell model parametrization. As shown in this figure,
temperature has a significant effect on Li-S cell’s ohmic resis-
tance. Temperature not only affects the resistance value, but
also it changes the gradient of ohmic resistance with respect to
SOC. So it can significantly affect the SOC estimation results by
changing two inputs of the SOC estimator. Another interesting
outcome of this plot is relevant to the observability analysis: the
results demonstrate that Li-S cell’s SOC observability becomes
weaker at higher temperature values. The reason is the lower
rate of change in ohmic resistance at higher temperature as de-
picted in Fig. 19. This means more challenge in Li-S cell SOC
estimation at high temperature levels. It should be noted that
the performance of the proposed framework was presented in
Fig. 16 for our worst case that is at 30 °C.

On the other hand, Li-S cell’s OCV curve is less affected by
temperature; however, this result depends on SOC area as well.
At high-plateau (from 100% SOC to the breakpoint around 75%
SOC), OCV changes a bit in response to temperature variations.
Indeed, the breakpoint happens earlier at a higher temperature
due to the temperature-dependency of speed of the electrochem-
ical reactions taking place inside the cell. At low-plateau (from
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the breakpoint around 75% SOC to zero SOC), OCV curve is
more stable, not much affected by temperature variation.

In our practical application, the BMS regulates the battery
pack’s temperature to ±5 ◦C around a set point of 25 °C. When
the temperature varies significantly, it is possible to use a set of
estimators trained at different temperature levels. For example,
assuming a set point of 25 °C, three separate estimators could be
trained at 20 °C, 25 °C, and 30 °C. In this study, the effectiveness
of our proposed technique was demonstrated in one case (i.e.,
30 °C); however, this would be enough to conclude that same
procedure can be repeated for other temperature values as well.
The reason is that 30 °C is the worst case among them based
on the observability results presented in Fig. 19. Although the
effect of temperature on Li-S cell performance is discussed here
briefly, we believe that more study is needed in this area.

IX. CONCLUSION

In this study, a new promising battery technology, i.e., Li-S,
was investigated for application in automotive energy storage
system. As a critical part of a Li-S BMS, an SOC estimation
algorithm was proposed for a Li-S cell in this study for the
first time. An observability analysis demonstrated that the Li-S
cell’s ECN model is not observable unlike Li-ion or NiMH
battery types. This result, which is due to the flat shape of OCV-
SOC curve of a Li-S cell, makes it more challenging than other
battery technologies to be estimated and controlled.

Since the existing solutions in the literature were not suitable
for this application, a new framework for online Li-S battery
measurement, parameterization, and SOC estimation was de-
signed and tested. It was demonstrated that using the proposed
technique, a Li-S cell’s SOC can be estimated with a mean error
of 4% and a worst-case error of 7% in a realistic driving scenario.
Although this result seems satisfactory as a first attempt in this
area, the potential for improvement should be explored in fu-
ture works: for example, more inputs and MFs could be used in
the ANFIS structure; considering more parameters in the model
and different number and types of MFs could improve the es-
timation results (at a cost of greater complexity). For the final
application of the study in an automotive energy storage system,
the tradeoff between accuracy and speed (i.e., low-complexity)
should be explored to find the best compromise.

One of the drawbacks of black-box intelligent approaches like
ANFIS is that they need a large quantity of training data, which
is sometimes not easy to obtain. Correct SOC estimation under
a certain condition depends on consideration of a very similar
condition in the training data. In the automotive application
considered, variation of temperature and battery ageing could
affect the estimator’s performance significantly; in the initial
study described in this paper, temperature and SOH effects were
not investigated and more experiments would be needed for
training ANFIS under a wide range of conditions.
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