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ABSTRACT Automatic detection of plant diseases has emerged as a challenging field in the last decade.
Computer vision-based advancements have helped in the timely and accurate identification of diseases,
making possible an appropriate treatment and hence ensuring an increased yield. Diseases attack in different
formations on a plant; themost severe beingmultiple diseases appearing on a single leaf.Moreover, as various
diseases progress, they generate similar-looking symptoms making the task of identification further difficult.
This work addresses these two problemswith the help of an improvedYOLOXmodel.We propose amodified
Spatial Pyramid Pooling (SPP) layer to effectively extract relevant features at various scales from the training
data. It is achieved by concatenating multilevel features pooled from smaller to larger scales. To enhance the
generalization capability of the design, various skip connections are also introduced. To improve the network
convergence and detection accuracy, αIoU based regression loss function was employed. A dataset composed
of 1, 112 cotton plant images with co-occurring diseases along with their progressive severity levels was
collected from the Southern Punjab region of Pakistan. Apart from healthy images, the dataset comprises
three severity stages of cotton leaf curl with co-occurring cotton sooty mold stress on a single leaf image.
Experimental results revealed that our proposed improved SPP-based YOLOX-s model achieved 73.13%
mAP on our self-collected dataset and achieved 3.27% better test accuracy than the original YOLOXmodel.

INDEX TERMS Plant disease, YOLOX model, disease severity classification, multiple stress, cotton plant.

I. INTRODUCTION
Cotton is an important cash crop in Pakistan grown on 15%
of the total cultivated area in the country. Apart from its
domestic consumption, the country’s cotton production and
export contribute a rich share of the world’s cloth economy.
During its lifespan, the crop is affected by many diseases.
Sometimes, a leaf is affected by more than one disease whose
symptoms are alike too. Disease severity symptoms and the
presence of multiple stresses can be misjudged even by an
expert pathologist.

With the advent of artificial intelligence and computer
vision techniques, precision farming techniques have been
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approving it for publication was Gangyi Jiang.

revolutionized. Several machine learning and deep learning
models have shown remarkable performance in plant dis-
ease detection systems [1]. Combined with transfer learning,
several researchers have used deep learning-based feature
extraction and classification tasks on self-collected or pub-
licly available datasets. Various studies have aimed to achieve
near-ideal performance in detecting disease symptoms auto-
matically and suggest the use of pesticides or preventive
measures. For the last few years, well-known deep learning
architectures like region-based convolutional networks [2],
single shot detectors [3], and region proposal networks [4]
have been used in the field plant leaf disease detection with
necessary modifications [3]. A sample output of a meta-deep
learning architecture detecting a plant leaf disease is shown
in Figure 1.
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FIGURE 1. Classification, localization, and detection tasks described with the help of sample images.

Almost all previous studies have either used the
famous PlantVillage dataset [3] or their self-collected
datasets [5], [6].

However, very few studies have discussed (1) stages of
disease progression and (2) the presence of more than one
biotic and abiotic agent attacking a plant leaf simultaneously.
These situations pose a challenging situation for both manual
and automatic detection strategies to identify the type of
infection and the exact localization of disease symptoms.
As an example, various stages of cotton leaf curl disease
found on the cotton plant are shown in Figure 1(a). Further,
co-occurring symptoms of cotton leaf curl and cotton sooty
mold are shown in Figure 1(b).

In order to detect stages of diseases and segregate dis-
eases with overlapping and co-occurring symptoms, we,
in this study, present a YOLOX-s based detection framework
employing a modified Spatial Pyramid Block to capture fine
spatial features after aggregating them with local features.
To address the problem with better accuracy we improved the
spatial pyramid pooling block by concatenating feature maps
at low-level scales. The integrity of features was enhanced
by adding the original size input feature vector. The detec-
tion performance was further optimized by the using α-IoU
regression loss function.

The main contributions of this work are as follows:

• To detect more than one disease on a single leaf plant,
an improvedYOLOX-smodel based on amodified Pyra-
mid pooling module (SPP) layer is presented. It collects
spatial details at local multi-scale levels to capture the
desired information more effectively.

• For better generalization and convergence, in situations
where multiple diseases appear on a single plant leaf,
we used α-IoU loss as bounding box regression for
multiple disease localization.

• A dataset of self-collected real field images along with
their segmented versions is presented. The images con-
tain the progression of diseases and the presence of
multiple diseases per leaf.

II. RELATED WORK
Over the last decade, various traditional machine learning [7]
and deep learning techniques have been used to develop auto-
matic recognition of plant diseases [8].Many effective feature
extraction techniques have been proposed. [9] for efficient
disease diagnosis based on color, shape, and texture [3].

The use of computer vision-based techniques in the area
of plant leaf diseases can be divided into (1) detection and
(2) recognition. The former refers to the task of locating the
diseased part of the leaf in a scene containing the healthy part
and background too. The latter, however, is referred to when
the type of disease is to be decided given only the segmented
portion containing stress(es). Research literature published in
the last decade is full of both types of approaches applied in
the field.

Table 1 provides highlights of some recent and state-of-
the-art approaches in the fields of plant leaf disease detection
and recognition. These approaches will be discussed in this
section in detail with respect to: (1) the type of application
addressed, (2) the technique used, (3) the contribution, (4)
the dataset used, and (5) the limitation of the work.

In the last few years, the use of deep learning became
prevalent in this area of research. Employing transfer learning
and data augmentation has facilitated the implementation of
deep learning models on a variety of hardware including
CPUs and GPUs. The work presented by Abayomi et al. [10]
used color space data augmentation techniques to train the
MobileNetV2 model. The authors trained the model for low
and high-quality cassava leaf disease images to compare the
classification performance. It was reported that the classifica-
tion accuracy is reduced for low-quality images. Authors [11]
have also used high-quality images to locate the diseased area
based on color difference. Advanced machine learning classi-
fiers like bagged tree ensemble achieved an overall accuracy
of 99% to distinguish diseased areas based on color and
textual features. Since Computer vision-based plant disease
detection systems are supposed to locate and identify the
diseased part of a plant automatically, the use of versatile
deep-learning meta-architectures is found in the literature.
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Region-based Convolutional Neural networks (RCNNs)
were the first deep learning algorithms used for object detec-
tion in general [3]. Just like Fast RCNN [12], Faster-RCNNs,
R-FCNNs [3] generate a series of candidate frames for tar-
geted objects and then classify each frame separately. Zhou
et al. [13] proposed a rice disease detection model using the
Faster R-CNNmodel fusedwith the K-means clustering algo-
rithm (FCM-KM). OTSU algorithm and multilevel median
filters were used to perform segmentation and noise removal
tasks respectively. The algorithm achieves an inference speed
of 0.52 s by using a two-stage detector. A similar two-stage
detector Mask RCNN was used by Rehman et al. [14] to
detect diseased areas after contrast stretching. Feature extrac-
tion of enhanced regions is performed by CNN which was
later classified. Better accuracy was obtained after the selec-
tion of the best features using Kapur’s entropy. In another
notable work, authors used faster R-CNN with an improved
backbone [15] to detect various rice diseases in still video.
The improved two-stage model shows better results in terms
of recall and accuracy but with long detection times when
compared with other models like YOLOV3. The model used
in [16] achieved significant improvement in mAP using an
enhanced anchor box approach based on a faster RCNN
model for weed detection.

Overall optimized performance with better inference time
can be obtained without generating region proposal network
as in single shot detection (SSD). They employ predefined
boxes to determine the probability of an object in an image.
Such an improved model with the Inception module was
used to extract feature information and Rainbow concatena-
tion to enhance the detection of apple diseased spots [17].
The model incorporated VGG with the inception module to
classify disease with a mAP of 78.8%. On the other hand,
we have YOLO (You Only Look Once) [18] models that are
also single-stage detectors that only require a single forward
propagation to locate and classify objects in a scene. It detects
by first dividing an image in a grid and then predicts the
probability of an object and its class for each bounding box.
A similar YOLO framework was adopted by Wang et al. [19]
who integrated the DenseNet block for feature extraction in
the YOLO framework to detect tomato disease in complex
background conditions. Further details are mentioned in the
related work comparison Table 1. Bacterial leaf spots were
successfully detected using the YOLOV5 model. The results
were also compared with YOLOV3, YOLOV4, SSD, and
other two-stage detectors [20].

In the YOLO series, a recently introduced modification
namely YOLOX [26] has achieved a significant improve-
ment in the area of object detection. YOLOX uses the base-
line framework of YOLOV3-Darknet with SPP Layer to
enhance feature extraction. YOLOX is used to strip leaves
from the complex background and semantic segmentation is
performed using DeepLabV3+ andUNet to identify kiwi leaf
diseases [21]. An improved YOLOv3 algorithm is proposed
by integrating Cross Stage Partial Network (CSPNet) and
Sigmoid Linear Unit (SiLU) Activation to detect colonic

polyp [27]. The CIOU loss function [28] is also used to
make the model robust for real-time polyp detection. Accu-
rate recognition of plant disease was performed by Chen
et al. [22] using the YOLOv5 model. To improve the accu-
racy and the number of parameters, the SE module and
InvolutionBottleneck were used. Further, diseased lesions on
paddy leaves were segmented using a hybrid deep-learning
model with ResNet architecture and a YOLO classifier. The
model parameters were further optimized by using the Fitness
Sorted-Shark Smell Optimization technique [23].

A notable work addressed fine-grained recognition of
strawberry leaf disease severity classification in real-field
conditions. Leaf location in complex conditions was marked
by Faster RCNN and severity estimationwas performed using
Siamese network [24]. Detecting multiple lesion spots in a
single frame and disease progression are challenges faced
by the researchers. Due to overlapping disease spots and
symptoms, multiple diseases are hard to be detected both
manually and with the use of automatic image processing
techniques [29]. The existence of multiple diseases on a sin-
gle cucumber leaf was effectively addressed by [25] using the
EfficientNet-B4model with 96% classification accuracy. The
authors used a Ranger optimizer to identify similar-looking
symptoms.

Although the techniques found in the literature (mentioned
in Table 1) have used single-stage detectors with decent
recognition performance. Most of these studies have focused
on segmenting lesions or the identification of spots. The
tasks of accurately identifying varying severity stages of a
single disease and multiple stresses on a single leaf are still
the least addressed. Therefore, we propose in this research,
an application-specific improved YOLOX model to detect
overlapping and co-occurring plant leaf diseases.

III. THE PROPOSED TECHNIQUE
This section describes complete details of the proposed tech-
nique used to address the problems of (1) symptoms of dis-
ease progression and (2) the presence of multiple diseases on
a single leaf. The input data is pre-processed as the first step
to eliminate unnecessary background details and to ensure a
balance between classes. Next, we describe the details of the
proposed deep learning model designed to tackle especially
the two important scenarios mentioned above.

A. PRE-PROCESSING
Since leaf images were captured in real field conditions,
they contained background information including soil and
tree branches, etc. Extracting only the leaf area contain-
ing one or more diseases and removing the background
information is supposed to make the task of the proposed
detection mechanism easier [30]. Several techniques are in
place to remove unnecessary background information in
real-world scenes [9]. GrabCut [31] is a simple and efficient
machine learning-based technique capable of removing unde-
sired background information with minimal manual settings.
The background is eliminated based on graph cuts. Based on
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a window provided by the user, everything outside the win-
dow is considered the definite background, whereas, inside
the window, there can be both the foreground and the back-
ground. A Gaussian Mixture Model (GMM), given in Equa-
tion 1, is then used to estimate the distribution of colors
pertaining to the foreground and the background, presuming
them to be normally distributed.

p(x) =
k∑
i=1

p(Ci|x) =
k∑
i=1

p(x|Ci)p(Ci) (1)

where k represents the number of Gaussian distributions for
foreground and background each.

Another parameter γ is defined which is 1 for foreground
and 0 for background pixels. For each pixel n in the fore-
ground, we define:

kn = argminDn(γn, kn, θ, xn) (2)

Now the parameters θ of the GMM are estimated as:

θ = argminU (γ, k, θ, x) (3)

In the next step, a Markov random field (MRF) is con-
structed on the labels assigned by the GMM. The cost func-
tion of the MRF is computed based on the connected regions
with the same label. Finally, a graph cut optimization is run
to divide the vertices into two groups namely the foreground
and the background:

min E(γ, k, θ, z) (4)

To fine-tune the background removal task, the process is
repeated until convergence. The average processing time per
image for background removal was noted to be 4.12 seconds
on the hardware used for experimentation.

A screenshot of a sample image processed for background
removal using the standard GrabCut algorithm is given in
Figure 2. The algorithm was found successful to remove the
background information outside the infected leaf.

The images after background removal are annotated and
are later subject to image augmentation techniques like flip,
rotate, and brightness enhancement. This helps in improving
the training performance of the model as well as to combat
overfitting as discussed in Section IV-A in detail.

B. THE PROPOSED YOLOX-BASED OBJECT DETECTION
MODEL
YOLOX [26] is an anchor-free detector that has shown
remarkable performance in terms of both speed and accu-
racy. The head of YOLOX is decoupled from the original
detector to achieve a better convergence during training [32].
Its anchor-free implementation reduces the number of train-
able parameters significantly. Moreover, the label assignment
strategy is further improved using SimOTA [26] which helps
in addressing the Optimal Transport (OT) problem [21] in
addition to reducing the training time.

For the application addressed in this paper, we come up
with an enhanced version of the YOLOX model that makes

it suitable for detecting (1) multiple disease symptoms on a
single leaf separately and (2) severity levels of disease during
its progression. Further, the proposed YOLOX model has
only 8.9M parameters and 26.77G FLOPS.

A block diagram of the proposed detection scheme is
shown in Figure 3. It is an improved version of the basic
YOLOX model. The main part of the proposed model is the
backbone CSP darknet used for carrying out feature extrac-
tion. Enhance feature fusion is performed in the feature pyra-
mid network (FPN) part. Features obtained from three feature
layers are up-sampled to perform feature fusion and are later
down-sampled to classify in the classification and regression
tasks [27]. The focus module is one of the prime components
to extract features effectively. In the process to retain object
feature information, the images at the input are sliced into
four parts and are concatenated to visualize the features in
depth. The deep features are extracted more precisely in the
next step namely the BottleneckCSP layer. The feature maps
are passed through convolution, respective batch normaliza-
tion, and activation operations. Advanced data augmentation
techniques like Mosaic and mix-up are used during training
to learn smaller and overlapping symptoms [33]. Multiple
detections are avoided using the non-maximal suppression
(NMS) technique.

The output of FPN is fed into YOLOX decoupled head
at three different scales. The decoupled head as shown in
Figure 3 holds the information of class, location, and object-
ness in three separate tensors. Since there are three outputs,
we will deal with three different loss functions. Binary Cross
Entropy (BCE) loss [34] with logits defines the modeling
error between the ground truth and the predicted class. All
positive predictions are sorted out using a sigmoid activation
function [26]. The output of the regression branch isH×W×
4 which predicts the bounding box coordinates (x, y,w, h).
YOLOX uses the IoU metric to predict bounding box outputs
and compares it with the ground truth.

C. BOUNDING BOX REGRESSION
Localization and classification of objects are two vital steps
in computer vision-based applications. The degree of correct-
ness with which a machine learning model localizes an object
in an image/scene is evaluated using the loss function [35].
Conventional single-stage and two-stage detectors use the
bounding box regression technique for this purpose. Earlier
detection models used ln-norm losses; which have recently
been replaced by Intersection over Union (IoU) localization
losses computed using a simple formula given in Equation 5.
Here, A is the ground truth box and B is the area of the
predicted box. If the two boxes overlap completely, the IoU
is 1.

IoU =
A ∩ B
A ∪ B

(5)

However, IoU losses suffer from the vanishing gradient
problem which in turn slows down the model’s convergence.
The situation occurs as the predicted boxes do not accurately
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FIGURE 2. Block diagram describing the standard GrabCut algorithm. It was adopted in the proposed work to
eliminate undesired background information.

FIGURE 3. Architecture of the proposed YOLOX model with improved SPP block
highlighted as yellow.

overlap the ground truth boxes and hence lead to inaccurate
results. To track the objects more precisely, several improved
bounding box losses were proposed based on different met-
rics. The GIoU (Generalized Intersection over Union), DIoU
(Distance Intersection over Union), CIoU (Complete IoU),
and EIoU (Efficient IoU). These loss functions use different
metrics to reflect the degree of overlap between the target
and the anchor boxes. For instance, DIoU and CIoU take into
account the distance metric, whereas, GIoU not only focuses
on the overlapping area but also takes into consideration the
non-overlapping area.

In this work, we have employed a newly proposed family
of loss functions known as α-IoU [36] due to its better con-
vergence and detection accuracy characteristics. α-IoU loss

is a modified version of the vanilla IoU loss, LIoU , defined
as:

LIoU = 1− IoU (6)

By transforming and generalizing Equation 6, the α-IoU
loss, Lα−IoU , is given as:

Lα−IoU =
1− IoUα

α
, α > 0 (7)

where α is a modulating factor that can take only positive
values. However, we can have the following two cases:

Lα−IoU =
{
−log(IoU ), α→ 0,
1− IoUα, α 9 0.

(8)
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As we have used the case of α ≥ 1, the further generalized
form is given as:

Lα−IoU = 1− IoUα1 + Pα2 (B,Bgt ) (9)

where α1 > 0 and α2 > 0 and Pα2 denotes the penalty term
of predicted box B and ground truth box Bgt . The Equation 9
can be used to transform the IoU-based losses. We used the
LCIoU transformed to Lα−CIoU using α and penalty param-
eter Pα(B,Bgt ) is calculated for predicted and ground truth
bounding box as mentioned in Equation 10.

Lα−CIoU = 1− IoUα
+
ρ2α(b, bgt )

c2α
+ (βvα) (10)

where b, bgt are the central points of the bounding boxes
B, Bgt with ρ as the euclidean distance and c is the diag-
onal length of the smallest box and v = 4

π2 (arctan
ωgt

hgt −

arctanωh )
2 with β = v

(1−IoU )+v where ωgt

hgt and ω
h are aspect

ratios of ground truth box and predicted box respectively.
When α = 1 all the bounding box regression losses can
be used in their original versions. Lα when used with α >

1 schemes adapt and reweigh its gradient and loss values
accordingly. The reweighing property increases as the α value
increases [36]. This adaptive and relative reweighing helps
the model to converge better and achieve better performance
when compared with all baselines IoUs. The potential of
Lα−IoU to attain better generalization and high average pre-
cision by applying a unified modulating factor made us apply
it to our multiple disease localization models.

D. IMPROVED SPATIAL PYRAMID POOLING BLOCK
Figure 4 (a) shows the original structure of the Spatial Pyra-
mid Pooling (SPP) block used to pool important feature
information extracted in the backbone of the original YOLOX
model. To extract more meaningful features in case of over-
lapping diseased regions, we propose in this work a modified
SPP block for our Improved YOLOX model. The internal
structure of our proposed Improved SPP block is given in
Figure 4 (b). The input to the block is passed through a
Conv1 to perform channel-wise pooling by reducing the size
of the input feature map to 512. The resultant 20 × 20 ×
512 tensor is fed to the next layer where features are extracted
at multiple spatial scales using a number of max pooling oper-
ations performed using varying kernel sizes. Themax pooling
operation is mathematically described in Equation 11. Here,
H andW are the height and width of the channel and Hk and
Wk are the height and width of the respective kernel.
The proposed improved SPP block contains an additional

parallel pooling block. The smaller pooling kernel pools deep
features at a smaller receptive field.

Oi,j = max(H ,W ,Hk ,Wk )Hk ∈ HWk ∈ W . (11)

The output tensor sizes of all four MaxPool layers are the
same; calculations are given in Equation 12. Here, nin and nout
are the sizes of the input and out feature maps respectively, k
is the kernel size, p is the padding size and s is the stride.

TABLE 2. Parameters of various convolutional layers in the improved SPP
block.

As can be seen in Table 2, varying padding sizes were used
to preserve the size of the output feature map.

nout =
[
nin + 2p− k

s

]
+ 1 (12)

The information is concatenated to get an output feature
map of 20× 20× 2048 as given in Equation 13. We propose
an improved SPP module by enhancing the receptive field of
the input feature map. These parallel layers are characterized
by different smaller kernel sizes, stride, and padding detailed
in Table 2. This aggregation of features [37] using smaller
to larger kernel sizes tends to retain feature details which
are further preserved using the concatenate operation shown
in Figure 4. The spatial information gathered as Yi,j,k and
the size of the output feature map is 20 × 20 × 1024 after
Conv2 operation, the 1 × 1 convolution is again carried out
to return the feature map size to 1024. In order to avoid
overfitting due to vanishing gradients, we used an identity
skip connection to keep the information at the initial layers
and performed matrix addition as shown in Equation 14.
Here, Xi,j,k is the input tensor of the SPP module and Yi,j,k is
the transformed tensor after the convolution operation. Like
the default YOLOX model, the input feature map size is
preserved. Finally, the aggregated low-level features are fed
into the FPN neck block for feature fusion.

Yi,j,k = Conv1

cat

max3(Conv2),
max5(Conv2),
max7(Conv2),
max9(Conv2)


 (13)

Zi,j,k = τ (Yi.j.k )+ Xi,j,k (14)

IV. PROPOSED DATASET
Cotton is a Kharif crop sown from March to May in various
regions of Sindh and Punjab in Pakistan. For the sake of this
research, a small orchid with approximately 50 plants was
chosen to capture images. To keep the conditions favorable
for the pathogens to grow, no additional pesticide or fertilizer
was used. The images were captured using a smartphone
(Samsung A21) kept 20 − 30 cm away from the leaf at
varying angles. Images were captured under varying lighting
conditions in the afternoon in both sunny and cloudy weather.
The focus of the smartphone was adjusted to capture a single
leaf only. A total of 464 images were collected and annotated
with the help of expert pathologists. The data was divided into
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FIGURE 4. Comparison of original Spatial Pyramid Pooling (SPP) module with our proposed SPP module of
YOLOX.

TABLE 3. Details of Cotton disease severity dataset before augmentation.

seven types of cotton curl severity and disease coexistence
images. The detail of the dataset before applying augmenta-
tion is mentioned in Table 3. Some sample images taken from
the dataset are shown in Figure 5.
Cotton curl is a common disease found in Pakistan and

India. It is caused by begomoviruses and the spread is influ-
enced by white flies. Early symptoms are leaf chlorosis,
labeled as stage-1 of cotton leaf curl. Within 2-3 weeks, the
symptoms worsen with vein-thickening along with darkening
of the leaf starts. Vein thickening can be clearly observed
from the backside of the leaf. It is followed by the curling
of leaves around its edges and is labeled as stage-2 of the
disease. Three weeks later, dark black specks start appearing
on the leaves hindering the spread of the virus. The pathol-
ogists identify it as cotton sooty mold caused by the spread
of aphids. Almost all the plants in the vicinity get infected
with the curl virus and sooty mold. Images in this class are
captured from ad-axial and ab-axial surfaces as symptoms
of vein thinking and sooty mold appear on both sides and

FIGURE 5. Sample images taken from the dataset (a) Healthy (b) Curl
stage-1 (c) Curl stage-2 (d) Curl stage-1 + Sooty mold (e) Curl stage-2 +
Sooty mold (f) Leaf enation + Curl stage-2 (g) Curl stage-1 + Curl
stage-2 + Sooty mold.

making the dataset more generalized. Soon as the symptoms
of sooty mold subside, leaf enations start appearing, labeled
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as leaf enation. Since leaf enation always appears on the
underside of the leaf, only abaxial images are captured in this
class.

A. IMAGE ANNOTATION AND AUGMENTATION
Ground truth boxes weremanually drawn using the Roboflow
annotation tool. Before marking the ground truth boxes the
labels of diseased regions were carefully marked with the
help of pathologists. The rectangular bounding boxes were
manually marked with their corresponding labels by avoiding
null regions. Several boxes have overlapping edges due to
the existence of overlapping symptoms. Around 80% of the
image set is used for training & validation and the rest was
used for testing. Images were imported in the model input
in Pascal VOC format which contains image localization
and annotation details in an XML file. The file contains the
bounding box coordinates, height, width, and class label for
each box as shown in the Figure 6. For each image there is
an associated XML file when imported into the model for
training, validation or testing [17].

The dataset used for experiments contain images cap-
tured at varying angles and sizes. Hence, we performed an
auto-orient operation to keep the bounding boxes on the
object of interest irrespective of any augmentation step per-
formed on it later. Further, the images were resized using a
normalization set at a resolution of 416× 416. as commonly
required by YOLO. To avoid overfitting while dealing with
an imbalanced dataset, we prefer to perform augmentation
steps of flip horizontal, 90◦ rotation, and brightness(±25%).
Applying these augmentations will not only enhance the size
of the dataset but will add more diversity to the images
captured under different lighting conditions. After randomly
applying augmentation the size of the dataset is raised
to 1, 112. All these pre-processing steps were performed
using Roboflow data services. A snapshot of the initially
pre-processed image and after data augmentation is shown
in Figure 7.

V. EXPERIMENTS
A. EXPERIMENTAL DETAILS
All experiments were performed on Intel(R) Core(TM)
i3-1005G1 1.20GHz CPU and NVIDIA Tesla T4 GPU under
Windows 10 operating system. Complete details of the exper-
imental workbench are given in Table 4. The experimental
environment was set up after installing the required libraries
and repositories. The dataset was imported into the notebook
and pretrained weights for the VOC dataset were downloaded
for YOLOX-s. Our proposed model was trained using hyper-
parameters mentioned in Table 5 for 100 epochs.With a batch
size of 32, the best weights obtained after training were saved
and were further used to test the performance of our proposed
model on test images. Images in the dataset were resized to
640 × 640 for the purpose of experimentation. Finally, 80%
images were used for training and validation purposes while
the remaining 20% were later used for testing.

TABLE 4. A summary of the experimental setup.

TABLE 5. A summary of hyperparameters used for training.

A strong mixup and mosaic augmentation were used for
all training epochs. The Stochastic Gradient Descent (SGD)
algorithmwith a base learning rate of 0.01 is used for optimiz-
ing the model performance with a momentum of 0.9 was used
and a weight decay of 0.0005. Cosine learning was used as
the default learning rate scheduler. The training process was
analyzed to conclude model performance based on several
metrics. To efficiently differentiate between the overlapping
symptoms, the NMS threshold was kept at 0.65. For classifi-
cation and objectness, we use BCE loss with Logits. Using
sigmoid activation instead of class probabilities provides
more stable results during inference [38]. For the bounding
box, regression loss Lα was used. The training convergence
was also observed and compared with other loss functions
discussed in Section VI.

VI. RESULTS & DISCUSSION
Training performance was monitored for improved con-
vergence speed and detection performance of co-occurring
diseased symptoms and severity classes on self-collected
datasets. The metric commonly used for detection models
is Mean Average Precision (mAP) which shows the preci-
sion for all classes when the Intersection over Union (IoU)
threshold is 50%. The mathematics of the computation is
given in Equation 15, where i = 1, 2, · · · , 5. Even for this
work, the mAP score was computed by keeping the IoU
threshold at 0.5.

mAP =
1
5

5∑
i=1

APi (15)

The default YOLOX model showed comparable training
accuracy in the beginning but it failed to converge in the last
30 epochs as shown in Figure 8. This led to lower accuracy
of the default YOLOX model (69.90%) compared to the
proposed improved YOLOX model (73.13%) as shown in
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FIGURE 6. Annotation of Cotton Severity Dataset.

FIGURE 7. Original image and its augmented version.

Figure 8. In an attempt to improve the detection performance,
authors also experimented by adding an SE block in the SPP
module of default YOLOX [39]. The training performance
for the YOLOX-SE model clearly got overfit in the last
20 training epochs with an inferior inference speed as shown
in Table 6. The inference time taken by the default YOLOX
is slightly better than our model but misclassifications were
detected for several classes.

The validation and test results of the model were evalu-
ated on various IOU losses to achieve the best convergence
and mAP performance. The model achieved the best results

on improved SPP block with LCIoU with modulating
factor α = 3.
Further, a decrease in total loss during the training process

is shown in Figure 9. Total loss is the average of all losses as
shown in Equation 16.

Losstotal = Losscls + Lossreg + Lossobj (16)

where classification loss Losscls and Objectness loss Lossobj
evaluated by BCE loss and Lossreg is the regression loss.
As the training epochs progress, the loss decreases rapidly

and then converges gradually. The performance of Lα−IoU is
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FIGURE 8. A comparison of mAP training curve of Improved and the
default YOLOX models during training.

FIGURE 9. A comparison of the total loss of the Improved and the default
YOLOX models during training.

better than vanilla-IoU and other regression techniques for the
required localization of co-occurring disease symptoms.

A. ABLATION STUDY
Our proposed model uses an improved SPP block that inte-
grates multilevel spatial features using a Maxpool network
with smaller kernel sizes. Which extracts the useful feature
information more effectively; the training mAP achieved was
71.12% which is better than the default SPP which uses LIoU
as bounding box loss.

To obtain the optimal training performance of the proposed
improved YOLOX model, several loss functions were exam-
ined to refine the position of the predicted bounding box.
LCIoU , LEIoU , LDIoU , Lα−IoU and LIoU are compared on the
basis of the detection accuracy and training time per epoch
as shown in Figure 10. Detection accuracy values obtained
using vanilla IoU and GIoU were found comparable but the
latter is slower to converge. EIoU turned out to be the slowest
with a comparatively inferior value of mAP and hence the
worst. The proposed alpha IoU performed the best with the
largest value of mAP and a time to converge value just greater
than the one we achieved for GIoU. To investigate the effect
of modulating factor α we compared the performance of our
model with varying values of α for Lα−IoU . The relative
performance of Lα−IoU was analyzed by varying the value of
modulating factor α. Experimentation revealed that regres-
sion accuracy tends to increase as the value of α increases.
We concluded that better detection performancewas achieved
by setting the α = 3 for our specific dataset as shown in

Figure 11. The best results were shown on our improved
YOLOx model using the Lα−IoU as bounding box regression
loss as shown in Table 7.

B. DETECTION PERFORMANCE ON TEST DATASET
Once the training is complete; best weights are obtained
which are then used to evaluate the performance of the model
on the test dataset. The regression task is complete when the
objectness of the bounding box is evaluated. The BCE loss is
used to indicate the presence of an object within a bounding
box. The objectness of the presence of disease in the predicted
bounding box is evaluated based on the confidence score.
Equation 17 gives a way to compute conditional class score
CCS given the class confidence score and the conditional class
probability Pic.

CCS = Box_confidence_score× Pic (17)

In order to achieve a better detection mAP score we exper-
imented to select an optimal threshold value, which should
not be low to give a false positive and high enough to miss
true predictions. Hence, after evaluating the test results the
confidence threshold was kept at 0.25. Figure 12 shows
the detection performance of Improved YOLOX on the test
dataset. Each predicted bounding box marks a confidence
score in the test images. The score shows confidence in both
classification and localization.

YOLOX model uses the same baseline model using
SPP anchor-free mechanism. Also, the decoupled head
helps reducing the convergence speed which was observed
while comparing the performance with YOLOv4 [40] and
YOLOv5 [20] models that were also trained and validated on
our Cotton severity dataset and the results based on precision
and inference time are also shown in Table 8. It can be seen
clearly that although the inference speed of YOLOv4 and
YOLOv5 is much better than our model the detection accu-
racy is compromised. The anchor-freemechanism reduces the
complexity and probable bottlenecks during training hence
the default YOLOX model and our Improved YOLOX mod-
els show better convergence performance than other mod-
els trained on our dataset. Figure 8 shows values of mAP,
achieved during training using the default YOLOX and the
proposed improved YOLOX models.

To analyze the performance of our proposed YOLOX
model to classify severity stages and overlapping symptoms.
Curl stage-1 was detected with relatively lower average pre-
cision because it was misclassified with the healthy and curl
stage-2 class. Similarly, the overlapping symptoms of sooty
mold and curl stage-2 were detected with better precision
with our improved YOLOX model. Figure 13 shows the
confusion matrix results of the Improved YOLOX model
compared with the original YOLOX on test data. The models
accurately detect leaf enation as the class is not visually
similar to any other classes and images in our test dataset
have not many challenging images for the class. The healthy
class was also misclassified with the curl stage-1 because
of the similarity in visual symptoms. Similarly, sooty mold
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TABLE 6. A comprehensive summary of results in comparison with other models on test data.

FIGURE 10. Comparison of various bounding box regression techniques on the basis of mAP and average time per
epoch.

TABLE 7. Results of an ablation study conducted during training the model with varying strategies.

FIGURE 11. Performance of proposed YOLOX model using Lα−IoU as
bounding box regression loss with varying values of α.

symptoms were falsely detected as curl stage 1 and curl stage
2 because of their overlapping characteristics as shown in
Figure 13(a). Curl stage 1 and sooty mold were correctly clas-
sified with better precision by our proposed model as shown
in Figure 13(b). However, the healthy class was misclassified
as curl stage 1.

C. COMPARISON WITH STATE-OF-THE-ART TECHNIQUES
In this section, we compare the performance of our pro-
posed improved YOLOX model with other state-of-the-art

TABLE 8. A comparison of the performance of our proposed model with
state-of-the-art models.

models for our dataset in terms of training accuracy.
We used the default code settings for training YOLOv4,
YOLOv5, YOLOv7, Efficientdet, and YOLOX-ti-lite on
our cotton severity dataset for 100 epochs. The mAP
scores are significantly low as compared to our proposed
YOLOX model as shown in Table 8. We also trained
the YOLOX-ti-lite model which is a version of YOLOX
preferably used for edge devices. The model has an opti-
mized SPP block with efficient performance on embedded
devices. But it failed to give desirable results for a specific
dataset.
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FIGURE 12. Test results obtained using our proposed technique.

FIGURE 13. Confusion matrices on five disease symptoms using the original YOLOX model and
our proposed technique.
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VII. CONCLUSION
The proposed work proposes a framework to detect multiple
diseases on a single leaf and identifying progressive severity
symptoms of a single disease on cotton plants. For this,
we have proposed YOLOX based model with an improved
Spatial Pyramid Pooling block. Multi-scale features were
aggregated with the help of diverse pooling rates. Spatial
information was further preserved by introducing residual
connections. With this model, we achieved better identifi-
cation results in the case of similar-looking and overlap-
ping disease symptoms. Experimental results showed that
the proposed model achieved 73.13% mAP on training and
72.31% mAP on the test dataset which is 3.27% better than
the default YOLOX. Further, the best results for overlapping
and co-existing classes like Curl stage-2 and Sootymold were
obtained with an average precision of 65.76% and 74.02%
respectively. Better generalization and loss convergence were
achieved using Lα−CIoU as bounding box regression loss.

VIII. LIMITATIONS & FUTURE WORK
The presence of multiple stresses on a single host and the
appearance of varying stages of diseases on a single leaf are
two commonly faced situations in the field. This work pro-
poses a deep learning-based solution for these two scenarios
that has successfully been tested on a rich dataset. However,
to further improve it in the future, the following are some
future directions:

1) We aspire to make our model robust and suitable for
real-field practical applications. In order to make the
dataset more widely applicable, efforts will be made
in the future to expand it by collecting more images
pertaining to other diseases and crops. Moreover, the
proposedmodel is trained and tested on a single leaf in a
clean background. To enhance its practicability, wewill
invest in adding more real field samples.

2) To deploy the trained model on edge devices, we will
work on making the design lightweight in order to
accelerate its training and testing speed.

3) Much work is required to improve the precision and
confidence score for challenging real-field plant dis-
eased images by exploring the fusion of low-level
spatial features without compromising on the model’s
complexity.
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