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Abstract—This article applies machine learning to power mag-
netics modeling. We first introduce an open-source database—
MagNet—which hosts a large amount of experimentally measured
excitation data for many materials across a variety of operating
conditions, consisting of more than 500 000 data points in its current
state. The processes for data acquisition and data quality control
are explained. We then demonstrate a few neural network-based
power magnetics modeling tools for modeling the core losses and
B–H loops. The neural network allows multiple factors that may
influence the magnetic characteristics to be modeled in a unified
framework, where the nonlinear behaviors are captured with high
accuracy and high generality. Neural network models are found to
be effective in compressing the measurement data and predicting
the material characteristics, paving the way for “neural networks
as datasheets” to assist power magnetics design. Transfer learning
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is applied to the training of neural network models to further re-
duce the data size requirement while maintaining sufficient model
accuracy.

Index Terms—Core loss, data-driven method, hysteresis loop,
machine learning, neural network, open-source database, power
magnetics.

I. INTRODUCTION

MAGNETIC components, such as inductors and trans-
formers, are critical in almost all power electronics sys-

tems. These magnetic components are typically the largest in
volume and have significant power loss, and, therefore, have an
adverse impact on the system performance. While there have
been major strides in the modeling and analysis of power semi-
conductor devices and circuit topologies, the necessary advances
in the modeling and design of power magnetic components and
materials are lagging [5], [6], [7], [8], [9]. Currently, power
magnetics models are usually developed and tested on different
private datasets [10], [11], [12], [13] with either unknown or
unreported data quality. Data and its models cannot be rapidly
compared or cross validated. An open-source large-scale power
magnetics research platform with controlled data quality and
state-of-the-art software tools is needed and serves as the basis
of this research.

Modeling magnetic materials is challenging due to the com-
plicated material excitation-response mechanisms, the numer-
ous factors involved (i.e., temperature, dc bias, memory effects),
and the fact that no fully satisfactory first-principle model is yet
known. Fig. 1 compares multiple measured B–H loops for N87
ferrite material as an example, where the material characteristics
differ significantly under different conditions. These intertwined
influence factors are quantified in [14]. They typically coexist
and change at the same time in real applications, which renders
the modeling of magnetic materials extremely difficult. A widely
used method to model the core loss is the Steinmetz equation
(SE) [15], [16], which is an empirical equation based on curve
fitting, employed to calculate the core loss per unit volume
in magnetic materials subjected to sinusoidal magnetic flux.
However, most of the magnetic components in power electronics
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Fig. 1. Examples of measured B–H loops for ferrite materials under different
conditions. (a) Frequency. (b) Peak flux density. (c) Magnetic material. (d) Shape
of waveform. (e) DC bias. (f) Temperature. Except for the specified property,
other properties are approximately kept the same for each measurement (TDK
N87 ferrite material, 200 mT peak flux density, 100 kHz, 25 ◦C, and without
DC bias).

TABLE I
NUMBER OF PARAMETERS USED BY CORE LOSS MODELS

systems often have magnetizing currents with significant har-
monic components, e.g., triangular, trapezoidal, or piecewise
linear waveforms.

Many advanced methods have been developed for modeling
core loss under nonsinusoidal excitations. Some of these, in-
cluding the improved generalized Steinmetz equation (iGSE),
and the improved-improved generalized Steinmetz Equation (i 2

GSE) [17], [18], [19], [20], are listed in Table I. All these models
have known accuracy limitations for specific waveform types.
They usually do not have a clear pathway toward combining and
incorporating the impact of temperature, dc-bias, and relaxation
effects into a unified equation.

Recent advances in data-driven methods, especially neural
networks and other machine learning techniques, have proved

Fig. 2. Overview of the MagNet framework from data engineering, model
development, to magnetics design tool. The building blocks in the shaded area
are covered in this article.

extremely effective in solving nonlinear multivariable classifica-
tion and regression problems, such as those in computer vision
and speech recognition [21], [22], [23], [24]. They also have
been applied to power electronics design and optimization [25],
[26], [27], [28], [29]. The main strength of a neural network
approach is the possibility of capturing many intertwined influ-
ence factors in a unified framework. Neural networks have been
used to model magnetic hysteresis loops [30], [31], [32], [33],
[34], [35], [36], [37], [38]. However, existing neural network
models usually have limited data sizes, unclear data quality, and
sometimes simplistic network structures.

The main contributions of this article include the following:
1) we present a large-scale open-source database—

MagNet—for power magnetics research, where the ex-
perimental setup of the measurement system, the data
quality control, and the database construction are carefully
discussed;

2) we show an end-to-end machine learning framework that
incorporates various factors influencing the magnetic ma-
terial characteristics into a unified setup, providing an
example workflow of applying machine learning methods
to solve power electronics problems;

3) we demonstrate the effectiveness of neural networks in
accurately predicting the nonlinear characteristics of mag-
netic materials, and show that neural networks also have
the potential to be used as an active datasheet for describ-
ing power magnetic materials in the design pipeline; and

4) we apply the transfer learning technique to the training of
neural network models, which greatly reduces the data size
requirement while maintaining the prediction accuracy.

The key workflow of MagNet is illustrated in Fig. 2. Just as
ImageNet advances computer vision research [24], the goal of
developing MagNet is to advance research in data-driven power
magnetics modeling by providing a common ground for testing
and comparing different magnetic materials, modeling methods,
and design optimization tools. The accuracy of equation-based
models and data-driven models both rely heavily on data size
and data quality.

The rest of this article is organized as the following: Section II
introduces the automatic data acquisition system of MagNet,
including the hardware setup and software configurations, with
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Fig. 3. Overview of the automated data acquisition system of MagNet.

extended details in Appendix A; Section III discusses the con-
siderations on data quality evaluation and methods to improve
the data quality, with extended details in Appendix B; Section IV
introduces the database structure and data format in their current
states; Section V presents a few example ways of applying neural
networks to model power magnetics for different purposes, in-
cluding scalar-to-scalar core loss prediction, sequence-to-scalar
core loss prediction, sequence-to-sequence B–H loop predic-
tion, data augmentation for increasing the model generality,
transfer learning for reducing the training data size.

II. DATA ACQUISITION

Large-scale and high-quality database lies the foundation of
machine learning and data-driven modeling methods, which
fundamentally bounds the accuracy of models. However, the
behaviors of power magnetics, especially the core loss, can be
impacted by many factors including frequency, flux density,
dc-bias, waveform shape, and temperature, among others. The
large number of degrees of freedom leads to an extremely large
parameter space to sweep and measure. To capture the impact of
all these factors, a fully automated data acquisition with carefully
evaluated accuracy is needed. Increasing the automation level
also reduces the error caused by human factors during the
measurement.

The most common procedure for B–H loop (and core loss)
characterization is the use of the two-winding method, also
referred to as the voltamperometric method [17], [39], [40],
where two separated windings are used. The excitation is applied
to the primary, where the current is measured to obtain H . The
voltage across the secondary winding is measured to obtain B
as the voltage drop in the primary winding resistance or leakage
inductance is not reflected in the secondary [40].

We adopted the two-winding method for magnetic character-
ization. Fig. 3 depicts an overview of the fully automated data
acquisition system, comprising a power stage that is capable of
generating different excitation waveforms, the device under test
(DUT), voltage measurement, current measurement, auxiliary
stage for the dc bias, and temperature control. Fig. 4 shows a
picture of the experimental setup.

In this particular design, the excitation of the magnetic core is
synthesized and generated by a T-type inverter in the power stage

Fig. 4. Experiment setup and circuit configuration of the magnetic core loss
data acquisition system of MagNet.

(for nonsinusoidal waves) and a power amplifier with a func-
tion generator (for sinusoidal waves). Both the secondary-side
voltage waveform and the primary-side current waveform are
captured and measured by an oscilloscope, where a wide-band
coaxial shunt is used to enable accurate current measurement at
high frequency. An optional dc bias injection circuitry is imple-
mented to excite the magnetic core with a nonzero bias current
(only Hdc is measured). An external water heater, water tank,
and oil bath are implemented to provide temperature control
for the measurement under different temperature conditions. A
software system is programmed on the host PC to control and
coordinate with the hardware system to enable fully automated
equipment settings and measurements. More details about the
automated power magnetics data acquisition system including
the hardware configuration and implementation, the measure-
ment equipment, and the software programming are provided in
Appendix A.

This data acquisition system can automatically excite and
drive the DUT with preprogrammed excitations and measure the
material responses. With this system, theB–H loop and core loss
can be directly measured and calculated via voltamperometric
method [12], [39], [41], [42] by

Ploss =
1

NT

∫ t0+NT

t0

vL(t) · iL(t) dt (1)

B(t) =
1

Ae · n2

∫
vL(t) dt (2)

H(t) =
n1

le
· iL(t) (3)

where vL and iL are the measured secondary-side voltage and
primary-side current, respectively.n1 andn2 refer to the number
of turns of each winding. Ae is the effective cross-sectional area
of the magnetic core and le is the effective length. NT is the
total duration of the measurement. The duration is intentionally
configured to ensure that the measured waveform contains an
integer number of periods.
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With this system, the time it takes to complete one measure-
ment is about 1.5 s. The actual measurement duration is 100 μs,
and the rest time is used for control, communication, reaching
the electrical steady state of the material, and avoiding undesired
temperature rise. The system can, fully autonomously, collect
around 2400 data points per hour. A complete characterization
of one material usually takes a few hours, during which no human
operation is needed. Please note that certain materials may re-
quire longer relaxation time between measurements and specific
ramping up/down excitations to resume to the demagnetized
state, leading to slower data acquisition speed. Before massive
automatic data collection, one should carefully understand and
precalibrate the material to select the appropriate measurement
time interval.

Besides the two-winding method applied in this work, there
are also other approaches for core loss measurement, such as
the calorimetric method [43] and the resonant two-winding
method [12], both providing better core loss measurement ac-
curacy, particularly at higher frequencies. However, it is worth
noting that these approaches often require more time and effort,
such as the calibration of the thermal system or the tuning of
the resonant tank. Consequently, they may not be easily auto-
mated or generalized to large-scale data acquisition scenarios.
Selecting the two-winding method in this work enables us to
develop a fully automated core loss measurement system, which
makes it possible and feasible to conduct a large amount of data
acquisition within a reasonable time frame. Meanwhile, as the
measurement range is properly constrained and the data quality
is carefully controlled, the overall accuracy of this large-scale
database is maintained.

III. DATA QUALITY CONTROL

The accuracy of a data-driven method is highly dependent on
the data size and data quality. The model accuracy is bounded
by the data accuracy. Measuring the B–H loops and core losses
accurately across a wide operation range is challenging. The
error distribution may be impacted by many factors including:
parasitics, oscilloscope limitations, timing skew between chan-
nels, misbehavior of the microcontrollers, electrical noise and
quantization noise, temperature variation, and many others. The
real-time measured voltage and current signals can be decom-
posed as

vL(t) = GV (V0 + VDC + vAC(t))

iL(t) = GI(I0 + IDC + iAC(t− θ)) (4)

whereGV represents the gain factor of the voltage measurement.
V0 is the zero-drift offset voltage introduced by the equipment.
VDC and vAC are the dc and ac components in the measured volt-
age signal, respectively, in the periodic steady state. θ denotes
the time skewing between the voltage and current measurement
results. Similar definitions go for all the current-related vari-
ables. Based on (1), the average power loss across N cycles is

Ploss =
1

NT

∫ t0+NT

t0

vL(t) · iL(t) dt

Fig. 5. Example measured voltage, current, and power waveform of TDK N87
ferrite material at 100 kHz.

= GV GI(V0I0 + V0IDC + VDCI0)

+GV GIVDCIDC

+
GV GI

NT

∫ t0+NT

t0

vAC(t) · iAC(t− θ) dt. (5)

Equation (5) provides useful information for the semiquantita-
tively understanding of the error associated with gain and offset.
Errors in GV , GI , VDC , IDC , V0, I0, vAC , and iAC all have an
impact on the core loss error. Fig. 5 illustrates an example voltage
and current waveform measured with N87 ferrite material at
100 kHz, as well as the instantaneous power and average power
(i.e., the power loss). The instantaneous power is much larger
than the average power. A minor error in either the voltage or
the current, or a phase mismatch between them, may lead to a
significant percentage error in power loss.

All equipment used in the data acquisition system is evaluated
and calibrated. Experiments to calibrate the oscilloscope against
a digital multimeter are conducted, where the relative error of
the mean dc voltage measured by the oscilloscope is 0.25%,
and the relative error of the root-mean-square (RMS) ac voltage
is 0.67%. Autocalibration of the oscilloscope is conducted be-
fore the measurement iteration starts to minimize the undesired
zero-drift offset and deskew the voltage and current channels.
The parasitics introduced by the power stage circuit and the
cable connections are also minimized in order to further reduce
the potential time skewing between the voltage and current
measurement.

A model-driven method combining the physics-based virtual
measurement simulation and the Monte Carlo experiments is
proposed to quantify the measurement error and estimate the
error distribution. Appendix B analyzes the systematic error and
statistical error of the system. The analysis helps us to determine
the range of measurement and maintain high data quality. The
analysis also shows that the geometry variation can significantly
impact the core loss. Similar phenomenon is reported in [14],
where the maximum geometry-to-geometry variation of core
loss density can be more than 10%, larger than the impacts of
most other sources of error.

Finally, a data-driven algorithm is developed to detect and
remove the anomaly outliers in the collected dataset, as they
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Fig. 6. Example voltage and current waveforms of sinusoidal, triangular,
symmetric trapezoidal, and asymmetric trapezoidal excitations.

are impossible to be completely avoided in the large-scale au-
tomated data collection. The essential idea of the algorithm is
to evaluate the smoothness of the measured data points within a
certain range of flux density and frequency, based on the curve-
fitting of the local Steinmetz Equation. For a certain data point,
an expected value of core loss can be inferred based on other
adjacent data points, then the discrepancy between the expected
value and the measured value can be calculated. Suspicious data
points that are likely to be outliers can be removed. Extended
details about data quality control are provided in Appendix B.

IV. DATABASE CONSTRUCTION

The fully automated data acquisition system enables rapid
measurement of B–H loop data. Fig. 6 shows the voltage and
current waveforms of four examples of measured data, including
sinusoidal, triangular, symmetric trapezoidal, and asymmetric
trapezoidal, all measured with N87 ferrite material at 100 kHz.
The sampling time step of the measured waveform sequence
is set as 10 ns, and each waveform sequence contains 10 000
sampling points for a 100 μs measurement period.

Better data documentation enables better data usage. Fig. 7
shows the data format of MagNet in its current state, which
comprises three data domains:

1) information about the DUT, including the material type
and the geometry parameters;

2) raw measured time-series data, including the voltage, the
current, and the corresponding time stamps; and

3) postprocessed data, including the frequency, the peak flux
density, the dc bias, the duty ratio, the temperature, the
volumetric power loss, and the single-cycle B–H loop
sequences.

Fig. 7. Data format of the MagNet with four different types of contents.

The frequency is postcalculated from the data using Welch’s
method [44], which estimates the power spectral density of
the signal, and identifies the frequency with the highest power
spectral density near the commanded frequency as the funda-
mental frequency. The flux density is calculated by the integral
of the voltage signal together with the geometry parameters.
The duty ratio is detected based on the zero-crossing point for
each section. The single-cycle B–H loop data are produced by
averaging the different periodic sections of waveform across
the entire sequence and then applying a 100-step interpolation
within the averaged waveform. It captures the majority shape of
the B–H loop in the targeted frequency range with much less
data, homogenizing the waveforms with different frequencies
into sequences with the same length, but also losing resolution,
especially near the switching events. The single-cycle data are
a simplified way of representing the B–H loop in a periodic
steady state. Serrano et al. [14] provided extended details about
the data processing methods used to construct MagNet.

Data are open-sourced in four different formats, including
“.mat,” “.json,” “.hdf5,” and “.csv.” This data structure is de-
signed to contain sufficient information that facilitates the re-
search community to compare, verify, and reproduce the core
loss measurement, and trace the potential error mechanisms in
the automatic data acquisition process.

Table II lists the size of the MagNet dataset in its current state.
The sizes of the data for the ten materials are slightly different
because of their various designated operation ranges for the
parameter sweeping. Details about the range of measurement
(e.g., flux density, frequency, dc bias, and temperature) are
provided in Appendix A. The total number of data points is
more than 500 000 so far. Measurements for other materials
are in progress and the scale of MagNet dataset is expanding
constantly.

Fig. 8 illustrates the magnetic core loss density of N87 ferrite
material as an example to visualize MagNet. The magnetic
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Fig. 8. Data visualization of the measured core losses under triangular exci-
tation for N87 material. (a) Core loss versus peak flux density with frequency at
200 kHz. (b) Core loss versus frequency with peak flux density around 120 mT.
(c) Core loss versus duty ratios at different flux density level with frequency at
200 kHz. (d) Core loss versus peak flux density at different temperature with
frequency at 200 kHz and duty ratio at 0.5.

TABLE II
NUMBER OF DATA POINTS CURRENTLY IN THE MAGNET DATASET

core is excited with triangular excitations with different duty
ratios. Fig. 8(a) shows the core loss variation against the peak
flux density with the frequency fixed at 200 kHz, Fig. 8(b)
illustrates the variation against the frequency with the peak flux
density approximately fixed at 120 mT, and Fig. 8(c) presents
the variation against the duty ratios at different flux density
level with the frequency fixed at 200 kHz, all of which are
measured at 25 ◦C. Fig. 8(d) depicts the core loss variations
at different temperatures, with the duty ratio fixed at 0.5 and
the frequency at 200 kHz. Each figure demonstrates a different
nonlinear relationship in terms of different impact factors, and
these factors typically coexist in real applications. An extended
discussion on these impacts is provided in [14]. The complexity
of power magnetics characteristics motivates the use of machine
learning.

A webpage-based platform with a graphical user interface
(GUI)—MagNet1—has been developed. The MagNet platform
offers access to searching, visualizing, and downloading all
the aforementioned measured datasets. It also provides a user-
friendly interface to calculate and simulate the magnetic core
loss using neural network models introduced in Section V with
the support of a PLECS simulation engine. The website, models,
and datasets have been open-sourced in GitHub.2

V. NEURAL NETWORK MODELS

The MagNet database can be used in many different ways.
For power magnetic designs with sinusoidal, triangular, or
trapezoidal excitations, one can simply plot the data and read
the core loss under a particular operating condition, and use
the values in the design process with or without interpolation.
MagNet can also be used to develop equation-based analytical
models for magnetic core loss, such as identifying the Steinmetz
parameters, forming a loss map, or extracting parameters of the
Jiles-Atherton model. In this article, however, we demonstrate
and highlight the neural network modeling method of power
magnetics based on the MagNet database. As illustrated in Fig. 9,
we explore three ways of modeling the behavior of magnetic
materials with neural networks:

1Princeton MagNet website: https://mag-net.princeton.edu/
2MagNet GitHub repo: https://github.com/PrincetonUniversity/magnet/

https://mag-net.princeton.edu/
https://github.com/PrincetonUniversity/magnet/
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Fig. 9. Three example ways of modeling the behavior of magnetic materials
with neural networks. (a) Scalar-to-scalar. (b) Sequence-to-scalar. (c) Sequence-
to-sequence.

1) Scalar-to-scalar: Similar to the Steinmetz Equation, a
neural network can be implemented as a scalar-to-scalar
model to map multiple scalars, such as the frequency, peak
flux density, and duty ratio, to a scalar value describing
the magnetic core loss. The major advantages of neural
networks over the Steinmetz equation and conventional
SE-based models is the capability of making predictions
with higher accuracy across a wider range of operating
conditions due to the much larger number of parameters,
as well as the flexibility to be conveniently extended,
generalized, and retrained to cover additional influencing
factors, such as temperature and dc bias.

2) Sequence-to-scalar: Similar to the improved generalized
Steinmetz equation (iGSE), a neural network can function
as a sequence-to-scalar model, which takes the entire
excitation waveform (e.g., flux density) as the input, and
builds a regression mapping to the scalar value of the core
loss. Compared to the scalar-to-scalar model, this type of
sequence-to-scalar model is more feasible for core loss
prediction under arbitrary excitation waveforms. It is no
longer required to extract parameters from the waveform,
reducing errors.

3) Sequence-to-sequence: Similar to the Jiles-Atherton
model [45], a neural network can also function as a
sequence-to-sequence model to predict the magnetic re-
sponses (e.g., B(t)) due to an excitation waveform (e.g.,
H(t)). A sequence-to-sequence model can be poten-
tially included in time-domain circuit simulations, such
as SPICE.

The models presented in this article are pure data-driven
models without including existing knowledge about power mag-
netics. Leveraging existing physical understanding to design the
neural network may be a promising approach to further enhance
the model performance [46].

A. Scalar-to-Scalar Model: FNN

FNNs are some of the simplest and most widely used artificial
neural networks, and have proved to be effective in solving

Fig. 10. Structure of an example 4-layer feed-forward neural network (FNN)
with three inputs (f , B, D) and one output (PV ). The structures and number
of neurons in the hidden layers can be optimized. Temperature and DC-bias can
also be included as the inputs of the neural network. There is a tradeoff between
model size and model accuracy.

multivariable nonlinear regression problems. As illustrated in
Fig. 10, an FNN comprises one input layer, one output layer,
and multiple hidden layers. The connections of the parameters
in the FNN can be described as

zji = σ

(
n∑

k=1

(wj
k,i · zj−1

k + bjk)

)
(6)

where w is the weight between each pair of hidden neurons,
and b is the bias of each hidden neuron. The subscript stands
for the index of hidden neurons, and the superscript stands for
the index of hidden layers. The function σ(x) is the nonlinear
activation function of the hidden neuron, which provides the
network with the capability of learning nonlinearity. z calculates
the output value of each hidden neuron, where the subscript and
the superscript share the same definitions as those of w and b.

We use a four-layer FNN as an example to develop a scalar-
to-scalar core loss model for ferrite materials under triangular
excitations at a fixed temperature without dc bias. This particular
network has one input layer, one output layer, and three hidden
layers. The input layer takes three postprocessed scalar parame-
ters as the input variables: the fundamental frequency f , the peak
flux density B, and the duty ratio D of the triangular waveform.
The output layer has one parameter: the magnetic core loss
density of the material PV . Given the preknown fact that the
core loss PV approximately changes exponentially in terms of
f andB, these three variables are transformed into the logarithm
values to enable a better convergence of the network. Each of
the three hidden layers has multiple neurons. This model has
a similar input–output configuration as the Steinmetz equation,
but has much more parameters available to function across a
wide operating range.

The network model is synthesized and trained with Py-
Torch [47]. The activation function is ReLU. The loss function
(quantifying the discrepancy between the predicted value and
the target value) for the network training is selected as the
mean-squared error of the logarithm value of core loss to ensure
uniform performance across the different orders of magnitude of
the core loss in the operation range. The training optimizer is set
as Adam [48]. An exponentially decayed learning rate strategy
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Fig. 11. Example of training progress and convergence history of the FNN
model in this work. The mean-squared errors on both the training set and the
validation set reduce together before reaching the minimum, indicating good
convergence and no obvious overfitting.

is implemented to yield a better model convergence, where the
initial learning rate is 0.02 and the decaying rate is 50% per
200 epochs. To start with, the dataset of N87 ferrite material in
the MagNet database is selected, and the dataset is randomly
split into two parts as 80% and 20%. The first part is further
split into five subsets to conduct a K-fold (K = 5) training and
cross validation of the candidate networks, while the second part
is kept aside untouched for performance evaluation. The total
number of training epochs is 4000. Fig. 11 shows an example of
training progress, where the mean squared errors on the training
set and validation set are plotted on a logarithmic scale. The
convergence history leads to two important conclusions. First,
based on the given number of training epochs, we can observe
that the neural network has sufficiently converged as the error
on the training set is minimized. This indicates that the network
has learned the underlying patterns and features within the data.
Second, we can deduce that there is no significant overfitting
occurring during the network training. This is evident from
the continuous decrease in the error on the validation set as
the training progresses, without any bouncing back that would
trigger early stopping.

To determine the number of neurons in each hidden layer,
we need to consider the tradeoff between the network size
and network performance. A small network may have limited
learning capability and cannot capture all needed details, while
a large network is more prone to overfitting, and requires more
data for training. Besides, the size and complexity of the net-
work also impact the training time. To analyze the relationship
between the network size and prediction performance, we first
set multiple boundaries for the number of neurons in each layer.
A hyperparameter optimization tool—Optuna [49]—is selected
to automatically search for the optimal number of neurons in
each layer within each range. Table III lists the search range for
the number of neurons in each layer, the local optimal number
of neurons, and the average and maximum relative error of the
prediction results on the test set for five FNNs with different
scales. The total number of parameters in each neural network
is also listed. As expected, prediction performance boosts as the
size of the neural network increases. Note that an unnecessarily

TABLE III
PERFORMANCE OF A FEW DIFFERENT FNN MODELS WITH DIFFERENT SIZES

FOR N87 MATERIAL WITH TRIANGULAR-WAVE EXCITATION

Fig. 12. Prediction results of three neural network core loss models for the
N87 material at 300 kHz. (a) Small scale. (b) Medium scale. (c) Large scale.
The prediction accuracy increases as the number of hidden neurons scales up.
The presented testing data are not included in the training data.

large neural network is not desirable either, which tends to result
in overfitting issues.

Specifically, three neural networks with different numbers of
hidden layers neurons are selected for the case study, including
NN(2, 1, 3), NN(5, 8, 4), and NN(44, 57, 47), noted as a
small-scale network, a medium-scale network, and a large-scale
network, respectively. Note NN(2, 1, 3) has two neurons in layer
#1, one neurons in layer #2, and three neurons in layer #3. Fig. 12
compares the predicted core loss curves of the three different
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Fig. 13. Prediction results of iGSE for the N87 material at 300 kHz. A single
set of Steinmetz parameters are used to predict the core loss across a wide range.
The Steinmetz parameters are calculated based on the least squares curve fitting
of the core loss data under 50% duty ratio triangular excitations.

neural network models for N87 material under triangular exci-
tation with different duty ratios. The results demonstrate that a
small neural network is only capable of capturing part of the
magnetic core loss characteristics (e.g., the slope of core loss
curves), but unable to distinguish the impact of duty ratios. As
the scale of the network increases, the model starts to capture the
nonlinear impact of duty ratio, and eventually achieves a very
close match with the measured core loss curves, given a large
number of hidden neurons. This validates the effectiveness of
FNNs on magnetic core loss under certain shapes of excitation
waveforms.

The size and complexity of the neural network impact the
required data size and the computational cost. In the example
experiments, the typical elapsed time per training epoch is mea-
sured to be 98, 104, and 125 ms for the aforementioned small-,
medium-, and large-scale networks, on the Google Colab server.
Note the neural networks used in our study are considerably
smaller than other models (e.g., ChatGPT and AlphaGo) that
often contain millions or billions of parameters. We have also
performed parallel neural network training on high-performance
computing clusters, which can accelerate the training by hundred
times. Therefore, the increased computational cost in our study
remains negligible compared to the rapidly advancing computa-
tion capability. As a result, our optimization primarily prioritized
prediction accuracy and data size, without considering compu-
tational cost as a key tradeoff.

Fig. 13 presents a comparison of the calculated core loss
curves based on the iGSE for N87 material under triangular
excitations with different duty ratios. The Steinmetz parameters
are determined based on the least squares curve fitting of the
core loss data under 50% duty ratio triangular excitations. It
is observed that the iGSE model achieves high accuracy for
the 50% duty ratio, as the Steinmetz parameters are specifically
calculated to fit these data points. However, for duty ratios other
than 50%, there is a certain degree of prediction mismatch.
Quantitatively, the iGSE model exhibits an average relative error
of 14.6% and a maximum relative error of 61.1%, positioning
it between the small-scale and medium-scale neural network
models in terms of accuracy. A commonly used approach to
improve the accuracy of equation-based models is to implement
the local curve fitting with a loss map, which equivalently

increases the number of parameters. NN models generally con-
tain a significantly larger number of learnable parameters to
capture the nonlinear behaviors across a wider range of different
dimensions.

The accuracy of equation-based models is inherently limited
by their mathematical form and cannot describe nonlinearity
beyond their defined equations. Neural network models can
be extended or retrained with more input variables to capture
other impact factors, such as the temperature and the dc bias,
while special attention must be paid when considering multiple
variables with different orders of magnitude, in which case the
normalization operation is necessary in order to uniform the
data distribution, as well as avoid undesired numerical problems
during the training.

B. Sequence-to-Scalar Model: LSTM Network

One limitation of the scalar-to-scalar models is that the predic-
tion relies on the scalar representation of waveform shapes. One
has to train different neural networks for describing different
waveforms, and no measurement waveforms can be perfectly
described by a few scalar inputs. There are an infinite number of
waveform shape combinations, each requiring a different set of
scalar values for description. The waveforms are often nonideal,
including distortions, ripple, oscillation, ramping rates, etc. It is
impractical to categorize and design separate neural network
structures for all different cases. Even so, converting a measure-
ment waveform into scalar representations introduces errors.
A sequence-based neural network structure, which avoids the
sequence-to-scalar descriptions, can overcome these limitations.

Although sequence-input neural networks are capable of cap-
turing material behaviors in transient (e.g., the wavelet model
in [1]), the MagNet database in its current state does not include
sufficient data to perform a systematic study of transient behav-
ior. As a result, we focus on modeling the periodic steady-state
behavior of power magnetics. Modeling transient characteristics
is beyond the scope of this article.

The long short-term memory (LSTM) network [50], [51] is
one of the most commonly used neural networks for regression
problems with sequential input. An LSTM has feedback con-
nections with the capability of memorizing information across
the sequences of data. LSTM networks are well suited for
classifying and making predictions based on time series data,
especially if there are sophisticated correlations (e.g., memory
effects) in the time domain. Modeling the unclear sequential
causality relationships between B(t), H(t), and core losses is
LSTM models’ forte.

Fig. 14(a) shows the basic structure of a standard LSTM cell.
The fundamental mechanism of an LSTM cell that distinguishes
it from other types of recurrent neural networks is the implemen-
tation of the input gate it, the forget gate ft, and the output gate
ot. With these gates, the cell is able to regulate the information
flow and selectively memorize the important information across
a specific time interval within the sequence rather than across
the entire sequence. Mathematically, the operation of the LSTM
cell at time t can be described as

ft = σ (Wifxt + bif +Whfht−1 + bhf )
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Fig. 14. Network structure of the LSTM network for sequence-to-scalar model. (a) Basic structure of a standard LSTM cell, which contains the input gate, the
forget gate, and the output gate. (b) Structure of an example LSTM-based sequence-to-scalar magnetic core loss model, which takes the time sequence as inputs.

it = σ (Wiixt + bii +Whiht−1 + bhi)

gt = tanh (Wigxt + big +Whght−1 + bhg)

ot = σ (Wioxt + bio +Whoht−1 + bho)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct) (7)

where ct and ht refer to the cell states and the hidden states,
respectively. These states are the recurrent variables that will
be fed back to the LSTM cell and thus provide the memorizing
capability. The function σ(x) is the Sigmoid function that oper-
ates as the activation function to provide the nonlinear learning
capability. As in an FNN,W and b are the weights and biases, and
the subscript refers to the source and target variables that they
are applied to. The operator � stands for the Hadamard product,
which performs an elementwise product for all the elements of
two matrices.

To start, based on the inputs xt and the previous hidden states
ht−1, the forget gate ft determines to what extent the cell states
impact the calculation at the current time step. Then similarly,
the input gate it and the cell gate gt jointly determine how the
cell states are updated. Finally, the output gate ot regulates and
updates the hidden states ht, which are typically considered as
the output of an LSTM cell.

In this particular example, we develop an LSTM-based
sequence-to-scalar model with time sequences of excitation
flux density B(t) as the input (full waveform with multiple
cycles, fixed length, rather than the single-cycle data), and the
volumetric power loss as the output. An example structure of
the model is demonstrated in Fig. 14(b). The input layer of the
LSTM takes the entire flux density waveform as a sequence
input. The output of LSTM is aggregated and loaded with an
FNN to perform the core loss regression. In this example design,
the LSTM has 32 cell states and 32 hidden states, while the
FNN comprises three hidden layers. The output of the FNN is
the volumetric magnetic core loss. This example model contains
5569 parameters in total.

To validate the effectiveness of this LSTM-based core loss
model, the network shown in Fig. 14 is synthesized and trained
with PyTorch. A merged dataset that contains all three types
of waveforms (sinusoidal, triangular, and trapezoidal) for N87
material is now selected, instead of the single-shape waveform
in the scalar-to-scalar cases. Due to the fact that different types

of waveform shapes have different degrees of freedom (e.g.,
the amplitude, the frequency, and the duty ratio), the numbers
of original data points for the sinusoidal wave, the triangular
wave, and the trapezoidal wave vary significantly, as listed in
Table II. Such an unbalanced dataset may potentially impact the
performance of the neural network model. Data augmentation
techniques can be used to increase the scale of the original
dataset and balance the data distribution.

In this work, the augmentation technique consists of circularly
shifting and adding noise, where each of the waveforms is
circularly shifted with a random phase [52] and then superposed
with white noise. It is usually hypothesized that the steady-state
magnetic core loss stays constant regardless of the starting phase
of the waveform. This is generally valid because

1) all measurements are initialized from nearly zero magne-
tization with the excitation amplitude gradually ramping
up from zero, and waveforms are captured only once the
steady state is reached, such that the impact of magnetizing
history is negligible to the core loss; and

2) both the measured waveform and the postprocessed
single-cycle sequence are sections of the real waveforms,
and represent the same steady-state operating condition.
The LSTM network, however, does not naturally enforce
the periodicity within the sequences.

Hence, these data augmentation with random phase assign-
ments not only ensures that the predicted results are consistent
and reasonable, but also helps to enhance the neural network’s
capability of characterizing the intrinsic physics, rather than
simply memorizing the waveforms.

The augmented dataset is further shuffled and randomly split
into the training set, the validation set, and the test set with a ratio
of 70%, 20%, and 10%. Figs. 15 and 16 illustrate the process of
data augmentation, balancing, and shuffling. Other techniques,
such as weighting the network loss function, can also help to
tackle the unbalance of the dataset, yet are beyond the scope of
this work.

Fig. 17 shows the error distribution between the measured
core loss and the predicted core loss achieved by the LSTM-
based model. More prediction results are listed in Table IV. As
observed, the proposed LSTM model achieves a good core loss
prediction accuracy for all three types of waveforms, where the
relative error approximately has an even and unbiased distribu-
tion that is close to 0%. The overall absolute average of relative
error is around 2% and the maximum relative error is within
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Fig. 15. Data preparation process of sequence-based network training. The
original dataset is augmented and balanced by assigning a random phase shift,
then shuffled and randomly split into the training set, the validation set, and the
test set.

Fig. 16. Example illustration of the data augmentation for sinusoidal wave-
forms. Each waveform sequence is circularly shifted with a random phase. The-
oretically, the magnetic core loss does not change in the steady state regardless
of the starting phase.

Fig. 17. Distribution of the testing relative error for the LSTM-based core loss
model on the N87 ferrite material.

TABLE IV
LSTM MODELING RESULTS FOR N87 MATERIAL AS CORE LOSS ERROR

15%. The LSTM model contains 5,569 parameters in total,
which is close to the largest FNN mentioned in Section V-A.
Nevertheless, this LSTM-based model is able to make core loss
predictions for all three types of waveforms and beyond. The
applicability of this LSTM model is not restricted by the scalar
representation of waveform shapes. It can be inferred to predict
the core loss for excitation waveforms that are not precisely
included in the training data. With appropriate fine-tuning and
by incorporating new data into the training dataset, the sequence-
based model can effectively provide reasonably accurate results
for new waveform shapes beyond the three types of waveform
shapes demonstrated above.

Predicting the magnetic material characteristics for arbitrary
waveforms beyond the training data with a neural network
model is possible but has not been rigorously proved, just as
with equation-based methods. To the authors’ best knowledge,
existing physical understandings about power magnetics are not
sufficient for rigorously examining the extrapolation capabilities
of different models.

Since the core loss is also affected by other influencing factors
such as temperature and dc bias, one can add more input neurons
to the neural network to incorporate additional influencing fac-
tors. This motivates the design of the encoder-projector-decoder
architecture in the following section.

C. Sequence-to-Sequence Model: Encoder-Decoder Network

The above example proves the effectiveness of LSTM net-
works for solving sequence-to-scalar problems, extending from
which we can further explore the concept of the sequence-
to-sequence model in order to capture the magnetic material
behavior more comprehensively.

The encoder-decoder network architecture [53] is one of the
state-of-the-art architectures for solving sequence-to-sequence
regression problems that attracts significant attention in recent
years. It has proved to be successful in applications such as
voice-to-voice translation and stock-price correlation, both of
which take a time sequence as the input and map it to another
time sequence as the output. The modeling of the magnetic
B–H hysteresis behavior is faced with similar problems as
the aforementioned applications. However, the modeling of the
B–H loop can be more complicated to some extent, as it is also
impacted by other factors besides the time sequence itself, such
as the temperature and the dc bias.

Here we proposed an encoder-projector-decoder network ar-
chitecture as shown in Fig. 18 for B–H loop regression. The
encoder is composed of a 1-layer 32-state LSTM network.
Leveraging the input gate, forget gate, and output gate mech-
anism of the LSTM, the input sequence B(t) passes through
the encoder in such order that the encoder captures and saves
the characteristics within the sequence as the hidden states and
cell states. The hidden states and cell states are then passed
into the projector, which consists of a three-layer FNN with
64 hidden neurons in each layer. The additional inputs, such
as the temperature T , the frequency f , and the dc bias Hdc

are concatenated with the states and fed to the projector at the
same time. In order to avoid the potential mismatch among
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Fig. 18. Structure of an example encoder-projector-decoder network architecture that predicts the response sequence H(t) based on the excitation sequence
B(t) and additional inputs of temperature T , frequency f , and DC bias Hdc.

the scales of different input variables, a normalization process
is implemented. The FNN projector modifies the state values
according to the values of these additional inputs and generates
the updated state values. The updated values are further loaded
into the decoder to initialize its states. The decoder has the same
network structure as the encoder. Based on the updated values
of hidden states and cell states, the decoder generates the output
sequence H(t).

The difference between the encoder and the decoder is that
the encoder processes the entire input sequence all at once,
while the decoder generates the output sequence step-by-step,
which is also known as autoregressive inference or walk-through
validation. To start with, a default value is fed to the decoder to
initialize the output and generate the first time step of the output
sequence. Then, the generated value is fed back to the decoder
to generate the next time step in iteration, until the entire output
sequence is generated.

The mean-squared error between the predicted sequence and
the target sequence is selected as the loss function (quanti-
fying the discrepancy) to update the weights and biases in
the network. Other loss functions are also feasible, such as
a higher order power of error to penalize more on the data
points with larger amplitude, a relative loss function to balance
the error distribution across the entire amplitude range, or a
phase-related loss function to minimize the phase mismatch,
which is critical to the accurate prediction of the magnetic core
loss. These complex loss functions, however, may increase the
difficulty for the neural network to converge, and make the
training process less stable or even diverged. Here, we present
two training examples to demonstrate the effectiveness of the
proposed encoder-projector-decoder network architecture.

1) B–H Loop Prediction for Different Excitation Waveforms:
The first case study is to predict the B–H loops under different
excitation waveforms. The input sequences are the flux density
waveforms in sinusoidal, triangular, and trapezoidal shapes,
whose amplitude varies from 10 to 300 mT. The additional input
for the projector is the fundamental frequency of the excitation
waveform in the range of 50 to 500 kHz. The temperature is
fixed at 25 ◦C and the dc bias is set to zero. Each pair of
B–H sequences is circularly shifted with a random phase, as
mentioned in Section V-B, to augment the data and minimize

the impact of phase. The entire dataset contains 15 327 pairs
of B–H sequences, which are split into the training set (70%),
the validation set (20%), and the test set (10%). The data are
shuffled before each training process.

Fig. 19 shows two examples of the comparison between the
predicted sequence and the target sequence at different stages of
the training, one for a triangular H(t) waveform prediction, and
the other for a trapezoidalH(t)waveform prediction. In the early
stage of the training, the predicted sequence largely deviates
from the target sequence. As the training continues and the neural
network model converges, the mismatch between the predicted
sequence and the target sequence is gradually corrected, and
eventually achieves a good match. Detailed waveform patterns
are gradually adjusted by network training algorithm. Similar
trends can be observed from the predictions of B–H loops.

To quantitatively evaluate the prediction accuracy, the relative
error of sequence matching is defined as

Relative Error of Sequence =
rms(Hpred −Hmeas)

rms(Hmeas)

=

√
1
n

∑tn
t=t1

(Hpred(t)−Hmeas(t))
2√

1
n

∑tn
t=t1

(Hmeas(t))
2

. (8)

The model is evaluated with the test set based on this definition.
Fig. 20 shows the histogram of the relative error. Overall, a
3.73% average relative error of the sequence-to-sequence match-
ing is achieved, and the maximum relative error is 18.29%. The
proposed sequence-to-sequence model is capable of accurately
predicting the responseH(t) sequence given the excitationB(t)
sequence across a wide frequency range and under multiple types
of excitations. Similar to the LSTM-based sequence-to-scalar
model, this sequence-to-sequence model is also not constrained
by the waveform shapes, and can be easily fine-tuned and
generalized to different waveform shapes as long as they are
included into the training dataset.

Moreover, with the predicted B–H loops, one can calculate
the area of the loop as the core loss density with the integral

PV =
1

T

∫ B(T )

B(0)

H(t) dB(t) (9)
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Fig. 19. Triangular and trapezoidal output sequences (N87 ferrite, 150 kHz, 25 ◦C) and the corresponding B–H loops predicted by the sequence-to-sequence
model at different stages of network training, where the training dataset contains different shapes of waveforms at different amplitudes and frequencies but the
same temperature. The accuracy of the prediction improves with the training proceeding as the NN gradually converges.

Fig. 20. Distribution histogram of the relative error of the sequence matching
for N87 material under multiple types of waveforms and at 25 ◦C.

to compare the predicted core loss against the measured core
loss. Fig. 21 illustrates the distribution of the relative error of the
predicted core loss on the f–B plane. Most of the data points
are predicted with a low relative error below 15%. The high-
error cases mainly concentrate in those areas with very low flux

Fig. 21. Error distribution of the predicted core loss density based on the
predicted B–H loops for N87 material under multiple types of waveforms
(sinusoidal, triangular, trapezoidal) and at 25 ◦C.

density or frequency, where the core loss itself is extremely small
and close to the limit of the equipment.
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Fig. 22. Sinusoidal output sequence (N87 ferrite, 220 kHz, 50 ◦C) and the corresponding B–H loops of the sequence-to-sequence model at different stages of
network training, where the training dataset contains sinusoidal waves at different amplitudes, frequencies, and temperatures. The prediction accuracy improves
with the training proceeding, indicating the NN is learning the patterns in the B–H relationships.

It should also be noticed that the accuracy of the sequence-
to-sequence regression is not necessarily consistent with that of
the core loss prediction. Intuitively, a small phase mismatch in
the predicted sequence may or may not lead to a large relative
error in sequence-to-sequence regression, but can significantly
impact the core loss prediction. One solution is to include the
core loss mismatch into the training loss function.

2) B–H Loop Prediction Under Different Temperatures: The
second example is to predict the B–H loops under different
temperature conditions. The shape of the input flux density
sequence is fixed as the sinusoidal wave, while the additional
inputs of the projector now contain the temperature at different
values, including 25 ◦C, 30 ◦C, 50 ◦C, 70 ◦C, and 90 ◦C, together
with the frequency of the corresponding sequence and zero dc
bias. Phase-shift data augmentation is implemented as afore-
mentioned. The dataset contains 4359 pairs of B–H sequences,
which are similarly split into the training set, validation set, and
test set.

Fig. 22 shows an example comparison between the predicted
sequence and the target sequence at different stages of the
training process, as well as the correspondingB–H loops. When
the training begins, the predicted sequence deviates greatly from
the target sequence. As the training continues, the mismatch
between the predicted sequence and the target sequence is grad-
ually reduced, and eventually, a good match is achieved. Using
the same criteria defined in the above section, a 1.33% averaged
relative error with a maximum of 8.32% of the sequence-to-
sequence matching is achieved. Similarly, Fig. 23 demonstrates
the histogram of the relative error. The predicted core loss is also
calculated based on the predicted B–H loops, the error distribu-
tion of which is illustrated in Fig. 24 in the f–B–T space. The
high-error cases concentrate in low flux density, low frequency,
and high temperature areas, where the core losses are very small
and a minor mismatch may lead to a large relative error.

Fig. 23. Distribution histogram of the relative error of the sequence matching
for N87 material under sinusoidal waveforms and at multiple temperature
conditions.

D. Transfer Learning for Data Size Reduction

In the above examples, the large-scale database MagNet acts
as a foundation that supports the training and testing of the
data-driven models. Sometimes, however, it is unrealistic for
designers to build a core loss measurement platform by them-
selves and collect a sufficiently large amount of data for model
training, especially when dealing with new materials that only
have a limited number of data points available, or dealing with
operating conditions that are outside the ranges covered by the
database or the capability of the equipment.

Transfer learning is a machine learning technique in which
knowledge gained by solving one problem is applied to a similar
problem. A major hypothesis behind applying transfer learn-
ing to magnetic modeling is that similar physical mechanisms
govern the response of similar magnetic materials to similar
excitations. As a result, one can train a generic neural network
model that captures the common patterns and characteristics of
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Fig. 24. Error distribution of the predicted core loss density based on the
predicted B–H loops for N87 material under sinusoidal waveforms and at
multiple temperature conditions.

Fig. 25. Key principle of transfer learning for magnetic core loss modeling.

Fig. 26. Network training process of the material-to-material transfer learning.

magnetic materials, and further use it to support the development
of the models for other new materials, excitations, temperature,
or dc bias. Fig. 25 illustrates the basic principle of transfer
learning. We demonstrate material-to-material and temperature-
to-temperature transfer learning to elaborate the key concepts.

1) Material-to-Material Transfer Learning: Material-to-
material transfer learning is helpful if a model for a new magnetic
material is needed, and only a small amount of data for this new
material is available. Transfer learning can reduce the required
size of the dataset needed to achieve satisfactory accuracy with
a neural network model.

Fig. 26 illustrates three machine learning experiments to
demonstrate the principles of transfer learning:

1) selecting four materials from the MagNet database (N27,
N49, 3C90, 3C94) as the existing materials, and employ-
ing a large amount of their data to train a pretrained model
similar to the FNN trained in Section V-A. The data points
of the four materials are directly mixed into a larger dataset

Fig. 27. Prediction results of: (a) applying a pretrained model to the new
material without retraining; (b) applying a pretrained model to a new material
after retraining with very few data points (100, randomly selected) from the new
material; (c) applying a randomly initialized model trained only with very few
data (100, randomly selected) from the new material; (d) applying a randomly
initialized model trained with a large amount of data from the new material.

for the network training, while the material type itself is
not used as the input;

2) selecting another material from the MagNet database
(N87) as the targeted new material that has a limited
amount of core loss data, and retraining on the pretrained
model with only a small amount of data randomly selected
from the database;

3) for comparison purpose, direct training of a randomly
initialized neural network with the same small amount
of data.

Fig. 27 shows the results of material-to-material transfer
learning for triangular 180 kHz excitations and three different
duty ratios. The pretrained model is trained on the large-scale
data (30 705 data points in total) of the four existing materials
(N27, N49, 3C90, 3C94). Fig. 27(a) shows the prediction results
applying the pretrained model directly to the new material (N87)
before retraining. The pretrained model can capture some com-
mon patterns of the magnetic core loss, such as the approximate
exponential relationship between the core loss and the flux
density, as well as the impact of the duty ratios, but failed to
capture the details.

The pretrained model is retrained with 100 new data from the
N87 material. Fig. 27(b) shows the updated prediction results.
After retraining, the pretrained model is greatly improved. The
rationale behind the results is that the pretraining procedure
provides a good starting point for the retraining, where the
new data fine-tunes the model and greatly improves the model’s
accuracy. In comparison, Fig. 27(c) shows the results when the
network is simply randomly initialized and only trained with
100 new data from the new material, without pretraining. It is
observed that this model unsuccessfully captures the distribution
of the magnetic core loss, and the predicted curves deviate
greatly from the measured curves.
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Fig. 28. Error distribution of the prediction results of: (a) applying a randomly
initialized model trained only with 100 data points randomly selected from the
N87 material data points (normal training); (b) applying a pretrained model
based on four existing materials to the N87 material data points after retraining
with 100 randomly selected data points (transfer learning). The plotted points
are the subset of data with a duty ratio of 0.5.

To provide a benchmark, a normal training process is also con-
ducted, similar to the one described in Section V-A, where a ran-
domly initialized neural network is trained with a large amount
of data from the new material. This benchmark experiment
achieves the highest prediction accuracy as expected, shown in
Fig. 27(d), among the four experiments aforementioned. The
prediction results of the transfer-learned model, however, are
almost comparably accurate as those of the benchmark model,
despite the fact that only a small amount of data are available
in this case. It proves the effectiveness of material-to-material
transfer learning.

Fig. 28 shows the overall error distribution of the normal
training results and the transfer learning results, corresponding to
Fig. 27(b) and (c), respectively, where the duty ratio is selected
to be 0.5. In the normal training case without pretraining, the
network performs poorly in most of the areas due to the limitation
of available training data, resulting in a large average relative
error of more than 50%. On the contrary, with transfer learning,
the network achieves a reasonably good accuracy across the
entire evaluation range, resulting in an absolute average error of
8.81%.

Furthermore, the pretraining, retraining, and testing processes
are repeated many times while varying the number of data points
available for the retraining step. Fig. 29 shows the testing average
relative errors on the y-axis with the numbers of available data
points on the x-axis ranging from 25 to 3600. The percent errors
are averaged over ten trials to ensure consistency. The pretrained
neural networks constantly achieve good performance no matter

Fig. 29. Testing average relative error rates after training the normal FNN and
retraining the pretrained FNN with a varied amount of data.

Fig. 30. Network training process of the temperature-to-temperature transfer
learning. Pretraining and fine-tuning can greatly reduce the amount of data
needed to model the power magnetics at a different temperature.

if it is provided with 25 target data points or 3600, whereas
a normal and randomly initialized FNN requires at least 2400
data points to consistently accomplish good and comparable
performance with a similar error rate. The amount of data needed
to retrain the neural network for a new material is significantly
reduced by transfer learning.

2) Temperature-to-Temperature Transfer Learning: Tem-
perature also greatly influences the behavior of magnetic ma-
terials. Using an established model based on the data measured
under one temperature to predict the magnetic core loss un-
der another temperature will lead to a significant mismatch.
Temperature-to-temperature transfer learning method helps to
build a neural network model that works for different tem-
perature conditions, especially when the available data across
different temperatures is limited.

The principles of temperature-to-temperature transfer learn-
ing are similar to that of material-to-material transfer learning.
Fig. 30 shows an example training process to transfer the model
for 25 ◦C to a new one for 90 ◦C. In this example, the neural
network is pretrained for 500 epochs based on the core loss data
of N87 ferrite material that measured at 25 ◦C with sinusoidal
excitations. This source dataset is selected from the MagNet
database, consisting of 800 data points. Then, the model is
further retrained and fine-tuned with a small number of data
points that measured at 90 ◦C for 3000 epochs. To make a
comparison, a randomly initialized network without pretraining
is also trained based on the same limited dataset with the same
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Fig. 31. Prediction results of: (a) applying a pretrained 25 ◦C model to the
90 ◦C data points without retraining; (b) applying a pretrained 25 ◦C model to
the 90 ◦C data points after retraining with very few data points (10, randomly
selected) from the 90 ◦C data points; (c) applying a randomly initialized model
trained only with very few data points (10, randomly selected) from the 90 ◦C data
points; (d) applying a randomly initialized model trained with a large amount
of data (800) from the 90 ◦C data points.

training settings. As a benchmark, both networks are trained with
a large dataset containing 800 data points measured at 90 ◦C,
which represents the cases, where there are no limitations on
the number of available data points. All the network models are
again synthesized with the same structure as the NN(15, 15, 9)
FNN mentioned in Section V-A.

Fig. 31 demonstrates multiple core loss curves predicted by
different network models. In Fig. 31(a), the model that pretrained
with the 25 ◦C data points is directly evaluated with the 90 ◦C
data points without retraining, where the predicted core loss
curves match poorly with the measured ones due to the tempera-
ture difference. After retraining with a small dataset that contains
only ten 90 ◦C data points, the model is effectively transferred,
and the predicted curves match well with the measured ones, as
shown in Fig. 31(b). The prediction accuracy is comparable to
that of the model demonstrated in Fig. 31(d), which is trained
with the large dataset. In comparison, the network model that is
directly trained with the small dataset without pretraining only
achieves a rough prediction, as observed in Fig. 31(c), where
the accuracy is obviously inferior to that of the transfer learning
case.

More specifically, Fig. 32 displays the overall error distri-
bution of the normal training results and the transfer learning
results, corresponding to Fig. 31(b) and (c), respectively. The
ten data points included in the training and the retraining dataset
are marked as black pentagrams. In the normal training case
without pretraining, the network only achieves a low relative
error in those areas around the ten training data points, but
performs poorly in other areas, resulting in an absolute average
error of 28.4%. On the contrary, with the transfer learning
process, the network not only achieves lower relative error in
the areas around the ten training data points, but also maintains

Fig. 32. Error distribution of the prediction results of (a) applying a randomly
initialized model trained only with ten data points randomly selected from the
90 ◦C data points (normal training); (b) applying a pretrained 25 ◦C model to the
90 ◦C data points after retraining with ten data points randomly selected from
the 90 ◦C data points (transfer learning).

Fig. 33. Testing average relative error rates of the normal training and the
transfer learning as the size of the new data increase.

a good accuracy across the entire evaluation range, resulting in
an absolute average error of 7.94%.

The above temperature-to-temperature transfer learning and
normal training process are repeated multiple times while
sweeping the number of data points available for the training
and retraining step. The number of data points in this limited
dataset is selected from 10, 20, 50, 100, 200, and 400. Fig. 33
shows the testing average relative error of each case for both
the normal training and the transfer learning. As observed, the
amount of data needed for retraining the neural network for a
new temperature is similarly reduced by transfer learning.
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Fig. 34. Circuit schematic of the power stage for generating the excitations
and measuring the magnetic component behaviors in the data acquisition system
of MagNet.

VI. CONCLUSION

This article applies machine learning to modeling power mag-
netics. We first present an open-source large-scale database—
MagNet—for data-driven magnetic components modeling. The
data quality of MagNet is carefully evaluated and controlled
to ensure model accuracy. With a large amount of data in the
MagNet database, several example neural network modeling ap-
plications of the MagNet database have been explored, including
the scalar-to-scalar model, the sequence-to-scalar model, the
sequence-to-sequence model, as well as the transfer learning
methods, which prove the effectiveness of neural networks in
modeling the behavior of power magnetics. We anticipate that
with constantly increasing scale, data quality, and waveform
diversity, MagNet can offer unique opportunities to researchers
in power electronics, power magnetics, and data science.

APPENDIX A

AUTOMATED DATA ACQUISITION

We introduce more details about the design of the data acqui-
sition system in the following aspects.

A. Excitation

With this setup, the DUT can be excited with sinusoidal,
triangular, and trapezoidal waveforms.

In our design, sinusoidal waveforms are synthesized and
created using a function generator (Rigol DG4102) and a power
amplifier (Amplifier Research 25A250AM6). The computer sets
the command for the frequency and voltage for the signal gen-
erator automatically to generate different sinusoidal excitations.
Calibration for each measurement is required, as the voltage
gain of the power amplifier is not constant due to the changing
load under different conditions. Moreover, distorted voltage and
current are obtained when the core is subjected to a large Bac

due to the power gain of the amplifier and low load impedance.
For piecewise linear waveforms, such as triangular and trape-

zoidal excitations, a T-type inverter supplied by two voltage
sources (B&K Precision XLN60026) is used, as illustrated
in Fig. 34. GaN devices (GaN System GS66508B) are em-
ployed to obtain transitions between the three voltage levels
[Vin; 0;−Vin]. To control the waveform shape, a microcontroller
(Texas Instruments F28379D controlCARD) commanded the

Fig. 35. Circuit schematic of the auxiliary DC-bias current injection circuitry
for the measurements under DC-bias conditions.

signals for the drivers. The microcontroller and voltage source
commands are synchronized by the host PC to iterate the differ-
ent duty cycles, frequencies, and amplitudes of the waveform.

To block the average voltage of the switching node of the
power stage or any unwanted dc current present in the power
amplifier, a blocking capacitor is placed in series with the DUT.
The capacitance should be large enough to avoid the voltage
ripple distorting the excitation. For this purpose, a 100 μF 100 V
film capacitor is used.

To test the core under different dc bias conditions, an addi-
tional dc-bias current injection circuitry is included. A dc current
is injected into the primary winding, after the series capacitor.
This is preferred over the traditional third winding method [40],
[54], [55]) as it avoids the unwanted current ripple in the dc
winding. A mirror transformer and a filter inductor are added
as indicated in Fig. 35, to prevent the reflected voltage of the
DUT to be applied to the current source. The current source is a
voltage supply (Siglent SPD3303X-E) with the current limit set
by the computer automatically. Details regarding the operation
and construction of the dc bias circuit can be found in [56].

Please note that a direct current is used to define the dc bias,
implying that cores are tested under predefined Hdc rather than
Bdc. The reason is that Bdc cannot be controlled properly as
the initial state of magnetization (B0) is not known. Bdc is
not reported in this work as relating Hdc and Bdc through the
initial magnetization curve might not be a reasonable approach,
as described in [39].

B. Device Under Test

The DUT consists of a toroidal magnetic core, a primary wind-
ing, and a secondary winding. The primary winding is connected
to the power stage and used for exciting the core, whereas the
secondary winding is open-circuited and used for inferring the
magnetic flux density (B) by integrating the measured voltage
across its terminals.

The DUTs considered for most of this article are in R34.0
× 20.5× 12.5 or similar sizes as typically used in the manu-
facturer’s datasheet. Please note that the size and geometry of
the magnetic core do affect the measured characteristics, such
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as the B–H loop and the core loss, primarily due to its impact
on the flux density distribution within the core. The effect of
geometry is beyond the scope of this article. Discussions on the
measurement results with different core sizes can be found in
another publication [14].

The alternating current in the shunt and the maximum flux
density set the limits for the number of turns. Given the rated
voltage of the data acquisition system, the number of turns
should be selected such that the available range of flux density
and frequency is maximized. On the other hand, the number of
turns also changes the inductance of the DUT, which is limited
by the rated current of the data acquisition system. In this work,
for example, the number of turns for the TDK N87 DUT is
designed as 5 for both the primary and secondary windings. For
the primary winding, 22 AWG Litz wire with 40 strands of 38
AWG wires optimized for 100 kHz is used. For secondary, as the
current is theoretically zero, an 18 AWG round wire is used. As
discussed in [57], toroidal cores without air gaps are preferred
for magnetic characterization.

C. Measurement and Acquisition

The measurements for the voltage and current waveform
are acquired directly with an 8-bit oscilloscope (Tektronix
DPO4054). A waveform of 10 000 samples is saved for each
test, with a sampling rate of 10 ns, leading to a total time for
the sample of 100 μs. Therefore, different number of switching
cycles are captured depending on the frequency of the excitation.
The bandwidth of the measurement is limited to 20 MHz to
avoid excessive switching noise in the triangular/trapezoidal
waveforms due to the fast switching transitions.

For the voltage measurement, a low-capacitance passive probe
(Tektronix P6139 A) is used. For the current, a coaxial shunt
(T&M Research W-5-10-1STUD) of 0.983 Ω is connected in
series with the primary winding of the DUT, as it is preferred over
current probes to minimize the phase mismatch [39], [40], [54].
The terminal impedance of the current measurement channel
in the oscilloscope is set to 50 Ω and is accounted for in the
calculation of the current [39].

D. Temperature Control

Keeping a controlled temperature for the DUT is critical since
core losses are highly temperature dependent. This is challeng-
ing as core losses during testing cause the core to heat up. To
set the temperature at the desired level, the DUT is submerged
in a mineral oil bath, which is inside a large water tank. The
temperature of the water tank is controlled using a water heater
(ANOVA AN400). The water tank is covered to ensure the oil
reaches the same temperature as the water. To prevent the DUT
from reaching temperatures significantly higher than the one set
by the water heater, a magnetic stirrer is used (INTLLAB) to
keep the oil constantly flowing.

E. Software System

Python-based software interface on the host PC is designed
and programmed to control and coordinate with the hardware

Fig. 36. Range of measurement for the flux density amplitude and the
frequency.

system to enable fully automated equipment settings, synchro-
nization of the different instruments, perform the measurements,
and store the acquired data.

The software has three major functions: a) communication
with the power stage (power supplies, microcontroller and func-
tion generator) to transmit the waveform properties for each test,
including the frequency, voltage, and waveform shape, so that the
power stage can synthesize and generate the desired excitations;
b) communication with the oscilloscope to set the configuration
of signal sampling and data acquisition, perform calibration
if needed, and receive the measured digitized waveforms; c)
storing the collected data points and converting them into the
expected dataset format.

Specifically, the communication with the microcontroller is
implemented based on the UART protocol, and the communi-
cation with equipment including the power source, the function
generator, and the oscilloscope, is implemented with the support
of the virtual instrument software architecture (VISA) protocol.
The three aforementioned functions are executed in sequence
within a multilevel iteration loop that sweeps the entire param-
eter space automatically. No human intervention is needed to
perform a set of tests except to change the desired temperature,
to change the connections from sinusoidal to piecewise linear
excitations, or to change the DUT.

F. Range of Measurement

The range of measurement is constrained by various factors,
and needs to be determined carefully in order to guarantee high
data quality. The proposed range of measurement for the data
acquisition system in this work is illustrated in Fig. 36.

For the flux density amplitude, data are measured in the
10 to 300 mT range with 36 steps in the logarithm scale, leaving
some distance from the saturation level provided by the material
datasheet. Logarithm scales are preferred due to the exponential
nature of core losses with Bac.

For the frequency, data are measured from 50 to 500 kHz.
This range fits the operation range of the cores under test. In
order to correctly and accurately obtain the characteristics of the
measured magnetic material, the frequency needs to be selected
with specific frequency steps, which guarantees the measured
waveform always contains complete cycles. Here, we selected a
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10 kHz step of frequency given the sampling rate and the number
of samples in each measurement.

Meanwhile, the ranges of flux density amplitude and fre-
quency are also constrained by the measurement accuracy, as
discussed in Section III and Appendix B, where data points with
low amplitude or high frequency are more prone to error.

Regarding the dc bias, Hdc is swept in 15 A/m linear steps.
For N87 ferrite, the limit is 60 A/m to leave some room for Bac.
To avoid running into saturation, the maximum value for Bac

(300 mT) is decreased with higher Hdc based on the maximum
amplitude permeability listed on the datasheet.

Additionally, there are limitations associated with the power
stage and the power amplifier. The voltage range for the tests
is 1 to 50 V for sinusoidal waveforms and 5 to 80 V for
PWM waveforms, considering the rated voltage of equipment
and components, which limits the Bac · f product of the data
measured, especially for those with extreme duty cycles.

Furthermore, to avoid a significant rise in the core temperature
with respect to the target temperature, measurements with ex-
tremely large estimated loss (based on iGSE) above 5000 kW/m3

are skipped. On the other hand, low loss points below the range
of interest (1 kW/m3) are skipped to reduce the data collection
time.

Considering the typical operating condition of the magnetic
materials under test and the capability of the temperature control
equipment, the temperature range for the tests is 25 to 90 ◦C.
Advanced equipment such as constant temperature ovens will
enable the measurement at higher temperatures above 100 ◦C,
which is also occasionally encountered in power magnetics
applications.

APPENDIX B

DATA QUALITY CONTROL

A. Equipment Evaluation and Calibration

The experimental setup of the MagNet data acquisition system
and its calibration processes are designed following the recom-
mendations in [39], [41], and [42]. Extra attention must be paid
when designing and implementing the measurement system to
understand the equipment limitations.

We evaluate the error and measurement capability of the
oscilloscope. The oscilloscope (Tektronix DPO4054) used in
the system is calibrated against an Agilent 34401 A 6 1

2 digits
multimeter to evaluate the dc and ac accuracy by measuring
the same dc and ac voltage signals at the same time. Relative
errors of measurements are calculated by averaging multiple
testing points among the entire measurement range from 0 to
80 V and 50 to 500 kHz. The relative error of the mean dc
voltage is measured as 0.25%, and the relative error of the RMS
ac voltage is 0.67%, which proves the oscilloscope accuracy
of VDC , IDC , vAC , and iAC [see definitions in (5)]. The gain
accuracy of the oscilloscope is rated as ±1.5% according to
the equipment specifications, which quantify the error rates of
GV and GI . Additionally, every time before the measurement
iteration starts, the signal pass of the oscilloscope is reset and
recalibrated, which minimizes the undesired zero-drift offset V0

Fig. 37. Workflow of the virtual measurement simulation. The virtual mea-
surement setup numerically simulates the impact of various sources of mea-
surement error. The virtually measured waveform is compared against the ideal
waveform to estimate the measurement accuracy.

and I0, and the time skewing θ between the voltage and current
signals.

We then evaluate the error and measurement capability of the
power stage. As mentioned in Section II, a wide-band coaxial
shunt (T&M W-5-10-1STUD) is used for measuring the current.
This current shunt has low parasitic inductance and is stable
against temperature variation. A BNC connector with parasitic
terminal capacitance lower than 10 pF is implemented to connect
the coaxial shunt, the DUT, and the circuit board. Other parasitic
capacitances on the circuit board are also minimized to our best.
All these design criteria help us to reduce the measurement error
in IDC and iAC , especially minimizing the time skewing θ,
which is critical to the accuracy of core loss measurement.

To highlight, the equipment calibration and measurement
processes are fully automated. Human influence is minimized
during the calibration and data acquisition process, which further
enhanced the measurement accuracy and consistency. Repeating
experiments on the same DUT consistently show a relative
discrepancy lower than 3% between different trials of core
loss measurements, which validates the reproducibility of the
measured data.

B. Model-Driven Method for Quantifying the Error

The accuracy of data-driven models is bounded by the accu-
racy of the data. In order to quantify the measurement error and
estimate the potential error distribution of the measured results,
a model-driven method combining the physics-based simulation
to create virtual measurement and the different uncertainties can
be assessed with Monte Carlo experiments. The error analysis
also provides a baseline for setting the accuracy target for
machine learning or curve-fitting methods.

Fig. 37 illustrates the workflow of the virtual measurement
simulation. A reference waveform is generated by the material
model and passed into the virtual measurement setup. The vir-
tual measurement setup takes various sources of measurement
error into account, numerically simulates their impact on the
measurement, and generates the virtually measured waveform.
Comparing the virtually measured waveform against the ideal
waveform, the uncertainty of the measurement can be evaluated
and estimated.

All the parameters in the virtual measurement setup are
either determined according to the datasheets of equipment,
components, and materials, or estimated based on the actual
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Fig. 38. Example simulation results for TDK N87 material with the virtual
measurement setup and Monte Carlo experiments, where the measurement
uncertainties introduced by the probe and scope are taken into consideration.
Colors depict the discrepancy between the virtually measured core loss and the
expected core loss.

experimental results. Some of the most important sources of
measurement error include:

1) Systematic error: Parasitics of power stage circuit, para-
sitics of wire and cable, parasitics of the DUT, the timing
skew of passive probes (±1.6 ns), the uncertainty of probe
gains (±1.5%), the uncertainty of probe offsets (±0.5%),
and the manufacturing tolerance of the core geometry
(area and length, ±2.5%), which affects the calculation
of B(t) and H(t), etc.

2) Statistical error: Electrical noise due to the environment,
quantization error, and sampling noise due to the oscillo-
scope, and the undesired temperature variation of the DUT
(±1.6% pf PV ), etc.

Based on the virtual measurement setup, a series of Monte
Carlo experiments is conducted, where the uncertain variables
are assumed to follow the Gaussian distribution or uniform
distribution with aforementioned values as their 2σ deviations.
Fig. 38 demonstrates simulation results for TDK N87 material as
an example, where the measurement uncertainty introduced by
the probe and scope are taken into consideration and numerically
simulated. Note that the result of Monte Carlo experiments for
each sample point is a random distribution (the discrepancy
between the virtually measured core loss and the expected core
loss), and the value shown in Fig. 38 is the 95th-percentile of each
distribution. As demonstrated in the figure, the majority of the
samples within this examined range maintain a low measurement
error rate that less than 6%. The most erroneous samples locate
in the area with high frequency and low flux density, where the
measurements are more prone to noise and the inaccuracy of
equipment.

More specifically, the error distribution of an example point
(300 kHz, 50 mT, 50% duty ratio triangular wave with zero dc
bias measured at 25 ◦C) is demonstrated in Fig. 39, where the
measurement uncertainties introduced by the circuit parasitics,
temperature variation, and geometry variations are considered
and simulated numerically. For the majority of trials (95%)
among the Monte Carlo experiments, as shown in the his-
tograms, the systematic error is less than 3.6% and the statistical
error is less than 2.3%. Comparatively, systematic error brings a

Fig. 39. Error distribution of an example point (300 kHz, 50 mT, 50% duty ra-
tio triangular wave with zero dc bias measured at 25 ◦C), where the measurement
uncertainties introduced by the circuit parasitics, scope, and probe, temperature
variation, and geometry variations are considered. Both the systematic error and
the statistical error are less than 4% for the majority of trials in the Monte Carlo
experiments. The spread of systematic error is larger than that of statistical error.

Fig. 40. Example distribution of the defined weight of closeness for a specific
considered data point. The local Steinmetz will be performed within the local
range that is close enough to the considered data point.

larger impact on the overall measurement accuracy than statis-
tical error. Geometry variation contributes largely to systematic
error and cannot be avoided in design, while upgrading the
capability of equipment and reducing the hardware parasitics to
minimize the time skewing between signals can still marginally
improve the measurement accuracy. In addition, the temperature
variation of DUT contributes a large portion of the statistical
error, highlighting the importance of more precise temperature
control.

Overall, high measurement accuracy is achieved in the main
operating range of the data acquisition system, while the mea-
surements for magnetic materials with high quality factor at
high frequency or low-amplitude ranges could be more prone to
error. Based on the model-driven error analysis and the typical
operating conditions provided by the material datasheet, we
determine the measurement region that we are confident about
the data quality, as aforementioned in Fig. 36 in Appendix A. A
similar error map can be created for each material in the database
for evaluating the data quality.

C. Data-Driven Methods for Data Quality Control

Outliers are unavoidable for large-scale automated data col-
lection. An algorithm was developed to detect and remove the
outlier data points caused by rare anomaly operations based on
smoothness analysis. As illustrated in Fig. 40, for each point in
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Fig. 41. Example of outlier data points in a dataset for the material N87 under
sinusoidal excitation. For each point, data up to 0.1 decades far in terms of flux
density and frequency are used to generate the local Steinmetz parameters. The
data points discarded because the error compared to the estimation is above
±4% are marked as solid stars.

the dataset, the estimated power losses are calculated based on
the Steinmetz parameters inferred from the points that are close
in terms of frequency and flux density to the considered point
holding constant the other variables. If the measured losses of
the data point are far from this estimated value, the data point
can be considered an outlier. More specifically, for a given data
point, a weight reflecting the closeness is assigned to all the other
data points, which is defined as

wi

= max

{
1−

√
(log fi − log f0)2 + (logBi − logB0)2

wmax
, 0

}

(10)

where (f0, B0) are the frequency and peak flux density of the
specific data point being considered, and (fi, Bi) refer to those
of every other data point in the dataset. The square-root part
quantifies the distance between two data points on the logarithm
plane of f–B, andwmax is a parameter that can be tuned to deter-
mine the size of the neighboring area taken into consideration.
Based on the definition of wi, the closer the (fi, Bi) is to the
(f0, B0), the closer wi is to 1. Oppositely, any (fi, Bi) that are
farther from (f0, B0) will get a smaller wi value and eventually
0 if the distance exceeds the wmax. Fig. 40 illustrates an example
distribution of the weights of closeness for a considered data
point, where the color of points reflects the normalized distance
between any given data points and the considered data points.

Based on the weight wi, a weighted least square regression
is conducted to calculate the local Steinmetz parameters by

min
k,α,β

∑
i �=0

[(kfα
i B

β
i )

2 − P 2
meas,i]w

2
i . (11)

The local Steinmetz parameters for a given data point are cal-
culated based on the data points nearby, with which an expected
core loss value can be estimated according to the Steinmetz
equation. The outlier factor is defined as the relative discrepancy
between the expected loss and the measured loss

Outlier Factor =
kfαBβ − Pmeas

Pmeas
× 100%. (12)

Fig. 41 shows an example of the discrepancies between the
expected losses based on the Steinmetz parameters of nearby

points and the measured losses for different data points. A
data point with a high outlier factor is considered a low-quality
measurement and is removed from the dataset.

Outlier detection is critical for data quality control. This
outlier detection algorithm is just one example way of evaluating
the data quality and removing abnormal data. It has its own
strengths and limitations, e.g., it cannot detect systematic error
and may miss unusual material characteristics.
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