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ABSTRACT In practical mobile crowdsensing (MCS) systems, many cooperative sensing tasks require a
group of reliable participants to perform collaboratively. In this article, we address the problem of group
formulation in MCS, which aims to recruit highly trusted participants and form a high-reputation group.
We propose a novel Privacy-preserving Trust-Aware Group Formation (PTAGF) framework that ensures trust
and privacy between the group members. This framework consists of three mechanisms; the member trust
assessment mechanism, the group forming mechanism, and the two-layer privacy-preserving mechanism.
Furthermore, we prove that the group forming problem is NP-hard, and thus propose a heuristic-based Trust-
Aware Group Formulation (TAGF) algorithm. A theoretical analysis is provided, which demonstrates that
the proposed framework achieves privacy and security. Finally, we experimentally evaluate the performance
of PTAGF on a real-world dataset against two state-of-the-art approaches. The results demonstrate that
PTAGEF outperforms these approaches in terms of trustworthiness in group selection. Moreover, it achieves
reasonable task coverage and running time with different communities size, group sizes, and task scales.

INDEX TERMS Mobile crowdsensing, cooperative task, privacy-preserving, trust-aware, group formation.

I. INTRODUCTION

Mobil Mobile Crowdsensing (MCS) is a new emerging
paradigm, taking advantage of sensor-embedded wearable
devices and smartphones to collect sensor readings effi-
ciently. MCS applications and services are rapidly increas-
ing, getting more research attention, and moving beyond a
single individual participant to community groups and are
influenced by group behavior and social networks [1]. In the
real world, the number of cooperative sensing tasks increases
which requires a group of participants to perform collabo-
ratively for certain applications, which triggers the idea of
group recruitment [2]. The quality of sensor readings for
these tasks lies in recruiting trusted and reliable participants
to accomplish these tasks cooperatively. Moreover, the group
member would prefer to cooperate with trustworthy mem-
bers, especially when the task requires some special skills to
be performed. Hence, how to verify the trust and the ability
of participants to form effective groups is a key research
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problem. Most existing group-forming systems achieve good
communication and social costs [3], [4], [5], [6]. They either
consider the social relationship between group members, the
distance between members and the task, or the similarity
between the members’ interests and the tasks. However, they
fail to take the group member’s trust and the ability to perform
the assigned task into account during the recruiting process,
which may form low-reputation groups that are socially con-
nected but not able to perform the sensing tasks. In addition,
the privacy of participants during the forming group pro-
cess and the cooperation between group members should be
preserved from platform entities and malicious participants.
Grouping-based solution methods protect participants’ infor-
mation during participant recruitment and minimize the infor-
mation loss and the overhead on the participants’ side [7].
Thus recruiting trusted participants to perform cooperative
sensing tasks can improve not only the participation willing-
ness of group members but also the quality of mobile crowd
sensor readings [5].

To address the shortcoming of existing group-forming
mechanisms in MCS, this article presents a novel
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Privacy-preserving Trust-Aware Group Formation (PTAGF)
framework (PTAGF comes from Privacy-preserving Trust-
Aware Group Formation). In PTAGF the sensing tasks are
allocated to groups of participants, not individual partici-
pants. A heuristic approach is proposed where a group of
trusted members is formed to generate a high-reputation
group that performs group sensing activities with high-quality
sensor readings while ensuring members’ privacy. With this
group framework, members in the assigned high-reputation
groups will cooperate to perform the complex sensing tasks.
The objective of this framework is to form dynamic groups,
securely and privately, with highly reputable participants that
achieve high sensing data quality.

To address the shortcoming of existing group-forming
mechanisms in MCS, we propose a novel group-forming
framework that ensures trust and privacy among the group
member. In this framework, the participant’s recruitment pro-
cess considers multiple factors to select trusted members
not only their social ties. Furthermore, participants’ spatial-
temporal information is protected during the task allocation
process. To the best of our knowledge, this article is the
first work that investigates how to form a high-reputation
group with all trusted members to perform cooperative tasks
along with preserving the privacy of these group members.
In summary, the main contribution of this paper is the Privacy-
preserving Trust-Aware Group Formation (PTAGF) frame-
work. Overall, our contributions are as follows:

« We introduce a member trust assessment mechanism,
which is designed based on the social relationship
between the group members, their past behavior, their
skills and readiness to perform the current task, and a
group reputation that is based on its members’ trust.

« We propose a novel group-forming mechanism based on
the trust relationship, which is designed to ensure that all
selected members are trusted and form a high-reputation
group to provide high-quality sensor readings.

« We introduce a Two-Layered Privacy-preserving Mech-
anism (TLPM), which protects the privacy of members
from other group members and malicious entities.

o We formulate the Trust-Aware Group Forming (TAGF)
problem in MCS as a bicriteria optimization problem
and prove its NP-hardness.

« A heuristic trust-aware group member recruitment algo-
rithm is presented that is based on the concept of trust-
relationship between members within the group and can
be realized within a limited time complexity.

o We conduct theoretical analysis and extensive simula-
tion using a real-world dataset that shows the proposed
framework outperforms the state-of-the-art approaches.

This article is organized into the following sections:
Section II reviews related works from two aspects; group-
based recruitment systems in MCS, and the privacy-
preserving mechanisms in MCS. Section III presents the
system model, the motivating example, and the related
threat to privacy. Section IV introduces the problem of
group formulation in MCS and proves the NP-hardness of
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the problem. Privacy-preserving Trust-Aware Group-based
Framework (PTAGF) and its underlying mechanisms are
introduced in Section V. Section VI presents a privacy and
security analysis of the PTAGF framework. In Section, VII
PTAGF is evaluated by conducting various experiments and
simulations. Finally, we conclude the article in Section VIII.

Il. RELATED WORK

In this section, we review related works from two aspects. The
first one is a group-based recruitment system in MCS, and the
second one is privacy-preserving mechanisms in MCS.

A. ON THE ASPECT OF A GROUP-BASED RECRUITMENT
SYSTEM IN MCS

For the multiple cooperative task (MCT) scenarios, where
each sensing task requires more than one participant to com-
plete cooperatively, many studies attempt to recruit groups
of participants with reasonable sensing qualities. A variety
of grouping algorithms are adopted in different systems to
recruit optimal participants who can complete the sensing
task with minimum cost.

Group forming schemes that are based on genetic
algorithm (GA) are introduced in multiple studies to tackle
different problems [2], [8], [9], [10], [11]. In [2], the
authors propose a group-based recruiting (GRS) approach
that achieves higher collective Qol from a selected group.
In [10] they employ a genetic algorithm to allocate a group
of workers to clusters.

Integrating a greedy algorithm and a genetic algorithm in
group-based recruitment mechanisms is presented in [11].
On the other hand, Zhao et al. [4] tackle the reliability-
oriented socially-aware crowdsourcing (R-SAC) problem.
They propose a greedy maximum reliability user recruitment
(G-MRUR) approach to find a near-optimal solution for the
R-SAC problem. However, genetic algorithm-based group
forming mechanisms lack the optimization for sensing task
completion time. Furthermore, it suffers from increased com-
putation overhead with increasing the number of tasks.

In contrast, some schemes adopt a heuristic algorithm to
form a reliable group of participants [3], [7], [12], [13].
In [3], the authors propose group-oriented cooperative crowd-
sensing (GoCC). However, these systems need to balance
privacy-preserving with participant recruiting performance.
Moreover, there is a trade-off between running time and
performance, and also it suffers from high computation over-
head. Utilizing the neural network method and the clustering
algorithm to learn the similarity between users and group
them based on this similarity is introduced by Xu et al. [5].
On the other hand, a greedy heuristic algorithm to solve
the time-limited multitask allocation optimization problem is
proposed in [14]. A simple sorting algorithm and dynamic
programming algorithm are adopted in [15]. K-means clus-
tering for efficient participants grouping and task grouping is
introduced in [16] and [17], respectively.

Table 1 summarizes and compares the group recruitment
systems and our approach in terms of members’ privacy
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TABLE 1. Comparison of group recruitment systems.
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inside and outside the group, trustworthiness management,
group reputation, energy efficiency, mobile crowdsensing,
and task nature. The task nature is divided into a one-time
task, where the participant submits a single report; and a
continuous task, in which participants’ stability needs to be
considered because they regularly submit reports.

B. ON THE ASPECT OF PRIVACY-PRESERVING
MECHANISMS IN MCS

In recent years multiple methods have been proposed for
preserving privacy in MCS. Some of the main methods to
protect participants’ privacy are differential privacy [18],
[19], [20], [21], [22], obfuscation [23], [24], encryption [25],
anonymization [26], [27], [28], and data exchange-based
strategy [29], [30], [31]. However, some of these techniques
either impose a high overhead on the participant’s side or
cause high information loss. Table 2 shows the comparison
between these techniques.

One of the most commonly used techniques for preserving
privacy is k-anonymity, which employs indistinguishable fea-
tures to protect the spatial-temporal privacy of participants.
In the k-anonymity protection model [32], the participants’
information cannot be distinguished from at least a k-1 indi-
vidual. In general, anonymity refers to a technique that gen-
eralizes real sensor readings with others or dummies [33].

Different schemes address identity and location privacy-
preserving in location-based services (LBS) by adopt-
ing k-anonymity techniques [28], [30], [34], [35]. In the
same way, [26], [36] address identity and location privacy-
preserving in crowdsensing-based vehicular social networks
(VSNs). Li et al. [15] study bidding privacy preservation
incentive mechanisms in a temporally and spatially dynamic
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MCS system. The authors in [37] and [38] prevent users’
location information from leaking and solve the homogeneity
attacks problem. In addition, [37], [39] adopt the concept
of personal k-anonymity, where the user can freely select
his/her privacy level by varying the data anonymization level
without knowing the preferences of others. Although [37]
has a trade-off between QoS and privacy-preserving, [39]
succeeds to achieve high service accuracy while realizing
identity anonymity. On the other hand, [33], [40], [41], [42]
adopt k—anonymity to preserve participants’ spatial privacy
neglecting temporal privacy. Compared to [41] and [43]
schemes, the scheme in [7] minimizes the overall commu-
nication overhead.

Multiple studies are adopting k-anonymity with data
exchanging strategy to increase the level of participants’
privacy [44], [45], [46], [47]. In the data exchange strategy,
instead of trusting a third-party (TTP), local and distributed
approaches based on collaborating participants are applied.
Christin et al. [29], [48], [49] adopt a privacy-preserving
exchange strategy that enables participants to disclose their
sensor readings without compromising their information pri-
vacy in different scenarios. In the same way, [50], [51]
study the privacy concern in participatory sensing due to
large amounts of collected readings from a large number of
participants. Buttner and Huss [52] present two-path hiding
strategies to preserve the privacy of sensor readings collected
by vehicles. Similar to [29], [49], and [53], the authors in [47]
and [54] assess the participant’s contribution to the collabo-
rative exchange privacy-preserving mechanism, and identify
malicious users in MCS.

Most of the schemes that are based on exchanged strategies
exchange the sensor readings with random participants, and
these participants’ reliability cannot be ensured. Hence, the
sensor readings may be disclosed or discarded by malicious
participants which will increase the probability of incomplete
tasks. Furthermore, the exchange process with peers is per-
formed in an approximately large area which may cause a
delay in the reporting process. In addition, there is a trade-off
between privacy level and the amount of exchanged readings.

Therefore, we select two techniques to strengthen our
approach without imposing overhead on the participants’ side
or leading to information loss. In this article, we present two
privacy-preserving techniques for MCS systems. We research
privacy-preserving techniques by combining an exchange-
based strategy and the k-anonymity technique. The first one
allows the participants to exchange their sensor readings to
hide their sensitive information from the service provider
(SP) and the malicious entities. The second one allows a
group of participants to submit their sensor readings to SP
while achieving the k-anonymity privacy level for each group
of members.

lll. PRELIMINARIES

In this section, we first present the system model, trust and
reputation, the motivating example, and the related threats to
privacy.
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TABLE 2. Comparison between privacy-preserving mechanisms.

. Centralized/ Data Information | Computation
Mechanisms -
Distributed | change loss resource
Differential = pyicibuted | Yes | Medium Medium
privacy
. Centralized\ . .

Obfuscation Distributed Yes High Medium
Encryption Distributed No Low High
Anonymization Centralized No Medium Low
Exchange-based | Distributed No Medium Low

A. SYSTEM MODEL

We consider a typical participatory sensing model. In gen-
eral, the MCS system includes three main components, the
number of participants in the area of interest (Aol) that are
willing to perform sensing tasks, a task publisher who gen-
erate sensing tasks and broadcast them to the participant,
and the platform which connects the participant and task
publisher, which has a vital role in the MCS processes. In our
framework, these components work as follow: First, the task
publisher generates and publishes a sensing task through
the platform that the participants in the Aol voluntarily and
actively participate in. The task is published with six dynamic
constraints/requirements, which can be changed according to
the application and task publisher’s needs. Thus, the task is
defined as a six-tuple T = (L', d",N,;,., Ni;,.. MT", SA"),
where L' is the sensing task location in latitude-longitude
coordinates, d’ is the task submission deadline, N,{,Im and
N, /{,,ax are the allowed maximum and the minimum number
of members within a group for task ¢, MT" is the minimum
required trust of the participants for task ¢, SA” is a set of
sensors required by task 7. Second, the platform distributes
the sensing task and its requirements/constraints to the partic-
ipants in the Aol. Next, the participants perform the sensing
task without violating its constraints and submit the sensor
readings back to the platform. Then the platform aggregates
these readings and forwards them to the task publisher. After
that, the task publisher gives feedback about these readings
as a penalty or reward to the participants.

B. TRUST AND REPUTATION

The concepts of “Trust” and ‘“Reputation” are used inter-
changeably in most studies, but we consider them in different
terms. We use “Trust”, to refer to a locally stored value
that represents the probability that the participant is socially
connected, previously interacted with other participants, and
has the skill to perform the sensing task. Hence, this trust rep-
resents a distributed value that is updated by observing other
participants. Moreover, it is stored locally which enables
the participants to examine the opposite party’s trust level
without the need to contact the platform every time. However,
we use “Reputation”, to refer to a globally stored value
that represents the synthesized probability that the participant
is trusted, as perceived by all other participants of previ-
ous interactions [55]. It reflects the participant’s successful
accomplishment of the sensing task. The platform stores the
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reputation values of every participant in the system. Hence,
participants should use trust value instead of reputation value
to evaluate the trustworthiness of other participants. However,
participants can always request other participants’ reputations
from the platform and use it as an initial trust value.

C. MOTIVATION
The motivations of this framework come from the concern
that, groups exist in several MCS scenarios, which supports
the lifecycle of real-world group activities (e.g., parties, meet-
ings). Grouping is an important phase of the design space
for mobile sensing, especially in social influence phenom-
ena [1], [56], management, economics [57], and social net-
works [58]. In addition, grouping optimizes MCS systems’
operation and design requirements. Furthermore, closer and
trusted relationships can help users achieve a good quality
task with lower resource consumption [13], [59]. However,
the grouping system that only considers the participants’
social attributes such as the participant’s friends and family
circle, proves to be inefficient [2], [9].

To illustrate this, we consider a simple MCS system with
6 participants, who want to form groups to collaboratively
perform sensing tasks. We assume that the maximum and the
minimum number of members within the group are 4 and 2,
respectively. As shown in Table 3, all participants get a trust
score. This trust score lies between 0 and 1 for each partici-
pant, where the lower the score, the lower trust the participant
has from his/her neighbor participants, and the lower chance
he/she gets to join a group. For simplicity, we assume all the
participants receive the same trust score they give to their
neighbor participants. Furthermore, all participants have a
reputation value based on the trust score that they get from
all the group members they interact with. These participants’
reputation value affects the final collective group reputation.
We assume that the group reputation will take the lowest
reputation of the joined members [60] (later elaborated in
Section V-A). Considering a group scenario, there are two
approaches to forming a group of participants. The first sce-
nario is based on the close relationship between participants
(family, and friends). Table 4 shows the members of each
group and the final group’s reputation. As evident, some
participants (e.g. E and F) cannot join any group although
they have a good trust score. In addition, all the groups that
are formed have a low group reputation. This is because a
member with a lower score might severely affect and decrease
the group’s reputation score. However, if E and F were to
join the groups instead of C and B, the group’s reputation
would be higher. This can be shown in Scenario 2, where the
participants are grouped based on their trust score, as depicted
in Table 5. In this scenario, E and F join some of the groups
and achieve high-reputation groups such as G4, G7, G8, and
G11. Based on this example, it is clear that forming a group
of participants that is solely based on their relationship (as in
Scenario 1) compromises the group’s reputation and leaves
out skilled participants from joining sensing groups. On the
other hand, grouping based on a trust relationship (as in
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TABLE 3. Participants information.

Participants Relationship (j) Trust | Reputation
ID Friend Indirect St Score value
@) nen Friend anger |G 0)
A B,C D EE 0.8 0.78
B A, C D EE 0.2 0.28
C A,B,D Non EE 0.1 0.13
D C A, B EE 0.3 0.39
A,B,C,

E Non Non D.F 0.7 0.57
A, B, C,

F Non Non D.E 0.9 0.98

* (i, j) means ¢ trust value in j, which means how much ¢ trust j.

TABLE 4. Scenario 1: Grouping when the only social relationship is
considered.

Group Gl G2 a3 G4 G5 G6
AB, [AB, [AC, {AB, (BC

Members C.D) C) D} D} D} {A, B}

oowp 1043 003 013 028 043 028

eputation

Group G7 Gs Go9 GI0 GI1

Members {A,C} {A,D} {B,C} {B,D} {C,D}

S""“P . 0.13 0.39 0.13 0.28 0.13

eputation

TABLE 5. Scenario 2: Grouping when the trust score is considered.

Group Gl G2 G3 G4 G5 G6
{A.D, {A,D, {A,D, {A,E, {D.E,

Members E, F) E} F}) F} F} A,D

Group 0.39 0.39 0.39 0.57 039 039

Reputation

Group G7 GS GO GI0 GIl

Members {A,E} {A,F} {D,E} {D,F} {E,F}

Group 0.57 0.78 0.39 0.39 0.57

Reputation

Scenario 2) generates a high reputation group with trusted
and skilled members.

Thus, it is critical to develop a grouping mechanism that
considers the trust relationship between group members,
to achieve high task quality, and form a high-reputation
group. Hence, this paper proposes a trust-aware grouping
mechanism.

D. THREAT MODEL

We assume an honest-but-curious attack model, where plat-
form entities e.g., participants, SP, or task initiator, attempt
to breach the participants’ privacy. However, they will follow
the protocol normally and faithfully, and they are not able to
compromise cryptographic mechanisms. They may attempt
to infer sensitive information from the reported sensor read-
ings or link them to the identity of particular participants.
Furthermore, a curious-but-honest SP may attempt to pas-
sively breach the privacy of the participants. Also, it has
access to the sensor readings reported by the participants,
thus it might infer participants’ sensitive information. How-
ever, it does not launch an active attack, such as collusion
with other participants to obtain other participants’ sensitive
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information. In addition, as an artifact distributed and collab-
orative nature of the exchange-based strategy, group mem-
bers can become possible adversaries, who are potentially
interested in inferring other members’ information. Malicious
members can disclose other members’ sensitive information
by directly accessing the information on exchanged sensor
readings. We also assume that the adversary entities can
observe reported readings, through eavesdropping or being
a malicious SP.

IV. PROBLEM FORMULATION
In this section, we formulate the Trust-Aware Group Forming
(TAGF) problem in MCS as a bicriteria optimization prob-
lem, and prove its NP-hardness.

A. GROUP FORMING PROBLEM DESCRIPTION

In this subsection, we introduce the problem of group formu-
lation in MCS and prove its NP-hardness. The parameters and
notations used in this paper are summarized in Table 6.

We investigate the social relationship among participants in
a quasistatic scenario, where participants are connected via a
social network defined as a directed social graph as illustrated
in Fig. 1.

Definition 1: The trust between participants is represented
as a directed social graph, which is presented as a 3-tuple
TG = (V, E, w), where V is the set of participants, E is the
edges connected participants associated with w the weight
on the edges, which represent random trust scores. Trust can
be an asymmetric relationship. Each Ej; € E indicates that
members i and j trust each other. There is no self-loop in the
trust graph i.e., there is no edge (i,i) € E. PTAGF should
find a group of participants that optimize the following three
factors:

o The members’ trust value within the group;

« The group reputation score compared to other groups;

o The quality of sensor reading concerning the time con-
straints.

Let a crowd of participants is organized into n groups,
n > 1. Given a complex task ¢ with constraints, i.e., the num-
ber of members, and a deadline for the task submission d’.
Let a set of reliable and skilled participants R(#) participate
in executing the task 7, R(fx) € V. We use MT (i, j) to denote
the trust value between group members (i, j); GR denotes
the group reputation and Qol denotes the quality of sensor
reading submitted by the group R(#).

In summary, the problem of in-aware groups forming in
MCS can be described as follows:

o The trust among members within the group, influences
the recruiting and performance of a group in MCS
tasks. Moreover, MCS needs timely and high-quality
sensor readings. Then, how can a group’s reputation and
its member trust affect the quality of sensor readings
(Group Reputation and Member Trust)?

o The execution of a complex sensing task needs a
group of trusted participants. Then, how is an efficient

VOLUME 10, 2022
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FIGURE 1. Directed social graph.

mechanism to recruit these participants in a group to be
designed (Trust-Aware Group Formulation)?

B. COMPLEXITY ANALYSIS

Problem 1: With the above definition, we formulate Trust-
Aware Group Formation (TAGF) problem and prove its
NP-hardness. Given a social trust network TG = (V, E, w),
and a set of complex tasks T = {t1,f2,...,t.} ¢ > 1,and a
member i can participate in these complex tasks. We assume
every participant in R(#;) has the required skill to perform #.
The TAGF problem is to find a group of participants V to
perform the sensing tasks, such that V C V. Furthermore,
Nyin < |\7 N R(tx)] < Npax Vtx € T. The problem aims
to maximize the trust value. Mathematically, TAGF can be
formulated as follows:

Maximize MT (V) 1)
Subject to : Vcv 2
Nutin < IV ORW)| < Nyax Yk €T (3)

MT(V)=MTG,j), ijeV 0))
Proposition 1: The TAGF problem is NP-hard.

Proof: We prove the TAGF problem is NP-hard
by a reduction from the bicriteria optimization prob-
lem, which was proven to be NP-hard [61]. An instance
from the bicriteria optimization problem is defined as
follows: Given a directed graph G = (L, E) with
a set of nodes L = {c1,¢2,...,cm}, sub-graphs
{S1 = (F1,&1), S$2 = (F2, &), ..., Su = (Fu, &)} such that
F is a set of nodes in the federation and £ is a set of trusted
edges among nodes and two matrics 6(F) and ¥.(F) the
former represents the average reputation for nodes in the
federation and the latter represents the individual payoff
of node ¢ in F. The bicriteria optimization problem is to
choose a federation with both maximum individual payoff,
and average reputation:

max(F) Y(F), and

, )
max(F)  p(F)
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TABLE 6. Notation and key parameters.

Notation Definition Notation Definition
T Set of complex TG = (V, | Directed social
tasks Ew) graph (trusted graph)
Set of vertices
Lt Task ¢ location 14 representing
participants
A set of edges
dt Task deadline E represents a trust
connection among
participants
Minimum number .
. The weight of
¢ of members w edges represent
min within a group £¢s rep
for task £ the trust value
Maximum number
Nt of members B Edge connecting
maz within a group & participants ¢ and j
for task ¢
Set of participants
" Minimum required that have the skill
MT trust for task ¢. R(tx) to perform the
task ¢.

+ Set of sensors . A group composed
SA required by task ¢. vev of chosen members
Qol S]?Sﬁ;};ggn MT Member trust
GR Group reputation MT,4 Old member trust
1 Set of participants MR Member readiness
L; fani?ipant’s DSA, Participam.’s df:yice

ocation sensor availability
Rr Reliability ratio DRE; Participant’s device
residual energy
SR Social relationship | P; Member’s reputation
: Normalized Number of
MT(3,7) C; delivered sensor
member trust .
reading
Set of s Participant’
H(i) neighbors within Py neighbors’
the group. reputation
Decreasing function
G Group ge conccmin§ the time
Time needed
STt by group G to k The desired
G submitthe sensor anonymity level
readings
r Rep (?ned sensor 7 Anonymized data
readings
Set of information Set of anonymized
Z received by 4 information received
members by members
F Mapping function B Cloaking box

We transfer an instance of the bicriteria optimization problem
to an instance of the TAGF problem. We have TG = (V, E)
and a sub-set TG = (V, E) such that we consider V as a
set of participants, the set of chosen group members needs
to satisfy the maximum trust value and to join a group with a
high average reputation.

max(V) MTi(), and

, . (6)
max(V) GR(V)

V. PRIVACY-PRESERVING TRUST-AWARE GROUP-BASED
FRAMEWORK (PTAGF)

This section presents and discusses the PTAGF in detail and
its underlying mechanisms as depicted in Fig. 2
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FIGURE 2. General framework of PTAGF.

A. MEMBER-TRUST AND GROUP-REPUTATION (MT-GR)
MECHANISM

In this sub-section, we propose the Member-Trust and Group-
Reputation (MT-GR) mechanism, which helps in forming
a high-reputation group with trusted members and demo-
tivates malicious participants. During the registration with
the platform, each participant is defined as a five-tuple,
1 = (L;, DS;, DRE;, P;, C;), where L; is the participant loca-
tion in latitude-longitude coordinates. DSA; and DRE; denote
the available set of sensors and the battery level of the partic-
ipant’s device, respectively. P; is the participants’ reputation
computed from their previous behavior, and C; represents
the number of successfully delivered sensor readings by the
participants. After the participant is allocated a complex task,
he/she starts forming a group with a high reputation.

1) MEMBER TRUST (MT)

Using definition 1, we update the MT which is represented as
the weight on the edge between vertices in Fig. 1. The MT is
based on multiple factors, which are:

Old Member-Trust (MT,;;): The past behavior of member
i. In the case that two members did not have any interaction
in the past, they can fetch each other reputation P; from the
global database on the platform.

Member Readiness (MR): Represents the readiness of the
member device to perform the sensing task. This factor is
device-related, and it is computed by the platform based on
two parameters [2], [9], [11].

Device Residual Energy (DRE): is a parameter that mea-
sures the battery levels, and updates dynamically during the
sensing task.

Device Sensor Availability (DSA): We assume that the plat-
form is aware of each device’s sensors when the participant
registers to the system. We define the following decision
variables:

1 if DRE > predefined battery
level required for the task

MR©DRE.DsA) = and DSA available 7

0 otherwise
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Reliability ratio (Rr): We use Rr to compute the ratio of the
successfully delivered sensor readings to the total number of
exchanged ones [54]. The set of successfully delivered sensor
readings C; is updated regularly and stored on the global
database. The rate of member reliability is given by:

R (set of successfully delivered sensor readings C;)|)
ri =

(|set of total exchanged sensor readings|)

®)

Social Relationship (SR): This factor indicates how closely
the members of the group are socially connected. The social
relationship can take a value between 0 and 1, (i.e., SR €
[0, 1]), where 1 is the highest value.

Finally, participants rate each other based on their MT', by
the following formula:

MT = (w1 - MTyiq) + (w2 - MR) + (W3 - Rr) + (ws4 - SR)
9

In this formula, these weights [wyq, wa, w3, wy], are deter-
mined by the task publisher. They specify the importance of
each parameter, such that w; > 0 Vi. The value of MT is
normalized between 0 and 1, as follows:

MT(, j)
> kery MT (i, k)

Were H(i) = {j| 3(,j) € E} is the set of /s neighbors
within the group. Finally, the member trust must be greater
or equal to the MT’. After that, the platform calculates the
reputation score of member i, denote as P(i) which reflects
the summation of all assigned MT to i by its neighbors, a
following:

M'f(,',j) = (10)

Pi= > MTy.- Py (11)

VieH ()

The reputation score for each registered member will be
updated regularly each time his/her group submits a sensor
reading.

2) GROUP REPUTATION (GR)

The group’s reputation is determined by the lowest reputation
score among its members [60] since a member with a lower
reputation might severely affect and decrease the group rep-
utation score.

GR = mini{Pi} ieG (12)

Furthermore, this prevents groups from affecting the final
sensing results by allowing bad reputation members to join
the group just to gain benefits from this group.

3) QUALITY OF INFORMATION OF GROUP

In our framework, we are based on collective quality rather
than individual quality. Therefore, the Qol of the group-
submitted sensor readings is evaluated based on the group’s
reputation, and the time required for the group to complete
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and submit the sensor readings. Qol of the highest reputation
group is calculated using the following equation:

Qol = GR - (t5)* (13)

where the 7, is a decreasing function concerning time, and is
calculated as:

r’G = min[1 — max(0, min[log (ST&), 1] (14)

where ST& is the time in seconds needed for group G to
submit the sensor readings. It is calculated as the difference
between the time when the task is allocated to group G until
the group submits the sensor reading. On the other hand, d’
is the time constraint (deadline) of task 7. Thus, the objective
is to maximize the Qol of the group-reported sensor reading
and it can be formulated as:

Qolg = Maxgev(Qolf;) (15)

B. TRUST-AWARE GROUP FORMING (TAGF)

In this sub-section, a trust-aware group formation mechanism
as a recruitment and task allocation approach is proposed.
Since the TAGF problem is NP-hard, we propose a heuristic
algorithm to solve the TAGF problem.

The proposed Trust-Aware Group Forming (TAGF) is
given in Algorithm 1. TAGF has three input parameters: the
set of tasks T along with their requirements, the social rela-
tionship graph, socialRelMatrix, and the trust values between
participants, trustMatrix. The TAGF uses G to keep a set of
group members and it is initialized with an empty set. Then,
itinitializes V with a set of populations. The group reputation
GR and the Qol are initialized with size zero. First, TAGF
chooses to start the group with a member who has the highest
reputation in the area of the published task (line 4). After
that, it iteratively selects members who satisfy the member
trust threshold of the task MT" till the maximum group size
is reached Nj{,mx, (lines 5-19). In the case that no candidate
satisfies the MT? threshold and at the same time the group
size is below the Nj,. . the group will not be formed and
the task will be aborted, (lines 20-22). In the second case,
if TAGF has enough members that satisfy N;,, , but it does
not find the next member that satisfies MT! (lines 23-25),
then it will skip to (line 30). In the third case, it finds the
next member with a high or equal member trust to MT?, then
it adds this member to the group (lines 26-28). The iterations
continue until TAGF finds a set of groups that reach the N}, -
requirements with all trusted members. Then, it calculates the
group’s reputation which tasks the lowest reputation of the
joined members (line 30). In addition, it calculates the Qol
of the group (lines 31-33). Finally, TAGF returns a set of
formed groups G, their group reputation GR, and their Qol.
For the group selection part, Algorithm 2 receives the set of
groups that were formed by Algorithm 1, their GR, and their
Qol . Then it selects the highest group reputation among these
groups (line 1). After that, it recruits this group to complete
the sensing task and returns its Qol .
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Algorithm 1 Trust-Aware Group Forming (TAGF)
Input: task T requirements 7 = (L, d", Nj;,,, Nj; .
MT!, SA"), socialRelMatrix, trustMatrix
Output: G, GR, Qol
1: Initialization:
2: G < ¢,V <« initial set of population, GR = 0, Qol =
0
3: End of Initialization:
: G = {highest Reputation Member in V} // Chose the first
member i to start a group

A~

5. while (G < N;,,) do

6: Calculate MT based on (9)

7: Normalized MT based on (10)

8: Recalculating member’s reputation based on (11)
9: nextMemberMT = 0, nextMember = 0,

10 for i = 1 to number of members do // Select highest
trust candidate

11: member=members(i)

12: for j =1 to candidates do

13: candidate = candidates(j);

14: if normMT (member,candidate) >
nextMemberMT && normMT (member, candidate) >
MT' then

15: nextMemberMT =
normMT (member, candidate);

16: nextMember = candidate;

17: end if

18: end for

19: end for

20: if nextMember == 0 then //No candidate was
found

21 if G < N}, then

22: Error: Not enough members with trust value
> MT!,;

23: else

24: break while (skip to line 30)

25: end if

26: else // A candidate was found

27: G = GU nextMember; /ladd candidate to G in
position i

28: end if

29: end while

30: GR = min(reputation(G(member)));
31: logD = log(ST)/log(deadline);

32: tG = 1 — max(0, min(logD, 1));

33: Qol = GR x (tG)%;

34: return: G, GR, Qol

Algorithm 2 Group Selection

Input: G*, GR*, Qol* //Sets of Groups and their respec-
tive GR and Qol

Output: Chosen high reputation group G, Qol

1: indexBestGroup =index of max(GR*)
2: return: G*[indexBestGroup), Qol*[indexBestGroup)
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C. TWO-LAYERED PRIVACY-PRESERVING MECHANISM
(TLPM)

To ensure the participants’ privacy we propose a two-layer
privacy-preserving mechanism (TLPM). TLPM starts two
layers of defense to protect the participants’ privacy. The
first layer is the exchange-based strategy, where each member
within a group exchanges their sensor reading with other
encounter group members. The purpose of this exchange is to
jumble and hide the source information that is tagged with the
sensor reading. Making it challenging to guess which sensor
reading belong to which member, the second layer is based on
the anonymization approach, by adopting the k -anonymity
technique. Thus, to realize k -anonymity after each group
formed with at least k > Ny, members, each member
within the group sends his/her sensor data to the server as
anonymized data. The k-anonymity technique is good at bal-
ancing service quality and privacy preservation [37], but it is
difficult to achieve optimal anonymity. Moreover, it is insuf-
ficient to consider only k-anonymity as privacy protection,
because some groups may contain or form with the minimum
number of participants, Ny, so there is a need for another
layer of defense without extra overhead on the participants’
side.

D. EXCHANGE-BASED PRIVACY LAYER

As the first layer of privacy protection, we adopt exchang-
ing strategy [48], [54]. After forming a group, the mem-
bers within the same group start exchanging their sensor
readings with their encounter peers. This exchange process
unlinks the sensitive information tagged with sensor readings
from the source identity. Before exchanging, each mem-
ber encrypts his/her readings with the server’s public key
to prevent other members from disclosing its content. The
exchange is performed using a realistic exchange/ complete
exchange approach [29], [48], [49], where all the sensor read-
ings that are collected by one member are exchanged entirely
at encounters. Adopting this approach is more suitable for our
system because it appears as if the readings are captured by
a single real member. Furthermore, the exchange performs
asymmetrically [48], where the amounts of exchanged read-
ings differ between both encounter members. Additionally,
the reporting process to the platform adopts a time-based
approach [48] according to the task deadline.

E. k-ANONYMITY PRIVACY LAYER

Exploiting personalized k-anonymity [37], we apply a
group-based personalized privacy-preserving method to pro-
tect group members’ information. As we mentioned in
Section V-B, each sensing task has Nj,, and N;, . require-
ments, thus the group will realize k-anonymity with at least
Nuyin-anonymity. Hence, each group can determine its privacy
level. The anonymity server within the platform transforms
the reported sensor readings r from each member i into
anonymized data 7. The set of information received from
each group member denotes Z. Thus, the sensor readings of
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member i in set Z are shown as:
ri € Z 2 (i, {ti, xi, yi}, k)

where #; represents the timestamp at which the sensor reading
is captured, x; and y; represent the longitude and latitude coor-
dination. The k£ value indicates the group member number
which represents the desired anonymity level. Hence, k must
satisfy two conditions; k > 1, and Ny < k < Npygax. Thus,
a large group size indicates a large k value, which indicates a
high privacy degree. Each member’s information is assigned
a cloaking box to be undistinguished from at least k — 1 other
group members’ information. Accordingly, to preserve the
group member’s information we define 7 as the anonymized
information. The set of anonymized information for each
group member is denoted as Z:

7e Z’ (i, {[timinV’ timaxv]’ [ximinV7xlmaxV], [y;ninv,ylr'naxv]})

Therefore, there exists a mapping between r and 7, such
that 7 = F(r;). In addition, there exists a cloaking box such
that B.; (7) is a spatial-temporal cloaking box for i member’s
information.

Bcl(fi) — ([timinV’ timaxV]’ [xlminV’ ximaxV]’ [y;ninV’ y?naxV])

By using this method, r in Z and 7 in Z satisfy spatial
and temporal containment. In particular, the spatial-temporal
box B (#;) contains the real position of the member within
the group. Furthermore, this mechanism is spatial-temporal
k-anonymity.

VI. SECURITY ANALYSIS

Our security analysis focuses on how the TLPM achieves par-
ticipants’ identities and spatial-temporal privacy preservation
and provides strong protection against attacks.

1) PRIVACY AGAINST SP AND MALICIOUS ENTITIES
The service provider and other platform entities have access
to all the reported sensor readings. In addition, they can per-
form as honest-but curies attackers to disclose the information
of group members.

Lemma 1: The participant’s identity privacy is preserved.

Proof: The group members’ privacy is evaluated as the

level of anonymity of their sensor readings. The number of
members in a group is at least k, thus the SP and the adversary
guessing the identity of the member is with probability (1/k).
In addition, each group will change its k-anonymity dynam-
ically according to the task requirements. Furthermore, the
exchange strategy makes it harder to disclose the participant’s
identity as group members constantly exchange their sensor
readings with encounter peers. The probability of disclosing
the participant’s identity is far less than (1/k). Thus, identity
privacy is realized, because the best knowledge other entities
can know is that the contributor of the sensor reading is from
one of the k group members.

Lemma 2: The participant’s spatial-temporal privacy is
preserved.
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Proof: Adopting the k-anonymity mechanism leads to
spatial-temporal k-anonymity. The k-anonymity demands
that for the anonymized information of a member there exists
at least k — 1 other anonymized information within the
same group. Furthermore, the exchange strategy hides the
source information of sensor readings. Thus, the member’s
precious spatial-temporal information gets mixed with the
exchanged/reported member. In addition, as the exchange is
done with multiple peers before reporting to the server, the
privacy level will increase.

2) TLPM MAINTAINS HIGH ACCURACY OF THE SENSOR
READINGS
The exchange strategy may cause dropping or tampering
with the sensor readings before reporting them. Moreover,
the k-anonymity may degrade the spatial-temporal accuracy
of the submitted readings. This can happen if the submitted
sensor readings have a high anonymized tolerance, i.e., the
anonymized spatial-temporal is far from the original one.
Lemma 3: The proposed TLPM is truthful.

Proof: During the exchange-based layer of the TLPM,
the group members are already verifying each other trust-
worthiness, hence the exchange of sensor readings will be
performed with reliable members. Accordingly, the mem-
ber within the group will behave truthfully to join a high-
reputation group. If they behave untrusted or unreliable, their
member trust (MT) degree will decrease, which leads to being
removed from the group.

Lemma 4: The TLPM is spatial-temporal containment.

Proof: 1t signifies that in the k-anonymity privacy layer,
the spatial-temporal box B.I(r’;) contains the real position of
the member within the group. For that, if the group mem-
ber’s real location and timestamp of his/her sensor readings
are i : {t,x;,yi}, the spatial containment satisfies; x; €

[V xmaV] oy e [yminV, ymaV] and temporal contain-

k) l !
ment satisfies; #; € [tl.'”’”v, A

3) RESISTANCE TO INTERNAL AND EXTERNAL ATTACKS
An external attack eavesdrop on the communication process
between the group member and the SP. Thus, it can extract
sensitive information and disclose the content of the sen-
sor readings. Furthermore, during the exchange process, the
encounter members have full access to the exchange readings.
Hence, they may acquire sensitive information about other
members.
Lemma 5: TLPM is protected against external attacks.
Proof: An example of an external attack is the
eavesdropping attack. It is impossible to determine the real
contributor of the sensor readings that correspond to the
eavesdropped information, due to the use of an exchange
strategy and encrypting them with the SP public key.
Lemma 6: TLPM is protected against internal attacks.
Proof: The internal attacks can be launched by both SP
or participants, such as inference attacks. The group member
that exchanges the sensor readings with others cannot decrypt
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these sensor readings, because they are encrypted with SP
public key before exchanging them. Moreover, even if the SP
has full access to these readings reported by participants it
cannot acquire accurate spatial-temporal information, due to
the k-anonymity and exchange strategy. The cloaking group
region has at least k members, who already exchanged their
reading multiple times before reporting them to the SP.

VIi. PERFORMANCE EVALUATION

In this section, PTAGF is evaluated by conducting various
experiments and simulations. All mechanisms are imple-
mented in MATLAB R2021b, and experiments are conducted
on a machine equipped with Intel(R) Core (TM) i7-8565U
CPU and 16.0 GB RAM, running on Windows 10 (64-bit).

A. DATASET

To evaluate the performance of PTAGF, a real-world location-
based social network dataset Gowalla [62] is used. The
dataset collects 6.4 million locations (i.e., where users share
their locations by checking in) and a friendship network.
It consists of 196,591 nodes (i.e., participants) and 950,327
edges (i.e., friendship), throughout Feb. 2009 - Oct. 2010.

B. COMPARISON APPROACHES

Our simulation compares PTAGF performance with two rep-
resentative group recruitment approaches, GoCC [3] and
G-MRUR [4]. Both approaches address the MCTs in MCS,
hence finding reliable groups to complete these tasks. Our
proposed framework also finds a reliable group with a high
reputation with Algorithm 1 described in Section V.C to
perform these tasks. Moreover, both approaches consider the
social ties to recruit group members, which is an important
factor in our group-forming mechanism.

o GoCC-G: This approach [3] is a heuristic-based partic-
ipant selection. It is mining the social network to recruit
participants with closer relationships, Algorithm (4).

o« G-MRUR: This approach [4] is a greedy-based user
selection, which finds an approximation solution Algo-
rithm (1). It recruits reliable workers, by considering
both matching between task type and recruited worker’s
interest and reliability feedback.

C. PERFORMANCE METRICS
To evaluate PTAGF comprehensively, the following metrics
are used:

o Trustworthiness in group selection: Measured by the
total trust scores of all the group members, the higher the
better.

o Task coverage percentage: Measured by the ratio
between the number of completed tasks to the total
number of tasks, the higher the better.

o Running Time : Measured by the time taken by an
approach to find the solution, the lower the better.

D. SIMULATION SETUP
In the simulation, we use part of the original Gowalla dataset
and select the participants and their social ties randomly to
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TABLE 7. Simulation setting.

n Nmax Nmin S
Set#1 | 300,...,900 [5,30] [3,10] 10
Set #2 600 [5,10],...,[5,50] [3,10] 10
Set #3 600 [5,30] [3,5]....,[3,25] 10
Set #4 600 [5,30] [3,10] 5,...,25

construct different sub-network similar to [5] and [63]. The
trust value, i.e. trustMatrix in Algorithm 1, is represented by
the weight of the corresponding edges among participants on
the social graph. It is uniformly distributed in the interval
€ [0, 1]. However, similar to [64] and [65] if two participants
do not have a social relationship originally, in this case, we set
an initial connection weight between the two unconnected
users as 1. After that, their trust in each other will decrease or
increase for each cooperation according to eq.(9). By doing
s0, we examine if our approach can select trusted participants
within the Aol even if they are not socially connected. Fur-
thermore, we generate the factors: number of exchange sensor
readings, residual energy, and sensor availability, following
the distribution within the ranges [0,50], [0,100], and [0,1],
respectively. To comprehensively evaluate the performance
of PTAGF four parameters are varied in the simulation for
different scenarios. These settings have been proven to be
reasonable setting in many practical scenarios [5], [6].
o Community size (n): The number of users within the
Aol varied from 300 to 900 in steps of 100.
o Group maximum members (N, ): Uniformly dis-
tributed in a specific interval, which varies in [5, 10],
[5, 20], [5, 30], [5, 40], and [5, 50].
o Group minimum members (Ny,): Indicates that a task
requires at least Nyy;, to perform, uniformly distributed
in [3, 5], [3, 10], [3, 15], [3, 20], and [3, 25].
o Task scale (S): This is the number of published sensing
tasks. S varies from 5 to 25 in the step of 5.
Finally, Table 7 summarizes the parameter settings by varying
each parameter while fixing the other to simulate differ-
ent scenarios. In the simulation, the average is taken over
100 runs.

E. PERFORMANCE COMPARISON
In this subsection, we vary the values of key parameters to
explore their impacts on the group-forming systems. The sim-

ulation results of comparing PTAGF with the two approaches,
GoCC-G and G-MRUR, are reported.

1) IMPACT OF COMMUNITY SIZE (n)

To evaluate the scalability of the designed group-forming
mechanism, we vary the community size (n) from 300 to
900 in steps of 100. Fig. 3 shows the performance of different
approaches under various 7.

As expected in Fig. 3a, the trustworthiness of selected
members achieved by all three approaches increases with
increasing n. However, PTAGF outperforms GoCC-G and
G-MRUR by 51.61%. This demonstrates that the PTAGF
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can form a group of trusted and reliable members, and that
increases the group’s reputation. This is because more partic-
ipants are available to choose from. As a result, the group
formed by PTAGF more likely contains more trusted and
reliable members that can perform the sensing task with
higher quality.

From Fig. 3b we can observe that with increasing n, the
performance of PTAGF in terms of task coverage may not
be the best. However, it performs better than GoCC-G, with
83.33%. PTAGEF verifies the trust of each participant before
allowing them to join the formed groups, by considering
multiple factors as demonstrated in (9). Hence, the total
number of members in the selected group may be lower than
G-MRUR. Consequently, the task coverage of PTAGF when
increasing n is lower than G-MRUR. However, PTAGF has
reasonable task coverage that can be performed with more
trusted members and highly reputable groups to give high-
quality sensor readings.

Fig. 3c illustrates that as the community size increase,
the running time of all three approaches increases. This is
because, with an increase of n more participants are available
in the Aol to choose from, resulting in increasing the run-
ning time in the member recruiting process. As illustrated in
Fig.3c, PTAGF is much more efficient than GoCC-G, but it
takes slightly more time than G-MRUR. It should be noted
that PTAGF verifies each member’s trust, as elaborated in
Section V-A. As a consequence, PTAGF has a slightly higher
time cost to recruit more trusted participants. Indeed this con-
siders a small price PTAGF pays for recruiting trustworthy
group members.

2) IMPACT OF GROUP MAXIMUM MEMBERS (Nyjax)

Fig. 4, depicts the impact of the group size on the per-
formance of the three group-forming approaches. From the
experimental results, it can be seen in Fig.4a that all three
approaches’ trust members’ values increase with increasing
the Npzq. However, PTAGF has the best performance in
terms of the trustworthiness of the group members when
the N4y increases above the [5, 30] scale. On average,
PTAGEF outperforms GoCC-G, and G-MRUR by 42.85% and
33.3%, respectively. These results demonstrate that even if
the sensing task requires a maximum group size to complete
the task, PTAGF always recruits trusted members to form
these groups.

As the group size is maximized, PTAGF and G-MRUR
have a high task coverage than GoCC-G as shown in Fig. 4b.
Although the PTAGF task coverage level is lower than
GMRUR, its approaches the GMRUR when increasing Nz,
and it increases proportionally. This signifies that PTAGF
increases the number of trusted members and that leads to
an increase in the tasks coverage percentage.

As observed in Fig. 4c, the running time increases with the
group size. It clearly shows that PTAGF has a slightly higher
time cost than G-MRUR. The reason is that as Ny, increases
there are many members to verify their trust level before
allowing them to join the formed group. This emphasizes the
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small impact of maximizing the group size on the running
time of PTAGF. The PTAGF can still find the most trusted
and reputable groups to complete the sensing tasks at a lower
running time, of less than 0.3 s.

3) IMPACT OF GROUP MINIMUM MEMBERS (Nyin)

Fig. 5 illustrates the impact of Ny, on the performance
metrics for all three group-forming mechanisms. Fig. 5a
shows the average trustworthiness level for each group-
forming algorithm when Ny, increases. As evident, PTAGF
still outperforms GoCC-G and G-MRUR in terms of group-
ing more trusted members even if we have a small group
size requirement. The results of PTAGF are 59.09% higher
than GoCC-G and 29.54% than G-MRUR, respectively.
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As expected, PTAGF recruits more trusted members to form
these small groups to complete the sensing tasks with high
quality.

Fig. 5b shows the results on average task coverage per-
centage varying Ny, values. Here, PTAGF does not perform
well in task coverage compared to G-MRUR when fixing the
community size. The potential reason is that as the range
of Ny, increases, it is difficult for existing groups to meet
participants who satisfy the member trust threshold with fixed
n. However, PTAGF performs better than GoCC-G in task
coverage even with small group sizes.

Fig. Sc illustrates a running time comparison of the three
algorithms under different sizes of Nyy;,. Indeed, the running
time of the three approaches increases with increasing of
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Nuyin. As shown in Fig. Sc, the running time of PTAGEF is
slightly higher than G-MRUR. Since we need to find trusted
candidate participants according to several factors, as elabo-
rated in Section V-A, this may induce a longer running time.
However, the running time of PTAGF is still acceptable in a
real-world scenario, and this is a price PTAGF pays to choose
the best and most trusted members.

4) IMPACT OF TASK SCALE (S)

The task scale can depict the workload of the group-forming
approaches. Fig. 6 shows the comparison between the three
approaches under various S. From Fig.6a we observe that
PTAGF outperforms GoCC-G and G-MRUR in recruiting
more trusted members when the number of published tasks
increases. As S increases PTAGF needs more reliable partic-
ipants to complete the sensing tasks. Although, when more
than 15 tasks are published, PTAGF trustworthiness in mem-
bers selection decreases slightly because of a fixed number
of n, which leads to a lack in the number of trusted members
to recruit from. Accordingly, it may increase the probability
of selecting lower trusted members, thus the trustworthi-
ness value of PTAGF decreases with increasing S. However,
on average, PTAGF outperforms GoCC-G and G-MRUR in
terms of trustworthiness in member selection by 66.67% and
33%, respectively.

From Fig. 6b it should be noted that the task coverage of
all three approaches decreases with increasing task scale. The
reason is that with increasing S while fixing n and Ny, there
will be a lack in the number of members to cover all the
published tasks. In addition, the experiment results show that
PTAGEF outperforms GoCC-G in terms of task coverage with
increasing S. Also, as expected the task coverage percentage
for PTAGF is decreased, because there will be not enough
trusted members in the Aol who can join a reputable group.
This decrease in the task coverage demonstrates that PTAGF
prefers to complete the publishing tasks with trusted members
over completing all tasks with untrusted members, to get a
high-quality sensor reading.

From Fig. 6¢c we observe that the running time also
increases with increasing the task scale. In all cases, PTAGF
takes slightly more time than G-MRUR but is much more
efficient than GoCC-G. Moreover, the average running time
of PTAGF across all cases is lower than 0.2, when there are
600 participants and 25 sensing tasks, respectively. As dis-
cussed above, this is the performance price PTAGF pays for
recruiting trustworthy group members.

VIil. CONCLUSION

In this article, we studied the problem of group formulation in
MCS, which aimed to recruit highly trusted participants and
form a high-reputation group. We proposed a novel group
forming framework (PTAGF) that ensures trust and privacy
between the group members. In particular, to improve the
quality of the senores readings we verified the trust of each
participant before they become a group member by consid-
ering multiple factors. A theoretical analysis was provided,
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which proves that the TLPM achieves participants’ identi-
ties and spatial-temporal privacy preservation and provides
strong protection against attacks. Finally, we experimentally
evaluated the performance of PTAGF on a real-world dataset
against two state-of-the-art approaches. The results show that
PTAGF outperforms these approaches in terms of trustwor-
thiness in group selection, and it achieves reasonable task
coverage and running time.

In the future, we would like to study the participants’
mobility and continuous sensing tasks during task allocation
and participant recruitment processes. Furthermore, we plan
to consider cooperation between multiple groups to optimize
the task coverage percentage. Moreover, developing incentive
mechanisms to reward group members according to their con-
tributions, while satisfying payment rationality and budget
feasibility is still a challenge to address. We further plan to
utilize fog and edge nodes to optimize task allocation and
increase the efficiency of our framework.
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