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Abstract—Power semiconductor devices are often connected
in parallel to increase the current rating of the power conver-
sion systems. However, due to mismatched circuit parameters or
semiconductor fabrication discrepancies, the current of paralleled
power semiconductor devices can be unbalanced, which potentially
leads to accelerated aging and long-term reliability issues. The
fast-switching speed of silicon carbide (SiC) devices aggravates
this problem due to its higher sensitivity to parasitic parameters.
Numerous efforts have been dedicated to analyzing and address-
ing the current imbalance issue of paralleling SiC devices. This
article comprehensively summarizes and presents state-of-the-art
research regarding the current imbalance in paralleled SiC devices.
Degree of imbalance is proposed to comprehensively quantify the
current mismatch. Starting with mechanism analysis, different
types of current imbalance are categorized. Various device parame-
ters and the package layout that impact the current distribution are
investigated. The existing solutions including passive methods and
active methods are concluded and categorized. This work also in-
corporates insight into the future development needs of high-power
multichip SiC module packaging and driving technologies.

Index Terms—Current imbalance, multichip power module,
parallel connection, SiC metal oxide semiconductor field effect
transistor (MOSFET).

I. INTRODUCTION

S ILICON carbide (SiC) metal oxide semiconductor field
effect transistor (MOSFET) devices have been undergoing

rapid development in the past decade and a fast growth rate is
forecasted in the next two decades due to the booming market
of electric vehicles (EVs). SiC MOSFET is considered a preferred
option in the EV powertrain inverter application, not only by
academia [1], [2] but also by the mainstream automotive industry
[3], [4], [5], due to its low device losses, high system efficiency,
and most importantly the lower cost at the vehicle level. As the
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automotive market is enormous and extremely cost-sensitive,
SiC MOSFET technology is supposed to enjoy massive invest-
ment, rapid technology iteration [6], [7], [8], [9], [10], as well
as significant further cost reduction in the next 5–10 years [11],
[12], [13]. As a result of technology improvements and cost
reduction, other industrial markets, e.g., photovoltaic, energy
storage, charging infrastructure [14], traction [15], [16], and
power grid, also expect to see a high-level market penetration of
SiC devices [17], [18].

Compared with silicon (Si) insulated gate bipolar transistors
(IGBTs), SiC MOSFETS s feature several device superiorities: fast
switching speed, high operating temperature, high breakdown
voltage [19], [20], and linear current–voltage (I–V) properties
These device superiorities benefit from both SiC material prop-
erties and MOSFET unipolar device structure. The SiC wide
band gap (WBG) material property enables higher temperature
operation [21] and a higher critical electric field. Currently, the
automotive market is pushing the highest operation junction
temperature from 175 °C to 200 °C, which is not hurdled by
SiC material but mainly by the MOSFET gate oxide reliability
[22], [23], [24], [25]. The higher critical electric field of SiC
material allows a much higher doping concentration and thinner
drift layer, therefore, leading to much lower specific resistance in
the drift region [26]. As a consequence, a 1.2 or 1.7 kV unipolar
MOSFET device is easily achieved with SiC material but not quite
feasible with Si material due to the high specific resistance of
the drift region [27]. At present, up to 1.7 kV SiC MOSFET, the
epitaxial layer thickness is approximately 1 μm/100 V, while
for Si IGBT, the Si wafer thickness is about 10 times larger. The
unipolar MOSFET structure naturally leads to a fast-switching
speed and a linear I–V property, compared to the bipolar IGBT
structure [28], which is beneficial to conduction losses at light
load applications. Last but not least, unipolar MOSFET structure
also results in a lower switching loss compared to bipolar IGBTs
due to the absence of tail current.

While enjoying the aforementioned device superiorities of
SiC MOSFETS, there are still several challenges that are impeding
SiC MOSFETS from walking over the last mile into massive mar-
ket applications. From the perspective of material, SiC substrate
and epitaxy still have multiple defective issues (micro-pipe, dis-
location, stacking fault) [29]. The material defects further impact
SiC device properties, yield, as well as the maximum device size
of a single chip. The immaturity of manufacturing equipment,
process, and device design for SiC devices also results in a larger
inconsistency of SiC device parameters. From the device level,
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Fig. 1. IGBT-high-current-module with paralleled IGBTs and diodes.

SiC MOSFETS are still confronting the challenges of gate oxide
reliability and threshold voltage (Vth) instability [30], [31], [32].
Along with the fast-switching speed benefit, it also results in
high sensitivity to circuit parasitics [33], [34], [35], which poses
additional challenges to the design of SiC power semiconductor
packaging, gate driver, and power loop circuit layout.

In addition to the SiC material immaturity, device parameters
inconsistency, and fast switching speed, the current imbalance
among the paralleled SiC MOSFETS has been a practical issue
for the high current application of SiC MOSFETS. In normal
operating conditions, the current imbalance could lead to thermal
imbalance, as well as long-term reliability concerns. Due to the
current imbalance, the design margin is normally set to a high
level to avoid significant excessive stress on a single device,
whereas it means less utilization of the device’s full potential
and a higher cost.

To tackle the challenges of paralleling SiC MOSFETS, there has
been an increasing amount of research work in the last decade.
The research works could be classified into two categories: the
investigation of the current imbalance mechanism and current
sharing methodologies. This article tries to put together state-
of-the-art research regarding paralleling SiC MOSFETS compre-
hensively. First, it explains the reasons why paralleling SiC
MOSFETS is more challenging than paralleling Si IGBTs, from
material defects to process immaturity and applications: smaller
single die size, larger device parameters inconsistency, and
faster switching speed [36], [37], [38]. Second, it describes
the current imbalance mechanism, including both static and
dynamic imbalances. Third, the summary of current imbalance
mitigation methodologies is presented. Among the methods,
there are passive mitigation methods including circuit layout
design optimization and device screening measures, and active
methods such as utilizing external passives and active gate
drivers [39]. Following the mitigation methods, it gives insights
of circuit/multichip power module designs and the application
of active gate driver control to minimize the current imbalance.
The final section concludes the article.

II. CHALLENGES OF PARALLELING SIC MOSFETS

Paralleling power semiconductors are common at various
levels.

1) At the die level, a SiC mosfet chip consists of thousands
of semiconductor unit cells connecting in parallel via the
drain/source metallization layers and gate runners.

Fig. 2. 6-inch wafer for the dies under different sizes. (a) 5 × 5 mm die size.
(b) 10 × 10 mm die size.

2) At the module level, paralleling power semiconductor dies
in multichip power modules or paralleling discrete devices
is a common approach to achieve a high current rating in
high-power applications. For instance, the power module
in Fig. 1 has a 3600 A rated current with twenty-four IGBT
chips and twelve diode chips in parallel.

3) At the circuit level, for some high-current and high-power
applications, parallel connection of multiple power mod-
ules is also employed to achieve the desired current level.

A. Challenges Associated With Small Dies of SiC MOSFETs

To further increase the current rating of a power device, it is
desired to fabricate a larger die. However, several issues hinder
the further increase of the die size. There is a design tradeoff
between the die size and the yield. Due to SiC material defects
and process imperfection, a larger die size normally means lower
yield, which in turn results in a higher cost/Ampere. Fig. 2
compares the yield difference between 5 × 5 and 10 × 10 mm
die size on a 6-inch wafer, which indicates that the yield is
reduced significantly from 97.54% to 90.56% with the same
defect density.

Compared to a Si IGBT, it is more challenging to make a
large die for a SiC MOSFET. SiC substrate and epitaxial material
have higher-level level defects than their Si counterparts due
to their material properties [40]. In addition, the SiC MOSFET

manufacturing equipment and process control are not as mature
as those for Si IGBTs. At present, for lower voltage (≤750 V)
Si IGBTs, the maximum current rating of a single IGBT chip
is around 300 A with a die size of 10 × 12 mm2. While for the
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Fig. 3. Comparison of experimental switching waveform under different
switching slew rates. (a) Waveform when di/dt is 2 A/ns. (b) Waveform when
di/dt is 6 A/ns.

SiC MOSFETS of the same voltage level, the maximum current
rating of a single SiC MOSFET die is approximately 100 A with a
5 × 5 mm2 die size. For the same current rating, it is necessary
to parallel more SiC MOSFET dies than using Si IGBT. Since
more dies are connected in parallel when using SiC MOSFET,
the level of device electrical parameters’ variations among the
paralleled chips can increase. Therefore, it can lead to higher
risks of current imbalance [41].

B. Challenges Due to Large Device Parameter Variations

Another challenge for paralleling SiC MOSFETS is also asso-
ciated with the less maturity of the SiC MOSFET manufacturing
process, which not only leads to low yield but also results in
a larger variance of the device parameters. Datasheets of SiC
MOSFETS specify high variation limits of the characteristics of the
chip. The inconsistency of device parameters, e.g., ON-resistance
(Rdson), transconductance (gfs), and Vth could lead to current
imbalance during steady state and switching transient.

C. Challenges Due to Fast Switching Speed

In addition to the limited die size and device parameters’
inconsistency, the fast-switching speed associated with the
unipolar MOSFET structure also needs additional attention. Fast
switching speed means high sensitivity to parasitic parameters
since it can interact with the parasitic inductance and generate
ringings, overshoot, and false-triggering. Fig. 3 is the waveform
of the same circuit under different switching speeds [34] which
shows that the ringing increases while the di/dt increases from

Fig. 4. Thermal performance with different distances among paralleled dies.

2 to 6 A/ns. In Fig. 3, Vds is the drain–source voltage and Id is
the drain current.

D. Challenges From Designing Multidiscipline of Multichip
Power Modules

Another challenge for multichip power module design is its
highly multidiscipline characteristic. The “optimal” design solu-
tion is often a compromised result between various aspects such
as electrical, mechanical, thermal, environmental, reliability,
and manufacturability [42]. In general, the design principles
from different aspects are usually paradoxical. A simple example
is that the distance between the paralleled chip is expected to
be larger for better thermal performance, but smaller for better
electrical performance [43]. Fig. 4 compares the thermal simu-
lation of two groups of paralleled dies with different distances.
It is apparent that the four MOSFETS with larger space, i.e., the
right ones, have lower junction temperatures but larger stray
inductance among the loops.

Apart from the tradeoff from different design principles, the
performance from different aspects (e.g., electrical, thermal,
mechanical) is highly coupled. For paralleled power devices,
the current imbalance among paralleled devices may lead to
mismatched thermal distribution, mechanical performance, and
finally reliability issues. Consequently, there is no cure-all so-
lution for the optimization of the current imbalance among
the paralleled dies. Prior to mitigating the current imbalance,
it is necessary to conduct an in-depth investigation into the
mechanisms of the current imbalance.

III. CATEGORIES OF CURRENT IMBALANCE AND POSSIBLE

CONSEQUENCES

In general, the current imbalance can be categorized into two
types: static and dynamic [44]. Static imbalance can lead to
mismatched conduction losses while dynamic imbalance can
lead to unequal switching losses and Id peak which are pertinent
to the current stress. Herein, Zhao’s degree of imbalance concept
is introduced.

A. Static Degree of Imbalance

Static imbalance is usually induced by the mismatched ON-
state resistance Rdson. For power MOSFETS, the current is pro-
portional to the conductance. The current on the kth MOSFET Idk
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Fig. 5. Experimental waveform of steady-state current imbalance.

is determined by its ON-state-resistance Rdsonk as given in the
following:

Idk =
1/Rdsonk

1/Rdson1 + 1/Rdson2 + . . . 1/Rdson−n
Io. (1)

In (1), n is the total number of MOSFETS in parallel and
Io is the total load current. Herein, Io = Id1+Id2+…Idn. A
typical waveform of two parallel-connected MOSFETS with the
same model number is shown in Fig. 5. It still shows a slightly
mismatched static current.

For paralleled MOSFETS, Vds on each MOSFET is equal. Ac-
cording to Vds = RdsonId, the MOSFET with lower Rdson has
higher current Id. Because conduction loss can be calculated
with Pcond = VdsId, the MOSFET with lower Rdson withstands
higher conduction losses and junction temperature. The static
imbalance is usually not catastrophic due to the positive temper-
ature coefficient of Rdson.

To quantify the current imbalance, in this article, the Degree
of Imbalance (DoI) is introduced. sDoI which denotes the DoI
for static current can be calculated with the following:

sDoI =
∑ |Idj−Idk|

=

|Id1 − Id2|+ |Id1 − Id3|+ |Id1 − Id4|+ . . . |Id1−Idn|
+ |Id2 − Id3|+ |Id2 − Id4|+ . . . |Id2−Idn|

+ . . . . . .
|Idk − Idk+1|+ . . . |Idk−Idn|

+ . . . . . .
+ |Idn−1 − Idn|

(n−1)(|Id1|+|Id2|+...|Idn|) .

(2)
sDoI is an indicator between zero and one. In (2), k and j

denote the kth and jth paralleling route respectively and j �= k.
n means the number of MOSFETS in parallel. It is an integer no
less than 2, i.e., n≥2. The scenario when sDoI equals one is
the most extreme condition since all Io is withstood by a single
MOSFET and the Id of the other MOSFETS is zero. When sDoI
equals zero, the Id on all MOSFETS is completely matched.

B. Dynamic Degree of Imbalance

Dynamic imbalance occurs due to the mismatching switching
trajectory which is brought by various factors such as mis-
matched stray inductance, gate resistance Rg, Vth, etc. [45].
Theoretically, the dynamic imbalance can be equivalent to the
combinations of two special cases: 1) synchronous gate signal

Fig. 6. Turn-ON process of the two special cases of parallel-connected
MOSFETS. (a) Asynchronous gate signal and same switching slew rate. (b)
Synchronous gate signal and different slew rate [47].

and different slew rate; and 2) Asynchronous gate signal and
same slew rate. The turn-ON switching profiles of the two special
cases are plotted in Fig. 6. M1 and M2 are the two MOSFETS

under test. Since the Vds of the paralleled MOSFETS is similar,
the switching loss is dominated by Id.

Fig. 6(a) shows the turn-ON process trajectory with an asyn-
chronous gate signal and the same switching slew rate. In this
case, two MOSFETS have the same switching slew rate while the
gate signal of M1 lags behind M2 for ϕ. The gate signal lag
is usually introduced by the gate driver propagation delay [47].
Vdr is the output voltage of the gate driver. Since the turn-ON

signal of M1 is earlier than M2, the peak current of M1, i.e.,
Id1_t3, is different from that of M2 Id2_t3. It is apparent that M1
undergoes a higher current than M2. The difference between
Id1_t3 and Id2_t3 will increase as the delay time ϕ increases.
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Fig. 7. Turn-OFF process of the two parallel-connected MOSFETs [47].

If the overshoot current is neglected, Id1_t3+Id2_t3 = 2Io. The
most unbalanced condition occurs when Id2_t3 is zero. In this
situation, M2 operates in soft turn-ON mode. All the current
stress and energy loss are undergone by M1.

Fig. 6(b) shows the turn-ON process trajectory with a syn-
chronous gate signal but a different switching slew rate. In this
situation, the Id of M1 and M2 start to rise at the same time when
the while the switching transient of M1 is faster than M2. The
different slew rate is introduced by the mismatching electrical
parameters of the devices such as Cgd, Vth, etc. Since M1
switches faster, it withstands higher current stress and overshoot.

The analysis of the turn-OFF process is similar. The two
MOSFETS turn OFF with the same switching slew rate while M2
lags behind M1 for ϕ as plotted in Fig. 7. During the turn-OFF

process, M1 withstands less current stress and it operates under
quasi-soft-turn-OFF mode. Accordingly, more switching loss is
undergone by M2.

Similar to sDoI, the concept of dynamic degree of imbalance,
i.e., dDoI, is introduced as given in (3). Generally, the two
variables-of-interest during switching are di/dt and peak Id.
Since the Vds is similar, peak Id indicates the safe-operation
while both di/dt and peak Id determine the switching loss. If the
di/dt and peak Id of the parallel-connected MOSFETS are equal,
it can be claimed that these MOSFETS are balanced. dDoI can be
defined with the following:

dDoI =
∑n

j,k=1

∫ tic
0 (|Idj−Idk |)dt

(n−1)
∑n

j=1

∫ tic
0 |Idj |dt

=

∫ tic
0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|Id1−Id2|+|Id1−Id3|+|Id1 − Id4|+. . . |Id1 − Idn|
+|Id2 − Id3|+|Id2 − Id4|+. . . |Id2 − Idn|

+ . . . . . .
|Idk − Idk+1|+. . . |Idk − Idn|

+ . . . . . .
+|Idn−1 − Idn|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dt

(n−1)
∫ tic
0 (|Id1|+|Id2|+...|Idn|)dt

.

(3)

Fig. 8. Turn-ON process of the two paralleled MOSFETs. (a) Nonintersect
conditions 1: asynchronous gate signal and same switching slew rate. (b) Non-
intersect conditions 2: synchronous gate signal and different switching slew rate.
(c) Nonintersect conditions 3: asynchronous gate signal and different switching
slew rate. (d) Intersect condition.

In (3), k and j denote the kth and jth paralleling route, respec-
tively, and j �= k. Id1 – Idn denote the Id of each MOSFET during
current changing substage. tic is the duration of drain current
rising, i.e., t2 to t3 in Fig. 6(a). For the turn-OFF process, tic
starts at the beginning of Vds rising and ends when the total Id
reduces to zero, i.e., t10 to t13 in Fig. 7.

Considering that the integral is usually difficult to be cal-
culated, (3) can be further simplified. Generally, the current
changing process can be linearized to a first-order function [48].
In this case, there are three critical indicators: di/dt, tic, and start
moment. First, the denominator can be simplified as given in the
following:∫ tic

0

(|Id1|+ |Id2|+ . . . |Idn|) dt

= 0.5

(∣∣∣∣di1dt
∣∣∣∣ tic21 +

∣∣∣∣di2dt
∣∣∣∣ tic22 . . .+

∣∣∣∣dindt
∣∣∣∣ tic2n

)
. (4)

Second, the simplified calculation of nominator, i.e.,∫ tic

0 |Idk − Idj |dt is based on the practical condition. Generally,
there are two basic conditions: the intersect condition and the
nonintersect condition.

Fig. 8(a)–(c) show the current waveform of three typical types
of nonintersect conditions which is defined when the Idj and Idk
do not intersect in the range of 10%–90% of peak current. In
this condition, the integral value can be easily obtained with∫ tic

0

(|Idj − Idk|) dt

=
1

2

∣∣∣∣
∣∣∣∣dijdt

∣∣∣∣ tic2j −
∣∣∣∣dikdt

∣∣∣∣ tic2k
∣∣∣∣ . (5)

Fig. 8(d) shows the current waveform of intersect condition.
In this condition, the current Idj and Idk intersect at the point (-tx,
Idx) which locates in the range of 10% to 90% of peak current.
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Fig. 9. Thermal network of a bottom-side cooling power device [1].

Peak currents of Idj and Idk are denoted by Ipk,j and Ipk,k,
respectively. The calculation of

∫ tic

0 (|Idj − Idk|)dtis actually
the area of region 1© and 2© in Fig. 8(d). It can be calculated
with the following:∫ tic

0

(|Idj − Idk|) dt

=
1

2
(ticj − tick) Idx +

1

2
tx (Ipk,j − Ipk,k) . (6)

tx and Idx can be inspected from the oscilloscope. It can be
also calculated with di/dt and the current rising time of each
current as given in the following:⎧⎨

⎩tx =
dij
dt ticj− dik

dt tick
dij/dt−dik/dt

Idx =
dij
dt

dik
dt

tick−ticj
dij/dt−dik/dt

.
(7)

C. Thermal Imbalance and Long-Term Reliability

The current mismatch can lead to a thermal imbalance and
raise long-term reliability concerns. It can be analyzed as below.
The total power loss of a MOSFET can be divided into the
conduction loss and switching loss as given in the following
[49]:

Ploss =
V 2

ds

Rdson
+ fsw

∫
VdsIddt. (8)

From (8), the static current imbalance can lead to mismatched
conduction loss which is proportional to the steady-state Id of
the power device. Also, the switching power loss is proportional
to the switching frequency and the switching energy loss. The
equivalent thermal network of a bottom-side cooling power
device can be drawn as shown in Fig. 9 [1].

In Fig. 9, Ploss denotes the total power loss of the SiC MOS-
FET. Rth,j-c is the thermal resistance and capacitance from the
junction to the case, respectively, which can be found in the Zth

plot of the datasheet, while Rth,c-s and Cth,c-s denote those from
the case to the surface of the heatsink. s-a denotes the surface to
the ambient thermal impedance. Ta is the ambient temperature
of the system and Tc is the temperature of the case. Thus, the
calculation of junction temperature Tj of the SiC device can be
referred to the following:

Tj = Ploss (Rth,j−c +Rth,c−s +Rth,s−a) + Ta. (9)

From (9), Tj is proportional to the power loss. Both the
mismatching Rth and power loss on the parallel-connected
MOSFETS can lead to the Tj difference which has a significant

Fig. 10. Tj profile of paralleled SiC MOSFETs in a PFC.

Fig. 11. Relationship between the number of life cycles and junction temper-
ature.

impact on lifetime. A simulation study is conducted with a
power factor correction (PFC) converter. Two paralleled SiC
MOSFETS with different Rdson are utilized and their Tj profiles
are shown in Fig. 10. The normal operation of an inverter can
inevitably introduce a Tj cycle due to the sinusoidal load current.
This results in power loss fluctuation and finally the junction
temperature fluctuation, i.e., ΔTj.

Most failures of the power devices occur on the mechanical
parts due to periodical expansion/shrinking. Specifically, the
coefficients of thermal expansion of the semiconductor dies,
bonding wire, solder and direct bonding copper layer are differ-
ent [50]. The solder layer between the die and direct bond copper
layer and the bonding wires undergo a large periodical force
brought by the temperature cycling fluctuation. The accumulated
fatigue can result in delamination of the die attach and bonding
wire damage [51]. The lifetime power cycles of a power device
Nf versus ΔTj can be quantified with the Coffin–Manson model
in the following and plotted in Fig. 11 [52]:

Nf = A · (ΔTj)
α · eEa/(kB ·Tm). (10)

In (10), A, α, and Ea are defined as the coefficients obtained
from experimental results, and kB which is Boltzmann’s constant
equals to 1.38 × 10-23 J/K.

When the current imbalance occurs, the mismatched power
loss can lead to different Tj on the paralleled MOSFETS [53].
Finally, the MOSFETS that withstand larger ΔTj in paralleled
devices age first and the reliability of the system reduces [54].
Therefore, the current imbalance can speed up the aging process
of a system with paralleled devices [55].
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Fig. 12. Equivalent circuit of the parallel-connected power devices.

IV. MECHANISM OF CURRENT IMBALANCE

Prior to proposing current sharing strategies, an investigation
of the current imbalance mechanism should be conducted. Var-
ious parameters that induce the current distribution are usually
coupled. This section will discuss the impact of pertinent pa-
rameters on the current distribution.

A. Pertinent Parameters

The equivalent circuit of the paralleled power devices is
given in Fig. 12 [45]. The parameters in Fig. 12 which have
an impact on the current distribution can be categorized into
three types: device parameters [55], circuit parameters [56], and
status indicators. The intrinsic electric parameters, which are
the parameters of the die, are generally determined amid the
die fabrication process [57]. It includes the junction capacitance
[58], internal gate resistance, transconductance, etc. The external
parameters include the parasitic inductance introduced by the
package stray, bonding wires, PCB, and cables [59]. The status
indicators denote the parameters pertinent to statuses such as
Tj, humidity, load current, and dc bus voltage. Some typical
parameters can be summarized as shown in Table I. Some equiv-
alent parameters are highly coupled such as Vth versus Rdson,
and Tj versus Rdson [60]. Also, some parameters only impact
one type of current imbalance. For instance, Rdson only affects
static current distribution while Cgs only influences dynamic
distribution. Some parameters such as Vgs and Tj can affect both
static and dynamic current distribution.

B. Device Parameters Variations

1) Rdson Variation: The current on the two paralleled MOS-
FETS is proportional to the conductance of the MOSFET as given
in (1) and their Rdson can be calculated with the following:{

Rds1_on = L
WμnCox(Vgs1−Vth1)

Rds2_on = L
WμnCox(Vgs2−Vth2)

.
(11)

TABLE I
TYPICAL PARAMETERS THAT AFFECT THE CURRENT DISTRIBUTION ON

PARALLEL-CONNECTED MOSFET

Fig. 13. Components breakdown of SiC MOSFETs Rdson.

It is straightforward that the MOSFET with lower Rdson shares
more current than the one with higher Rdson. Generally, higher
Vgs can reduce Rdson, and this is also similar for the third-
quadrant mode as claimed in [61]. To better understand the
mechanism of static imbalance, an in-depth analysis of Rdson

should be conducted. As shown in Fig. 13, the Rdson of a SiC
MOSFET consists of various components.

Among the several components of Rdson in Fig. 13, the
channel resistance (RCH) has a negative temperature coefficient,
while the drift region resistance (RD) has a positive temperature
coefficient. For SiC MOSFETS, higher breakdown voltage nor-
mally requires a thicker drift layer, which results in different
Rdson over temperature behavior. The curves of Rdson versus Tj

of several commercialized SiC MOSFETS under different voltage
ratings are plotted in Fig. 14. Most SiC MOSFETS on the market
have positive temperature coefficients of Rdson which enable
self-balancing of the static currents [62].

For a 650 V SiC MOSFET, RCH can account for more than 50%
of the total Rdson, while in a 1.7 kV SiC MOSFET, the propor-
tion of RCH can be reduced to be lower than 30%. Therefore,
paralleling higher voltage SiC MOSFETS tends to have a stronger
self-balancing effect due to the higher temperature coefficient
of Rdson.

In terms of the temperature coefficient of Rdson, there is
a tradeoff between the conduction loss and the feasibility of
parallel connection. A higher ratio of positive temperature coef-
ficient is beneficial to current balancing for parallel connection



9738 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 38, NO. 8, AUGUST 2023

Fig. 14. Normalized Rdson versus virtual junction temperature.

Fig. 15. Vth of multiple SiC MOSFETs.

while it leads to a higher conduction loss at elevated junction
temperature.

For static current imbalance, the characterization of paral-
leling SiC MOSFETS is discussed in [63] with Rdson variations,
which could see the small current difference between the two
paralleled SiC MOSFETS with Rdson mismatch.

2) Vth Variation: Vth variation can be introduced in the
manufacturing process of the device. As demonstrated in [64],
Vth can also be shifted under long-term gate stress. Therefore,
investigating the impact of Vth variation on the current imbal-
ance is critical. Twenty SiC MOSFETS are chosen for testing with
a curve tracer. The Vth curves are plotted in Fig. 15.

Vth variation has a major impact on the dynamic switching
current distribution and Rdson variation mainly affects the static
current sharing [65], which could also be explained with the
following equation:

Id = gfs(Vgs − Vth)
2. (12)

As shown in Fig. 16, in paralleled MOSFETS, the device with
lower Vth has faster turns-ON and slower turns-OFF, which leads
to both higher turn-ON and turn-OFF losses. This happens because
it withstands more current stress. Consequently, among the
paralleled devices, the Tj of the device with lower Vth can be
higher due to higher switching losses. Moreover, the negative
temperature coefficient of Vth can lead to a vicious circle and
finally a catastrophic result [66].

Fig. 16. Experimental dynamic current distribution with Vth variation.
(a) Turn-ON process. (b) Turn-OFF process.

Compared with the self-balancing feature of Rdson variation
among paralleled devices, this self-aggravating feature of Vth

variation could lead to severe Tj mismatch and even thermal
run-away events.

C. Circuit Parameters Mismatch

1) Ld Mismatch: Li et al.[63], [67] claimed that Ld has little
impact on dynamic current sharing. The reason is that the Id in
switching transient is controlled by (12) while Ld has no direct
impact on Vgs. Nonetheless, the impact of Ld on the current
oscillations cannot be neglected.

An experimental study is conducted to validate this impact.
Twenty MOSFETS with the same part number are tested with a
curve tracer and two MOSFETS, i.e., M1 and M4, with identical
parameters are selected for the study. Fig. 17 shows the current
waveform of the two paralleled MOSFETS with different Ld. Id1
and Id4 in Fig. 17 denote the current of SiC MOSFETS with Ld4

= 64 nH and Ld1 = 34 nH, respectively. Id4 has a larger ringing
over Id1. With the analysis in [63], Ld has an influence on the
current in a short period after turn-ON and turn-OFF. SiC MOSFET

with larger Ld has a smaller oscillation frequency and a smaller
damping factor after turn-ON and turn-OFF. As a result, the SiC
MOSFET with larger Ld has a larger current overshoot, and the
current oscillation amplitude after turn-OFF is also larger.

Additionally, Ld has an impact on the static current sharing
if the drain current is still changing during the ON-state period.
The equivalent circuit of paralleled MOSFETS in ON-state mode
is shown in Fig. 18 where L is the load inductance. It can be
derived that the ON-state current difference could be calculated
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Fig. 17. Experimental switching transient current with different Ld. (a) Turn-
ON process. (b) Turn-OFF process.

Fig. 18. ON-state equivalent circuit of paralleling two SiC MOSFETs.

with the following:

Ids1 − Ids2 ≈ Ld2 − Ld1

2Rdson

VDC

L
. (13)

It means that the static current difference can be influenced
by four parameters: loop inductance, Rdson, load inductor L, and
dc-link voltage.

2) Ls Mismatch: In contrast to Ld, Ls mismatch has a signifi-
cant impact on dynamic current sharing [63] due to its influence
on Vgs. Analyzing the equivalent circuit in Fig. 12, (14) can be
derived. It shows that the channel current is determined by Vgs

during switching transient while Vgs is affected by Ls and source
current Is

Vgs = Vdr − igRg − Ls
dIs
dt

. (14)

Fig. 19 shows the switching current with Ls mismatch, which
demonstrates that larger Ls results in both slower turn-ON and
turn-OFF. It means that the MOSFET with larger Ls leads to a

Fig. 19. Experimental current sharing performance of M1 and M4 (Ls4 >
Ls1). (a) Turn-ON waveform. (b) Turn-OFF waveform.

Fig. 20. LTspice Simulation waveform with the impact of Lg on turn-ON
transient.

smaller turn-ON loss since more current stress is withstood by
the MOSFETS which turn ON faster. On contrary, the turn-OFF loss
of the MOSFET with larger Ls is higher since the other MOSFET

operates in quasi-zero-voltage switching mode.
3) Lg Mismatch: Lg mismatch has a small impact on transient

current sharing. Even though higher Lg means a slower charging
process of Vgs, the gate current and its di/dt are normally quite
small in switching dynamic. Therefore, its impact on the gate
voltage values is not as significant as Ls. LTspice simulation
is conducted to study the impact of Lg on switching speed
for paralleled MOSFETS. The Lg of M1 is 10 nH, while that
of M2 is 50 nH. The Id curves of both MOSFETS are plotted
in Fig. 20. It validates that the impact of Lg mismatch on the
current distribution is not critical. However, gate inductance
and its mismatch could lead to gate oscillations and instability
issues, which is out of the scope of this article and therefore not
discussed.
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Fig. 21. Power module layouts and their modeling. (a) Package layout.
(b) Equivalent circuit.

V. ANALYSIS AND MODELING OF MULTICHIP POWER

MODULE LAYOUTS

Section IV analyzes the impact of the electrical parameters
mismatch on current sharing. In a multichip power module,
there could be more than two devices in parallel. The accurate
modeling of the multichip power module layouts is essential to
the current sharing analysis.

A typical power module layout is shown in Fig. 21(a), while
its equivalent circuit is shown in Fig. 21(b). The gate loop
inductance and mutual inductance are not considered since only
gate loops are analyzed here. The current distribution among
the paralleled SiC MOSFETS with the above layout is analyzed
in [63]. It is revealed that the inductance LsxL has a significant
impact on dynamic current sharing due to its impact on Vgs

during the switching transient process. While the impact of
LdxL on dynamic current sharing is not critical since Vgs during
switching transient is not influenced by LdxL. In this layout, the
effective value of LsxL and LdxL is around 1–2 nH considering
the magnetic coupling effects. With a di/dt of 2 kA/μs, the
voltage on the parasitic inductance could be around 2–4 V. While
this voltage is not comparable to the drain–source voltage but
it has a significant impact on the gate–source voltage which is
normally between –5 and 15 V.

A. Current Coupling Effect

Aside from the analysis above, the current coupling effect can
exacerbate the current imbalance among the paralleled devices
[68]. The current coupling effect means that the current of the
paralleled devices affects not only its switching transient current

Fig. 22. Simulation result of current waveform of four paralleled MOSFETs.
(a) With current coupling effects. (b) Without current coupling effects.

but also the other devices’ currents. Dynamic current imbalance
among the paralleled SiC MOSFET is because of the device source
terminal voltage difference, the root cause of which is due to
the voltage on the mismatched inductance. The mismatched
inductance voltage is equal to L∗di/dt during the switching
transient.

Therefore, both the mismatched L and di/dt play pivotal roles.
Even though the value of Ls4L and Ls2L are identical, the di/dt
applied on Ls2L is more than 3 times that on Ls4L. Consequently,
the dynamic current imbalance between ML1 and ML2 is larger
than the current imbalance between ML3 and ML4. Due to the
current coupling effect, the same inductance mismatch leads to
different current imbalances, as shown in Fig. 22.

B. Paralleling Dies and Paralleling Half-Bridges

Fig. 23 shows a power module layout as well as the busbar
structures, which have six substrates in parallel. Each substrate
is an individual half-bridge. In other words, the layout in Fig. 23
is configured with six half-bridges in parallel. The equivalent
circuit of this layout is shown in Fig. 24.

The difference between paralleling dies and paralleling half-
bridges is the current commutation loop, which further influ-
ences the di/dt on the parasitic inductance [69]. As shown in
Fig. 24, with paralleled half-bridges, the di/dt on LsHx between
the top side paralleled devices is not high, since the current
commutation is able to be achieved within the individual half-
bridge. While with paralleling dies in Fig. 21, every current
commutation between the top switch and the bottom switch leads
to full load di/dt on LsHx.
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Fig. 23. Power module layout with paralleling half-bridge configurations.
(a) Package layout. (b) Bus bar layout.

Fig. 24. Modeling of the layout with paralleling half-bridges.

The di/dt interacting with parasitic inductance generates volt-
age among the source terminals of the paralleled SiC MOSFETs.
Thus, the potential of each source terminal is different and this
is the dominant reason for dynamic current imbalance among
the paralleled devices.

The simulation results of current sharing performance with
paralleling half-bridges are plotted in Fig. 25. It can be seen that
the dynamic current imbalance of the top devices is not high
while that of the bottom devices is significant.

C. Auxiliary Source Connections

Auxiliary source connection is extensively applied in mul-
tichip power modules. It is revealed that the auxiliary source
connection for paralleled devices in a multichip power module
cannot fully decouple the power loop and gate loop, which is
different with the Kelvin connection of a single device [70].
In order to add auxiliary source connections to the layout in
Fig. 21(a), the original layout can be improved as shown in
Fig. 26(a), while its equivalent circuit can be drawn in Fig. 26(b).

From Fig. 26, it can be seen that there are more than one
current paths between the paralleled source terminals. The
impedance of each path determines the current distribution

Fig. 25. Simulation result of current sharing performance with paralleling
half-bridge configurations. (a) Current waveform of the top devices. (b) Current
waveform of the bottom devices.

Fig. 26. Power module layout with auxiliary connection and its modeling.
(a) Package layout. (b) Equivalent circuit.
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Fig. 27. Experimental Current waveforms in a multichip power module.
(a) Without auxiliary source connection. (b) With auxiliary source connection.

among the different paths. The impact of the auxiliary source
connections on the dynamic current imbalance can be validated
by the experimental results in Fig. 27 [70].

A power module with four identical dies is tested and the
waveforms are plotted in Fig. 27. The difference between highest
current peak and lowest current peak is 18 A which leads to high
DoI. With an auxiliary source connection on the module, the
difference can be reduced by half to 9 A.

VI. SOLUTIONS OF CURRENT MISMATCHING IN

PARALLEL-CONNECTED DEVICES

Various state-of-the-art methodologies for tackling the current
mismatch issue in paralleled devices can be categorized into two
major types: passive methods [71] and active methods [72], [73].
Passive methods can minimize the impact of mismatched elec-
trical parameters among loops by optimizing the package/circuit
layout or preselection of the chips. Active methods employ
auxiliary circuits or component to realize current rebalancing.
They include external passive components and external active
components. External passive components methodologies can
adjust the current distribution via adding passive components in
the gate loop or power loop. The external active components
methods usually employ adjustable gate driver solutions to
dynamically change the device characteristics cycle by cycle.
In this section, the research of the aforementioned two method-
ologies will be illustrated.

A. Passive Methodologies

Passive methodologies can adjust the current distribution
via selecting the dies with identical electrical parameters or

Fig. 28. Improved power module design for dynamic current imbalance mit-
igation.

Fig. 29. Experimental dynamic current imbalance mitigation results.

optimizing the hardware layout. From the sequence of the semi-
conductor device manufacturing process, it can be categorized
into the preselection of dies and layout optimization of the
circuit.

Preselection of chips means selecting the MOSFET chips in
prior to packaging into a module. As demonstrated in Section II,
the dies in one wafer usually have different electrical parameters
such as Vth, Rdson, and Cgd. For a power module with multiple
paralleled dies, the chips with close electrical parameters are
selected for a module [74], [75]. Machine learning algorithms
are utilized in paper [76] to assist in the SiC die screening for
sorting paralleling SiC MOSFET. Device screening strategy is
applied in paper [77] to balance the short-circuit current on the
paralleling SiC MOSFETs.

The hardware layout includes power module package layout
and external circuit layouts such as a bus bar and PCB [78].
The symmetric circuit layout method can eliminate the current
imbalance brought by the mismatched parasitics among different
current loops. Fig. 28 shows an improved power module lay-
out design. The layout optimization for mitigating the current
imbalance is usually conducted by minimizing the following
parameters:

1) mismatched Ls;
2) di/dt across the mismatched Ls.
Comparing the layout in Figs. 21(a) and 28, it can be con-

cluded that both the mismatched Ls and di/dt applied on the mis-
matched Ls are reduced. The experimental results before/after
performing the aforementioned improved method are plotted in
Fig. 29 [79].
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Fig. 30. Substrate layout design with different wire-bonding lengths.

Apart from the previous optimization method, multiple
emerging module layouts are summarized in [80] which also
figures out the future development direction. Specifically, sev-
eral design methods for symmetric the module internal layout
or bus bar structure are introduced in [79], [81], [82], [81] and
[83].

Fig. 30 shows another method to improve the current sharing
performance, which inserts additional parasitic inductance by
adjusting the length of source wire bonding for the paralleled
chips [84]. This approach could potentially mitigate the current
imbalance to a certain degree but it also increases the parasitic
inductance, which can slow down the switching speed or pose
switching oscillations. A method with a similar principle can be
found in [85]. To control the parasitics on the connecting wires,
copper clips are utilized to supplant bonding wires.

B. Active Methodologies: External Passive Components

An active method in the industry is inserting external passive
components into the gate loop or power loop. It can manually ad-
just the impedance for the circulating current and finally realize
current sharing. It is known that the passive components can be
categorized into inductors (L), capacitors (C), and resistors (R).
Different combinations of passive components can adjust the
overall characteristics and finally change the current trajectory
and distribution.

Employing external passive components for mitigating the
current imbalance is usually conducted by optimizing the fol-
lowing parameters.

1) Static current imbalance: adjust the resistance in the cur-
rent route.

2) Dynamic current imbalance: change the impedance for
circulating current.

A typical inductor-based method is presented in [86], which
rebalances Id via connecting a differential mode inductor on the
source side as shown in Fig. 31.

When Id is unbalanced, there is an equivalent circulating
current between the power loops. The differential mode inductor
can increase the impedance for the circulating current, thus
the current imbalance is minimized. The mechanism can be
further applied on the parallel-connection of power converter
as demonstrated in [87] which applies coupled inductor on a
resonant pulsed power converter. An RC network connected in
the gate loop to suppress the circulation gate current and balance
the current in paralleled MOSFET is proposed in [88].

Fig. 31. Several external passives method. (a) Differential mode inductor [86].
(b) Decoupling capacitors on each half-bridge [89].

As analyzed in Section IV-B, paralleling half-bridge has supe-
rior current sharing performance over paralleling dies. However,
the lower side switch still has current imbalance caused by
coupled current. To address this problem, a dynamic current
sharing method proposed in [89] optimizes the layout of PCB
to enable decoupling capacitors to be located close to the half-
bridge. External resistors are added in series with the power
MOSFET to adjust the total ON-state resistance [90]. The hybrid
component method combines resistors, inductors, or capacitors
to implement current sharing. A Kelvin-source resistor and a
power source inductor are utilized [91] to mitigate the dynamic
current imbalance. It can balance the steady-state Id while
also increasing the conduction loss and reducing the overall
efficiency. As demonstrated in [92], two switches are applied
on the source side of the MOSFET to actively adjust the current
distribution and finally realize current sharing. An R–L network
connecting in the power loop is proposed to minimize the current
imbalance between multiple parallel IGBTs in [93].

C. Active Methodologies: External Active Components

Generally, the aforementioned two methods have a drawback
in terms of lack of flexibility. The circuit layout or the passive
components cannot be changed in the operating condition, thus
they are not appropriate for all conditions. Furthermore, as
demonstrated in Section II, Vth can change due to variating
Tj when the converter is operating. Therefore, online current
sharing methodologies are desired. Specifically, close-loop con-
trol lends its capabilities to be applied in various operating
conditions. It is known that adjusting the gate driver parameters
can change the slew rate of the power MOSFET [94]. As claimed
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Fig. 32. Circuit topology of the adjustable Vgs gate driver [99].

in [39], there are four variables for MOSFET switching trajectory
adjustment from the gate side, i.e., gate resistance, gate current,
gate voltage, and input capacitance. Thus, to adjust the current
distribution, active methodologies are usually implemented by
utilizing active gate driver (AGD). AGD is an emerging gate
driver technique that can adjust its output dynamically based
on real-time operation conditions [95]. Generally, the basic
mechanism of using external active components for mitigating
the current imbalance can be summarized as follows.

1) Static current imbalance: Via actively adjusting the Rdson

of the MOSFETS, the channel current distribution can be
changed.

2) Dynamic current imbalance: By actively changing the
switching slew rate di/dt or gate signal delay ϕ, the dy-
namic current stress on each MOSFET can be tuned.

Static current imbalance can be addressed via adjusting Rdson.
Since Vth and other parameters in (11) are all determined in
the midst of die manufacturing, the only adjustable parameter
is the normal turn-ON driver voltage Vdron. Thus, to change
the static current distribution, variable static driver voltage is
needed. Also, considering that Rdson is also pertinent to Tj which
is greatly impacted by the load current, it is preferred to have a
turn-ON driver voltage adjusted cycle by cycle. This mechanism
is usually employed to suppress ΔTj and finally maximize the
life cycles. Several driver circuits to dynamically change Vdron

are proposed in [96], [97], and [98]. Via detecting the collector
current of an IGBT, it can increase Vge at the load current peak
and reduce Vge at the load current valley. In this way, ΔTj can
be minimized and the device long-term reliability is enhanced.

For paralleled MOSFETS, different Vdron levels are applied on
each MOSFET to compensate for the static current imbalance
in [99] and [100]. The Vdron adjustment can be implemented
by using adjustable power supply with a buck converter as
shown in Fig. 32(a) [99]. Also, there are some other circuits
such as using digital/analog converter, analog adder circuit, and
amplifier circuit.

The dynamic current sharing methods with AGDs are rela-
tively challenging for the sake of the very short switching tran-
sient process. Specifically, Vds and Id changing period occurs
during the Miller plateau which can be finished in a couple of
nanoseconds. The dV/dt of a SiC MOSFET can increase to over 50
V/ns which means the voltage falling substage can be finished in
10 ns. This is challenging to the design of the active gate driver,
particularly for the selection of voltage/current sensors, timing
sequence, and topology of the AGD [97].

Fig. 33. Experimental results of the parallel-connected device with variable
gate voltage AGD. (a) Without AGD. (b) With AGD.

Apart from the slew rate, the switching loss on paralleled
MOSFETS is relevant to the gate signal lagging time between
the two MOSFETS. Theoretically, the earlier MOSFET withstands
higher turn-ON loss and lower turn-OFF loss. As shown in Fig. 33,
the transient current waveform of two MOSFETS is not balanced.
Via changing the gate lagging time, it can be rebalanced as
given in Fig. 33(b). Based on this feature, a common application
scenario for AGD is the hybrid switch which is comprised of a
Si IGBT with a SiC MOSFET [101]. It is desired to combine the
Si IGBT’s low conduction loss and SiC MOSFET’s low switching
loss superiorities [102]. Correspondingly, by means of control-
ling the gate signal lag between the two devices, the overall
power loss can be manually adjusted. SiC MOSFET is desired to
turn ON earlier and turn OFF later than the Si IGBT, thus the
switching loss is withstood by the SiC MOSFET. Thus, the high
switching loss of IGBT can be avoided. The advantage is that the
overall power loss can be greatly reduced while the downsides
include the higher cost and higher current which may move the
SiC MOSFET out of SOA. This method has been presented in
[103], [104], [105], and [106] and quantifies the power loss for
the hybrid switch under different gate signal delay times.

To realize dynamic current sharing, variable gate current AGD
is applied in [107] while this methodology is also employed to
balance the voltage in series-connected power MOSFET [108].
Both papers utilize the current mirror circuit and adjustable
voltage regulator to change the gate current during the switching
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Fig. 34. Summary of the state-of-the-art current sharing methodologies.

transient. Variable gate resistor AGD is employed in [109] to
realize dynamic current sharing. The basic operating principle
is similar to paper [97]. The capacitor coupling method is utilized
in [110] to change the gate current during the switching transient
and balance the voltage on series-connected power MOSFET.
An adjustable gate signal delay auxiliary circuit for the gate
driver is proposed to change the switching stress on paralleled
MOSFETS in [111] and [112]. Several variable driver voltage
AGD circuitries are introduced in [73] and [113] for the current
sharing of paralleled MOSFETS.

D. Conclusions and Insight of Current Sharing Strategies

The state-of-the-art types of current sharing solutions can be
summarized in Fig. 34.

Passive methods are generally cost-friendly and no extra com-
ponent is needed. It can be implemented amid fabrication, thus
it is preferred by manufacturers [43]. Via continually improving
the die screening strategy and optimizing package layout, the
commercialized power modules are approaching ideal switches.
However, there are still some challenges from technic and cost
aspects hindering the further optimization of the power module.

SiC MOSFETS tends to have the concept of known good die
(KGD), which means that the key device parameters could be
available. This is helpful for the die screening method to improve
the current sharing performance among the paralleled devices
in multichip power modules. However, there are still a few
challenges. First, among the many device parameters (Rdson,
Vth, gfs, etc.), it needs to choose one parameter or an algorithm
to make the die binning or screening. At present, SiC vendors, on
the one hand, are trying to improve the device process maturity
to reduce the device parameters’ tolerance. On the other hand, a
practical algorithm for die binning is also under development and
estimation. Second, the KGD concept is currently still based on
room temperature. High-temperature KGD for mass production
is possible but still quite challenging considering the high-
temperature oxidation of the metallization, cost, efficiency, etc.

For the multichip SiC power module package, a more effective
and intelligent die binning or sorting method is needed for SiC
power devices. The binning or sorting should not be carried out
according to one specific device parameter. A “comprehensive
device parameter” should be developed to reflect the overall
device performance, including paralleling performance, relia-
bility, robustness, and cost. In addition, high-temperature, low-
cost KGD measurement equipment, and efficient burn-in test
equipment are expected for high-temperature device parameters
acquisition.

For multichip power module layout design, some guidelines
could be given here. As MOSFET is a voltage-controlled device,
which means Id is fully controlled by Vgs during the switching
transient, the design of the multichip module layout is to reduce
the differences of Vgs for the paralleled devices. Considering
that the difference in gate voltage potentials is small, the design
principle is to reduce the difference in source voltage potentials.
Two executable rules [79] are reducing the mismatched Ls and
the di/dt applied on the mismatched Ls. By following these de-
sign rules, the dynamic current imbalance could be significantly
suppressed. The increasing penetration of artificial intelligence
(AI) algorithms into manufacturing enables the design process to
be smarter. Since all SiC dies are tested in advance to packaging,
their electrical parameters are known and it allows the prese-
lection to be implemented. Several computer-aided automatic
layout generation methods aiming at minimizing the parasitic
inductance in the current loop have been introduced in [114],
[115], [116], and [117]. More AI-involved layout design will
be the future trend of power semiconductor device packaging
development.

The active methods are generally the supplementary solutions
for situations when the passive methodologies no longer work.
For instance, paralleled discrete devices are usually utilized in
an electric vehicle since they are cost-efficient compared with
using a power module. In these conditions, active methods can
be adopted to improve the long-term reliability of the system.
First, adding the external passive components can increase the
cost and introduce extra parasitics in the loop which may lead
to false-triggering, voltage overshoot, or crosstalk noise [118].
Second, AGD is a premature technology due to the very short
switching transient of SiC MOSFET which is usually within 100
ns. di/dt of a SiC module can increase to 5 A/ns. The current
sensing, signal processing and timing sequence in such a short
time are usually challenging [39]. For instance, a variable driver
voltage AGD usually changes the driver voltage during the
Miller plateau to adjust the switching slew rate. The detection of
the Miller plateau and calculation of optimal driver voltage for
the Miller plateau is difficult. The commercialized gate driver
on the market can be found in [119]. It employs a patented
augmented turn-OFF driver voltage profile to suppress the over-
shoot voltage. However, software configuration is utilized to
optimize the turn-OFF process of each SiC MOSFET. Academia
has dedicated much effort to the exploration of closed-loop
control for AGD including Rogowski coil [120], the voltage on
the stray inductance [73], and current transformer [121], [122].

For the active gate driver method, an effective and low-cost
device current measurement method or an equivalent device
current acquisition method is needed for accurate device current
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distribution optimization. Taking one step back, the active gate
driver method could be helpful given the junction temperature
could be estimated via the TESP method. In most cases, the
target is to limit the junction temperature differences either by
controlling the steady state or the dynamic current distribution.
Therefore, with AGD and junction temperature estimation of
each device, the switching speed or the effective Rdson could
be adjusted by AGD in a thermal time constant. With this, the
requirements of device’s current measurement are not needed.

VII. CONCLUSION

This article comprehensively summarizes the state-of-the-art
research on paralleling SiC power devices. It starts with the
challenges brought by the application of SiC for the paralleling
operation. It is followed by a detailed analysis of the current
imbalance mechanism among parallel loops. An index DoI is
proposed to quantify the degree of static and dynamic current im-
balance. Various parameters pertinent to the static and dynamic
current distribution are categorized into three major types, i.e.,
the device parameters which are the equivalent parameters inside
the dies, the circuit parameters which are parasitics introduced
by the package and circuit, and the status indicators such as
junction temperature and load current.

Based on the theoretical analysis, the state-of-the-art current
sharing methodologies in the industry are summarized. The
passive method includes the preselection of dies based on the
screening results and package/circuit layout optimization meth-
ods. This article also figures out the design criteria of a paralleled
devices system. Active current sharing methods include the
external passive components and active gate driver solutions
are also summarized. Based on the summary of the analyses
and solutions, the insight of the current sharing strategies for
paralleling SiC MOSFETS is presented.
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