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High-Frequency Gap Losses in Nanocrystalline Cores
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Abstract—Finite element analysis is used to examine the gap
losses that occur in finely laminated nanocrystalline inductor cores
under high-frequency operation. The losses are seen to be concen-
trated in the region of the air gap and the dependence of the losses
on key design parameters and operating conditions is explored.
The results show that gap losses can be significant in this type of
core, creating hot spots around the gap, and the losses are not accu-
rately predicted by established design equations for low-frequency
laminated cores. A modified loss equation is proposed. Validation
is provided by measurements on a 300-A, 60 kHz inductor.

Index Terms—DC inductor, finite element (FE) modeling, high-
frequency gap losses, inductor design, nanocrystalline core.

I. INTRODUCTION

NANOCRYSTALLINE cores such as Finemet from Hitachi
Metals [1] and Vitroperm from Vacuumschmelze [2] are

attractive for high-frequency high-power applications. They of-
fer a high saturation flux density of over 1 T, and low hysteresis
losses that are comparable with figures from some ferrites in
the 20–100-kHz frequency range. Typical applications include
inductors and transformers for multi-kilowatt DC–DC convert-
ers. These cores are wound from a thin (18 μm) metallic ribbon,
each layer of the ribbon being insulated from the stack by a thin
coating of epoxy. The cores therefore have a finely laminated
structure and are typically available as C-cores.

While the hysteresis loss behavior of the cores has been thor-
oughly characterized [3]–[6] including the effects of nonsinu-
soidal excitation and dc bias, the phenomenon of gap losses is
less well understood. These losses occur within the core near the
air gap in the magnetic circuit and arise due to the fringing flux
around the air gap. The fringe field creates a component of flux,
Bn , which is normal to the surface of the ribbon laminations,
Fig. 1, causing eddy currents and losses within the laminations.
The effect can be particularly significant in some high-current,
high-frequency dc inductors and increases with air gap length
[7], [8]. Accurate prediction of these losses is, therefore, crucial
for an optimum design. One approach to mitigate the effect is to
place multiple smaller air gaps in the magnetic circuit; however,
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Fig. 1. Schematic diagram of in-plane eddy currents in one half of a cut core
with air gaps.

this may be difficult to manufacture and the multiple cuts can
degrade the characteristics of the core [3], [4].

This paper makes a contribution to the understanding and
calculation of gap losses in nanocrystalline cores under high-
frequency operating conditions. Finite element (FE) modeling
is used to examine the distribution and magnitude of the gap
loss in a Finemet C-core. A sensitivity study is undertaken us-
ing the simulation model to investigate the effects of the in-
ductor design parameters, such as air gap length, frequency,
flux density, and core lamination width, on the total gap loss.
Assuming the gap loss is a power function of these param-
eters, a convenient design-oriented expression is derived for
estimating gap loss at high frequency. Validation is provided by
temperature measurements on a 300 A, 60-kHz inductor for a
30 kHz, 25-kW dual-interleaved DC–DC converter. The estab-
lished gap loss calculation method is first reviewed, and then the
inductor component is introduced followed by the details of the
FE modeling.

II. CALCULATION OF GAP LOSSES

The prediction of gap losses typically uses an empirical for-
mula, (1), that was originally proposed by Lee in 1947 for steel
laminated cores operating at power line frequencies [9]

Pg = GlgDfBm
2 (1)

where Pg is the gap loss in Watts, lg and D are the total gap
length and lamination width in mm, respectively, Bm is the peak
induction in the core in T with frequency f in kilohertz, and the
term G is a numerical constant.

In the second edition of this book [10] (1955) Lee proposed
a change to (1) whereby the frequency term was raised to the
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Fig. 2. Inductor structure.

power of 0.5 and also the lamination thickness and permeability
were included; however, in subsequent publications in the
1970s [11], [12], he concluded that the original formulation
was most accurate. This was based on testing both stamped
lamination cores and strip wound cores of silicon steel at
frequencies of 60 and 400 Hz. Lamination/Strip thicknesses of
360, 150, and 51 μm were used. Furthermore, different values
were proposed for the constant G for various configurations of
windings and air gaps, for example, G = 0.388 for single cut
C-cores with two coils.

Equation (1) is generally used to predict gap losses in high-
frequency inductor cores. The equation appears in McLyman’s
Transformer and Inductor Design Handbook [13], and it is used
in the DC Reactor Core Design Tool from Metglas [14]. How-
ever, some concern has been expressed over the accuracy of
(1) for high-frequency inductors using amorphous metal cores,
suggesting the losses are likely to be much lower than predicted
[4]. Other work has also suggested that the air gap fringing flux
makes little contribution to the increased loss in cut nanocrys-
talline cores [3].

III. FE GAP LOSS MODELING

A. Inductor Structure

The inductor component being analyzed consists of a pair of
C-cores with series connected copper foil windings on each leg,
Fig. 2. Each leg of the core has a gap of lg /2, half the total gap
length, and carries half of the winding. The winding is spaced
away from the core by approximately the gap length per leg
(lg /2) to minimize the effect of the fringe field on the winding
losses. The model was developed assuming a pair of F3CC-
0032 Finemet cores [1], but is scalable to other core sizes. The
total gap length lg was initially set to 4.4 mm, with 2.2 mm in
each leg. It was assumed that the complete component will be
encapsulated in an aluminium can with thermally conducting
epoxy, Fig. 2, however the can was not modeled.

B. Homogenization Modeling Method

Due to the fine laminations of the amorphous metal ribbon
(18 μm thick), FE modeling the individual laminations was not

considered feasible and instead a lumped parameter or homog-
enized approach was taken as illustrated in Fig. 3. The core was
represented by a solid continuum, but the model preserves the
anisotropic properties of the laminated structure through the use
of separate permeability and electrical conductivity parameters
in the directions tangential and normal to the lamination layers,
μt , σt and μn , σn , respectively. The modeling approach is an
established method for handling laminated cores and has been
used in the analysis of the main eddy currents [15]–[17].

The amorphous metal ribbon itself has permeability and elec-
trical conductivity μm and σm , while the insulating epoxy layers
between the individual ribbons are assumed to have permeability
μ0 , the permeability of free space, and an electrical conductiv-
ity of zero. Assuming that the packing factor F of the laminated
core is defined as the total thickness of magnetic ribbon per
unit of core thickness, then the parameters of the model may be
calculated as in [15]

μt = Fμm + (1 − F ) μ0 (2)

μn =
μm μ0

Fμ0 + (1 − F ) μm
(3)

σt = Fσm (4)

σn =
(

d

D

)2 1
F

σm (5)

where d and D are the thickness and width of the lamination
strips, respectively.

The calculated parameters of the core model are listed in
Table I assuming Finemet material characteristics of μm = 2500,
σm = 8.33 × 105 S/m and a core packing factor of F = 0.8.

An effective skin depth, δe , for the laminated core may be
calculated for the in-plane eddy currents using

δe =
√

2
ωμnμ0σt

(6)

where ω is the angular frequency of the core excitation. Based
on the parameters in Table I, δe for Finemet material is 1.1 mm
at 60 kHz.

C. Gap Loss Model

The whole inductor structure was modeled to establish the
flux distribution in the magnetic circuit. The C-core struc-
ture was formed by several individual homogeneous blocks
with ideal boundaries between each. Each block was modeled
with homogenized anisotropic permeability and conductivity
with a unique volume orientation to set up the direction of the
laminations. To reduce the complexity of the problem, linear
material properties were assumed. The copper foil winding was
represented by current-driven Biot–Savart conductors carrying
sinusoidal currents. The conductors were only used as magnetic
sources in the model. The additional winding loss caused by
the fringing flux was not investigated in this study. The regions
surrounding the core and winding were simply modeled as free
space. In practice these may be partly occupied by insulation or
thermal potting materials.
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Fig. 3. Schematic diagrams of laminated core model. (Left) direct method. (Right) homogenization method.

TABLE I
EQUIVALENT MATERIAL PROPERTIES IN HOMOGENIZED FINEMET CORE

MATERIAL (μm = 2500, σm = 8.33 × 105 S/M, AND F = 0.8)

Equivalent property Value

μt 2000
μn 5
σt (S/m) 6.67 × 105

σn (S/m) 0.46

D. FE Mesh

The shape and size of the FE mesh was controlled to achieve
good accuracy, while limiting the computational cost to a man-
ageable level. In this model, the mesh size was set to 0.3 mm
for the regions around the air gaps, which is about one-fourth
of the equivalent skin depth at 60 kHz. A coarse mesh was used
for the other regions which have smaller fringe field variations
and were assumed to have minimal gap loss, and the maximum
element size for the far end of the free air region was limited
to 5 mm.

IV. GAP LOSS ANALYSIS

The 3-D gap loss model was solved in the Opera 3–D FEA
software [18] using the steady-state electromagnetic solver,
ELEKTRA/SS.

A. Perpendicular Flux Distribution

The overall magnetic field in the core is a combination of
the source field created by the winding and that created by
the induced eddy currents. To examine the source field that
generates the eddy currents, the electrical conductivity of the
core material was initially set to zero. As a result, the flux in the
core was only induced by the source windings. The average flux
density across the core cross-sectional area, Bm , was around
0.14 T.

Fig. 4 shows the perpendicular flux distributions through the
middle of the core leg. The laminations are parallel with the x-
axis. The perpendicular component is zero in the middle of the
core leg and in the middle of the air gap, and it is largest at the
core edges on the surfaces. The inner core surface, represented
by the bottom edge in Fig. 4, has a slightly larger perpendicular

Fig. 4. Perpendicular flux distribution through the middle of the core leg,
lg = 4.4 mm, Bm = 0.14 T, and f = 60 kHz.

flux distribution than the outer core surface (top edge) due to
the proximity of the opposite core leg. The perpendicular flux
component reduces as the measurement point moves away from
the core gap edge into the air in the y-axis direction, and it
reduces to about 10% of its peak value at lg /2 away from the
core, and to almost zero at a total gap length, lg , away from
the core.

B. Eddy Current Distribution

To analyze the in-plane eddy currents, the anisotropic con-
ductivities of the core material were restored. The eddy current
distributions are consistent with the perpendicular flux distri-
butions in Fig. 4 and are highly localized at the edges of the
cores. To depict the eddy current distributions on the core sur-
faces, three surface views were created as shown in Fig. 5(a).
The surface plots in Fig. 5(b) show the eddy current distribu-
tions looking down on the outer surface of the core (top plot),
looking up on the inner surface (middle plot), and looking at
the gap face (lower plot). The eddy current levels are slightly
higher on the inner surface. The maximum current densities
occur toward the center of the air gap edges and have values
greater than 30 A/mm2. The current densities are lower at the
core corners, but increase along the side edges with maximum
values in the region of 15 A/mm2. The lower plot in Fig. 5(b)
looking at the cut face of the core at the air gap shows that
the eddy currents are concentrated within around 1.5 mm of
the core edges.
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Fig. 5. (a) Outline of core surfaces. (b) Surface views of eddy current distri-
butions, lg = 4.4 mm, Bm = 0.14 T, f = 60 kHz.

C. Gap Loss Distribution

The loss density was calculated from time-averaged J·E
in the simulations, where J and E are the vectors of current
density and electric field strength, respectively. Fig. 6 shows the
gap loss density in the core and the surface plots are shown in
Fig. 7. The distribution of the gap loss corresponds to the eddy
current density distributions. The maximum loss densities occur
toward the center of the gap edges with a peak value of around
0.8 W/mm3, and the side edges of the core also experience a
high loss density of around 0.2 W/mm3. The inner core surface
(middle plot in Fig. 7) has a slightly broader loss distribution
than the outer surface (top plot), and this is explained by the
larger perpendicular flux distribution in the inner core surfaces.
The bottom plot in Fig. 7 shows the loss distribution across
the gap face, where the loss densities are concentrated within
around 1 mm of the top and bottom gap edges. The total gap

Fig. 6. Core view of gap loss distribution, lg = 4.4 mm, Bm = 0.14 T, and
f = 60 kHz.

Fig. 7. Surface views of gap loss distribution, lg = 4.4 mm, Bm = 0.14 T,
f = 60 kHz.

loss in the core was calculated by integrating the loss density
over the core volume. At 60 kHz, the gap loss was calculated
to be 44 W at a peak flux density of 0.14 T. The hysteresis loss
at the same condition is 5 W based on a datasheet prediction.
The gap loss, therefore, contributes a major part of the inductor
core loss for the design example considered here. Furthermore,
the hysteresis loss is distributed throughout the entire volume
of the core while the gap loss is highly concentrated. Nearly
45% of the total loss is located around the core edges at the gap.
About 15% of the loss is distributed along the core side edges.
The rest of the loss is spread around the other parts of the core
surfaces.

V. GAP LOSS PREDICTION

The sensitivity of the gap loss to the inductor design param-
eters was investigated using FEA simulations. This was done
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Fig. 8. Gap loss sensitivity analysis. (a) Gap loss variation with gap length, D = 30 mm, Bm = 0.16 T. (b) Gap loss variation with core lamination width, lg =
4.4 mm, Bm = 0.17 T. (c) Gap loss variation with frequency, lg = 4.4 mm, D = 30 mm. (d) Gap loss variation with peak flux density, f = 60 kHz, D = 30 mm.

by varying one inductor parameter while the others were kept
constant. The preliminary assumption is that the gap loss can
be expressed as a power function of the total gap length lg , core
lamination width D, frequency f, and peak ac induction Bm , as
in (7), which is in line with the published equation, (1) [12]. In
(7), kg is a numerical constant, and klg , kD , kf , and kBm are
assumed to be constants independent of each other representing
the sensitivity of the gap loss to the inductor parameters. The
values of these constants were determined by curve fitting the
results from the sensitivity analysis

Pg = K (lg , D, f, Bm ) = kg lg
kl g DkD fkf Bm

kB m . (7)

Fig. 8 shows the variations of gap loss with the inductor de-
sign parameters. The gap loss is proportional to the gap length,
as seen in Fig. 8(a). Varying the frequency changes the gradi-
ent of the lines but the proportionality is maintained. A similar
pattern is seen with other parameters. Therefore, the exponent
klg is equal to 1. For varying lamination width D from 20 to
35 mm, frequency f from 40 to 200 kHz, and the peak flux
density Bm from 0.1 to 0.2 T, the fitted curves are straight
lines with constant slopes in the log-log plots, Fig. 8(b)–(d).

Varying other parameters moves the lines vertically but the
slopes are unchanged. Therefore, the exponents kD , kf , and
kBm are determined from the slopes of the fitted lines, and
the gap loss is considered to be proportional to D1.65 , f 1.72 ,
and B2

m . The equation to estimate the gap loss can then be ex-
pressed as (8), where kg = 1.68 × 10−3. Compared with the
previous equation, (1) proposed by Lee, the derived loss ex-
pression shows the gap loss in high-frequency cores depending
on the core width and frequency to the power 1.65 and 1.72,
respectively, as opposed to linearly. Since the model assumes an
ideal Biot–Savart current-driven winding, (8) excludes the ef-
fects of winding shielding and is, therefore, valid for inductors
where the winding is spaced at least one gap length per leg away
from the core

Pg = kg lgD
1.65f 1.72Bm

2 . (8)

VI. EXPERIMENTAL VALIDATION

The FE gap loss model was validated on a purpose built in-
ductor by temperature measurements. The predicted magnitude
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Fig. 9. Location of temperature sensors.

Fig. 10. Potted inductor on a heat sink with fan, thermal insulation not shown.

of the gap loss was verified by comparing the measured and cal-
culated total inductor losses, and the distribution of the gap loss
was examined by measuring the steady-state core temperature
at different locations on the core surface.

The inductor was designed for the input inductor for a
30 kHz, 25-kW dual interleaved DC–DC converter with in-
terphase transformer [19]. The frequency in the inductor will be
doubled to 60 kHz due to interleaving. Finemet F3CC-0032 cut
cores were used and the two core halves were placed 2.2 mm
apart to form a total gap length of 4.4 mm. The winding com-
prised six turns of 0.8-mm-thick and 51-mm-wide copper foil
and was split between the two gapped core legs with three turns
around each. The minimum space between the core and coils
was 2.2 mm. The inductance was measured to be 5.1 μH at
60 kHz by a precision LCR meter.

Several temperature sensors were fixed to different locations
on the core, especially around the gaps, to verify the temper-
ature distribution, Fig. 9. NTC thermistors were used for the
temperature measurements due to their superior immunity to ac
magnetic field interference, attributed to their relatively large
signal level. Furthermore, the data logger was operated with
batteries to minimize common mode interference. The inductor
was encapsulated in an aluminum can with thermally conductive
epoxy resin potting material (1.8 W/mK). The potted compo-
nent was mounted on a small aluminum heat sink cooled by a
fan, Fig. 10, then covered with a thick layer of thermal insulation

Fig. 11. Calculated and measured total inductor losses at 60 kHz. (a) 50%
duty ratio conditions. (b) 20% duty ratio conditions.

to ensure that all the heat was removed by conduction through
the heat sink.

The component was operated on the DC–DC converter with
an average input current of 160 A and varying ac excita-
tion (by varying the converter input and output voltages) at
two duty ratios, representing symmetric and asymmetric wave-
forms, respectively. Each test was run for at least 50 min at
a continuous input power, ensuring that the inductor settled to
steady state.

Fig. 11 compares the measured total inductor losses against
the predictions at 60 kHz under two different duty ratio condi-
tions. The measured power losses, shown as the black columns
on the right, were determined from the measured steady-state
temperature rises in the heat sink and the thermal resistance of
the heat sink assembly, which was characterized thermally in
a separate test with known power dissipation from dc power
resistors. The calculated inductor losses include the hysteresis
loss, copper loss, and gap loss, which are represented by the
stacked columns in Fig. 11. The hysteresis loss was determined
by separate measurements on an ungapped inductor wound on
the same core using the B-H loop measurement method [5]. The
copper losses were calculated from the published winding loss
equations for foil wound inductors with nonsinusoidal wave-
forms [20], [21]. The dc winding loss was 12 W in all cases due
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Fig. 12. Calculated and measured total inductor losses at 50 kHz, 50% duty
ratio conditions.

Fig. 13. Measured steady-state temperature rises on the core surface, heat
sink temperature: 38 °C (Converter operating condition: Vin = 75 V, Vo =
275 V, switching frequency = 29.8 kHz, Idc = 160 A, Ipk−pk = 130 A, Bm

= 0.16 T).

to the constant dc current of 160 A. The ac winding loss includ-
ing skin and proximity effects was calculated for the individual
current harmonics using the one-dimensional Dowell analysis.
The proximity effect accounted for approximately 98% of the
ac winding loss. Air gap fringing losses in the winding were
assumed to be negligible since there was a space of at least one
gap length per leg between the core and winding. The gap loss
was predicted using the FE model and (8). To account for the
nonsinusoidal waveforms, the gap loss was approximated by
the superposition of the losses calculated from the first three
harmonic components of the actual waveform. Fig. 12 further
validates the loss predictions at a different frequency, 50 kHz.
Overall, the calculated total losses agree with the experimental
measurements with an average error of less than 5%, and by
implication the accuracy of the predicted gap loss is confirmed,
particularly since the gap loss contributes a significant part of
the total inductor loss in this example.

Fig. 13 compares the measured and predicted steady-state
temperature rises above the heat sink at different sensor posi-
tions under the maximum ac flux condition at 160 A, 60 kHz.
The loss information corresponds to Condition 5 in Fig. 11(a).

The thermal prediction was carried out by a separate 3-D ther-
mal FEA using the loss distribution results from the electromag-
netic model. The measurements and predictions show excellent
agreement.

The measured hot spot temperature is 108 °C at CoG1, which
is a 70 °C temperature rise above the heat sink. The regions
near the gaps, CoG1, CoG2, CG1, and TG1, experience the
highest temperatures. By comparing CG1 and CG2, the core
temperature reduces by 17 °C moving away from the gap along
the middle of the core leg to the end of the core leg. On the
outer core surface, the temperature drops by 14 °C from TG1 to
TG2 moving halfway down the core leg from the gap. The high
temperatures around the gap regions confirm the nonuniform
gap loss distribution as predicted.

VII. CONCLUSION

A 3-D electromagnetic FE model has been developed to pre-
dict the gap loss distribution in finely laminated nanocrystalline
inductor cores operating at high frequencies. The losses were
seen to be highly localized on the edges of the core in the region
of the air gap with loss densities approaching 1 W/mm3 in the
design example. Depending on the design parameters the gap
loss can be a major part of the total inductor losses and accurate
prediction is, therefore, important for optimized designs and to
prevent localized overheating.

Based on the FE analysis, an updated approximation formula
has been proposed for the estimation of gap losses in nanocrys-
talline cores. Since current-driven Biot–Savart conductors were
used for the windings, the shielding effect of the winding on the
gap fringe field is neglected. Therefore the results are applica-
ble to inductors where the windings are spaced away from the
core by approximately the gap length per leg. If the windings
were closer to the core, the fringe field and gap loss would be
reduced, but at the expense of increased winding loss. The FE
model has been validated by measurements on a 5.1 μH, 300 A,
dc inductor operating with 60 kHz ripple in a 30-kHz DC–DC
converter. Since the FE model assumes single frequency sinu-
soidal excitation, the total gap loss was determined by adding
the losses due to the first three harmonics using the approxima-
tion formula. The predicted overall losses matched closely with
measurements, and furthermore the measured core temperature
distribution corresponded closely with predictions from a 3-D
FE thermal model.

The updated gap loss approximation formula is considered
to provide a sound basis for the design and optimization of
nanocrystalline core, high current dc inductors operating at fre-
quencies up to around 100–200 kHz. The updated formula shows
that the gap losses increase with strip width D to the power 1.65
as opposed to linearly in the established design equation. This
suggests that a narrower strip width and a thicker core, having
the same cross-sectional area may be beneficial in reducing gap
losses.
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