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Meta-Reinforcement-Learning-Based Current
Control of Permanent Magnet Synchronous Motor

Drives for a Wide Range of Power Classes
Darius Jakobeit , Maximilian Schenke , and Oliver Wallscheid , Member, IEEE

Abstract—Data-driven reinforcement-learning-based controller
schemes have much potential to aid the design of model-free control
algorithms that can be trained without the necessity of plant-
specific parameter knowledge. Unfortunately, the corresponding
training phase is a time-consuming and possibly money-consuming
process, which needs to be repeated whenever application to a
new plant system is requested. To reduce the total training time
for a large set of heterogeneous plant systems, this article pro-
poses a meta-reinforcement-learning-based approach that is to
be utilized for the control of hundreds of different permanent
magnet synchronous motor drives ranging from a few watts to
hundreds of kilowatts. The so-called context variables carry the
meta-information about the set of considered drive systems. Their
estimation using a corresponding artificial neural network as con-
text approximator is a core aspect of this article. The context infor-
mation allows the reinforcement-learning-based control algorithm
to automatically adapt itself to individual motor drives without re-
quiring individual plant training. Since the found context variables
can also be interpreted as an implicit system identification result,
they allow us to determine irregular plant behavior (e.g., faulty
drives) as an added bonus of the proposed meta-reinforcement
learning scheme. Empirical results during this proof of concept
successfully validate the potential of the proposed approach to
drastically reduce the total training time and encourage further
research.

Index Terms—Artifical neural networks, control, meta-
reinforcement learning (MRL), permanent magnet synchronous
motors (PMSMs), system identification.

I. INTRODUCTION

FROM the prominent role of electric drives in industrial
applications and their rising importance for automotive

applications originates a comprehensive but also intricate control
theory. The set of model-driven control approaches is well
studied, spanning from linear field-oriented controllers [1] over
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direct torque controllers [2] to model-predictive control pat-
terns [3], to just name a few cornerstones.

While these already established approaches are highly effi-
cient in scenarios where accurately parameterized drive mod-
els are available, they tend to lack performance whenever
precise system knowledge is not available. Moreover, those
model-based controller designs require a lot of human expert
knowledge as well as manual tuning effort [4], both of which
are not available in abundance (especially in the industry). In
the recent past, electric drives [5], [6], [7] and further power
electronics (in particular DC–DC converters) [8], [9], [10],
[11] control setups on the basis of reinforcement learning (RL)
have been proposed to deal with such situations by providing
a data-driven fully automatable control scheme with appealing
potentials.

1) Knowledge about the plant model is not required as opti-
mal control actions are learned through the direct interac-
tion of the RL algorithm and the plant system [12].

2) Challenging higher order and parasitic effects, e.g., iron
losses, magnetic (cross-)saturation, or the inverter nonlin-
earity, do not need to be characterized in beforehand as
their effects are directly learned within the control policy
from real-world measurements [6].

3) Different goals can be incorporated into the learning
problem, allowing multiobjective control with only one
learning phase [7].

These advantages of data-driven control are opposed by a
time-consuming learning phase during which the plant system is
unavailable for its intended application, and the computationally
demanding learning algorithms must be run on costly computer
hardware. Naturally, it is, therefore, of great interest to reduce
the time spent with training by finding a more universal approach
to RL-based drive control that, instead of being optimized to run
on only one specific drive setup, is able to adapt itself to a large
set of different plant systems as a part of its objective, which is
the core problem addressed in the following.

A. Contribution

This article, therefore, proposes a meta-RL (MRL) current
control algorithm for permanent magnet synchronous motors
(PMSMs), which is equipped to adapt to a given motor sys-
tem [13], [14]. After the learning phase, this capability enables
the MRL algorithm to be operated on previously unseen drives
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of different parameterization without necessitating new learning
effort and, hence, introducing several striking advantages.

1) The learning phase is conducted only once and expanded
to a wide variety of drive systems. This reduces the total
training time for a large set of different drives drastically.

2) Control performance is very robust concerning drive vari-
ations.

3) The underlying context variable identification scheme,
although only implicit (physical motor parameters are
not required and also not identified), gives information
about pathological system behavior, which could indicate
irregular drive conditions such as faults.

In order to advance toward these benefits, this article presents
a proof of concept on the preparation, conduction, and validation
of the MRL for PMSM control.1

II. DRIVE SYSTEM MODEL

In the following, a brief overview of the PMSM drive system
model is provided for the sake of completeness. It is used as part
of the RL-oriented training and testing open-source software
gym-electric-motor (GEM)2 [15]. However, it should be noted
that the considered RL-based control algorithms do not have
access to the drive model.

The PMSM is a three-phase electric motor with a large variety
of application scenarios, ranging from industrial automation to
electric traction [16]. In the domain of drive control, three-phase
drives are concisely modeled via field-oriented coordinates.
Utilizing this two-phase representation, the dynamic motor be-
havior can be described by a system of first-order ordinary
differential equations (ODEs):

did(t)

dt
=

ud(t) + pωme(t)Lqiq(t)−Rsid(t)

Ld

diq(t)

dt
=

uq(t)− pωme(t)(Ldid(t) +Ψp)−Rsiq(t)

Lq
. (1)

Herein, the direct and quadrature current components are de-
noted by id and iq, respectively. The corresponding voltages
are labeled ud and uq, and the angular velocity is denoted
by ωme. The continuous time t will be omitted in the rest of
this article wherever possible to shorten notation. A definition
of the physical parameters within these equations is given in
Table I, wherein the first five parameters describe the motor’s
physical properties, while the last three define the operation
space. Note that the dynamic system model defined by (1) is
a simplification of the real-world application that is known as
the PMSM’s fundamental wave model. The rotor of a PMSM
contains the namesake permanent magnets, which can be located
either on its surface (SPMSM) or within its interior (IPMSM).
In terms of electrical properties, Ld = Lq is always satisfied
for SPMSMs.The task under investigation is to control the dq
current components, by actuating a two-level power inverter
(B6-bridge) using pulsewidth modulation. The control algorithm

1Moreover, the entire training and testing MRL routines of this article are
disclosed as open-source code at https://github.com/upb-lea/meta_RL_PMSM.

2GEM can be found under https://github.com/upb-lea/gym-electric-motor.

TABLE I
PARAMETERS THAT DEFINE THE BEHAVIOR OF A PMSM

is able to command u∗d and u∗q directly within the range of
[−UDC

2 , UDC
2 ]. The resulting voltage vector u∗dq is then subjected

to the limitations of the physical three-phase system:[
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3
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(2)

with u∗dq being the commanded and udq the applied voltages.
The operator Tabc,dq corresponds to the subsequent application
of the Clarke transformation [17] and the Park transforma-
tion [18], whereas Tdq,abc denotes the associated inverse.

III. RL BASICS

Classical RL settings consist of an RL control algorithm
that interacts repeatedly with the control plant (referred to as
environment) at each discrete time step k. First, it is assumed that
all states are measurable and are, hence, directly visible in the
system output. Then, the actor of a trained RL controller deter-
mines the action signalak based on the momentary environment
state sk. The applied action leads to the next state sk+1, which
conforms the idea of modeling the environment as a Markov
decision process (MDP), defined via the tuple (S,A,P,R, γ).
Here, S ⊆ Rn andA ⊆ Rm denote the possible state and action
spaces, respectively. Moreover

P(sk+1, sk,ak) = Pr(sk+1|sk,ak) (3)

is the transition probability function for transfer from sk to
the state sk+1 via action ak, which represents the mapping
P : S × S ×A −→ [0, 1]. Furthermore, the action is rewarded
with rk+1, defined by a reward functionR : S ×A −→ R. From
a control engineering point of view, the reward represents in-
tended control objectives. Hence, sensible design can improve
the learning speed considerably. The discount factor γ ∈ [0, 1[
defines how far-sighted the algorithm chooses its control actions.

https://github.com/upb-lea/meta_RL_PMSM
https://github.com/upb-lea/gym-electric-motor
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In an MDP, the transition from state sk to state sk+1 only
depends on the momentary state

Pr(sk+1|sk,ak) = Pr(sk+1|s0, . . ., sk,ak). (4)

When utilizing RL within a control scenario, the general task
is to determine the optimal policy that relates each state to an
action that can maximize the return gk

gk = E{Gk|Sk = sk,Ak = ak}

= E

{ ∞∑
i=0

γiRk+i+1|sk,ak

}
. (5)

Herein, E{Gk} denotes the expected value of the return with
capital letters denoting random variables, while lowercase letters
denote respective realizations. The optimal return can be defined
by means of the Bellman optimality equation

q∗(sk,ak) = E{Rk+1 + γmax
ak+1

q∗(sk+1,ak+1)|sk,ak} (6)

where q(sk,ak) denotes the action value function
q : S ×A −→ R that links the action ak in state sk to the
expected return. To find the best applicable action, a policy
function ak = π(sk) with π : S −→ A needs to be learned that
satisfies

max
ak

q(sk,ak) = q(sk,π
∗(sk)). (7)

For environments with continuous sets of states and/or actions,
approximate solutions such as artificial neural networks (ANNs)
for the policy function and value estimation are required. Promi-
nent utilization of ANNs in RL can be found in actor–critic
methods, which make use of two separated ANNs to estimate
the action values and the policy separately. This is achieved by
employing an actor network πφ and a critic network q̂θ with
network parameters φ and θ. Contemporary algorithms from
this class are able to learn in an off-policy fashion, which means
that they are also capable of learning from actions that do not fit
the momentary policy. This allows us to utilize a replay buffer
B where past samples are stored, enabling the consideration of
larger batches of experiences to learn in a data-efficient way.

The definition of the Bellman equation (6) suggests the cor-
responding cost function that is used for optimizing the critic
network parameters θ

J(θ) = (rk+1 + γq̂θ(sk+1,πφ(sk+1))− q̂θ(sk,ak))
2 . (8)

Assuming that the critic delivers a reliable estimate of the action
value q, the gradient

∇φJ(φ) = ∇φq̂θ(sk,πφ(sk)) (9)

points in the direction of policy improvement and can, hence, be
utilized to optimize the actor parameters φ. In order to keep
this introduction to the basics of RL concise, further details
are omitted at this point. More in-depth summaries of the RL
fundamentals can be found, e.g., in [12] and [19].

In electric drive control, off-policy RL-based algorithms
have already been implemented successfully to control currents
and torque, respectively, but only for individual drive applica-
tions [5], [6], [7]. The transfer to a wide set of different drives

was not investigated so far and is, therefore, the central challenge
addressed in this contribution.

IV. CONTEXT-BASED MRL

In spite of the beneficial traits of RL control that allow inde-
pendence from plant-specific model knowledge, a main draw-
back of such methods is the lack of generalizability concerning
a learned policy. If presented to another task from the same
problem class (e.g., a plant system that is described by the same
ODE but is characterized by different parameters), the learned
optimal policyπ∗ would not fit the new task and must, therefore,
be retrained. In terms of PMSM control, this means that for
each motor with different physical properties, the algorithm’s
training needs to be conducted again, which may still be tolerable
for special applications, but is rather aggravating for large-scale
production.

The goal of meta-learning is to systematically speed up the
training of machine learning (ML) algorithms when presented
to new but similar tasks [13]. Concerning RL, this means that the
algorithm would be able to adapt to different environments. One
way to model this scenario is based on picturing each different
motor as a partially observable MDP (POMDP). In a POMDP,
the state sk is not completely measurable and is, hence, not
entirely available to the RL algorithm. It is described by the
tuple (S,A,P,R,O,Ω, γ), whereinΩ is the set of observations
available to the algorithm and observation function O, which is
a probability distribution over possible observations given an
action with a resulting state.

Different algorithms in MRL have emerged to handle such
scenarios. However, most of them necessitate on-policy training
and may, therefore, lack sample efficiency [20], [21]. A class
of algorithms that have shown promising and sample efficient
results on simulated and real tasks are context-based off-policy
algorithms [14]. Here, a further ANN is introduced, which gen-
erates additional information about the momentary environment.
These so-called context variables z are computed by means of
the context network ĉξ with parameters ξ

zj = ĉξ(Bjc ) (10)

wherein Bjc is a commissioning buffer that contains several state
transitions of the form (sk,ak, sk+1) that have been recorded
on the jth environment.

Furthermore, feature engineering is usually employed to
present an enriched observation vector o = f(s) to the control
algorithm in order to facilitate the training process. Here, f(·)
is the feature function that extracts important information from
the state s, which is highly problem dependent.

In the corresponding framework, the action value network q̂θ
is augmented to accept the context z as an additional input. The
Bellman equality equation (6), therefore, results to

q∗(ok,ak, zj) = E{Rk+1

+ γmax q∗(ok+1,ak+1, zj)|sk,ak, zj}.
(11)
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Fig. 1. Overall scheme of the MRL setup.

The cost function (8) is altered accordingly and can then be used
to also optimize the context network ĉξ:

J(θ, ξ) = (rk+1 + γq̂θ(ok+1,πφ(ok+1), zj)

− q̂θ(ok,ak, zj))
2. (12)

Important contributions to this class of MRL algorithms are
probabilistic embeddings for actor–critic RL (PEARL) [22] and
meta-Q-learning (MQL) [23], which differ concerning their de-
sign of context variables. PEARL uses random nonconsecutive
transitions from the recent additions to the replay buffer to
generate a probabilistic context. MQL uses a recurrent ANN to
generate a context from the last buffered state transitions. This
contribution has taken inspiration from both of these approaches;
a schematic of the targeted MRL structure is depicted in Fig. 1.

This contribution utilizes twin delayed deep deterministic
policy gradient (TD3) [21] as its base RL algorithm, which
is a state-of-the-art method for RL problems with continuous
state and action space. Less-recent RL algorithms, such as deep
deterministic policy gradient [24] or advantage actor critic [25],
are also suited for the current control task [5], [6], but are not
discussed within the scope of this article to focus the extension
to meta learning.

In addition to the usual actor and critic networks that are
standard for the TD3 structure, a further context ANN is in-
troduced. This context network processes the plant specific ob-
servation transitions, which will be investigated in the following
section. The RL controller operates on a given plant with random
initialization and acts according to the momentary policy πφ,
superimposed by a Gaussian exploration noise βe. The resulting
transitions and rewards are then saved to the replay buffer B.
This rollout procedure is described in Algorithm 1.

After finishing the rollout, the MRL algorithm’s networks
are updated via standard gradient descent. For this, the update
routine of TD3 is applied under the consideration of the added

Algorithm 1: Rollout.
Require: Policy πφ, motor mj , buffer B, number of steps
Nsteps, number of steps per episode Nepisode,

optional: context zj

1: n← 0
2: while n < Nsteps do
3: k ← 0
4: Initialize motor mj with random

ĩd,0, ĩq,0 ∼ U(− 2
3 ,

2
3 ),

ε̃el,0, ω̃me,0, ĩ
∗
q,0 ∼ U(−1, 1), ĩ∗d,0 ∼ U(−1, 0) under

constraint (17)
5: Obtain initial state o0

6: while k < Nepisode and ĩ2d,k + ĩ2q,k < 1 do
7: βe ∼ clip(Ne(0, σe),−ce, ce)
8: Determine action ak = πφ(ok, zj) + βe

9: Execute ak on mj

10: Observe rk+1 and ok+1

11: Store transition (ok,ak, rk+1,ok+1, j) in B
12: k ← k + 1
13: end while
14: n← n+ k
15: end while
16: return Buffer B

context network. The context network is updated with the same
loss as the critic to ensure that the context variables allow a
sensible distinction of plant systems with regard to their action
values. The update routine is described in Algorithm 2 and
makes use of the well-established target networks [26] in order
to stabilize the training process.

V. CONSIDERED MOTOR DRIVE SET

This section presents the preliminary considerations and soft-
ware tools to prepare a representative and robust dataset of
heterogeneous PMSM drives for the MRL training. This is
necessary because both the selection of the motors and the
design of the context depend on a balanced set of drive systems,
whereas a badly prepared training set could decrease the MRL
algorithm’s ability to generalize.

A. Overview

To train and validate an MRL algorithm for the control of
PMSMs, different PMSM parameterizations need to be avail-
able. Since no comprehensive database was publicly available
to the best knowledge of the authors, parameter sets have been
collected first. For this, only sources with complete parameter
sets were considered. Necessary parameters were not only elec-
trical characteristics of the PMSM but also operating limitations,
as described in Table I. Different sources were used, such as pub-
licly available catalogs for industrial motors as well as scientific
papers. Through this, a total of 566 different motor parameter
sets were collected from power classes ranging from a few
watts to hundreds of kilowatts. As a supplementary part of this
contribution, the corresponding motor database has been made
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Algorithm 2: Update.
Require: Actor πφ, critics q̂θ1

, q̂θ2
, context network ĉξ,

target networks for each (denoted by ′), buffer B,
commissioning buffers Bc, number of update steps Nupdate

1: n← 0
2: while n < Nupdate do
3: Sample minibatch (ok,ak, rk+1,ok+1, j)

Nmb from B
4: for each j in minibatch do
5: zj = ĉξ(Bjc ), z′j = ĉξ′(Bjc )
6: end for
7: Calculate policy noise

βπ ∼ clip(Nπ(0, σπ),−cπ, cπ)
8: Update critic and context network:
9: l← arg min

l=1,2
q̂θ′l(ok+1,πφ′(ok+1, z

′
j) + βπ, z

′
j)︸ ︷︷ ︸

gl,k+1

10: J(θl, ξ) =
11: N−1mb

∑
(rk+1 + γ gl,k+1 − q̂θl

(ok,ak, zj))
2

12: θl ← θl − αθ∇θl
J(θl, ξ)

13: ξ ← ξ − αξ∇ξJ(θl, ξ)
14: if n mod d == 0 then
15: Update actor:
16: J(φ) = N−1mb

∑
q̂θ1

(ok,πφ(ok), zj)
17: φ← φ− αφ∇φJ(φ)
18: Update target networks:
19: θ′l ← τtθl + (1− τ)θ′l for l = 1, 2
20: φ′ ← τtφ+ (1− τ)φ′

21: ξ′ ← τtξ + (1− τ)ξ′

22: end if
23: n← n+ 1
24: end while

publicly available (cf. [27]). The collected database contains 552
sets of SPMSM parameters and 14 sets of IPMSM parameters.

B. Normalization and Preprocessing

For the selection of the drives for training and test sets, the
first intuition is to choose a balanced distribution of physical
parameters. However, this might not be the best distribution over
actual dynamic behavior of the motors. Instead, a different repre-
sentation of a motor can be derived, which describes its dynamic
behavior in a more target-oriented way. Transforming the model
presented in (1) to a representation with normalized variables
ω̃me, ũd, ũq, ĩd, ĩq ∈ [−1, 1], the ODEs can be reformulated to
yield a different representation of the parameter space. With
sω = ωme,max, si = 1.5 In, su = UDC

2 as scaling factors of ω, i,
and u, respectively, the first equation from (1) evaluates to

si
d̃id
dt

=
suũd + psωω̃meLqsĩiq −Rssĩid

Ld

⇔ d̃id
dt

=
su
Ldsi︸ ︷︷ ︸
p1

ũd +
psωLq

Ld︸ ︷︷ ︸
p2

ω̃mẽiq − Rs

Ld︸︷︷︸
p3

ĩd. (13)

TABLE II
PARAMETERS DESCRIBING THE DYNAMIC BEHAVIOR OF A MOTOR IN A

NORMALIZED SPACE

Analogously, the second ODE changes to

si
d̃iq
dt

=
suũq − psωω̃me(Ldsĩid +Ψp)−Rssĩiq

Lq

⇔ d̃iq
dt

=
su
Lqsi︸ ︷︷ ︸
p4

ũq − psωLd

Lq︸ ︷︷ ︸
p5

ω̃mẽid − psωΨp

Lqsi︸ ︷︷ ︸
p6

ω̃me − Rs

Lq︸︷︷︸
p7

ĩd.

(14)

Note that for SPMSMs, p1 = p4, p2 = −p5, and p3 = p7
hold. To have a balanced distribution of the dynamic motor
behavior within training and test, the ODE coefficients from
Table II were used for the preparation of the corresponding
datasets. To reduce the number of SPMSMs, a downsampling
strategy was applied: the first batch of 35 SPMSMs was drawn
with the routine described in Algorithm 3, which targets an
extensive coverage of the parameter space by maximizing the
sum of distances between the points. This selection routine tends
to select parameter sets on the edges of the parameter space.
Therefore, an addition of 40 SPMSMs were randomly added in
order to also get an even coverage of the center, adding up to a
utilized set of 75 parameters.

To include edge cases of dynamic motor behavior into the
training set, the convex hull over these 75 SPMSM’s nonequal
parameters is determined. The SPMSM parameter sets that are
identified to be vertices of this hull are added to the training set.
Further parameter sets were selected randomly using a uniform
distribution until the training set contained 50 different param-
eter vectors. The remaining 25 parameter sets are attributed to
the test set.

Owing to the low number of publicly accessible IPMSM
parameter sets, additional feasible sets were to be generated
synthetically from the acquired ones. These data were created
using the synthetic minority oversampling technique (SMOTE),
which is a method originally designed to deal with classification
tasks [28]. There, unbalanced datasets are problematic because a
classifier can achieve a high score on training data even without
the ability to correctly classify the minority class if that class is
strongly underrepresented. SMOTE does sample synthetically
on the basis of available data by generating new samples in
between close data points of a given class, which is specified
in Algorithm 4. Owing to the algebraic dependence between
several ODE coefficients, it is not necessary to generate new
values for the complete set of coefficients. Instead, it can be
exploited that

p3
p7

=
p1
p4

=

√
−p2
p5

=
Lq

Ld
. (15)
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Algorithm 3: Downsampling for Space Coverage.
Require: Data points Xoriginal from majority class, goal
number of data points Ngoal

1: Initialize empty data buffer Xnew

2: Sample random data point x from Xoriginal

3: Remove x from Xoriginal and put it into Xnew

4: Σold ← 0
5: while |Xnew| < Ngoal do
6: Σnew ← 0
7: for each x1 ∈ Xoriginal do
8: for each x2 ∈ Xnew do
9: Σnew ← Σnew + ||(x1 − x2)||22

10: end for
11: if Σnew > Σold then
12: xnext ← x1

13: Σold ← Σnew

14: end if
15: end for
16: Remove xnext from Xoriginal and put it into Xnew

17: end while

Algorithm 4: SMOTE.
Require: Set of parameter vectors Xoriginal from
underrepresented class, targeted number of data points
Ngoal, number of nearest neighbors K

1: Find K nearest neighbors for each element p ∈ Xoriginal

2: Initialize data buffer Xgoal ← Xoriginal

3: while |Xgoal| < Ngoal do
4: Sample random p1 ∈ Xoriginal

5: Sample random p2 from p1’s K nearest neighbors
6: Generate pnew = αp1 + (1− α)p2 with α ∼ U(0, 1)
7: Xgoal ← {Xgoal,pnew}
8: end while

TABLE III
NUMBER OF CONSIDERED MOTOR PARAMETER SETS FOR THE TRAINING AND

TESTING OF CONTEXT-BASED MRL ALGORITHMS

Therefore, SMOTE needs to be applied only to the coefficients
p1, p2, p3, p6, and p7. For each synthetically derived set of
coefficients, it was verified that it lies within the convex hull
of the 14 original parameter sets.3

For the IPMSMs, the original 14 parameter vectors are directly
utilized as training data, while the rest was selected randomly
using a uniform distribution. The breakdown of training and
testing sets is concisely listed in Table III. Fig. 2 features the dis-
tribution ofp1 againstp4 for training and test sets in an exemplary

3To derive the corresponding physical parameters needed for simulation,
Rs = 1Ω, p = 4, and In = 5 A were assumed as fixed values.

Fig. 2. p1 plotted against p4 for training and test sets.

fashion. Further visualizations as well as all 150 normalized
PMSM parameter sets are available at [27] to supplement this
article.

C. Context Design

The context design of this work differs from the ones sug-
gested by PEARL and MQL: because the ODE coefficients p1...7
can be assumed to be constant for each PMSM, learning static
context variables is sufficient to characterize individual environ-
ments. To yield a static context, the input of the context network
ĉξ must be kept static as well for each given environment.
Therefore, the transitions used are not sampled from the regular
replay buffer B but from a separated prefilled commissioning
buffer Bjc for each motor mj . This buffer contains observed
transitions ej = (oc,k,ac,k,oc,k+1)j , with

oc,k =
[̃
id,k ĩq,k ω̃me,k cos(εel,k) sin(εel,k)

]

ac,k =

[
ũ∗d,k ũ∗q,k

]

. (16)

To ensure a balanced specification of each motor’s dynamic
behavior within these buffers Bjc , coverage of the entire
observation-action space is necessary. Since only a finite set of
sampled transitions are computationally feasible, it is targeted
to cover the observation-action space as well as possible with a
limited number of observation transitions. For this, the density-
estimation-based state-space coverage acceleration (DESSCA)
is used [29]. DESSCA utilizes kernel density estimation to
evaluate the coverage of the observation space and suggests a
new sample to minimize the difference to a reference coverage
density. Here, the reference coverage is a uniform distribution
across the possible values of the observations and actions. In
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Fig. 3. Joint distribution of ĩq over ĩd and ω̃me over ĩd as sampled by
DESSCA.

Algorithm 5: DESSCA Sampling for Motor Buffer.
Require: Targeted number of DESSCA samples NDESSCA,
M set of motors

1: for each mj ∈M do
2: Initialize buffer Bjc , BDESSCA

3: Sample NDESSCA DESSCA samples to BDESSCA

4: for each (oc,k,ac,k) ∈ BDESSCA do
5: Initialize motor mj with observation oc,k

6: Execute ac,k on mj and observe oc,k+1

7: Store tuple (oc,k,ac,k,oc,k+1)j in Bjc
8: end for
9: end for

addition, the length of the current vector[id iq]

 is limited√

i2d + i2q ≤ Imax. (17)

Algorithm 5 outlines how the Bc buffer is filled for each motor
parameter set j. The exemplary distribution featured in Fig. 3
showcases that DESSCA is able to determine a balanced cov-
erage of the observation space. The MRL setup as presented
in Fig. 1 shows how these commissioning buffers Bjc are used
to generate the context zj for a given motor mj . This enables
the RL algorithm to adapt its control behavior according to the
motor.

VI. EMPIRICAL INVESTIGATION

In the following, the training and testing of the MRL algorithm
is described in detail, and the obtained results are discussed.

A. Training Routine

During training, the MRL algorithm performs a rollout on a
specific motor and stores its observations in the replay buffer B.
The observation o of the PMSM is defined as follows:

o =
[̃
id ĩq ω̃me cos (εel) sin (εel) ĩ∗d ĩ∗q ĩ2d + ĩ2q

]

.

(18)

The feature (̃i2d + ĩ2q) aids the RL-based controllers to recognize

annealing to the current limit as of (17). The references ĩ∗d and ĩ∗q
are the targeted currents for the next sample step. They are

generated using a stochastic Wiener process

ĩ
∗
k =

[̃
i∗d,k−1+ ∼ N (0, σd,k)

ĩ∗q,k−1+ ∼ N (0, σq,k)

]
(19)

wherein∼ N (0, σ) denotes sampling from a normal distribution
with zero mean and σ variance with σd,k and σq,k changing each
episode. The generated references are also subjected to the cur-
rent constraint. In addition, the condition i∗d < 0 A is respected.
By doing so, the current reference values are randomly sampled
from the entire feasible dq current half-plane. The reward rk+1

is depending on the reference of the last observation and the
present observation’s current

rk+1 =

⎧⎪⎪⎨⎪⎪⎩
(
1−

(
||(˜i∗k−ĩk+1)||1

4

))
(1− γ), if ||̃ik+1||22 ≤ 1

(1−||˜ik+1||22)
16 (1− γ), else

.

(20)

The reward function is defined on the interval between (1− γ)
and −(1− γ), ensuring the action values to always lie between
−1 and 1 for numerical reasons [7]. During training, a motor
parameter set from the training set is drawn. This parameter set
is used for the simulation of the motor within the GEM software
toolbox [15].

As function-approximation-based RL comes with the risk of
training divergence, learning checkpoints are created to allow
access to each RL controller’s parameterization at its historical
performance peak in hindsight [30], [31].

The hyperparameters of the TD3 algorithm, of the MRL setup,
and of the training routine in this contribution are depicted in
Table IV. A sampling time ofTs = 100 µs was chosen. The num-
ber of context variables was set to 8, leaving enough degrees of
freedom to allow, e.g., identification of the physical parameters
or alternatively of the ODE coefficients without bloating the
context vector unnecessarily.

B. Test Routine

After completing the training phase, the RL algorithms’
performance has to be evaluated. For this, a testing routine
has been developed to validate the control performance on a
representative set of situations. The test routine is executed
for each RL algorithm variant on each available motor. The
given motor is initialized with respect to the currents and the
speed. The RL controller then needs to handle its control task by
following the given reference. To ensure a balanced coverage of
the state space, DESSCA is once again employed to generate the
corresponding initial states (̃id,0, ĩq,0, ω̃me,0, ĩ

∗
d,0, ĩ

∗
q,0), wherein

the currents are again subjected to the current limit and ĩ∗d < 0
holds. The pseudocode of the testing routine is presented in
Algorithm 6. Here, a special reference generator was used

ĩ
∗
k =

[̃
i∗d,k−1+ ∼ N (0, σd,k)− ζ (̃i∗d,k−1 − ĩ∗d,0)
ĩ∗q,k−1+ ∼ N (0, σq,k)− ζ (̃i∗q,k−1 − ĩ∗q,0)

]
(21)

where a drift back to the initial ĩ
∗
0 is added to the Wiener

process. The stiffness ζ tunes the strength of this drift. This
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TABLE IV
HYPERPARAMETERS AND THEIR VALUES IN THIS ARTICLE

TABLE V
TEST ROUTINE HYPERPARAMETERS AND THEIR VALUES

approach is meant to provoke oscillation around a reference
point. Table V lists the hyperparameters chosen for the test
routine. Episodes have been configured to be rather short, such
that the RL algorithm’s transient control behavior is weighted
roughly equivalent to its steady-state behavior.

C. Evaluation of the Control Performance

The training checkpoints allow us to evaluate the peak control
quality of the MRL approach in hindsight. In this article, the
decision on the peak performance is based on the training
rewards: the rewards were averaged using a moving average
filter with a window length of w = 105 and a shift of s = 105.
The checkpointed control configuration at the reward maximum
then got selected for evaluation. As a comparison to the MRL

Algorithm 6: Test Routine.
Require: Policy π, motor mj , initial states sampled with

DESSCA BDESSCA, number of steps per episode
Nepisode, optional: context z

1: rsum ← 0
2: for each b ∈ BDESSCA do
3: k ← 0
4: Initialize mj with ĩd,0, ĩq,0, ω̃me,0, ĩ

∗
q,0, ĩ

∗
d,0 from b

5: Receive initial observation o0

6: while k < Nepisode and (17) holds do
7: Receive action from policy: ak = π(ok, zj)
8: Execute ak on mj

9: Observe rk+1 and ok+1

10: rsum ← rsum + rk+1

11: k ← k + 1
12: end while
13: end for
14: return rsum · (Nepisode · |BDESSCA|)−1

Fig. 4. Test episode on motor m67 at ωme = 0.2ωme,max = 35.6 s−1.

approach, a TD3 algorithm without context variables has been
trained on all training motors. This experiment is labeled RLAM

(AM: “all motors”). Moreover, individual TD3 controllers were
trained for each motor separately labeled as RLSM (SM: “single
motor”). The corresponding hyperparameters were also config-
ured, as stated in Table IV, and have been trained using the
rollout and update loop. Each RLSM controllers’ training was
executed only once. For MRL and RLAM, ten trainings were
conducted. From these, the RL controller configuration with the
highest peak in its learning curve was chosen.

Furthermore, Figs. 4 and 5 show exemplary test episodes
that were observed on motors of different power classes. The
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Fig. 5. Test episode on motor m116 at ωme = 0.2ωme,max = 20.94 s−1.

conducted episodes feature several steps of the reference cur-
rents, which relate to corresponding changes of the drive torque.
Hence, dynamic behavior is highly requested as a characteristic
of satisfying control performance, and it can be seen that the
RLSM and the MRL controllers react similarly fast, whereas the
RLAM reacts slowly and, concerning iq, even away from the
reference. Fig. 6 features the behavior of a drive during a speed
ramp from negative to positive velocities, which verifies the
capability of the RLSM and MRL controller to deal with changing
speeds. Both are able to follow the current reference as long as
the available voltage allows it, which is (for the presented motor)
not the case for speeds close to the maximum speed ±ωme,max.

Fig. 7 shows another except from a test episode that demon-
strates the adaptive capabilities of the MRL approach. This
motor has a rather strong input sensitivity (comparably high
p1, p4) [cf. (13) and (14)], and a low-performing controller may
easily violate the current limitation. It has to be noted that motors
with the given characteristics were rather underrepresented in
the training dataset for the MRL and RLAM agents. Hence, the
RLAM agent’s lack in performance and unstable behavior was
to be expected. Yet, the MRL agent is able to stabilize the plant
system and, although a steady-state error remains, the currents
visibly move toward their references.

These experiments highlight the potential of the MRL ap-
proach as it is able to stabilize the plant system even without
being comprehensively optimized. Fig. 7 also confirms the
findings listed in Table VI with the MRL’s performance being
much better than the RLAM but slightly worse than the RLSM.
However, the reference tracking behavior of the MRL controller
looks highly promising for a first proof of concept, and an
improvement can be expected if optimal hyperparameters for
the MRL can be found. Nonetheless, Fig. 7 also highlights the
limitations of the MRL’s setup. The training routine considers

Fig. 6. Test episode with speed ramp from−ωme,max toωme,max on motorm45

with ωme,max = 157.08 s−1.

Fig. 7. Test episode on motor m5 at ωme = 0.2ωme,max = 125.7 s−1.
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TABLE VI
TEST ROUTINE RESULT STATISTICS

Fig. 8. Mean and standard deviation of MRL and RLAM training rewards.
Training rewards of RLSM on best mmax and worst mmin performing motor.

all available motors with identical probability. Therefore, the
MRL’s control quality is more adapted to motor classes that are
overrepresented in the training set. Further extensions are needed
to avoid corresponding overfitting, which could be done by, e.g.,
including more sophisticated exploration schemes for select-
ing a motor environment during training, or via an improved
minibatch sampling routine. In addition, expanding the training
dataset with more motors that have uncommon characteristics
would level out the distribution of featured motor dynamics,
which should improve the final performance of the MRL agent.4

D. Evaluation of the Training

Fig. 8 shows the average training rewards of the last 106 steps
and their standard deviation for the MRL and the RLAM algo-
rithms. The training rewards seem to be consistently better for
the MRL approach compared to the RLAM, which was expected
due to the information advantage implemented through the
context. Also, the variance around the mean is smaller, indicating

4RLAM and RLSM use the same actor and critic architecture and, hence, the
same number of ANN parameters. However, creating an individual RL agent per
motor for RLSM results in 22 503× 150 = 3 375 450 total network weights. The
MRL’s actor and critic structure is also identical to the RLAM and requires only
a few additional parameters for the context ANN.

TABLE VII
REQUIRED TRAINING TIME COMPARISON

TABLE VIII
EXEMPLARY SPMSM PARAMETERS FOR THE FAULT DETECTION

INVESTIGATION

higher performance reliability. In addition, the training rewards
of the best performing and worst performing RLSM result are
shown. Both are consistently above the MRL’s average reward.
Table VI shows the statistical results of the tests where, again, the
MRL controller shows a higher reward than the RLAM approach,
while both RLSM algorithms are performing better. This is also
an expected result, because the 150 RLSM individually trained
RL controllers together contain also 136 times more parame-
ters than the MRL algorithm and have, therefore, much more
learning capacity. Also note that the MRL controller has only
slightly more network weights than the RLAM approach, which
are located within the context network. The complete data of all
test results from the given 150 motors as well as all utilized code
are available at [27] to supplement this contribution.

An insight of the measured training time requirements is
listed in Table VII, whereas the training was conducted on a
high-performance computing cluster [32]. As can be seen, the
MRL’s training time exceeds the RLSM’s expected training time
by a factor of about 12.25. Therefore, the initially larger training
effort for the MRL amortizes already after utilizing it within 13
different drive motors. Since there are nearly uncountable drive
variants used in industrial applications, which would require an
individual training with standard RL techniques (i.e., the training
time scales linearly with the number of drive configurations
considered), this training effort offset of the MRL algorithm
pays off very quickly.

Also note that this training time analysis is based on a first
proof of concept. Further optimization of the MRL, e.g., in terms
of its hyperparameters or changes of the training routine, has the
potential to decrease the necessary MRL training time, which
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TABLE IX
IMPACT OF MOTOR FAULTS ON THE CREATED CONTEXT VARIABLES FOR AN EXEMPLARY SPMSM AS DEFINED IN TABLE VIII

would make the time-saving potential even more worthwhile. In
particular, the update rate of the context network and the size
of the context buffer are what dramatically increased the MRL’s
training time. Both have not yet been investigated in terms of
more time-efficient choices and are, therefore, an obvious degree
of freedom that may enable a (drastic) reduction of training time.

E. Evaluation and Utilization of the Context Variables

Given the improvements of the MRL algorithm over the
RLAM, the information encoded within the context is of major
interest. To fully characterize the dynamic behavior of the motor
system, it is sufficient to learn either the physical parameters
or the normalized ODE coefficients. For this, the evaluated
MRL controller’s context network was used to generate context
variables z1–z8 for each of the 150 motors. These contexts were
then analyzed concerning their correlation to the physical pa-
rameters and the normalized ODE coefficients. Fig. 9 shows the
correlation matrix of the context, which indicates that the context
variables correlate much stronger with the ODE coefficients than
with the physical parameters.

Finally, the output of the context network has been investi-
gated concerning different error cases that change the physical
parameters of a PMSM. Since the parameter change will affect
the resulting context vector, it is reasonable to utilize this chain
of effects for detection of irregular drive conditions including
faults. The analyzed error cases and the corresponding context
vector have been investigated for one exemplary motor (specified
in Table VIII) and are listed in Table IX. As can be seen, the
context variables deviate from their original values for each of
the error cases. Especially, for the first three experiments, this
deviation is severe. Only for the last experiment, no obvious
linear deviation trend from the original context is observable.
However, it cannot be excluded that even this assumed fault is
accessible from the context if nonlinear classifiers are considered
for the detection.

VII. HARDWARE-IN-THE-LOOP (HIL) INVESTIGATION

Real-time capability is often a major concern when ML
applications are to be utilized within or in conjunction with
time-critical systems. In order to validate the feasibility of the
proposed MRL architecture, an exemplary testcase is conducted

Fig. 9. Correlation matrix of context variables z1–z8 with physical and
normalized space parameters.

on rapid control prototyping hardware (RCPH). This HIL ex-
periment allows the monitoring of the utilized turnaround time
TTA, which is the time that is needed to compute the next
control action. Hence, TTA < Ts must be fulfilled to guarantee
controllability at all times. The corresponding HIL test setup is
presented in Fig. 10 with a dSPACE MicroLabBox [33] posing
as RCPH.

As visualized in Fig. 11, the found exemplary control perfor-
mance during the HIL experiment is comparable with the offline
simulations. It can also be seen that TTA is strictly smaller than
Ts. The corresponding HIL experiment only made use of the
RCPH’s CPU; the utilization of the built-in field-programmable
gate array was not necessary. This verifies the viability of the
MRL control scheme, as the resulting control agent turns out to
be relatively lightweight concerning its computational burden.
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Fig. 10. HIL test setup to validate the real-time capability of the proposed
MRL. 1) dSPACE Control Desk and 2) dSPACE MicroLabBox as RCPH.

Fig. 11. Real-time HIL test of an exemplary control episode with the mea-
surement of the turnaround time TTA (same scenario as depicted in Fig. 5).

VIII. CONCLUSION

This article presented a drive control framework utilizing a
context-based off-policy MRL approach. It was applied within
the current control scenario on PMSMs from a wide range of
different power classes and has shown to perform significantly
better than a general RL algorithm without context variables. The
overall procedure is promising for the time-efficient design of
RL-based controllers, which is a major drawback of approaches

with individual training. Furthermore, an HIL experiment also
validated sufficiently quick inference of the presented MRL,
despite the comprehensive training routine. The investigation of
the learned context showed that the identified context variables
correlate to the dynamic behavior of the motors as described
by ODE coefficients. Therefore, the secondary goal of implicit
motor behavior characterization was achieved, whose potential
application to motor fault detection was also outlined with
promising perspectives.

For upcoming investigations, closing the gap between MRL
and individually trained RL should be prioritized. For that, a
comprehensive optimization of the utilized hyperparameter con-
figuration should be considered. In addition, the training routine
should be extended to include methods of nonuniform motor and
minibatch selection. Moreover, the level of sophistication in the
preparation and selection of training data could be elaborated
even further, especially in terms of synthetic data generation
and in the representation of uncommon motor characteristics.
Finally, this contribution assumed PMSMs that are described by
static parameters, which is a simplification of the real-world
behavior with parasitic effects such as (cross-)saturation or
temperature and aging effects. These assumptions rendered a
static context sufficient to fully characterize the environment.
However, usual real-world applications may show dominant
time-varying behavior, and therefore, it would be of interest
to recreate the context at runtime to adapt to changes of the
drive in an online fashion. Naturally, the utilization of the given
setup should also be considered for different power electronic
applications.
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