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Abstract—This article presents the MagNet-AI platform as an
online platform to demonstrate the “neural network as datasheet”
concept for B–H loop modeling and material recommendation of
power magnetics across wide operation range. Instead of directly
presenting the measured characteristics of magnetic core materials
as time sequences, we employ a neural network to capture theB–H
loop mapping relationships of magnetic materials under different
excitation waveforms at different temperatures and dc bias. Long
short-term memory and transformer-based neural network models
are developed, verified, and compared. The neural network can
be used to rapidly predict hysteresis loops and core losses under
different operating conditions, compare materials, and recommend
materials for design. The neural network model is also proved
effective in reconstructing the raw measurement while accurately
maintaining the magnetic characteristics, enabling rapid material
evaluation and comparison.

Index Terms—Core loss, hysteresis loop, machine learning,
neural network, power magnetics.

I. INTRODUCTION

POWER electronics systems depend heavily on magnetic
components. Due to the large component volume and

the significant power loss, power magnetics are typically the
bottleneck of the system optimization in terms of the power
density and power conversion efficiency. Despite significant
advances in power semiconductor devices and circuit topologies,
the development of corresponding approaches for designing and
modeling power magnetic components and materials is still lack-
ing [3], [4], [5], [6], [7]. Modeling magnetic materials, especially
their hysteresis loops, poses a significant challenge due to the
complicated excitation–response mechanisms inherent in these
materials, the numerous factors involved (such as frequency,
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temperature, dc bias, and memory effects), and the lack of a
fully satisfactory first-principle model. The ability to model and
predict the hysteresis loop of power magnetics across a wide
operation range has a profound impact on improving the power
density and efficiency of power electronics systems.

Currently, the design of power magnetic components relies
extensively on the classical datasheets provided by manufac-
turers, together with conventional modeling tools, such as an-
alytical models or interpolated loss maps. Classical datasheets
for magnetic materials are typically only valid for sinusoidal
waveforms, and usually cannot provide sufficient information
for all potential scenarios that designers may encounter with.
The limited information of hysteresis loop and sparse core loss
curves impede designers from making accurate predictions on
the variations of magnetic permeability and core loss under
different operating conditions, such as different amplitudes,
frequencies, temperatures, and levels of dc bias. Conventional
models for power magnetics, e.g., the Steinmetz equation, the
iGSE [8], and the Jiles–Atherton model [9], are established
based on empirical simplifications or physical approximations,
which limit their modeling accuracy. The magnetic core material
behavior is highly complex [10]. The limited complexity of
these models limits their capability of capturing sophisticated
waveform, temperature, and dc-bias determined impact.

Recent advancements in data-driven methods, specifically
machine learning techniques, such as neural networks, have
proven to be highly effective in resolving complex nonlinear
multivariable regression problems [11], [12], [13], [14]. The
primary advantage of utilizing neural networks is the ability to
unify many intertwined influencing factors, such as temperature
and dc bias, into a cohesive framework, which makes the neural
network a good candidate for the data-driven modeling of power
magnetics.

This article proposes the concept of “neural network as
datasheet” for magnetic materials modeling, and demonstrate
neural-network-aided material recommendation for rapid de-
sign. The effectiveness of this approach was validated by an
open-source online research platform—MagNet-AI. The con-
tributions of this article are as follows.

1) Provided a more comprehensive explanation on the design
considerations of the neural network architecture.

2) Introduced a systematic data-processing and data-
augmentation technique for neural network training.

3) Compared different neural network architectures for
model accuracy and the training cost.
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Fig. 1. Concept of neural network as datasheet. A neural network (NN) is better
equipped to store the shape of B–H loops for different operating conditions
as compared to traditional datasheets or datasets of B–H loops that can only
contain limited information, providing an effective and efficient guidance for
the design of power magnetic components.

4) Demonstrated the effectiveness of the “neural network as
datasheet” concept, including the hysteresis loop and the
core loss prediction, the neural network-aided material
recommendation, and the online MagNet-AI platform.

Fig. 1 shows the concept of “neural network as datasheet.”
Traditional datasheets, as stated above, are typically deficient in
terms of the information availability, which makes it difficult for
designers to achieve an optimal design solely based on limited
information. Some manufacturers also offer online dataset as
a supplement of the datasheet, where massive measured data
points are provided to users to search. However, due to the
various influencing factors, the data size increases rapidly as
the number of variables increases, typically in the range of
tens or hundreds of GB. Meanwhile, it is still inconvenient to
utilize these datasets for parameterization of the design models,
which usually requires extensive or complicated data extraction
and interpolation. The behavioral modeling methods proposed
in [15] and [16] provide a feasible approach to overcome this
challenge, in which analytical models are developed to map the
excitation and operating conditions directly to the component
characteristics.

Neural network-aided datasheet, on the other hand, exhibits
advantages over the traditional datasheet or the dataset as
datasheet. Enabled by the fully automated data acquisition sys-
tem developed in [17] and [18], the targeted magnetic materials
can be automatically characterized and measured, where human
errors are minimized. Based on the measurement data, a neural
network model will be trained, which encapsulates and com-
presses all the information of the time domain dataset in GB and
results in a small model file with a size in kB or MB ranges,
while maintaining a high accuracy. With the well-trained neural
network, users only need to perform a quick inference of the
model to predict the magnetics performance under specific op-
eration conditions, or a series of inference to track the variations
of hysteresis loop and core loss, providing an effective, efficient,
and convenient reference for the magnetic components design.

Neural networks have been applied to modeling the core
loss or the hysteresis loop of power magnetics [19], [20],
[21], [22], [23], [24], [25], [26], [27]. However, existing neural

network models have mostly been constructed using outdated
or simplistic network structures, such as feedforward neural
networks (FNNs), which limits the accuracy of hysteresis loop
or core loss prediction. There was no large-scale open-source
database available before MagNet [17], limiting the size of the
neural network that can be trained effectively. In this work, an
encoder–projector–decoder architecture is proposed to develop
a sequence-to-sequence model for the hysteresis loop predic-
tion, which takes the flux density sequence B(t) as an input
and output the field strength sequence H(t) (or vice versa),
incorporating other inputs variables, such as the frequency f ,
the temperature T , and the dc bias Hdc. More specifically,
we implement the proposed architecture using two commonly
used sequence-to-sequence neural network structures–the long
short-term memory (LSTM) [28] and the transformer [29], two
of the most successful sequence-to-sequence neural network
architectures. After proper training, they can accurately and
rapidly predict the B–H loop of power magnetics under a wide
range of operating conditions while significantly reducing data
size by storing trained parameters rather than raw time domain
data.

The rest of this article is organized as follows. Section II pro-
vides an overview of the proposed encoder–projector–decoder
architecture and its data flow. Sections III and IV describe
the details of the LSTM-based and the transformer-based net-
work implementations, respectively. Section V presents the data
processing and augmentation techniques used during network
training. Section VI evaluates and compares the testing results of
each implementation. Sections VII, VIII, and IX demonstrate the
applications of neural network-aided smart datasheet, including
the hysteresis loop and core loss prediction, magnetic materials
comparison, and the online platform. Finally, Section X con-
cludes this article.

II. ENCODER–PROJECTOR–DECODER ARCHITECTURE

Hysteresis loops of power magnetics are determined by vari-
ous influencing factors. Besides the different shapes of excitation
waveform, other operating conditions, such as different frequen-
cies, temperatures, and levels of dc bias will all result in different
shapes of B–H loops. Fig. 2 compares multiple measured B–H
loops for N87 ferrite material as an example, where the material
characteristics differ significantly under different conditions.
These various factors are quantified in [10], and in real-world
applications, they often coexist and change concurrently, which
renders the modeling of magnetic materials extremely difficult.
To develop a neural network model that is capable of predict-
ing the hysteresis loop under different operating conditions,
an encoder–projector–decoder architecture is proposed in this
article.

The structure and data flow of the proposed encoder–
projector–decoder neural network architecture is shown in
Fig. 3. The general concept of this architecture is to map a
time series into another time series while incorporating other
information about the operating conditions. In this work, the
input sequence is B(t), and the output sequence is H(t), which
define the basic shape of hysteresis loops. Scalar inputs, such as
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Fig. 2. Examples ofB–H loops measured with N87 ferrite material under 50% duty ratio triangular excitations. The reference loop (blue) is measured at 200 kHz,
25 ◦C, and 0 A/m DC bias. Each of the three figures shows the variation of B–H loop at different frequencies, temperatures, and DC biases, respectively. The B
(only AC) waveform is extracted from voltage measurement, and the H (both AC and DC) waveform is extracted from current measurement.

Fig. 3. Architecture and data flow of the encoder–projector–decoder neural network architecture.

frequency f , temperature T , and dc bias Hdc, also significantly
affect the B–H loops. Therefore, an additional projector is
implemented between the encoder and the decoder to take these
scalar inputs into consideration and accurately predict the B–H
loop under different operating conditions.

The encoder receives the B(t) sequence as input and trans-
forms it into a fixed-dimensional vector by capturing the se-
quential information and temporal correlations, including shape,
pattern sequence, amplitude, and the relative change rate of
the excitation waveform. The encoder outputs the hidden state
vectors containing all the relevant information extracted from
the input sequence and mapped into a hidden state domain.
The hidden state vectors are then passed through the projec-
tor and adjusted according to the scalar inputs (frequency f ,
temperature T , and dc bias Hdc). The projector is necessary
because the shape of the B–H loop is determined not only
by the B(t) sequence, but also by many other factors. Fi-
nally, the modified hidden state vectors are processed by the
decoder to predict the output sequence H(t). During model
inference, the expected response sequence is produced in an
autoregressive manner. At each time step, the prediction is
generated not only based on both the current hidden state
vectors, but also all the previously generated predictions. With
the autoregression, the temporal information of the sequence
is retained and reconstructed sequentially with hidden time
causality.

The geometry of a specific magnetic component can signif-
icantly affect the component-level behaviors [30], [31], [32].
The model proposed in this work is limited to material-level
modeling. The architecture introduced in this article can be
further extended to cover component-level geometry impact,
which is beyond the scope of this article.

The encoder and decoder modules can be implemented using
different neural network architectures, recurrent neural net-
works (RNNs) [33], attention-based networks (transformer), or
convolutional neural networks (CNNs) [34], [35], [36], all of
which have shown success in modeling sequences with complex
temporal dependencies. Wavelet-CNN-based neural network
has been applied to model core loss in [37]. In this work, we
specifically investigate and provide guidance on the use of both
LSTM-based and transformer-based implementations for the
encoder–projector–decoder neural network, which is designed
to map a time series input to another time series output while
incorporating information about external factors.

III. LSTM NEURAL NETWORK MODELS

LSTM is a specialized type of RNN that is wellsuited for
capturing the temporal relationships within time series data [38].
The effectiveness of LSTM networks in solving sequence-to-
sequence tasks has been demonstrated, with the LSTM encoder–
decoder architecture being one of the most widely adopted
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Fig. 4. Neural network structure of the LSTM-based encoder–projector–decoder architecture. Temperature (T ), frequency (f ), and DC bias (Hdc) information
are mixed with the waveform information in the FNN projector after the encoder and before the decoder.

implementations [39]. The LSTM-based encoder–decoder ar-
chitecture has a well-established ecosystem in popular deep
learning frameworks, such as PyTorch and TensorFlow.

In the LSTM-based encoder–projector–decoder architecture
shown in Fig. 4, both the encoder and the decoder are imple-
mented as LSTM neural networks. At a given time step t = ti,
the input sequence of B(t) is inputted to the LSTM network and
processed through the input gate, forget gate, and output gate
on the encoder side. The temporal information is stored in the
cell states and the hidden states, which are fed back through the
recurrent connections for processing the next input at t = ti+1.
By unwrapping the recurrent connections across the timeline,
it is equivalent to passing the entire input sequence through a
series of LSTM networks. Mathematically, the operation of the
LSTM cell at time t can be described as

ft = σ (Wifxt + bif +Whfht−1 + bhf )

it = σ (Wiixt + bii +Whiht−1 + bhi)

gt = tanh (Wigxt + big +Whght−1 + bhg)

ot = σ (Wioxt + bio +Whoht−1 + bho)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct) (1)

where xt is the sequential input at time t. Intermediate variables
ft, it, and ot represent the value of the input gate, forget gate, and
output gate, respectively, and ct and ht refer to the cell states
and the hidden states, which are the recurrent variables being
fed back to the LSTM cell and thus providing the memorizing
capability. The function σ(x) is the Sigmoid function that oper-
ates as the activation function to provide the nonlinear learning
capability. As in an FNN, W and b are the weights and biases,
respectively, and the subscript refers to the source and target
variables that they are applied to. The operator � stands for the
Hadamard product, which performs an element-wise product for
all the elements of two matrices.

Then, the cell states and the hidden states at the last time
step are concatenated with the additional inputs and fed into the
projector, where these state vectors are modified using a FNN.
The LSTM network in the decoder uses the modified states to
predict the output H(t) at t = t0, which is then fed back as the

Algorithm 1: LSTM-Based Model.
Input:

Flux Density B(t), Frequency f , Temperature T ,
DC bias Hdc;

Output:
Magnetic Field Strength H(t);

1: Initialize hidden states h0 and cell states c0;
2: x1 ← B(t1);
3: for i = 1 to L do

hi, ci ← LSTM1

(
hi−1, ci−1, B(ti)

)
; [Encoder]

4: h′0 ← FNN1(hL, f, T, Hdc);
c′0 ← FNN2(hL, f, T, Hdc); [Projector]

5: Initialize y0;
6: for i = 1 to L do

h′i, c
′
i, yi ← LSTM2

(
h′i−1, c

′
i−1, y(ti−1)

)
; [Decoder]

7: return H(t)← {y1, y2, . . ., yL};

input for the next prediction at t = t1. The prediction continues
until the entire output sequence is generated.

More details of the data flow in the LSTM model are described
by the pseudocodes in Algorithm 1. Models and example codes
are available on MagNet GitHub repository.1

IV. TRANSFORMER NEURAL NETWORK MODELS

Transformer with the attention mechanism is another
very successful network architecture that excels at modeling
sequence-to-sequence problems, such as large language models
represented by ChatGPT. Unlike RNNs, the transformer eschews
recurrent connections, but instead relies entirely on attention
mechanisms to capture temporal dependencies between the in-
put and output sequences. Modified from the original structure
in [29], we implement an encoder–projector–decoder architec-
ture, as shown in Fig. 5.

The data point at each time step in the input sequence B(t)
is first passed through a shallow FNN and transformed to a
d-dimension vector, which sets the representation dimension
of the model. Given that the attention mechanism used in the
transformer model is essentially the dot product of matrices, the

1MagNet repository: https://github.com/PrincetonUniversity/magnet/

https://github.com/PrincetonUniversity/magnet/
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Algorithm 2: Transformer-Based Model.
Input:

Flux Density B(t), Frequency f , Temperature T , DC
bias Hdc, Field Strength H(t) (only available in
training);

Output:
Magnetic Field Strength H(t);

1: X ← FNN1

(
B(t)

)
; [Mapping]

2: X ← X + Positional Encoding;
3: X ← Norm

(
X + Self-Attention1(X)

)
;

X ← Norm
(
X + FNN2(X)

)
; [Encoder]

4: X ′ ← FNN3(X, f, T, Hdc); [Projector]
5: if training then

5.1: Y ← FNN4

(
H(t)

)
; [Mapping]

5.2: Y ← Y + Positional Encoding;
5.3: Y ← Norm

(
Y + Self-Attention2(Y )

)
;

5.4:
Y ′ ← Norm

(
Y + Input-Output-Attention(X ′, Y )

)
;

5.5: Y ′ ← Norm
(
Y ′ + FNN5(Y

′)
)
; [Decoder]

5.6: H(t)← FNN6(Y
′) [Mapping]

6: else if testing then
6.1: Initialize H0(t)← 0;
6.2: for i = 1 to L do
6.2.1: Y ← FNN4

(
Hi−1(t)

)
; [Mapping]

6.2.2: Y ← Y + Positional Encoding;
6.2.3: Y ← Norm

(
Y + Self-Attention2(Y )

)
;

6.2.4:
Y ′ ← Norm

(
Y + Input-Output-Attention(X ′, Y )

)
;

6.2.5: Y ′ ← Norm
(
Y ′ + FNN5(Y

′)
)
; [Decoder]

6.2.6: Hi ← FNN6(Y
′) [Mapping]

6.3: H(t)← HL;
7: return H(t);

time steps in the sequence are permutable. To ensure the model
effectively captures temporal dependency, the input vector is
combined with a positional encoding vector, providing infor-
mation about the position of each time step in the sequence. The
resulting vector is then fed into the self-attention module, which
analyzes and captures the temporal dependency within the input
sequence itself. Further processed by a FNN, a set of hidden
vectors encapsulating the information of the input sequence is
generated and passed to the projector.

Next, the hidden vectors obtained from the encoder are simi-
larly concatenated with the additional inputs, such as frequency
f , temperature T , and dc bias Hdc, and the resulting vectors are
passed through a FNN-based projector. The projector modifies
the hidden vectors by considering the influence of these addi-
tional inputs. The modified hidden vectors are then passed to the
decoder for reconstructing the output sequence.

Besides the hidden vectors, the input of the decoder consists of
a reference sequence. During the network training, it is the target
output sequence; during the network testing, it is the sequence
predicted by the model itself (initialized with zero), shown as
the dashed line in Fig. 5. The reference sequence is similarly
mapped to a d-dimension vector with a shallow FNN, summed

Fig. 5. Network structure of the transformer-based encoder–projector–
decoder architecture. B(t) waveform is the sequence input of the encoder. T ,
f and Hdc are the scalar inputs of the projector. During the model training, the
targeting H(t) is directly fed to the decoder as a reference input. During the
model inference, the predicted sequence is fed back to the decoder, generating
the entire output sequence in an autoregressive manner.

with a positional encoding vector, and fed into the self-attention
module to generate another set of hidden vectors. Both sets of
hidden vectors from the projector and the self-attention module
are further processed with the input–output attention module.
Finally, the resulting output vectors are processed by a FNN to
generate the desired output sequence H(t).

More details of the data flow in the transformer model are
described by the pseudocodes in Algorithm 2. Models and codes
are available on MagNet GitHub repository as well.

V. DATA PROCESSING AND AUGMENTATION

The prediction accuracy of a neural network model is funda-
mentally determined by the quality of the training data. In this
work, the training data is constructed based on the massive mea-
sured dataset in the MagNet database [17], [18]. The database
currently includes B–H loop measurements for ten different
ferrite materials across a wide range of excitation and operation
conditions, collected by an automated data acquisition system.
All the measurements are captured in the periodic steady state
operation.

The MagNet dataset comprises five data fields: the flux density
waveform B(t), the field strength waveform H(t), the funda-
mental frequency f , the temperature T , and the dc bias Hdc.
The fundamental frequency is determined based on the measured
voltage waveform using Welch’s frequency domain method [40],
while the remaining four data fields are obtained directly from
the measurements. In the following sections of this article,
we present the example results based on the dataset of N87
ferrite material, which contains 142 871 measured data points
(B–H loops) covering the range of flux density amplitude in
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Fig. 6. Examples of the full-length waveforms measured with N87 fer-
rite material under different frequency, temperature, and DC bias conditions.
(a) Sinusoidal wave: f = 200 kHz, T = 25 ◦C, Hdc = 15 A/m. (b) Triangular
wave: f = 125 kHz, T = 70 ◦C, Hdc = 0 A/m. (c) Trapezoidal wave: f =
100 kHz, T = 50 ◦C, Hdc = 0 A/m.

10–300 mT, fundamental frequency in 50–500 kHz, temperature
in 25 ◦C–90 ◦C, and dc bias field strength in 0–60 A/m, with
various waveform shapes of various duty ratios. The measured
waveform shapes can be categorized into three types: sinusoidal,
triangular, and trapezoidal, according to the shape of the flux
density waveform. Besides the amplitude, the duty ratio D of
each section in the triangular and trapezoidal waves can be
tuned independently. This training dataset serves as the basis
for a neural network model capable of predicting the hysteresis
loop under various operating conditions with different excitation
waveform shapes. Fig. 6 shows several waveform examples
contained in the dataset. Due to the unknown permeability and
the relaxation effect, we cannot precisely estimateBdc fromHdc.
The flux density B(t) here only contains the ac part, which
is extracted from the voltage measurement, while the H(t)
contains both the ac and dc parts that are directly extracted from
the current measurement. All the flux densities in the hysteresis
loops shown below also only consider the ac part Bac.

To ensure a better convergence of the model, all five data
fields {B(t), H(t), f , T , and Hdc} are normalized before being
fed into the neural network. This is accomplished by subtracting
the average and rescaling with the standard deviation for each
data field. Parameters for standardization are saved and reused
during model testing and inference.

The two sequence inputs {B(t) and H(t)} require more
complex processing in order to ensure that the network achieves
good prediction accuracy and sufficient generalization capabil-
ity. Adding reasonable noise to the data to avoid overfitting is
the most commonly used preprocessing technique. In this study,
both the B(t) and the H(t) waveforms are superposed with
white noise of uniform distribution within the range of±0.1 mT
and±0.05 A/m, respectively. Moreover, the sequence inputs are
further processed and augmented in three ways to improve the
network performance.

Fig. 7. Examples of the single-cycle waveforms with the sequence length of
128, corresponding to the full-length waveforms shown in Fig. 6. (a) Sinusoidal
wave: f = 200 kHz, T = 25 ◦C, Hdc = 15 A/m. (b) Triangular wave: f =
125 kHz, T = 70 ◦C, Hdc = 0 A/m. (c) Trapezoidal wave: f = 100 kHz, T =
50 ◦C, Hdc = 0 A/m.

A. Single-Cycle Interpolation

In the aforementioned original MagNet database, theB(t) and
H(t) waveforms are directly calculated from the raw measure-
ments of voltage and current signals. These waveforms consist
of multiple cycles that are captured in the periodic steady state.
Each waveform is a 1×10 000 time sequence, with a sampling
rate of fs = 125 MHz. Each of the waveform comprises multiple
waveform cycles that are captured in the steady state. Training
the network with these multicycle waveforms; however, can be
problematic. On the one hand, the large number of data points
significantly increases the computational cost of network train-
ing and inference. Considering the fact that the waveform is cap-
tured in periodic steady state, the repeating cycles do not provide
much valuable information to the network. On the other hand,
waveforms with different frequencies have different numbers of
samples in each cycle, leading to different numbers of points
on the B–H plane. Networks trained with these waveforms are
prone to magnify noises in the low-frequency waveforms while
overlooking sharp transitions in the high-frequency waveforms.

To address these issues, a single-cycle interpolation algorithm
is applied to all the B(t) and H(t) waveforms. Given the
sampling rate fs and the fundamental frequency f , the total
number of cycles contained in each waveform can be calcu-
lated as N = 10 000× (f/fs). The 10 000-sample waveform
is first interpolated into N × 128 samples using the spline al-
gorithm. Then, the interpolated waveform can be evenly sliced
into multiple sections, where each section contains a full cycle
of the waveform with 128 sample points in total. Finally, all
the sections are averaged into a single-cycle waveform. Fig. 7
shows the corresponding single-cycle waveform for each of the
original waveforms shown in Fig. 6. By applying the single-cycle
algorithm, the time stamp of the waveform is normalized by the
period ΔT = 1/f into [0,1]. The single-cycle waveforms of
B(t) and H(t) well describe the shape of the hysteresis loop in
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Fig. 8. Set of example B(t) waveforms of N87 ferrite before and after
the phase shifting augmentation. Waveforms are measured under sinusoidal
excitations at 100 kHz, 25 ◦C, and zero DC bias.

periodic steady state, while maintaining a constant sequence
length across all frequencies. The single-cycle interpolation
is essentially removing the time stamp information from the
original waveform, which is another reason why the fundamental
frequency f is included as one of the network inputs.

B. Phase-Shifting Augmentation

Through the single-cycle interpolation, it is assumed that
the original waveform can be well reconstructed based on the
single-cycle waveform since all the waveforms are captured
during the periodic steady state. Furthermore, we hypothesize
that the predicted magnetic behaviors, such as theB–H loop and
core loss, remain the same regardless of where the waveform is
sliced into sections since they all reconstruct to the same original
waveform. This hypothesis also indicates that the predicted
results should not be influenced by the starting phase of the
single-cycle waveform.

To prevent the neural network from misunderstanding the
phase information, phase-shifting data augmentation is applied
to the single-cycle waveforms. Each pair of B(t) and H(t)
waveforms is circularly shifted with a random phase at the same
time, which changes the starting phase of the waveform while
preserving the original phase difference between the B(t) and
H(t)waveforms. Fig. 8 shows a set of exampleB(t)waveforms
of N87 ferrite before and after the phase shifting augmentation.

Phase-shifting augmentation is also applied to balance the
dataset distribution. Given the fact that different shapes of
waveforms have different degrees of freedom (e.g., amplitude,
frequency, and duty ratio), the amount of data for each shape
of waveform provided in the original MagNet database signif-
icantly differs from each other. For example, the N87 ferrite
material dataset contains 142 871 pairs of B(t) and H(t) wave-
forms measured under different frequency f , temperature T ,
and dc bias Hdc conditions. Among them, the sinusoidal wave,
triangular wave, and trapezoidal wave contribute 3,495 (2.45%),
46 973 (32.87%), and 92 403 (64.68%) pairs, respectively.
The sinusoidal wave, in particular, has much fewer samples
compared with the other two waveform shapes. As a result,
training with this unbalanced dataset leads to biased accuracy for
sinusoidal excitations. Through phase-shifting augmentation,

Fig. 9. Examples of the multicycle data augmentation. (a) Original single-
cycle waveform at 125 kHz. (b) Augmented two-cycle waveform at the effective
frequency of 62.5 kHz. A well designed and well trained neural network should
be able to predict similar results for both two cases.

one can assign multiple phase values for the sinusoidal waves
to augment the data while keeping the augmented waveforms
distinguishable from each other.

C. Multicycle Augmentation

In addition to the initial phase, the frequency is a crucial
factor affecting the division of the full-length waveform into
single-cycle sections. In Section V-A, the waveform sequence is
sliced based on the fundamental frequency such that each section
contains a complete cycle of the waveform. Alternatively, the
sequence can also be divided into sections based on 1/N of the
fundamental frequency, resulting in each section containing N
cycles of the waveform. Theoretically, for any integer number
of N , the sliced sections are always able to reconstruct the same
full-length sequence, and thus, the same B–H loop, except that
the resolution within each cycle is reduced due to the fixed-length
interpolation.

Based on this hypothesis, the dataset is further augmented by
incorporating multicycle waveforms. Fig. 9 shows an example of
the two-cycle data augmentation, where the augmented sequence
contains two cycles of the waveform and the frequency is halved,
correspondingly. With the support of multicycle augmentation,
the neural network model is expected to predict approximately
equivalent B–H loops and core losses, regardless of whether
single-cycle or multicycle input sequences are provided. This
augmentation further enhances the model’s generalization ca-
pability for certain types of waveforms that are not covered by
the training dataset.

VI. TRAINING AND TESTING RESULTS

The LSTM-based and transformer-based models are synthe-
sized using the PyTorch framework. Hyperparameters of the
network are determined and optimized based on experimental
training results. In the LSTM-based model, both the encoder
and the decoder are implemented with a one-layer 32-D LSTM
network. In the transformer-based model, the model dimension
is set to 24 and the number of attention heads is set to four. In
both models, the projector is implemented as a three-layer FNN,
with 40 hidden neurons in each layer. These hyperparameters
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Fig. 10. Prediction results of the H(t) waveform and the B–H loop of an example testing point (trapezoidal, 140 kHz, 90 ◦C, 30 A/m DC bias) at different
stages of the training. The mismatch is minimized as the training proceeds until a good match is achieved between the predicted and the measured waveforms.

result in the total of 28 225 and 28 481 learnable parameters
in the LSTM-based model and the transformer-based model,
respectively.

The proposed neural network model is trained for 5,000
epochs on the standard Google Colab Pro GPU devices with
the MagNet dataset. After applying the data augmentation, the
size of the N87 ferrite dataset is expanded to 269 940. These
data points are further randomly split into 70%, 20%, and 10%
for the training, validation, and test sets. During training, the
mean-squared error between the predicted sequenceHpred(t) and
the measured sequence Hmeas(t) is selected as the loss function
for backpropagation. The test dataset, which is never used for
training the model, is used to evaluate the model performance.
The optimizer used in the model training is configured as Adam
optimizer. An exponentially decayed learning rate strategy is
implemented to yield a better model convergence, where the
initial learning rate is 0.004 and the decaying rate is 90% per
150 epochs. The typical elapsed time for the network training is
approximately 20 h for each material (using Google Colab Pro),
which can be further accelerated by adopting parallel computing.

A. Hysteresis B-H Loop Prediction

We evaluate the performance of two trained models on the test
set to validate their ability to predict the B-H hysteresis loop.
Fig. 10 shows a series of particular prediction results generated
by the transformer-based model for an example testing point
(trapezoidal, 140 kHz, 90 ◦C, 30 A/m dc bias) at different stages
of the training. As the training proceeds, the model gradually
converges and the discrepancy between the predicted and the
measured hysteresis loops is minimized, eventually achieving a
good match.

To quantitatively evaluate the prediction accuracy of the mod-
els, the relative error between the predicted sequence Hpred(t)
and the measured sequenceHmeas(t), as is defined below, is used

as the figure of metric to evaluate the results:

Relative Err. of Sequence =
rms(Hpred −Hmeas)

rms(Hmeas)

=

√
1
n

∑tn
t=t1

(Hpred(t)−Hmeas(t))
2

√
1
n

∑tn
t=t1

(Hmeas(t))
2

.(2)

Fig. 11 shows the distribution of relative errors in the H(t)
predictions generated by the LSTM-based model and the
transformer-based model. As shown in the figure, both models
accurately predict the H(t) sequences. The average relative
error for the LSTM-based model is 4.52% and the transformer
model 2.99%, while the 95th percentiles are 10.92% and 6.48%,
respectively, as listed in Table I. The test set covers data points
with all three types of waveform shapes and across the same
ranges of frequency, temperature, and dc bias as the training set.
These statistics on the prediction results validate that both the
proposed models are capable of making accurate predictions for
the hysteresis loops under various operating conditions. Under
the given hyperparameter settings, the transformer-based model
outperforms the LSTM-based model, demonstrating lower over-
all relative error in terms of the hysteresis loop prediction.

B. Core Loss Prediction

We assess the performance of two trained models to validate
their ability to predict the core loss. Based on the predictedB–H
loop, one can directly calculate the predicted core loss PV based
on the following integral. Then, the relative error between the
predicted core loss PV,pred and the measured core loss PV,meas

can be calculated, which is used as another figure of metric for
evaluating the model performance

PV =
1

T

∫ B(T )

B(0)

H(t) dB(t) (3)
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TABLE I
COMPARISON OF THE LSTM AND TRANSFORMER IMPLEMENTATION OF THE ENCODER–PROJECTOR–DECODER ARCHITECTURE

Fig. 11. Relative error distributions of the predicted H(t) sequence generated
by the LSTM-based and the transformer-based neural network models.

Relative Err. of Core Loss =
|PV,pred − PV,meas|

PV,meas
. (4)

Fig. 12 shows the error distribution of the core loss predicted by
the LSTM-based and the transformer-based models. As shown
in the figure, for most of the data points in the test set, the model
is capable of accurately predicting the core loss as well. The
standard deviation of the relative error for the LSTM-based
model is 9.61% and the transformer model 6.95%, while the
95th percentiles are 13.69% and 10.02%, respectively. Under
the given hyperparameter settings, the transformer-based model
also outperforms the LSTM-based model and demonstrate lower
overall relative error in terms of the core loss prediction.

It is noticed that the overall relative error of core loss predic-
tion is higher than that of hysteresis loop prediction. According
to the selected loss function during the training, the model is opti-
mized to minimize the shape discrepancy between the predicted
sequence Hpred(t) and the measured sequence Hmeas(t), while
any information about the core loss is not directly available to the
network for reference. However, core loss calculation is highly
sensitive to phase mismatch between H(t) and B(t), and an
approximately matched sequence does not necessarily result in a

Fig. 12. Relative error distributions of the predicted core loss generated by
the LSTM-based and the transformer-based neural network models.

good match for core loss. To further improve the accuracy of core
loss prediction while maintaining high accuracy for hysteresis
loop prediction, one can introduce the core loss information or
the phase information into the loss function of training, which
however may inevitably increase the computational cost.

C. Comparison and Discussion

Table I presents a comparative analysis between the LSTM
and transformer implementations in terms of their hysteresis
loop prediction accuracy, model size, and approximate compu-
tational cost. Both models are trained and tested with the same
training set and test set for the same number of epochs.

With the given hyperparameter settings, the overall prediction
accuracy of the transformer-based model is better than that
of the LSTM-based model. Fig. 13 shows a few examples of
the predicted B–H loops generated by each model against the
measured ones under various frequency, temperature, and dc
bias conditions, with multiple waveform shapes. Both models
accurately predict the shape and location of the majority part
of B–H loops, while the sharp corners are better captured
by the transformer-based model, benefiting from the attention
mechanism.



LI et al.: MAGNET-AI: NEURAL NETWORK AS DATASHEET FOR MAGNETICS MODELING AND MATERIAL RECOMMENDATION 15863

Fig. 13. Examples of the predicted B–H loops under different frequency, temperature, and DC bias conditions, with multiple waveform shapes. Both the LSTM-
based and the transformer-based models accurately predict the majority part of B–H loops, while the sharp corners are better captured by the transformer-based
model.

TABLE II
COMPARISON OF THE THEORETICAL COMPUTATIONAL COST BETWEEN THE

LSTM AND THE SELF-ATTENTION (TRANSFORMER)

The LSTM-based model requires less elapsed time for the
model inference. Table II provides a theoretical comparison
of the computational complexity of both models [29], where
n represents the sequence length and d is the dimension of
the model. In our testing cases, both models have n = 128,
while the LSTM model and transformer model have d = 32 and
24, respectively. Therefore, despite that the transformer-based
model reduces the sequential operation and maximum path
length by avoiding recurrent operations, it suffers a much higher
complexity per layer, resulting in a longer training and execution
time.

Considering the tradeoff between the prediction accuracy and
the execution time, the transformer-based model is selected to es-
tablish the neural network-aided smart datasheet. All the results
in the following sections are generated by the transformer-based
model.

VII. MAGNET-AI: A NN-AIDED SMART DATASHEET

Evaluations results validate the neural network model’s ef-
fectiveness of predicting the hysteresis loop and core loss un-
der various operating conditions and excitation waveforms. To
establish a neural network-aided smart datasheet, the neural
network model is packaged into a function for rapid inference,
where the inputs are the waveform of flux density B(t), the
frequency f , the temperature T , and the dc bias field strength
Hdc while the output is the waveform of the field strength H(t).
The flowchart of the neural network-aided smart datasheet is
shown in Fig. 14.

Fig. 14. Flowchart of the neural network-aided smart datasheet. Users can
specify the excitation waveform and the operating conditions through the user
interface as the inputs of the neural network model. The model inference is
executed to predict the response waveform. After post-processing, the prediction
results, e.g., hysteresis loop, core loss, and permeability, will be visualized and
provided to users.

Here are several prediction examples to demonstrate different
ways of using the NN-aided smart datasheet. In each example, a
manually generated dataset is fed into the neural network model
as the inputs, where the excitation waveforms are in ideal shapes
and the operating conditions are swept. Note the waveforms in
the manually generated datasets are pure waves without any
nonideal effects, such as switching transitions, which naturally
leads to a slightly different prediction results compared with the
measurements, despite the close resemblance between the two.

1) Example-1: Predicting the hysteresis loop at different flux
density amplitudes. In this example, the excitation wave-
forms are a set of 50% duty ratio pure triangular waves,
where the amplitude is swept from 30 to 240 mT. The
frequency, the temperature, and the dc bias are fixed at
100 kHz, 25 ◦C, and 0 A/m, respectively. Fig. 15 shows
the predicted B–H loops with this manually generated
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Fig. 15. Predicted B–H loops with the manually generated model inputs with
50% duty ratio pure triangular waves, where the amplitude of flux density is
sweeping from 30 to 240 mT. The frequency, the temperature, and the DC bias
are fixed at 100 kHz, 25 ◦C, and 0 A/m, respectively.

Fig. 16. Predicted B–H loops with the manually generated model inputs with
pure sinusoidal waves, where the fundamental frequency is sweeping from 100
to 400 kHz. The amplitude, the temperature, and the DC bias are fixed at 45 mT,
25 ◦C, and 0 A/m, respectively.

dataset as model inputs. It is observed that the impact
of the flux density amplitude on the hysteresis loop is
well captured and predicted by the neural network model,
and a good match is achieved with respect to the adjacent
measured hysteresis loops. At small amplitude, the B–H
approximately aligns with the straight line B = μiH ,
where μi is the initial permeability of the material. As
the amplitude increases, the B–H loop is enlarged and
gradually saturated, resulting in a much larger core loss
and very different permeability.

2) Example-2: Predicting the hysteresis loop at different fre-
quencies. In this example, the excitation waveforms are a
set of pure sinusoidal waves, with an amplitude of 45 mT.
The temperature and the dc bias are fixed at 25 ◦C and
0 A/m, respectively, while the frequency is sweeping from
100 to 400 kHz. Fig. 16 shows the predicted B–H loops
with this manually generated dataset as model inputs. It is
observed that the impact of the fundamental frequency on
the hysteresis loop is well captured and predicted by the
neural network model, and a good match is achieved with

Fig. 17. Predicted B–H loops with the manually generated model inputs with
pure sinusoidal waves, where the DC bias is sweeping from 0 to 30 A/m. The
amplitude, the frequency, and the temperature are fixed at 30 mT, 200 kHz, and
25 ◦C, respectively.

respect to the adjacent measured hysteresis loops. As the
frequency increases, the B–H loop is enlarged, resulting
in a larger core loss energy per cycle.

3) Example-3: Predicting the hysteresis loop at different
levels of dc bias. In this example, the excitation waveforms
are a set of pure sinusoidal waves, with an amplitude of
30 mT. The frequency and the temperature are fixed at
200 kHz and 25 ◦C, respectively, while the dc bias is
swept from 0 to 30 A/m. Fig. 17 shows the predicted
B–H loops with this manually generated dataset as model
inputs. It is observed that the impact of the dc bias on the
hysteresis loop is well captured and predicted by the neural
network model, and a good match is achieved with respect
to the adjacent measured hysteresis loops. As the dc bias
increases, the B–H loop is enlarged and tilted.

4) Example-4: Predicting the core loss under triangular
waves with different duty ratios. In this example, the
excitation waveforms are a set of pure triangular waves,
with an amplitude of 43.5 mT while the duty ratio is
swept from 10% to 90%. The frequency, the temperature,
and the dc bias are fixed at 315 kHz, 25 ◦C, and 0 A/m,
respectively. Fig. 18 shows the predicted core loss curves
with this manually generated dataset as model inputs. It is
observed that the basic relationship between the duty ratio
and the core loss is well captured and predicted by the
neural network model, and a good match is achieved with
respect to the adjacent measured core loss. For triangular
waves, the core loss reaches a minimum when duty ratio
D = 0.5, and increases when it approaches 0 or 1. The core
losses for duty ratio of D and 1−D are approximately
the same, resulting in a symmetric core loss curve versus
the duty ratio.

5) Example-5: Predicting the core loss at different tempera-
tures. In this example, the excitation waveforms are a set
of pure trapezoidal waves, whose duty ratios for rising
and falling are both 20%. The amplitude of flux density is
fixed at 35, 70, and 140 mT, separately. The frequency and
the dc bias are fixed at 100 kHz and 0 A/m, respectively,
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Fig. 18. Predicted core loss curves with the manually generated model inputs,
where the duty ratio of the triangular wave is sweeping from 10% to 90%. The
amplitude, the frequency, the temperature, and the DC bias are fixed at 43.5 mT,
315 kHz, 25 ◦C, and 0 A/m, respectively.

Fig. 19. Predicted core loss curves with the manually generated model inputs,
where the flux density is fixed at 35, 70, and 140 mT, and the temperature is
sweeping from 25 ◦C to 90 ◦C. The frequency and the dc bias are fixed at 100 kHz
and 0 A/m, respectively.

while the temperature is swept from 25 ◦C to 90 ◦C. Fig. 19
shows the predicted core loss curves with this manually
generated dataset as model inputs. It is observed that the
basic relationship between the temperature and the core
loss is well captured and predicted by the neural network
model, and a good match is achieved with respect to the
adjacent measured core loss. As the temperature rises, the
core loss is reduced.

With the capability of predicting the hysteresis loop and core
loss under various operating conditions, as demonstrated in the
above examples, the proposed neural network model can be
potentially used as an alternative to the conventional datasheet
or measurement dataset. Notably, the neural network models
can greatly reduce the size of the dataset with negligible loss
of accuracy. For the N87 material in this work, the size of the
postprocessed dataset for model training is 3.8 GB, while the
size of the transformer model is only 204 kB, which almost
equivalently describes the behaviors of magnetic materials, and
much more comprehensive than the conventional datasheet with
similar file sizes. Users of the neural network aided datasheet
can rapidly predict the behavior of the magnetic material, such

as the hysteresis loop, the permeability, and the core loss, by
specifying the excitation waveforms and the operation condi-
tions, without any needs of time consuming data extraction
and complicated interpolation as dealing with the conventional
datasheet. Distinguished from the conventional datasheet, the
neural network-aided smart datasheet is well packaged into
a function, which makes it feasible to be integrated into any
other iteration calculations, such as multiobjective optimization
algorithm or AI-mag [41].

VIII. NN-AIDED MATERIAL RECOMMENDATION

Benefiting from the fast model inference capabilities of neural
networks, the proposed model can also be used to assist the
material comparison and selection for specific excitations and
operating conditions. It can rapidly rank magnetic materials
across a wide operation range. The transformer-based neural
network model has been trained on all the ten materials from
the MagNet database, including TDK{N27, N30, N49, N87},
Ferroxcube{3C90, 3C94, 3E6, 3F4}, and Fair-Rite{77, 78}. The
model was trained using a similar large measurement dataset as
shown in Section V, with the same network hyperparameters
and data augmentation techniques. When a specific operating
condition is provided, these neural network models can be exe-
cuted sequentially to sweep across all the materials and calculate
the corresponding core loss for each material. By sorting the
core loss values among all the candidate materials, MagNet-AI
can recommend the best-performing material candidates for the
given operating condition. Two examples of material ranking
maps are provided here to illustrate the effectiveness of the
neural network-aided material comparison.

1) Example-1: Selecting the optimal material at different
levels of dc bias across a wide range of flux density
and frequency. In this example, the excitation waveforms
consist of a set of 50% duty ratio pure triangular waves.
The amplitude and frequency of the waveforms are swept
from 30 to 200 mT and 50 to 500 kHz, respectively. The
dc bias is selected from three different levels, namely
0, 10, and 20 A/m, while the temperature remains fixed
at 25 ◦C. Fig. 20 shows the material ranking maps for
each level of dc bias, where different colors stand for
different materials, whichever achieve the lowest core loss
under each operating conditions. Each material has its
optimal operation range in terms of frequency, flux density,
and dc bias. N30 ferrite demonstrates lower core loss at
low frequency, whereas N49 ferrite dominates at higher
frequency. The boundary is moving as the dc bias changes.

2) Example-2: Selecting the optimal material at different
temperatures across a wide range of flux density. In this
example, the excitation waveforms also consist of a set
of 50% duty ratio pure triangular waves. The amplitude
of the waveforms and the temperature are swept from
30 to 200 mT and 25 ◦C–90 ◦C, respectively. The fre-
quency remains fixed at 150 kHz and the dc bias is zero.
Fig. 21 shows the corresponding material ranking map.
As depicted in the map, different materials also have
their optimal operation ranges in terms of temperature.
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Fig. 20. Material ranking map at different levels of DC bias across a wide range of flux density amplitude and frequency.

Fig. 21. Material ranking map across a wide range of flux density amplitude
and temperature.

Fig. 22. Core loss curve comparisons at different levels of flux density ampli-
tude and temperatures.

At low temperature, the material map is dominated by
N49 and 3C94 ferrite. As the temperature increases, 3C90
ferrite begins to show the superiority. More specifically,
Fig. 22 shows the predicted core loss curves for the three
aforementioned materials across different temperatures.
It can be observed that N49 ferrite achieves its minimum
core loss at a relatively low temperature, while the other
two materials are more suitable for high temperature ap-
plications.

As demonstrated, given a targeted operation range, the neural
network model can effectively assist the designer to determine,

Fig. 23. Website architecture and information flow of the MagNet webpage
platform, which provides users with access to download and visualize the
measured data in the MagNet core loss database, as well as analyze and simulate
the magnetic behaviors with the deployed neural network models and the PLECS
simulation engine.

which material offers the most desirable performance for the
particular operating conditions. With the constantly expanding
material category, the neural network model will provide design
recommendations among various materials with only linearly
increasing computational cost.

IX. ONLINE SMARTSHEET PLATFORM

To enable the interactive datasheet inference based on the
proposed neural network model, an open-source webpage-based
platform with graphic user interface (GUI) is designed and
developed. It is powered by Streamlit (an open-source app
framework of Python for website deployment), and shared in
GitHub, offering a variety of data-visualization tools with a
GUI for the database access, magnetic core loss estimation,
hysteresis loop prediction, and circuit simulation, as well as the
access to download all the measured data points. The neural
network model and the circuit simulation engine are deployed
on the website, which allow users to predict the hysteresis
loop under any user-defined conditions or simulation conditions.
The website architecture and information flow of the website
platform are shown in Fig. 23.

Fig. 24(a) shows an example screenshot of the smartsheet
session of the neural network model. With the GUI, users may
specify the type of magnetic material, operating conditions (tem-
perature, frequency, and dc bias), and the excitation waveform



LI et al.: MAGNET-AI: NEURAL NETWORK AS DATASHEET FOR MAGNETICS MODELING AND MATERIAL RECOMMENDATION 15867

Fig. 24. Example screenshot of the MagNet-AI webpage-based magnetics analysis and prediction platform. (a) Smartsheet session. (b) Simulation session.
MagNet-AI is available at: https://mag-net.princeton.edu, and open-sourced at: https://github.com/PrincetonUniversity/magnet

(either standard shapes or user defined waves). The neural net-
work engine can rapidly predict the B–H loop under the given
conditions, simultaneously generating a sequence of core loss
curves around the operating point. This procedure provides a far
more comprehensive dataset in comparison with conventional
datasheets.

The webpage is also connected to a circuit simulation server
hosted by Plexim. The webpage feeds information to the server,
and the server returns inputs to the machine learning algorithms
in combination with power converter operations, as shown in
Fig. 24(b). Users can choose from a pool of common topologies
(buck, boost, flyback, dual-active bridge), specify the circuit

https://mag-net.princeton.edu
https://github.com/PrincetonUniversity/magnet
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parameters, magnetic component specifications, and operating
conditions, then the simulation engine simulates and outputs the
excitation waveform of the magnetic component. The MagNet
server collects the waveform and predicts the core loss using the
proposed neural network models. Iterations between the neural
network model and the simulation engine will be implemented
in the future to achieve more accurate simulation results by
capturing the nonlinear effects. Note the flux density is calcu-
lated based on the specified geometrical parameters assuming a
uniform flux distribution. The geometry impact is not considered
in this work. The neural network models can be integrated with
a circuit simulator to enable magnetic-in-circuit simulations.

Besides the neural network-aided smart datasheet, the web-
site also provides the database session, which allows the raw
measurement dataset to be visualized in many ways, and enables
rapid comparison of the core loss andB–H loop data of different
materials. The user may specify the type of magnetic material,
together with the excitation waveforms and the operating condi-
tions. The website backend searches for the requested data in the
database and visualizes it in the way that the user selects. The
website also provides download access to the raw data being
collected from the equipment before any postprocessing with
the test conditions documented, and the postprocessed dataset
files for data-driven modeling applications.

The MagNet platform is constantly maintained and updated
with new data and neural network models. Extended details
are included on the website to enable trustworthy repeating
measurements and cross validation of the dataset.

X. CONCLUSION

This article introduces the concept of neural network as
datasheet for modeling magnetics across wide operation range.
We proposes an encoder–projector–decoder neural network ar-
chitecture for B–H loop modeling of power magnetics. The
proposed architecture is implemented based on both the LSTM
network and the transformer network, effectively combining
both sequence inputs (excitation waveforms) and scalar inputs
(operation conditions) for hysteresis loop modeling. Experimen-
tal results prove that the neural network is capable of accurately
predicting theB–H loop and the corresponding core loss for fer-
rite materials. Several applications of the neural network-aided
datasheet are demonstrated, including B–H loop and core loss
prediction, and material recommendation across wide operation
range, with a fully functioning webpage-based online smartsheet
platform. The neural network-aided datasheet can offer much
more comprehensive information and convenient accessibility
compared with the conventional datasheet, while maintaining a
comparably small file size.
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