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Finite-Set Direct Torque Control via
Edge-Computing-Assisted Safe Reinforcement

Learning for a Permanent-Magnet
Synchronous Motor
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Abstract—Advances in the field of reinforcement learning (RL)-
based drive control allow formulation of holistic optimization goals
for the data-driven training phase. The resulting controllers feature
efficient drive operation without the necessity of an a priori known
plant model but, so far, conduction of the corresponding training
phase in real-world drive systems has been applied only sparsely
due to safety concerns. This contribution targets the challenging
problem of self-learning torque control for a permanent-magnet
synchronous motor assuming a finite control set, i.e., the direct
selection of switching actions instead of a modulator-based setup. In
order to allow a secure and effective online training with real-world
drive systems, the RL controller is monitored by a safeguarding al-
gorithm that prevents application of unsafe switching actions, e.g.,
such that result in overcurrent. The accruing amount of measure-
ment data is handled with the use of an edge-computing pipeline to
outsource the RL training from the embedded control hardware.
The inference of the utilized artificial neural network in hard real
time is realized with the use of a reconfigurable field-programmable
gate array architecture. The resulting RL-based algorithm is able
to learn a torque control policy in just 10 min, which has been
validated during comprehensive real-world experiments.

Index Terms—Data-driven optimal control, deep reinforcement
learning (RL), direct torque control (DTC), edge computing,
electric drive, field-programmable gate array (FPGA), Internet of
Things, neural network, safe learning, synchronous motors, system
identification.

I. INTRODUCTION

DUE to their extensive range of applications and high power
density, permanent-magnet synchronous motor (PMSM)

drives have earned popularity, not only for industrial utilization
but also in electric mobility [1]. The wide distribution of these
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drive systems motivated a sophisticated but also complicated
control theory that has been an important research topic ever
since. Ranging from linear, field-oriented control schemes [2]
over direct torque control (DTC) methods [3] to model predictive
control (MPC) approaches [4], model-based design approaches
have been established in drive control for more than 40 years.
In the recent past, however, data-driven controller design proce-
dures like reinforcement learning (RL) are increasingly promi-
nent as contemporary hardware allows handling of large scale
data [5].

In contrast to the established model-based optimal control
techniques, which require significant design effort by human
experts, RL-based solutions automatically learn how to control
an arbitrary drive system without any human intervention. Espe-
cially in the face of labor shortage, such data-driven automation
will contribute to ensure high productivity in research and de-
velopment processes.

A. State of the Art

Recent investigations on RL-based motor control schemes
have broadened the range of available controller design proce-
dures and allow a different perspective on the field of optimal
drive control.

1) The optimal drive control policy is learned during experi-
ments. Consequently, an a priori drive model (i.e., specific
system knowledge) is not needed.

2) Iron losses, magnetic (cross-)saturation and other parasitic
effects are indirectly considered within the control scheme
as they are affecting the measurements, and therefore, the
data being used for RL-based control.

3) Multiple objectives can be considered within the same
optimal controller on an infinite time horizon.

For the scenario of PMSM current control, the mentioned
points have been successfully validated in publications [6], [7],
[8]. However, the considered current control task is only an
intermediate step when control of mechanical quantities (torque,
speed, or position) is targeted. Consequently, an operation strat-
egy for the motor currents (i.e., controlling the motor current
such that the targeted mechanical behavior results) can be incor-
porated into the design of an RL torque controller as well. This
approach has been theoretically discussed in [9] under the label
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Fig. 1. Schematic of the safeguarded DQ-DTC structure.

deep Q DTC (DQ-DTC). A practical validation of the described
concept as well as further methodological improvements are to
be presented within this article.

B. Contribution

Despite the aforementioned benefits of RL-based control,
there are still several issues to be investigated to establish safe
and fast applicability in the real world. Therefore, this article
proposes the following contributions in order to improve the
usability of the DQ-DTC.

1) A safeguarding layer that ensures adherence to all opera-
tion limits (i.e., current and voltage constraints) at runtime
in order to avoid corresponding plant system downtimes.
This is particularly important as RL algorithms require
(random) exploratory actions during the training process,
which could lead to overloading the drive systems.

2) An edge-computing, online-learning pipeline that enables
training of the DQ-DTC using test bench measurements.

3) A resource-efficient and online-reconfigurable field-
programmable gate array (FPGA) implementation of the
necessary artificial neural network (ANN), which enables
real-time capable policy inference on the control hard-
ware.

4) A fully automated, fast RL framework delivering an ex-
pedient, data-driven torque control policy in just a single
digit number of minutes without the need of any a priori
plant model knowledge [10].1

Most importantly, comprehensive test bench experiments are
performed in order to prove the feasibility of the DQ-DTC
in practice. Further, all scripts and programs created within
the scope of this investigation are openly published [11].2 A
schematic of the proposed control scheme is depicted in Fig. 1
with detailed explanations for each individual component in the
following sections.

1The training process is presented in this video: https://www.youtube.com/
watch?v=hQ49Mc6LV78

2The implementation details can be found in this open-source repository:
http://www.github.com/max-schenke/EdgeRL

II. DRIVE SYSTEM

The drive system under investigation features the utilization
of a three-phase two-level voltage source inverter and a PMSM.
The combination of these components is a standard setup that
can be found in many industrial and automotive applications [1].
Both are to be presented shortly in the following.

A. Permanent-Magnet Synchronous Motor (PMSM)

The PMSM is a standard component of modern drive systems.
Especially highly utilized PMSMs feature a high torque density
and are, therefore, prevalent in applications where lightweight
and space-saving motors are required [12]. Characterization of
the PMSM can be simplified by utilizing well-known coordinate
transformations
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Herein, the physical three-phase quantitiesxabc are reinterpreted
as 2-D, orthogonal coordinates that can either be viewed from
the stator-fixed αβ reference frame, or from the rotor-fixed dq
reference frame, which is defined by rotating the stator-fixed
quantities xαβ by the electrical rotor angle εel. Rotor-fixed
coordinates allow a compact definition of the PMSM’s dynamic
behavior3

d
dt
ψdq(t) = udq(t)−Rsidq(t)− pωme(t)Jψdq(t)
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p (ψd(t)iq(t)− ψq(t)id(t))

(2)

with magnetic flux linkages ψdq, stator currents idq, stator volt-
ages udq, angular velocity ωme =

1
p

d
dtεel, and generated drive

torque T . Further parameters of this ordinary differential equa-
tion are the stator resistance Rs and the number of pole pairs
p. The dependence between magnetic flux linkage and stator
current follows a nonlinear but static relation

ψdq(t) = ψdq (idq(t)) . (3)

The presented motor model incorporates several common vari-
ants as special cases, e.g., PMSMs with both, interior (IPMSM)
and surface-mounted magnets (SPMSM) as well as highly

3Bold lowercase letters x denote vectors and bold uppercase letters X denote
matrices.
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TABLE I
CORRESPONDENCE BETWEEN THE CONTROL ACTION, THE SWITCHING

COMMANDS AND APPLIED VOLTAGES

utilized PMSMs (which feature dominant magnetic saturation
behavior) and synchronous reluctance motors (SynRM), which
all differ concerning the nature of (3). In the following, no
system-specific information (e.g., electric parameterization or
lookup table) is utilized by the RL-based control algorithm.
Merely an estimation of the motor current limitation, which is
an upper boundary for the stator current is, must be available for
safety purposes. The presented motor model is used to illustrate
the controlled system behavior for the reader’s convenience,
but is not known to the learning control algorithm in any
way.

B. Two-Level Voltage Source Inverter

The two-level voltage source inverter is another standard
component of drive systems. It is supplied by means of a
DC-link voltage uDC(t). In the context of finite-control-set
(FCS) applications such as the proposed DQ-DTC, the inverter
is operated with respect to its eight distinguishable switching
states as listed in Table I. The specific switching commands
for the three half bridges (sa, sb, sc) determine the voltage
that is applied to the motor, enabling control capabilities to
change the electric and mechanic operating point of the drive
system.

Alternatively, the inverter could also be operated with an
intermediate modulator (e.g., space vector modulation), which
would enable a dynamically averaged synthesization of the
commanded voltages. This allows to directly command the ap-
plied voltageudq, rendering the system a continuous-control-set
(CCS) application. Control schemes of this nature are equally
well represented in drive control but are not within the scope
of this contribution. Hence, the term DQ-DTC refers exclu-
sively to its FCS implementation within the scope of this
article.

III. DEEP Q DIRECT TORQUE CONTROL (DQ-DTC)

This contribution presents an augmented version of the DQ-
DTC, which was originally proposed in [9]. Before the fun-
damental concept of this control scheme is reviewed, a short
definition of the optimal torque control task is delivered.

A. Optimal Torque Control

The task of optimal torque control of PMSMs can be described
by the following discrete-time dynamic optimization problem:

min
ak

is,k ∀k

s.t. Tk = T ∗k

is,k ≤ ilim
ak ∈ {0, . . ., 7}.

(4)

Thereby, the digital sampling index is denoted by k. This
formulation demands to minimize the stator current is (as a
proxy for maximizing the drive’s efficiency [1]) while sustaining
the commanded reference torque T ∗ by means of the applied
switching state a. Meanwhile, the current limit ilim must be
respected at all times, resulting in the assumption that T ∗ is
reachable under this condition.

The DQ-DTC approach seeks to solve this optimal control
problem in a data-driven fashion, allowing the setup of an
optimal controller without the need for a specific motor model,
i.e., knowledge about the parameters or lookup tables concerning
(2) and (3) are not utilized to design the controller. This distin-
guishes the data-driven control approach from the conventional
procedure of the model-driven control design that is usually
employed when configuring, e.g., field-oriented proportional-
integral controllers or MPC schemes. Only information that
is generally valid is considered, e.g., the structure of (2), the
staticness of (3) or the existence of operational constraints, as
described in the following.

B. Operating Conditions

As already defined as part of the control task (4), the most
important safety constraint for usage of the PMSM is defined
by the current limit ilim. Overshooting this limit can lead to a
thermal overload of the drive and the feeding inverter and must,
therefore, be avoided. Operating directly below ilim is not instan-
taneously harmful but should not be sustained for long intervals
because of the limited overheating capacity of the motor. This
motivates the definition of the nominal current in < ilim, which
is the maximum stator current that can be endured permanently.
In most drive applications, the utilized region of operation is
margined by the nominal current. In special cases, overloading
may also be tolerated but corresponding applications require
careful temperature monitoring, which is not in the scope of this
contribution. Hence, it is targeted to operate the PMSM such
that is ≤ in.

Whereas the current boundaries are operational constraints,
the applied voltage and the voltage limitations are subject to the
installed inverter and voltage source. As already stated in Table I,
the DC-link voltage uDC is of central importance for the control
behavior of the motor. Therefore, operating points can only be
sustained if the necessary mean voltage is available, leading to
the relation

‖udq‖2 = ‖uαβ‖2 ≤ 2

π
uDC. (5)

As of (2), this is specifically critical at high speed, because the
induced voltage needs to be compensated by the applied voltage
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and only the remaining surplus can serve as a control reserve.
If no such compensation is possible, the motor can become
uncontrollable, which is an indirect safety concern and should
be avoided.

In addition to the aforementioned, safety-related operat-
ing conditions, efficiency-related conditions can be formulated
that are universally applicable for all subclasses of PMSMs.
Principally, motor operation with id > 0 is not practical and
should, therefore, be avoided in order to maximize motor ef-
ficiency [12].4 FCS schemes, however, feature a larger current
ripple than CCS methods and can, therefore, benefit from permit-
ting some leeway id+ > 0 in order to reduce the average current
drain.

While operating the drive at commanded torque, it is pur-
sued to maximize the efficiency of the motor by reducing the
stator current is, leading to operation with the well-established
maximum-torque-per-current (MTPC) characteristic. Torque
demands that exceed the described voltage limitations, which
usually happens at high speed, necessitate maximum-torque-
per-voltage (MTPV) operation. While conventional control
schemes exploit plant-specific parameter knowledge to deter-
mine operating points with MTPC or MTPV characteristic [13],
the DQ-DTC is able to feature these behaviors after a data-driven
training phase.

C. Control Design

Similar to conventional optimal control schemes such as
MPC, the behavior of the controller is mainly defined by a
reward function that is to be maximized.5 Contrary to conven-
tional optimal control, the DQ-DTC scheme does not employ
optimization in real time to solve the optimization problem (4).
Instead, the control strategy is learned asynchronously during
direct interaction with the plant system to find the state-action
value

q(ok, ak) = E
{
rk+1 + γrk+2 + γ2rk+3 + . . . |ok, ak

}
. (6)

Herein, o denotes the observation vector, which contains the
information about the system state and is additionally augmented
with task-specific features that simplify the learning problem
(so-called feature engineering), E{·} is the expected value,6

and a is the switching action that is to be applied. The reward
function r reflects the quality of the momentary plant state
and must, therefore, incorporate the objectives and boundary
conditions of the control problem. The discount factor γ ensures
convergence of the series and must be defined in the interval
[0,1[. A large discount factor translates to consideration of
long-term effects when choosing an action, whereas a smaller
discount factor causes the control agent to act rather short
sighted.

4For SynRM, operating the drive at positive or negative id is equally valid.
Only the latter case is considered here to guarantee general applicability of the
DQ-DTC.

5Classical control usually defines cost functions that are to be minimized.
The RL domain defines reward functions that are to be maximized. The latter
viewpoint is presented in this contribution to stay within the RL conventions.

6Note that variables in the argument of the expected value are considered
random variables. A distinctive notation for random variables is avoided for
ease of reading.

The controller training is finished as soon as q is found,
because the optimal action can then be determined easily via

a∗k = arg max
a′

q(ok, a
′) (7)

meaning that the action that scores best in terms of action value
is considered optimal, which is determined by comparing the
resulting action values for all possible actions.

The most well-known algorithm employed to learn q with us-
age of an ANN in systems with continuous state and finite action
space is famously known as deep Q-network (DQN) [14], [15],
giving origin to the title DQ-DTC. The fundamental corner-
stones of the original DQ-DTC are revisited in the following.

To approximate the state-action value by means of an ANN q̂θ
with network weights θ, a cost function must be formulated to
allow training/optimization ofθ. First, please note that according
to (6), the state-action value approximation7 must satisfy the
Bellman equation [16]

q̂θ(ok, ak) = E{rk+1 + γq̂θ(ok+1, ak+1)|ok, ak}. (8)

This property is exploited in many pertinent RL algorithms
because it allows the formulation of a cost function Jq for
optimization: the left-hand side and the right-hand side should
be equivalent, which means their (quadratic) distance is to be
minimized, yielding

Jq(θ) =
1

|B|
∑
Ek∈B

⎛
⎜⎜⎝q̂θ(ok, ak)

−
(
rk+1 + γ(1− dk+1)max

a′
q̂θ(ok+1, a

′)
)

︸ ︷︷ ︸
estimation target

⎞
⎟⎟⎠

2

.

(9)

Herein, B denotes a minibatch of experiences E as follows:

Ek = {ok, ak, rk+1, dk+1,ok+1} (10)

which contains the relevant information about the state transition
that is learned from. The Boolean flag dmarks the termination of
the control task, which nullifies the future value when, e.g., the
control task is halted or violation of safety constraints trigger
an emergency shutdown. As realized by means of the max(·)
operator in the estimation target, this cost function focuses
the momentary action value for the assumption of subsequent
optimal control, i.e., the controller learns on the basis of the best
achievable expected trajectory instead of the actually observed
one. This implementation detail enables off-policy training,
meaning that samples can be considered in any order and from
any control policy in order to optimize for θ. The parameter
update is then simply performed via stochastic gradient descent
(or variations thereof, most famously [17])

θ ← θ − β∇θJq(θ) (11)

with learning rate β.

7The hat notation x̂ denotes an estimation / approximator for x.
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TABLE II
REWARD DISTRIBUTION FOR THE DQ-DTC IN CONSIDERATION OF SAFEGUARD ACTIVATION

The utilization of q̂θ to estimate its own estimation target is
labeled a bootstrapping method. In order to reduce the variance
of parameter updates, estimator q̂θ and target r + γq̂θ are usually
not updated at the same rate. Instead, a set of less-frequently- or
slower-updated target parameters θtarget is used to determine the
estimation target [15].

As of (6), it can be seen that the action value is determined
by means of the immediate and future rewards. Hence, the
definition of a proper reward function is of major importance for
the performance potential of the resulting DQ-DTC agent. The
considered reward function is defined in Table II and depicted
in Fig. 2, for which an in-depth motivation and derivation has
been delivered in [9]. Please note that the original DQ-DTC
approach only considered the cases A,B,C,D, and E. The
newly distinguished cases ES and DS correspond to further
employed safety measures, which are discussed in Section IV.

The original definition of reward from [9] handles all afore-
mentioned operation specifications with exception of the volt-
age boundary, whose consideration is hardly possible without
availability of any model. Therefore, a data-driven prediction
model is presented in the following section. It enables the control
agent to adhere to the voltage boundary more reliably without
any additional requirements concerning plant-specific expert
knowledge.

Finally, to enable DQN estimation of the future development
of the reward as of (6), it must be equipped to perform this
prediction solely on the basis of ok and ak. This means that ok
must incorporate all necessary information about the plant state
that render the control agent capable of such a prediction while
simultaneously avoiding redundant features. Moreover, it is a
well-established best practice to normalize the input of ANNs
to the range [-1,1], which is easily performed when the motor
limitations are known

ok =

[
ωme,k

ωme,lim

i�dq,k

ilim

3u�dq,k−1
2uDC,k

3u�dq,k−2
2uDC,k

3u�dq,k−3
2uDC,k

cos(εel,k) sin(εel,k) 2
is,k
ilim
− 1 (12)

2
uDC,k − UDC,min

UDC,max − UDC,min
− 1

T ∗k
Tlim

]�
.

Fig. 2. Graphical depiction of the proposed reward function gradient according
to Table II (oriented at [9]); please note that regionsBS,DS, andES correspond
to safeguard activation and are not actually entered.

This observation design is closely related to the original proposal
in [9]. The newly featured utilization of the observationsudq,k−2,
udq,k−3, and uDC stems from the real-world implementation
of the DQ-DTC algorithm and is discussed more in-depth in
Section V-C.

Please note that the measured torque T is considered within
the reward function Table II but not within the observation vector
o, which means that a torque sensor is needed only during
training of the DQ-DTC, but not thereafter. This is important
because usual drive applications are not monitored using a torque
sensor, as it introduces further cost, space, and mass demands as
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Fig. 3. Overview of available safeguarding mechanisms and classification of the DQ-DTC (derived from [18]).

well as risk of failure. Availability of such a device is, therefore,
not assumed for the utilization of the trained DQ-DTC.

IV. SAFEGUARDING

RL algorithms can only learn through proper exploration of
the state and action space, meaning that different actions may
be applied in a trial-and-error fashion in all regions of the state
space. Within the DQN, this is traditionally ensured through
utilization of the ε-greedy policy8

a =

{
a∗ with probability 1− ε
∈R A with probability ε

(13)

wherein A denotes the available action space and ε ∈ [0, 1] is a
configurable parameter of the DQN training.

This is traditionally conducted without regard to the limita-
tions of the state space, which goes without any consequences
in simulated environments. However, in this article, the deploy-
ment of an online-capable RL control agent on a real-world drive
system is targeted, which incorporates safety hazards as well as
limitations to experiment time.

To prevent operation in safety-critical states, this implemen-
tation employs a safeguarding routine that makes use of online
system identification. This setup allows the safeguard to detect
and evade the selection of unsafe actions, which keeps the
point of operation within the predefined limitations. Primarily,
this measure ensures safe operation of the DQ-DTC during the
online training phase. Secondarily, it also accelerates the agent’s
training as fewer (if any) plant shutdowns with consecutive
restarts occur. A classification of this safeguarding procedure is

visualized in Fig. 3. The depicted categories have been motivated
in [18].

A. Data-Driven Online System Identification

The employed safeguard is based on the data-driven recursive
least squares (RLS) implementation for synchronous machines
as presented and validated in [19]. The assumed system dynam-
ics have the form[

id,k+1

iq,k+1

]
︸ ︷︷ ︸
idq,k+1

= Âk

[
id,k

iq,k

]
︸ ︷︷ ︸
idq,k

+ B̂k

[
ud,k

uq,k

]
︸ ︷︷ ︸
udq,k

+ êk (14)

which motivates the online regression problem with regressors

ξk =
[
id,k iq,k ud,k uq,k 1

]�
(15)

with measurements

φd,k = id,k, φq,k = iq,k (16)

and with parameters

χ̂d,k =
[
â11,k â12,k b̂11,k b̂12,k ê1,k

]�
χ̂q,k =

[
â21,k â22,k b̂21,k b̂22,k ê2,k

]�
.

(17)

Herein, the entries of the parameter vectors χ̂d and χ̂q corre-

spond to the entries of the matrices Â, B̂, and ê, respectively.

8The notation style ε denotes the randomization threshold of the DQN, while
εel denotes the electric motor angle. The notation ∈R refers uniform random
sampling from the specified set.
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Note that this system model is not linked to the physical param-
eters of the motor but is implemented in a purely data-driven
fashion. Determination of the physical plant system parameters
is, therefore, not targeted. Additional feature engineering, i.e.,
extending the regressor and parameter sets, can be optionally
conducted if the aforementioned data-driven model structure is
not leading to satisfactory results (e.g., using [20]).

The regression problem can then be tackled using the standard
RLS algorithm

ηk−1 =
P k−1ξk−1

λ + ξ�k−1P k−1ξk−1

χ̂k = χ̂k−1 + ηk−1
(
φk − ξ�k−1χ̂k−1

)
P k =

1

λ

(
I − ηk−1ξ�k−1

)
P k−1.

(18)

Here, P is a scaled covariance matrix of the parameter estima-
tion Cov(χ̂, χ̂), I is the identity matrix, and λ ∈]0, 1[ denotes
the forgetting factor, which is a tuning parameter that defines
the priority given to the regressors measured in the more distant
past. Please note that the update of χ̂ needs to be performed for
both, the d-axis and the q-axis. An initial value for the parameter
covariance P 0 as well as an initial guess for the parameter
vectors χ̂d,0, χ̂q,0 needs to be specified to run the algorithm.
These initial guesses allow incorporation of expert knowledge.
To underline independence of such, this contribution utilizes

χ̂d,0 = χ̂q,0 =
[
0 0 0 0 1

]�
. (19)

FCS schemes, including the presented approach, incorporate
sufficient system excitation that usually allow identification with
satisfying accuracy at all times.

With these considerations, the parameters Â, B̂, and ê of
the assumed plant model (14) can be considered as known,
which allows to predict the outcome of the different applicable
switching states on the plant. In MPC, such an identified predic-
tion model could be utilized to determine the optimal possible
switching action in consideration of a limited prediction hori-
zon. Especially FCS-MPC suffers from exponentially increasing
computational complexity with rising prediction horizon, and
hence, it is typically implemented with only narrow foresight.

Note that also model-free predictive controllers (e.g.,
[19], [21], or [22]) suffer from the characteristic of growing
computational effort. Herein, a predictive current model is iden-
tified online using the proposed RLS or a comparably adequate
method. Commonly, the online identification is limited to the
electric subsystem’s behavior, because industrial drive applica-
tions do not incorporate a torque sensor by default, which would
be required for identifying the mechanic subsystem. Therefore,
also the capability of model-free predictive approaches is usually
limited to current control (which is an intermediate step when
designing a torque controller), whereas the proposed DQ-DTC
is a direct torque controller, and hence, does not require manual
design of an underlying current controller.

Contrary to predictive controllers, the DQN q̂θ considers also
the long-term control consequences by means of the Bellman
equation, whereas the time horizon and the computational effort

are independent of each other. The proposed solution in this
article combines a computationally cheap one-step prediction to
avoid unsafe actions with the benefits of a long-term-oriented
control policy enabled by RL. Therefore, the prediction is not
utilized in search of the optimal action, but only to exclude
switching actions that would result in clearly unsafe plant opera-
tion. The detection of such actions is presented in the following.

B. Prevention of Unsafe Actions

As already mentioned in Section III-B, the critical operation
limitations for the motor are specified by means of the current
boundary, which is the most important safety condition, and
the voltage boundary, which ensures controllability, and hence,
ensures safety indirectly. Utilizing the parameters identified by
the RLS, the system (14) can be used to check adherence to both
of these boundaries for the upcoming state.

Concerning the current boundary, this can be done easily
by verifying that the predicted current îdq,k+1 adheres to the
nominal current of the plant

‖îdq,k+1‖2 ≤ in. (20)

To also ensure compliance with the voltage boundary (5), it must
be examined whether the predicted operating point îdq,k+1 can
be sustained with the available DC-link voltage uDC, resulting
in the condition

‖ B̂−1k

(
(I − Âk)îdq,k+1 − êk

)
︸ ︷︷ ︸

ûdq,k+1

‖2 ≤ 2

π
uDC,k. (21)

Here, the expression on the left-hand side corresponds to the
fundamental (average) voltage amplitude that is necessary to
maintain the operating point at îdq,k+1, i.e., steady-state control
operation, while assuming that the DC-link voltage will not
change drastically from one sampling instant to the next [23].
Naturally, inspection of these conditions must succeed for all
switching states a ∈ A that can lead to different follow-up
states î

a

dq,k+1. Each switching state that violates any of the
constraints may not be selected in the momentary time step,
neither in case of an exploiting nor in case of an exploring action.
Under these circumstances, the safeguard overwrites the agent’s
policy entirely to ensure safe plant operation. An algorithmic
representation of the outlined safeguarding technique is given in
Algorithm 1. Herein, the prediction model Â, B̂, ê is updated
in an online fashion, without the requirement (but surely with
the possibility) to insert an expert-based initial model before the
training.

Please note that, in order to allow the DQ-DTC agent to
learn from mistakes, the naive action a must be defined for
the experience tuple E (10) even though only the safeguarded
action aS is applied. If aS would be included in E instead, E
would resemble a state transition wherein the potentially unsafe
a is masked, consequently preventing the agent from learning to
avoid such behavior.

An appropriate safeguard prevents the plant system from
being operated in the regions D and E (cf., Table II and Fig. 2),
which avoids emergency system shutdowns, especially in the
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Algorithm 1: Safeguarded DQ-DTC.

for given weights θ of q̂θ(o, a)
k ← 0
loop

obtain ok
update Âk, B̂k and êk using the RLS (18)
AS,k ← {}
for all a′ ∈ A do

predict î
a′

dq,k+1 according to (14)
if (20) and (21) are satisfied then

add a′ to the set of safe actions AS,k

end if
end for
if U[0,1] < ε then9 � explore

obtain ak ∈R A
if ak ∈ AS,k then
aS,k ← ak

else
obtain aS,k ∈R AS,k

end if
else � exploit

obtain ak ← arg max
a′∈A

q̂θ(ok, a
′)

obtain aS,k ← arg max
a′∈AS,k

q̂θ(ok, a
′)

end if
execute aS,k

k ← k + 1
end loop

training phase when the control agent has not yet learned a fea-
sible policy. On the other hand, the agent is unable to learn from
failures if such failures do not occur. By means of the safeguard,
however, prediction results that forecast unsafe switching are
available and can be considered within the reward function,
adding a few more cases to the reward distribution as listed
in Table II and visualized in Fig. 2. The newly added case
distinctions BS, DS, and ES are rewarded in such a way that
triggering the safeguard is always better than actually violating
the limitations. Otherwise, the agent could be encouraged to
actively bypass the safeguard whenever operated in states where
the prediction model (14) has problems to accurately forecast
such violations.9

In terms of published safeguarding routines, the proposed
approach is closely related to so-called postposed shielding [24],
which is characterized by perpetual determination of safe al-
ternative action(s) aS and also ensures safeguarding during the
application phase (i.e., even after the training phase is finished).
Instead of attempting to learn the necessary shielding behavior
from constraint violations, the concept of predictive safety cer-
tification [25] is combined with recursive feasibility [26] within
the assumed system dynamics (14). For the given motor setup,
this is done effectively and free of specific system knowledge

9U[a,b] denotes a random sample from the uniform distribution on the interval
[a, b].

by exploiting the discussed voltage limitation as controllability
condition (5), (21).

Finally, the DQ-DTC agent is able to learn optimized opera-
tion behavior by means of measured real-world data while the
consequences of safety-critical actions are predicted using the
data-driven model. Actual terminations of plant operation are,
therefore, obsolete and the training can be continued without
any time loss or harm to the system. A schematic overview of
the employed control structure is presented in Fig. 1.

V. IMPLEMENTATION

The real-time capable implementation of RL-based drive
torque control faces some challenges that are discussed in this
section. Primarily, this concerns the setup of an asynchronous
edge-computing pipeline for the training, the hardware imple-
mentation of the DQ-DTC agent under consideration of real-
time constraints, and the handling of parasitic effects that arise
from the mechanical subsystem.

The former is necessary because a complete implementa-
tion of the RL learning algorithms as well as its inference
on contemporarily available embedded computing hardware is
not yet technically possible in hard real time due to the high
necessary update frequency of the FCS drive control. There-
fore, the learning algorithms are outsourced to more powerful
computing hardware. This is implemented in the present case
by means of edge computing, but in principle should also be
feasible by means of cloud computing. This distributed approach
turns the drive control into an Internet of Things application.
Please note that all subsequently depicted time-series plots have
been gathered in real-world test bench experiments, and that
software-in-the-loop and hardware-in-the-loop simulations are
not presented for clarity (cf., the last step of the RL controller
deployment pipeline as proposed in [7]).

A. EdgeRL Pipeline

A major part of this contribution features the setup of an
asynchronous edge-computing pipeline that is to be utilized
during the training phase of the DQ-DTC agent. A schematic
overview of the employed structure is presented in Fig. 4. As
depicted, a dSPACE MicroLabBox system is in use as rapid
control prototyping hardware (RCPH). From there, measured
experiences Ek can be read in real time with the use of a
corresponding Python interface, allowing time-efficient data
capturing at the test bench. The collected data are sent to a
workstation computer using a TCP/IP-based communication
channel to guarantee causal integrity of the accrued data.

The workstation computer runs the RL training algorithm
on the basis of the buffered experiences. This means that only
the backward pass / gradient descent optimization of the DQN
training needs to be considered here. Therefore, the training of
the DQ-DTC is outsourced from the RCPH and only the forward
pass / inference of the utilized ANN must be performed with
real-time capability on the dSPACE system.

The newly computed DQN weights θ are continuously sent
back to the test bench computer to allow their appliance within



SCHENKE et al.: FINITE-SET DTC VIA EDGE-COMPUTING-ASSISTED SAFE RL FOR A PMSM 13749

Fig. 4. Schematic of the online EdgeRL pipeline.

the operated control loop. To maximize throughput on the work-
station end of the pipeline, the unpacking of received sample
data into the training memory, the backward pass that utilizes
the training memory and the dispatch of the network weights
are all separated into different processes. This avoids idle time
that would otherwise occur, e.g., because the training would be
halted until a message is completely sent or read. Finally, also
the TCP/IP communication is separated between two channels,
allowing both PCs to send and receive data simultaneously,
which enables the asynchrony of the tasks. This is exceptionally
important in the proposed setup, because the sampling time Ts

is much smaller than the time that is necessary for one learning
step Tl, which means that new samples accrue much faster
than network weight updates. The complete communication and
training code is available at [11].

B. DQN Inference

The employed MicroLabBox system by dSPACE permits
inference of the DQN (i.e., function evaluation of q̂θ(ok, ak))
either by means of its CPU or by utilization of the built-in FPGA.
As indicated in [9], sensible ANNs for the given task grow
to a size where implementation of the ANN inference on the
CPU is not feasible anymore to yield a result within the given
sampling time of Ts. Here, it is more reasonable to make use of
the FPGA’s parallelization potential to allow adherence to the
real-time constraint. In order to operate the pipeline depicted
in Fig. 4, it is furthermore required that the DQN parameters
θ can be updated at runtime. A schematic of a corresponding
neuron implementation is depicted in Fig. 5. As can be seen, the
same hardware is utilized for all consecutive layers, allowing
for a resource-efficient FPGA build. With the given structure, a
DQ-DTC can be evaluated with a time demand of

TANN = [(l − 1)(nh + τn) + dim(o) + |A| − 1] · TFPGA (22)

Fig. 5. Schematic of the realization of an online-configurable neuron on the
FPGA, oriented at [5], components are: multiply accumulator (MAC), activation
function (f(·)), output register (REG), weight storage (RAM), layer control unit
(LCU), and neuron control unit (NCU), n and l are respective identifiers of the
active neuron and layer, i indicates the entries of the neuron’s weight vector
θn,l, and y is an (intermediate) result.

TABLE III
PARAMETERIZATION OF THE DQN

wherein l is the number of layers, nh is the number of neurons
per hidden layer, τn is a runtime delay each neuron needs to finish
its computation, and TFPGA is the base cycle time of the utilized
FPGA. This configuration is sufficiently fast to conform the
sampling time constraint as long as architectures do not get too
comprehensive. Due to hardware constraints, reconfiguration
of all network parameters θ cannot be performed within one
sampling period. Since feasible learning rates, and therefore,
also the parameter change per update Δθ is rather small, and
because the DQN gradient descent is rather time intensive, there
is no further concern to update the DQN at a larger time rate
than the controller clock period Ts. Hence, the parameters are
updated for one neuron at a time and at a slower update rate of
Tnu, resulting in a total network update time of

TNu = l · nh · Tnu. (23)

An overview of the utilized network architecture and its com-
putational real-time demand is provided in Table III.

C. Parasitic Effects During Test Bench Training

The real-world behavior of the described motor setup does,
naturally, not fit the ideal assumptions that have been featured
in [9]. The rotational vibration capability of the drive train and
the limited bandwidth of common torque sensors complicate
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Fig. 6. Depiction of the mechanical drive train. (a) Free body diagram of the drive train. (b) Equivalent scheme of the drive train.

Fig. 7. Experimental test bench setup: 1) load inverter, 2) RCPH,
3) protective switch and auxiliary power supply, 4) electric sen-
sors, 5) device under test (DUT), 6) drive train and torque sen-
sor (without safety cover), 7) load motor, 8) DC-link chopper, and
9) DUT inverter.

the learning task even further and must be dealt with to enable
model-independent learning. Moreover, the DC-link voltage
uDC cannot be assumed constant.

The latter issue can be dealt with rather easily. A time-variant
uDC can be interpreted as a state of the plant system rather
than a (constant) parameter, and its consideration within the
observation vector o as of (12) enables the control agent to
react to corresponding changes. Since low-bandwidth voltage
measurement can be realized rather inexpensive, availability of
uDC is the usual case in drive systems, and hence, adding it to o
complicates neither the hardware nor the software setup.

Contrary to the original (purely simulative) scenario in [9], the
mechanical behavior of the application adds further dynamics
to the plant. A free body diagram and equivalent scheme of the
drive train are depicted in Fig. 6, strongly indicating oscillating
behavior that impacts the torque measurement signal, which
is used during controller training. Unlike the DC-link voltage,
the internal states of the drive train, i.e., angular velocities
and torsional angles of each individual component named in
Fig. 6(b), are not available and cannot be determined with

reasonable effort, rendering them hidden states. Therefore, a
different approach is suggested. To enable the DQ-DTC to
correctly estimate q̂θ , earlier samples of the commanded volt-
ageudq,k−1,udq,k−2,udq,k−3 are integrated into the observation
vector ok as of (12) as so-called lagging features [27]. Due to the
correspondence between applied voltage and switching action,
ok is in this way enriched to allow the DQ-DTC to find the
mapping between past actions, hidden mechanical states, and
corresponding action value q̂θ . Hence, the direct dependence
upon the drive train’s state is replaced with available signals and
the issues of the mechanical subsystem are handled with very
manageable effort. The specific necessity of at least three lacking
features has been empirically determined and a larger number
did not prove beneficial. In fact, the DQ-DTC agent was unable
to learn feasible control behavior without this modification.

As of [9], the consideration of at least the latest voltage
command udq,k−1 is also necessary to allow compensability
of the digital control delay of one sampling instant. The com-
manded switching action ak−1 does not show its effect in
measurement ok but rather in ok+1, because the computation
of ak−1 on the basis of the measurement ok−1 is not instan-
taneously available. It is, therefore, applied starting at time k
and has, hence, a direct effect on the action value q(ok, ak) =
E{rk+1 + γq(ok+1, ak+1)|ok, ak}.

VI. EXPERIMENTAL RESULTS

In order to verify the feasibility of the proposed DQ-DTC ap-
proach, an experimental investigation is performed on a PMSM
test bench system, which is depicted in Fig. 7. The utilized
components are listed in Table IV, nameplate data of the PMSM
under test and parameterization of the DQ-DTC are specified in
Table V. The validation of the DQ-DTC is conducted in three
steps. First, the safeguard is tested concerning its functionality.
Second, the training phase for the RL agent is analyzed in terms
of physical and numerical stability. Finally, the performance of
the DQ-DTC is presented in a series of exemplary test scenarios.
while exploration actions are deactivated.
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TABLE IV
COMPONENTS OF THE TEST BENCH SYSTEM

TABLE V
NOMINAL PARAMETERIZATION OF THE CONSIDERED DRIVE SYSTEM SEW

CM3C80S (DERIVED FROM NAMEPLATE DATA) AND CONFIGURATION OF THE

DQ-DTC WITH DEFINITION OF THE PERMITTED OPERATION REGIONS

A. Safeguard Functionality

To ensure safety of components and personnel, and secondar-
ily, to avoid training downtimes, it is of high priority to validate
the functionality of the safeguarding procedure that has been
proposed in Section IV. This investigation is performed for two
scenarios: at low speed, where the induced voltage plays no
significant role, and secondly, at higher speed where the voltage
boundary is of importance. The tests are performed by presenting
arbitrary, random switching actions to the safeguard algorithm,
which then should be able to filter out the unsafe actions to keep
the motor current trajectory idq within the current and voltage
limitations.

Long-term current trajectories for both scenarios are depicted
in Fig. 8. Please note that the test bench includes a load machine
as well as open-loop controlled DC-link choppers, whose dy-
namics are not included in the identified model (14), and there-
fore, cannot be considered by the safeguard. Still, the current
boundary has visibly been avoided with no striking violation.
Further, the identified voltage boundary is displayed with the
identified voltage limit being adhered to rather consistently.

10Speed and angular velocity correspond via ωme = nme
2π
60

min
s .

TABLE VI
STATISTICAL EVALUATION OF THE CURRENT PREDICTION ERROR ed,q WITH

MEAN μ AND STANDARD DEVIATION σ

TABLE VII
TRAINING CONFIGURATION OF THE DQ-DTC

A statistical evaluation of the safeguard’s prediction uncer-
tainty is delivered in Table VI, which indicates that the minor
violations, which are mainly visible in Fig. 8(b), can be attributed
to the prediction uncertainty that remained during usage of the
RLS from [19]. This result encourages the proposed safeguard
architecture that allows certain prediction error in correspon-
dence to the leeway between in and ilim.

Overall, the functionality of the safeguard can consequently
be confirmed. In fact, no violation of the current limit occurred,
and hence, no emergency shutdown was necessary for the en-
tirety of investigations in this article.

B. Training Phase

After asserting the safeguard functionality, the training phase
is investigated in detail. To analyze the numerical convergence
characteristic of the training phase, ten separate DQ-DTC agents
have been trained independently for 10 min each, i.e., with
reinitialization of a new set of random network weights for each
individual agent. During the training, the torque references and
the operated motor speed that is enforced by the load machine are
resampled uniformly at random sampling instants as specified
in Table VII. The learning rate β and the ε-greedy parameter
are linearly decreased from the beginning to completion of the
training phase (scheduling).

Several snapshots from one exemplary training phase are
depicted in Fig. 9. As can be seen, the reference torque T ∗ and
the speed nme are varying over the training time. While the early
performance looks quite insufficient due to the mostly untrained
control agent, the performance at the end of the training phase
is a lot more satisfying. Please note that the explorative policy
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Fig. 8. Long-term current trajectory recordings to validate the safeguard’s functionality. (a) Operation at low speed |nme| < 50min−1; only the current boundary
is active. (b) Operation at high speed nme = 700min−1; current and voltage boundaries are active.

Fig. 9. Control performance in an early (left), intermediate (center), and late (right) phase of an exemplary training.

(ε > 0) is followed for the whole training time, and therefore,
even the latest depicted interval features suboptimal exploration
behavior. Moreover, the rather high motor speed would neces-
sitate operation beyond the voltage boundary, which cannot
be realized and always results in tracking errors. Further, it is
visible that the safeguard is activated quite often within the early
stages of the training, whereas there are almost no interventions
necessary close to the training finish. Both, the visibly increasing
control accuracy as well as the decreasingly frequent safeguard
interventions, confirm the feasibility of the DQ-DTC training.

Over the course of each training, the measured reward is
recorded and a statistical evaluation of the learning behavior
over all ten agents is depicted in Fig. 10. As visible, the mean
reward of the agent set is converging reliably, and also the
corresponding standard deviation σr is decreasing. Strikingly,
no negative outliers have been observed during the procedure,
and despite the randomness of DQN initialization and training
routine, the final performance in the training has been measured
to be quite similar. The peak control performance is consistently
reached within less than 10 min of training, i.e., the proposed
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Fig. 10. Mean learning behavior μr over ten separate DQ-DTC trainings with
marked variation range of one standard deviation σr , moving average filter
applied.

RL framework learns as quick as making a pot of coffee (cf.,
uploaded supplementary video material [10]).

C. Performance Evaluation

Finally, to validate the DQ-DTC in practice, the performance
of an exemplary trained agent is assessed in several test bench
experiments, which include the following.

1) A torque reference step at constant speed.
2) A speed ramp from negative to positive velocity at constant

torque reference.
3) A torque reference ramp from negative to positive torque

at constant speed.
4) A small-signal investigation with several torque reference

steps at constant speed.
For these tests, the best-performing agent from the previous

training investigation was selected concerning its cumulative re-
ward during training. Moving-average quantities are determined
with a window size of 50 ms and are denoted by an overline
(T , i).

1) Torque Reference Step: In the first experiment, a torque
reference step is investigated to evaluate the control loop’s
reaction to transients. The obtained measurement is depicted in
Fig. 11. Beside the measured torque T , also the calculated drive
torque estimation T̂ is presented, which does not feature the
low-pass behavior and the oscillations of the drive train and is,
hence, a more feasible basis for investigating the control behav-
ior precisely. The computation of T̂ is based on comprehensively
identified motor characteristics, which is not compatible with the
premise of crafting a control scheme without a priori knowledge
and is, therefore, only used for the given validation but not
within any formulation that is used within the DQ-DTC’s setup
or training.

Unfortunately, the given drive train features a dominant oscil-
latory behavior with limited bandwidth (as can be inferred from
the time lag between T̂ and T ). Since the torque measurement
T is utilized within the reward formulation, the parasitic drive
train behavior is obviously limiting the reachable torque tracking
precision of the control loop. Moreover, the current and torque
ripple that is inherent to FCS approaches leads to consistent
excitation of the oscillation such that a true steady state is never
reached.

Despite these complications, which are all independent of the
DQ-DTC, fast torque tracking of roughly 5 ms can be observed

Fig. 11. Measurement of a torque reference step at nme = 500 min−1, T̂
denotes the calculated electromagnetic torque for validation purposes.

in Fig. 11, and even the time series of applied actions a features
the familiar overlapping staircase form.

Interestingly, a rather large id was observed during the exper-
iment. It can be speculated that this results in a decreased torque
ripple, and hence, in less striking drive train oscillations, which
would lead to a higher reward r.

2) Speed Ramp: A speed ramp experiment with constant
torque reference is depicted in Fig. 12. Over the course of
the acceleration, the torque ripple can be seen to be quite
significant, which is usual for FCS control schemes (and partly
also attributed to the drive train oscillation). The moving average
of the torque measurement T , however, features clearly that the
torque reference is met for the whole considered speed range.

3) Torque Reference Ramp: Fig. 13 presents an experiment
wherein the DQ-DTC is tracking a ramping reference torque.
This scenario reveals no significant shortcomings. Only a small
offset error can be measured when speed hits its upper steady
state.

4) Small-Signal Behavior: The small-signal behavior of the
DQ-DTC is featured in Fig. 14. The momentary torque measure-
ment is omitted for clarity in this case and only the moving av-
erage T is shown. In this plot, the control agent can be observed
to react with no visible delay to the changing torque reference
T ∗. Again, some of the commanded operating points exhibit a
visible torque offset, which can presumably be attributed to their
proximity to the current boundary.

Concerning all of the presented experiments, it is observed
that id �= 0. Although such behavior seems counterintuitive
when dealing with an SPMSM, several possible explanations
can be identified.

1) The information that the given motor is an SPMSM has
not been used for setting up the RL controller. Hence,
it is not initially clear that id = 0 should be targeted for
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Fig. 12. Measurement of a speed ramp with additional moving-average
signals.

Fig. 13. Measurement of a torque reference ramp at nme = 500 min−1 with
additional moving-average signals.

Fig. 14. Measurement of the small-signal behavior concerning the torque
reference at nme = 500 min−1 with additional moving-average signals.

maximizing efficiency, but it must be learned during the
training phase.

2) The training phase might be chosen too short or might be
biased in terms of flux weakening operation (provoking
id < 0).

3) Numerical difference in reward may be negligible when
moving id closer to zero, which is a valid concern when
dealing with the limited numerical precision of the FPGA
implementation.

4) The selection of id = 0 is only optimal in terms of steady-
state efficiency, which is given a lower priority than
time-optimal torque tracking by means of Table II. For
maximum reward, it could, therefore, be more promising
to maintain id < 0, because this would allow faster tran-
sients, and correspondingly, a tracking behavior of higher
bandwidth.

For the given training scenario with consecutive torque ref-
erence changes of arbitrary magnitude (cf., Fig. 9), the latter
mechanism could be plausible to be the dominant reason for the
observed behavior. If so, the operation with id < 0 would be
exactly in line with the targeted control performance, but this
needs further confirmation in future investigations.

VII. CONCLUSION AND OUTLOOK

A. Conclusion

The general goal of implementing and validating the DQ-DTC
agent in a real-world test has been achieved. Although the initial
implementation effort is significant in terms of setting up the
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EdgeRL online learning pipeline and preparing the reconfig-
urable DQN on an FPGA, the finally resulting controller design
/ training expense of 10 min (and prospectively, even less) is
quite low. The training process was completely automated and
did not require any human intervention.

Although the reached control performance is not yet on par
with the effectiveness of established optimal controllers such
as MPC, the relatively short period for which RL-based control
approaches have been investigated in the domain of three-phase
drives promises a lot of scope for improvement and further
research potential.

B. Outlook

The presented findings and insights yield a broad base for
future research. Some ideas and possible directions for further
investigations in RL-based power system control are listed in
the following.

1) DQ-DTC Research Potential: The training behavior of
the DQ-DTC featured quite fast and reliable learning. The
training speed could be further improved with different types
of scheduling plans for, e.g., ε or the learning rate β. In terms
of the achievable performance, the reduction of the drive train
oscillations can be expected to yield better torque precision.
Besides physical manipulation of the corresponding drive setup
(i.e., replacing the couplings or the torque sensor), pre- or
postprocessing approaches to compensate for these oscillations
would be of major interest to avoid hardware cost and manual
effort. A more accurate safeguard design could be achieved by
exchanging or extending the RLS-based architecture with meth-
ods that allow consideration of data-driven system identification
in terms of locally different system dynamics, e.g., [28].

Concerning the drive losses, the featured reward function
only takes into account the motor losses but not the inverter
losses. Effective ways to limit the switching frequency would
also be important for utilization of the six-step mode, as it has
been discussed in [29]. Also, the presented implementation of
the safeguard monitors only the momentary current, whereas a
safeguarding of the average current (e.g., over the course of one
electric rotation) is equally safe but allows to utilize the PMSM’s
capability much more effectively.

In terms of hardware effort, the proposed approach is quite
costly, mainly due to the utilization of FPGA resources. Prospec-
tively, this will not remain an issue because the calculation
performance of embedded hardware increases, while its cost
decreases with the progress of industrial development. An in-
dustrial application of the DQ-DTC is, therefore, not easily
affordable in the short term, but further development and gain
in knowledge in data-driven motor control is targeted building
upon this contribution.

2) Further Scope: Apart from the DQ-DTC, the presented
insights can also be applied to different drive systems. Most
evidently, it would be of interest to transfer the DQ-DTC,
which is an FCS setup, to the CCS, where modulators are used
to set the average voltage. Although RL approaches for CCS
environments are readily available, the safeguarding procedure

would need a major overhaul for such scenarios. The proposed
reward function could presumably be retained.

Further, the given functionality should also be conceivable for
externally excited synchronous machines, which feature further
degrees of freedom concerning their operating strategy, and
nonsynchronous motors such as induction drives. For the latter,
the full state vector describing the environment’s state is not
inherently measurable due to missing rotor flux linkage sensors,
necessitating data-driven observation methods that could be im-
plemented in an explicit or implicit fashion. Outside the domain
of electric drives, also power grid applications as well as power
electronic devices could be handled in an RL-based FCS scheme
as presented in this article.
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