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ABSTRACT Early fault features of large-scale and low-speed mechanical equipment with heavy duty
are weak and exhibit strong non-stationary characteristics. The adaptive extraction and identification of
highly relevant important features from such signals has attracted significant attention. In this study, a novel
empirical variational mode decomposition and exact Teager energy operator are proposed to explore valuable
information. To highlight the fault impact signal representation, we use the exact energy operator to
enhance the weak-impact components in the early fault signal. The proposed binary mechanism effectively
distinguishes irrelevant features based on the adaptive decomposition parameter construction strategy.
Therefore, interference features are easily removed from similar mixed signals, and the independent mode
features are determined. The experimental results of the simulation and collected data are compared with
those obtained with existing signal decomposition methods, and the superiority of the proposed method,
owing to its better modal distinction and less time consumption, is verified.

INDEX TERMS Early fault, empirical variational mode decomposition, envelope energy spectrum, exact
teager energy operator, fault diagnosis, fault feature, feature extraction, information entropy, micro-impact
component, mutual information.

I. INTRODUCTION
Large-scale machinery under low-speed conditions
(e.g., blast furnace rotating distributor, continuous cast steel
ladle return turntable, converter rotating support mechanism,
and other equipment) is a special type of heavy-duty rotating
machinery. It is characterized by a complex transmission
structure, large bearing capacity, low working speed, and
typical intermittent operation of the transmission mechanism.
Bearings and gears are crucial components of transmission
machinery [1]. The rolling bearing system is constantly in the
transitional process of starting and braking, and its dynamic
characteristics exhibit nonlinearity in the transitional pro-
cess, making conventional vibration monitoring difficult
to conduct and diagnosis technology difficult to operate.
An urgent problem for metallurgical enterprises is monitoring
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theworking state of low-speed heavy-dutymachinery, obtain-
ing the early micro-fault information of bearing, and pre-
dicting the safe working time of the equipment [2]. The
vibration signals of the early failures of such drive bearing
are extremely sparse and contain only a few effective signal
components, such as frequency division, frequency doubling,
micro-impact, and even a single micro-impact component.
In particular, a single micro-impact component describes
the early fault characteristics of equipment more effectively.
In addition, the equipment runs at a low speed (less than
100 rpm) under heavy load for a long time, and the micro-
impact signal of early failure is severely weak. The existing
signal processing technologymakes it difficult to extract fault
features directly.

In the past decade, non-stationary signal processing meth-
ods for engineering applications have attracted considerable
research attention. The short-time Fourier transform (STFT)
[3], [4], [5] is a commonly used signal time-frequency (TF)
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domain analysis method. STFT has a variety of window
functions, and it is difficult to select the correct window.
Moreover, its time-frequency resolution is fixed. Khalil et al.
[6], [7] proposed a fast Fourier transform (FFT) to obtain
fault frequency signatures. A wavelet transform (WT) [8],
[9] overcomes the shortcoming of the invariable length of the
STFT transform window and has the characteristic of multi-
resolution analysis. Zhang et al. [10] proposed an improved
empirical wavelet transform to analyze a bearing signal with
a complicated spectrum. Yuan and Tian [11] proposed an
intelligent industrial process monitoring and fault diagno-
sis method based on the discrete WT and deep learning.
Chen et al. [12] proposed a WT to solve the problem of
the early fault diagnosis of rolling bearings under strong
background noise. Wang et al. [13] proposed a sparsity-
guided empirical wavelet transform to automatically establish
the Fourier segments required in empirical wavelet trans-
form for the fault diagnosis of rolling element bearings. Its
signal resolution performance is highly dependent on the
wavelet basis function and scale parameters; however, it is
difficult to match properly. The Wigner–Vile distribution is
a Fourier transform of an instantaneous signal [14], [15]
and has many outstanding properties. Sur et al. [16] pro-
posed a smoothed pseudo-Wigner–Ville distribution method
for extracting the instantaneous frequency of a highly non-
stationary polynomial frequency-modulated fringe signal.
Khare et al. [17] proposed a smoothed pseudo-Wigner–Ville
distribution technique to obtain the scalogram, spectrogram,
and time-frequency representation plots of the EEG. A tun-
able Q-factor wavelet transform was proposed to diagnose
bearing faults in high-speed rails [18]. However, it cannot
ensure non-negativity, particularly for multicomponent sig-
nals, and severe cross-term interference will occur. Although
many methods have been proposed to inhibit cross-terms,
eliminating them completely is difficult. Ensemble empirical
mode decomposition (EEMD) is adaptive and suitable for
analyzing nonlinear and non-stationary signals [19], [20],
[21], [22]. This method has been successfully applied for the
analysis of mechanical vibration signals. Chen et al. [23] pro-
posed complementary ensemble empirical mode decomposi-
tion (CEEMD) to diagnose the fault of a gearbox. CEEMD
and singular value decomposition (SVD) have been proposed
for bearing fault diagnosis [24]. Jiang et al. [25] proposed
the CEEMD with adaptive noise (CEEMDAN)-based per-
mutation entropy as a sensitive feature for spiral bevel gear
fault identification. An improved CEEMDAD was proposed
to diagnose the fault of a high-speed train bogie [26]. CEEM-
DAN decomposition was performed on the denoised signal
to obtain multiple groups of intrinsic mode functions (IMF)
[27]. In [28] and [29], CEEMD and CEEMDAN were used
to extract the fault features of bearings. The S-transform
(ST) [30], [31], [32], [33] combines the advantages of the
short-time Fourier transform and WT and has good time-
frequency analysis ability. However, it still exhibits shortcom-
ings in practical applications, such as its inability to gather
time-frequency energy and the roughness of its spectrum.

Although many attempts have been made to improve these
problems, its essence is still a special case of the Gaussian
window adopted by the STFT. Higher-order statistical anal-
ysis (HOSA) can effectively suppress the Gaussian noise
components in the signal [34], [35], [36], [37], [38]. However,
it is ineffective for non-Gaussian noise. In addition, it is
difficult to apply this method to practical engineering because
it requires numerous calculations. Although many of these
improvements have significantly reduced the computational
complexity of HOSA, it remains unsuitable for practical use.
Local mean decomposition [39], [40], [41], [42], [43], [44]
is typically used to extract the feature information in differ-
ent frequency bands of the original signal. However, it has
some disadvantages such as end effects and mode mixing.
Although many researchers have made improvements to the
LMD based on their experience in dealing with EMD prob-
lems, a slight effect has been achieved in practice. Intrinsic
time-scale decomposition (ITD) [45], [46], [47], [48] has
some advantages over EMD and LMD. The definition of the
baseline in this method is based on a linear transformation,
which results in the distortion of the signal waveform from the
second component. Several scholars have attempted to solve
this problem. However, it is difficult to eliminate. VMD is
a new adaptive signal processing method proposed in 2014
[49]. Its excellent characteristics enable it to solve inherent
problems in EEMD, LMD, and ITD, and it is widely used in
mechanical fault diagnosis [50], [51], [52], [53]. However,
it has an inherent defect, which is that the choice of its
key parameters affects its performance. Consequently, VMD
has undergone many improvements. Nazari and Sakhaei [54]
proposed a consecutive VMD that does not need to consider
the initial value of K ; however, it requires an artificially
set convergence value. Although the K value of the VMD
has a significant impact on its performance, the impact of
other parameters on VMD performance is equally important.
Chen et al. [55] proposed a self-correcting VMD method,
where K and α are automatically updated by the energy
ratio and orthogonality of the IMFs in the frequency domain,
respectively. This method requires a stop condition provided
by the signal-to-noise level. However, the noise level of the
actual vibration signal is unavailable, and it must be clarified
whether the orthogonality between the modes is linear or
nonlinear. Therefore, the practical engineering applications
of this method should be verified further. Xu and Hu [56]
proposed a grey Wolf optimization algorithm for VMD to
search for the optimal combination value of [K, α] of VMD.
It uses the minimum mutual information between adjacent
IMF components as a fitness function; however, this fitness
function is not rigorous. A grasshopper optimization algo-
rithm was used to improve the VMD [57]. It assumes the
weighted form of the kurtosis of the IMF component as
a fitness function. However, this single fitness function is
still not sufficiently rigorous. Liu et al. [58] selected VMD
parameters based on kurtosis. However, the search method
relies on personal experience and intuition of the search
mechanism and lacks a mathematical basis. An identification
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method [59] was proposed to set the critical parametersK and
α of the VMD according to the number of spectral peaks and
minimum frequency of the signal FFT. However, FFT can-
not effectively handle non-stationary and nonlinear signals.
Shi and Yang [60] used the central frequency observation
method to set theK and τ values based on residual indicators.
However, the VMD’s performance is closely related to its
key parameters. It is unreasonable to set the K and τ values
separately using independent methods and indices, without
considering the joint action of the parameters. In addition,
the influence of the key parameter α was omitted. Further-
more, the actual vibration signal is complex and variable,
and this observation method is unsuitable for engineering
applications. The VMD optimization method based on par-
ticle swarm optimization (PSO) algorithm has been applied
successively in mechanical bearing fault diagnosis [61], [62].
By searching for the optimal values of K and α, the perfor-
mance of the traditional VMD was improved, and a higher
decomposition accuracywas achieved. However, the classical
PSO algorithm has some inherent disadvantages such as the
ability to easily fall into a local optimal solution. A new
variable-dimensional composite chaotic PIOmethod [63] and
a whale optimization algorithm [64] were used to search for
the optimal combination value [K , α] of the VMD. The pro-
posed framework exhibits excellent performance; however,
the complexity of the algorithm and the feasibility of practical
applications should also be verified. In [65], a fusion indicator
was designed as an adaptation function to search for the
optimal combination value of [K , α] for the VMD. However,
it does not consider the impact of the other key parameters
of the VMD on its performance. The methods mentioned
above select the parameters [K , α] of the VMD with cer-
tain results. However, challenges persist, such as performing
a feasibility analysis of intelligent optimization algorithms.
In addition, the problem of the shared influence of other key
parameters of the VMD has not been sufficiently considered
(i.e. τ ), and neither has the influence of [K , α]. On the
other hand, the computational complexity of parameter opti-
mization using intelligent optimization algorithms is also
a non-trivial problem, especially in more union parameters
selection. An effective approach is to automatically adjust the
parameters according to the VMDdecompositionmechanism
and depending on the characteristics of the signal itself, and
the common influence of joint parameters are considered at
the same time. Inspired by the above discussion, this study
proposes a novel empirical VMD for binary-tree-basedmulti-
parameter selection.

The early fault characteristic signals of large machinery
with low speeds and heavy loads are considerably sparse and
weak. It is difficult to extract their fault features directly using
modern signal processing methods. There is little research
on the topic. The Teager energy operator (TEO) is an effec-
tive tool for enhancing the transient properties of signals
and detecting shock components with the advantage of low
computational complexity. With an optimal VMD algorithm,
TEO was applied to extract the early fault features of large

low-speed heavy-duty mechanical equipment and achieve the
desired results [63]. Moreover, the TEO is an energy operator
that will change the spectral distribution of the original signal.
Fusion of the signal mass was proposed to partly improve
the TEO method in [66]. However, this does not change
the nature of the TEO as an energy operator. In this study,
a TEO based on the enhanced factor γ , termed the exact TEO
(ETEO), is proposed. Its output is TEnergy = γ ·A2 ·�2, which
is the exact form of the TEO. Moreover, the TEO is based on
the energy forms of x2i − xi+1 · x i−1 and ∀i ∈ Z , that is, the
output value is not negative. However, the vibration signals
generated by mechanical faults are positive and negative. The
classical TEO can enhance the instantaneous amplitude of
the micro-impact components in fault signals and change the
positive and negative characteristics, and frequency distribu-
tion of the signals. Therefore, the output form of TEO can
be obtained as TEnergy = (±)γ · A2 · �2 by discriminating
between positive and negative signals. This enhances the
amplitude of the impact signal more effectively and retains
the frequency distribution of the signal xi. Therefore, in this
study, we propose an early fault feature extraction method
that combines the advantages of empirical variational mode
decomposition (EVMD) and ETEO. Finally, the effectiveness
of the proposed method is verified through an experimental
analysis of the simulation signals and the measured bearing
fault signals. The main innovations can be summarized in
the following aspects: 1) The binary-tree mechanism and the
mutual information variant are introduced to identify the key
information of the signal and determine the number of valid
modes; 2) In the signal hierarchical decomposition model,
the penalty parameter α of VMD algorithm is not preset as
a constant, but is dynamically set by the information entropy
of the signal property; 3) Considering the combined effect of
the update step parameter τ and other parameters on theVMD
decomposition performance, the signal standard deviation is
introduced to update τ ; and 4) As an effective improved
model of the original TEO, the proposed ETEO is used for
impact feature extraction promotion. The algorithm is fully
adaptive and has low complexity because it fully considers
the joint effect of the key parameters [K , α, τ ] of the VMD.
The remainder of this paper is organized as follows.

Section II introduces the basic methods and principles used
in this study. Section III presents the proposed methods and
principles in detail. Sections IV and V verify the effectiveness
and superiority of the proposed method through simulated
signal analysis and real measurement signals. Finally, con-
clusions are presented in Section VI.

II. THEORETICAL FOUNDATION
A. TEAGER ENERGY OPERATOR
For a continuous discrete time series x(n), the mathematical
definition of the TEO of the signal is

ψc [x(n)] = (x(n))2 − x(n− 1)x(n+ 1) (1)

TEO is a type of nonlinear difference operator that has
outstanding adaptability and can recognize the transient
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components of signals. Moreover, the algorithm is simpler
than the Hilbert demodulation and can increase the impact
components of rolling bearing faults [67].

B. VARIATIONAL MODE DECOMPOSITION(VMD)
VMD is a non-recursive technique that decomposes an actual
signal x(t) into K -independent modes. Its operating principle
combines the Hilbert transform and Wiener filter to obtain a
set of characteristic components uk (k = 1, 2, . . . ,K ) with
a limited bandwidth [53]. To solve the variational model,
the constrained problem must be transformed into a non-
constrained problem, and an augmented Lagrange expression
is introduced:

L ({uk}, {ωk}λ)

:= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
k

uk (t)

〉
(2)

where α is the penalty factor and λ is the Lagrange factor.

C. INFORMATION ENTROPY
Information entropy is a measure of the uncertainty in the
amount of information and indicates the average uncertainty
of a signal [26]. In a signal, the probability of occurrence of
specific information reflects the amount of information that
it contains. The complexity of the information contained in a
signal can be measured using an information entropy index.
Currently, information entropy is widely used in mechanical
fault diagnosis and medical diagnosis, and good research
results have been obtained. This is defined by the following
equation:

The random variable was denoted by X . The values of the
random variables are {x1, x2, · · · , xn}, where p(xi) denotes
the probability that the event xi occurs with

∑
p(xi) = 1.

We define the information on the event xi as the negative
logarithm of its probability of occurrence, denoted as I (xi).

I (xi) = − log(p(xi)) (3)

H(X) is the average information of random variable X; that
is, the information entropy of X

H (X) = E
[
− logP(xi)

]
= −

N∑
i=1

P(xi) logP(xi) (4)

where P(xi) denotes the prior probability of event xi and∑
P(xi) = 1. The base of the log in the formula is related to

the information entropy unit. It is widely used with a base of
2, which has a unit of bits, and when using a base of e with a
unit of Nat.

D. STANDARD DEVIATION
The variance represents the extent to which the random signal
x(t) deviates from its mean x̄ and is the dynamic component

of the depicted signal, whose discrete data expression is

σ 2
x =

1
N − 1

N∑
i=1

(xi − x̄)2 (5)

The standard deviation is a variation of the variance (posi-
tive square root), denoted by σx . This indicates the degree to
which the signal deviates from the steady state.

E. LEAST SQUARES MUTUAL INFORMATION
The mutual information (MI) is more accurate than the corre-
lation coefficient method [33]. Most signals, such as typical
vibration and shock signals, satisfy the zero-mean property.
According to the principle of uncorrelated and orthogonality
equivalence between zero-mean random signals,MI canmea-
sure the level of similarity between the IMF components and
residuals obtained during VMD decomposition, i.e., it can
measure the occurrence and degree of modal mixing. MI is
defined as follows:

MI =
1
2

∫ ∑c

y=1
p(x, y) log

p(x, y)
p(x)p(y)

dx (6)

As can be observed from the above equation, the logarith-
mic function in MI reacts significantly to outliers and affects
the accuracy of the estimates. Therefore, to overcome this
problem, the square lossMI is used in this study to replace the
logarithmic function to reduce the interference of outliers and
obtain more accurate estimates of the MI. The substitution
equation is defined as follows:

MI =
1
2

∫ ∑n

y=1
p(x)p(y)

(
p(x, y)
p(x)p(y)

− 1
)2

dx (7)

To avoid calculating the individual probabilities of joint
probability p(x,y), edge probability p(x), and edge probability
p(y), the least-squares estimation method is introduced to cal-
culate the squared loss MI; instead, the density ratio function
that combines them is learned directly and substituted into the
following equation, which is equivalent to the squared loss
MI:

MI =
1
2

∫ ∑n

y=1
ω(x, y)p(x, y)dx −

1
2

(8)

The least squares MI estimator (LSMI) can be obtained as
follows:

LSMI =
1
2
ĥ
T
(Ĝ+ λI)−1ĥ−

1
2

(9)

where the regularization parameter λ and basis function ψ
contain parameters that can be determined by the optimiza-
tion algorithm associated with rule J.

III. PROPOSED METHODOLOGY
A. EXACT TEAGER ENERGY OPERATOR
In this study, the enhanced factor γ is introduced, and (1) is
modified as follows:

T = x2n − xn+1 · xn−1 = e−2ζn · A2 · sin2�
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= A2 ·�2
·
sin2�
�2 · e

−2ζn (10)

where A is the amplitude, � = ω
2π is the frequency, and ζ is

the attenuation coefficient. Let γ = sin2�
�2 · e

−2ζn and then
modify the above formula to

T =x2n − xn+1 · xn−1=e
−2ζn
· A2 · sin2�=γ · A2 ·�2

(11)

The output is retained as the square of the instantaneous
amplitude of the signal multiplied by the instantaneous fre-
quency squared. Here, the above equation is modified to give

T =
T
γ
= A2 ·�2 (12)

where T is the enhanced TEO, which is the exact output of
T . Moreover, γ = sin2�

�2 · e
−2ζn
∈ (0, 1) in this equation.

Evidently, the output of the energy operator T is significantly
larger than that of the energy operator T . Therefore, T is the
augmented form of T.

Moreover, the sin2�
�2 term in the enhanced factor γ is related

to variable�. The solution of� can be obtained according to
the above equations using the following procedure:

Considering xn = e−ζn ·A ·sin(� ·n+ϕ), the instantaneous
angular frequency � is independent of the attenuation coef-
ficient ζ and the magnitude of the initial amplitude A of the
signal for a single-DOF vibration system. Let e−ζn = 1 and
A = 1.
We then obtain

x2n − xn−1 · xn+1 = sin2�

Then,

sin� = ±
√
x2n − xn−1 · xn+1

Obtains:

� = arcsin
(
±

√
x2n − xn−1 · xn+1

)
.

Therefore, (13) as shown at the bottom of the page.

B. EMPIRICAL VMD
In this study, we propose an empirical VMD algorithm that
can effectively resolve the selection of the VMD parame-
ters K , α, and τ and make the decomposition process of
VMD an adaptive process. The detailed steps and pseudocode
(described in Algorithm 1) are as follows.
Step 1. Compute the standard deviation σ and information

entropy E of x(t) and initialize the key parameters of VMD
asK = 2, α = round (E × (fs/2)× log(K ))), τ = σ = ω= 1,
and ε = 1e – 7. Thereafter, the first decomposition of signal
x (t) is performed to obtain the two IMF components IMF1
and IMF2.
Step 2. Initialize the kernel parameters of the Gaussian

radial basis kernel function of the LSMI and set the threshold
δ of the LSMI estimator and the threshold η of the reconstruc-
tion error ρ.
Step 3. Compute the LSMI estimates for the IMF1 and

IMF2 components. If LSMI is equal to zero, there is no iden-
tical information between the IMF components. If LSMI = 1,
then the information between the IMF components is the
same. We then determine whether the LSMI is greater than
threshold δ. If it is, decomposition is stopped. Conversely,
the reconstruction error, ρ, is computed. If ρ > thresh-
old η, the decomposition is terminated. Otherwise, the IMF
components IMF1 and IMF2 (obtained by signal x(t)) are
decomposed as new signals x1(t) and x2(t), respectively, and
continue to decompose according to Steps 1 and 2.
Step 4. Decompose x1(t) to obtain the IMF11and IMF12

components. The LSMI between the two items is calculated.
If the LSMI is greater than threshold δ, the reconstruction
error ρ is determined. If ρ is less than the threshold, the VMD
key parameter α = round (E × (fs/2) × log(K ))), where fs is
the sampling frequency of the signal, round(·) is the rounding
function, E is the information entropy, and log(K ) is the log
base 10 ofK . E can measure the complexity of the signal well
and adjust the value of α dynamically, and τ = σ + rand .
Decompose x1(t) again and obtain two components: IMF11
and IMF12. Thereafter, Steps 2 and 3 are followed. If ρ is
larger than the threshold, x1(t) is named IMF1 as the first

sin2�
�2 = Sa2(�)

=



1, for � = 0

Sa2
(
arcsin

(√
x2n − xn−1 · xn+1

))
, for � 6= 0 and (0 < x2n − xn−1 · xn+1 ≤ 1)

x2n − xn−1 · xn+1

− ln2
[√

1− (x2n − xn−1 · xn+1)+
√
−(x2n − xn−1 · xn+1)

] for (−1 ≤ x2n − xn−1 · xn+1 < 0)

(y2 + y
√
y2 − 1− 1)2

(y+
√
y2 − 1)2 ln2

∣∣∣y+√y2 − 1
∣∣∣ , for |y| =

√∣∣(x2n − xn−1 · xn+1)− 1
∣∣

and
∣∣∣x2n − xn−1 · xn+1∣∣∣ > 1.

(13)
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label obtained. Similarly, x2(t) is decomposed to obtain the
components IMF21 and IMF22. If the LSMI between the
two components is larger than threshold δ, the reconstruction
error ρ is determined. If ρ > the threshold η, reset the key
parameters α = round (E × (fs/2) × log(K ))) and τ =
σ + rand , and decompose x2(t) again to obtain IMF21 and
IMF22. Steps 2 and 3 are executed. If ρ is larger than the
threshold, x2(t) is selected as the second decomposed IMF
component IMF2.
Step 5. Step 5 can be divided into four steps. In the first

case, x1(t) is decomposed into IMF11 and IMF12, and x2(t)
is decomposed into IMF21 and IMF22. Thereafter, the LSMI
estimates are calculated for each component. If the LSMI
between two IMF components is greater than or equal to
threshold δ, they are summed as new IMF components. If the
LSMI between the two components is smaller than thresh-
old δ, the corresponding IMF components are used as new
IMF components. In the second case, x1(t) is decomposed
to obtain the components IMF11 and IMF12, whereas x2(t)
is a single IMF component, and the estimates of the LSMI
between each component are calculated. If the LSMI between
the two IMF components is greater than the threshold δ, the
corresponding IMF components are summed as a new IMF.
If the LSMI between two IMF components is less than the
threshold δ, the corresponding IMF components are used as
new IMF components. In the third case, x1(t) is a single IMF
component and x2(t) is decomposed to obtain components
IMF21 and IMF22. We then compute the estimated LSMI for
each component. If the LSMI between the two IMF compo-
nents is greater than the threshold δ, the corresponding IMF
components are summed up as a new IMF. Otherwise, the
corresponding IMF components are used as new IMF items.
In the fourth case, x1(t) and x2(t) are both mono-component
signals and the decomposition stops. Specifically, x1(t) and
x2(t) are the final IMF components.
Step 6. Finally, cases 1–3 in step 5 are judged and handled

according to steps 1, 2, and 3. When the LSMI between
the two IMF components is greater than threshold δ and the
reconstruction error ρ > threshold η, the decomposition is
terminated to obtain the final independent components.

After the empirical VMD decomposition process, the
complex multicomponent and nonstationary signals can be
adaptively decomposed into individual mutually orthogonal
monocomponents. The process is presented in Algorithm 1.

Because the impact components of early faults are
extremely sparse and weak, EVMD is directly used for
decomposition, which causes misjudgment of the signal rep-
resenting early faults as noise or worthless signals, and fault
features cannot be extracted. Therefore, before using EVMD
to decompose the vibration signals in this study, ETEO was
used to effectively strengthen the impact components in the
vibration signals to improve the signal-to-noise ratio (SNR).
The EVMD was used to efficiently decompose the enhanced
signal and obtain a single IMF component. Subsequently,
the average value of the ratio of kurtosis to the information
entropy of the IMFs was calculated, and the components

FIGURE 1. Structure diagram of the proposed algorithm.

of the IMFs that were larger than the average value were
selected for signal reconstruction. Finally, the EES of the
reconstructed signal was calculated to extract the fault fea-
tures. A flowchart of the proposed method is shown in Fig. 1.

IV. SIMULATION VALIDATION
A. SIMULATION SIGNAL
It is not appropriate to use the actual measured signals to
qualitatively describe the characteristics of nonlinear and
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Algorithm 1 Empirical VMD Based on Binomial Trees
Initialize VMD: K ← 2, α =round(E × (fs/2)×log(K ))), τ ← σ, ω← 1, ε← le− 7, n← 0
Initialize LSMI:γ = rand(0, 1)
repeat VMD:
n← n+ 1

VMD(1): xn(t) IMFn1, IMFn2
Compute: LSMIn←LSMI( IMFn1, IMFn2 )

if LSMIn > δ then
x ′n(t)← IMFn1+IMFn2
ρ ← ρ(xn(t), x ′n(t))
if ρ ← η then
Update α, τ :
α← (E + rand)× logfs2 , τ ← α+rand

goto VMD1
else if ρ > η then
IMF← xn(t)
Stop VMD

end if
else if LSMI < δ then
IMFn1, IMFn2← xn(t)
x1n (t)←IMFn1, x2n (t)←IMFn2

end if
n←n+1

VMD(2):x1n (t)→ IMF1
n1, IMF

1
n2, goto Compute: (IMF1

n1, IMF
2
n1)

x2n (t)→ IMF2
n1, IMF

2
n2, goto Compute: (IMF2

n1, IMF
2
n2)

n←n+1
VMD(n):

for m = 2: n do
xmn (t)→ IMFmn 1, IMF

m
n 2, goto Compute: (IMFmn 1, IMF

m
n 2)

end for
until convergence: IMF for all LSMI > δ and ρ > η.
end

non-stationary signals. A mixed simulation signal is used to
simulate the nonlinear and non-stationary signals, and the
signal waveform is illustrated in Fig. 2.

y(t) = y1(t)+ y2(t)+ y3(t)+ y4(t)
y1(t) = 0.5 sin(2π f1t)
y2(t) = 0.5 sin(2π f2t)
y3(t) = 0.5 sin(2π f3t) t ∈ [0.1, 0.2] ∪ [0.8, 0.9]

y4(t) =
∑

i
aim(t − iT − νi)

(14)

where y(t) denotes a simulated signal. y1(t), y2(t), and y3(t)
represent three sinusoidal signals with different center fre-
quencies, and f1 = 20 Hz, f2 = 35 Hz, and f3 = 210 Hz. y3(t)
is a high-frequency intermittent signal, and y4(t) is a periodic
pulse-decaying sine signal with a frequency of 8 Hz.

y4(t) =
∑

i
aim(t − iT − νi)

m(t) = e−Ct sin(2π fnt)
ai = 1+ a0 sin(2π fr t)

(15)

where m(t) is the simulated exponentially decaying signal
and C is the decay factor (C = 750). Furthermore, fr is

the simulated rotation frequency (fr = 1 Hz), and fn is the
resonance frequency (fn = 3000 Hz), where T denotes the
average pulse period. vi represents a small fluctuation, ai is
the amplitude of the impulse sequence, and a0 is the initial
amplitude.

B. VALIDATION OF THE DECOMPOSITION METHOD
In this section, the EVMD method is tested using simulation
signals. The standard deviation σ and information entropy E
of the simulated signal y(t) in Fig. 2 are calculated, and the
key parameters of the initialized VMD are fixed as K = 2,
α = round(E × (fs/2) × log(K ))), τ = σ, ω = 1, and ε =
1e-7. y(t) is decomposed using EVMD, and the results are
illustrated in Figs. 3–16. Fig. 3 shows the first VMD decom-
position performed on y(t), and two components, IMF1 and
IMF2, are obtained and are illustrated in Fig. 3. The LSMI
and reconstruction error between IMF1 and IMF2 are cal-
culated, and the results are listed in Table 1. In the table,
LSMI[IMF1,IMF2] = 0.0329, and RSE = 0.0328, and the
thresholds of decomposition stop are set to δ = 0.8 and ρ =
0.1, according to experience. The results after the first VMD
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FIGURE 2. Time-domain signal of each component signal and the mixed
signal. (a) Each component signal and the mixed waveform. (b) Local
magnification of the mixed signal.

FIGURE 3. Signal components IMF1 and IMF2 are derived from the first
decomposition of the simulated signal x(t) by the VMD method.

decomposition of y(t) do not satisfy the stopping conditions,
and the VMD decomposition of components IMF1 and IMF2
is continued, that is, the second VMD decomposition is initi-
ated. First, the IMF1 component in Fig. 4 is decomposed, and
the obtained components are shown in Fig. 5. As shown in
the figure, the waveform diagrams of IMF11 and IMF12 are
different. To quantify the similarity between the two compo-
nents, the LSMI between the two components is calculated,
and the results are shown in Table 1. LSMI[IMF11,IMF12] =

0.0214 for components IMF11 and IMF12 does not satisfy

FIGURE 4. Signal component IMF1 is derived from the first
decomposition of the simulated signal x(t) by the VMD method.

FIGURE 5. Signal components IMF11 and IMF12 are derived from the
decomposition of the IMF1 by the VMD method.

FIGURE 6. Signal component IMF2 is derived from the first
decomposition of the simulated signal x(t) by the VMD method.

FIGURE 7. Signal components IMF21 and IMF22 are derived from the
decomposition of IMF2 by the VMD method.

the stopping condition, and it is necessary to decompose
components IMF11 and IMF12 further. Similarly, the IMF2
component in Fig. 6 is decomposed, and the results are
shown in Fig. 7. In the figure, the waveform diagrams of
components IMF21 and IMF22 are not the same, and the
LSMI between the two components is calculated. The results
are listed in Table 1. The LSMI of components IMF21 and
LSMI[IMF21,IMF22] = 0.0593 do not satisfy the stopping con-
dition. Therefore, components IMF11 and IMF12 are further
decomposed. The decomposition results for the third VMD
are shown in Figs. 8–9. IMF11 decomposes into IMF111
and IMF112 components. From the calculated specifications
listed in Table 1, the LSMI between IMF111 and IMF112
does not satisfy the stopping condition. The decomposi-
tion process should therefore be continued. The decompo-
sition of IMF21 yields IMF211 and IMF212 components,
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FIGURE 8. Signal component IMF11 is derived from the decomposition of
IMF1 by the VMD method.

FIGURE 9. Signal components IMF111 and IMF112 are derived from the
decomposition of IMF11 by the VMD method.

FIGURE 10. Signal component IMF12 is derived from the decomposition
of IMF1 by the VMD method.

FIGURE 11. Signal components IMF121 and IMF122 are derived from the
decomposition of IMF12 by the VMD method.

FIGURE 12. Signal component IMF21 is derived from the decomposition
of IMF2 by the VMD method.

as illustrated in Figs. 13 and 14. In Table 1, the LSMI between
IMF211 and IMF212 satisfies the stopping condition, and
component IMF21 is selected as the new component IMF1’.
Similarly, as illustrated in Figs. 11 and 12, component IMF12
is decomposed to obtain components IMF121 and IMF122,
respectively. The LSMI between components IMF121 and

FIGURE 13. Signal components IMF211 and IMF212 are derived from the
decomposition of IMF21 by the VMD method.

FIGURE 14. Signal component IMF22 is derived from the decomposition
of IMF2 by the VMD method.

FIGURE 15. Signal components IMF221 and IMF222 are obtained from
the decomposition of IMF22 by the VMD method.

FIGURE 16. Final decomposition result of original signal x(t) by EVMD.

IMF122 satisfies the stopping condition, and component
IMF12 is used as the new component IMF2’. Thereafter, the
decomposition of component IMF22 is continued, and the
results are shown in Figs. 13 and 14. The LSMI between com-
ponents IMF221 and IMF222 satisfies the stopping condition,
and component IMF22 is used as the new component IMF3’.
Finally, only IMF111 and IMF112 continue to decompose.
However, both IMF111 and IMF112 satisfy the stop condi-
tion after the decomposition. There are two single compo-
nents, IMF4’ and IMF5’. Finally, the entire decomposition
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TABLE 1. LSMI and RSE of EVMD decomposition.

process is completed, and five IMF components are obtained.
The LMSI values between IMF1’, IMF2’, IMF3’, IMF4’,
and IMF5’ are calculated, and the results are as follows:
LSMI[IMF1′,IMF2′] = 0.0017, LSMI[IMF1′,IMF3′] = 0.0019,
LSMI[IMF1′,IMF4′] = 0.0021, LSMI[IMF1′,IMF5′] = 0.0032,
LSMI[IMF2′,IMF3′] = 0.9077, LSMI[IMF2′,IMF4′] = 0.0036,
LSMI[IMF2′,IMF5′] = 0.0053, LSMI[IMF3′,IMF4′] = 0.0061,
LSMI[IMF3′,IMF5′]= 0.0042, and LSMI[IMF4′,IMF5′]= 0.0026.
The results reveal that the correlation between IMF2’ and
IMF3’ is large, that is, IMF2’ and IMF3’ are merged to obtain
the new item IMF2. However, the LMSI values between
the other components are small (i.e., IMF1’ and IMF2’),
indicating that the correlation between them is weak. They are
separated as independent components, and finally, four new
IMF components, namely IMF1’, IMF2’, IMF3, ’, and IMF4,
are obtained, and the results are shown in Fig. 16. To further
illustrate the quantitative relationship between the new IMF
components and y(t), the LSMI between the new IMF com-
ponents and y(t) is calculated as follows: LSMI[IMF1,y1] =

0.9886, LSMI[IMF2,y2] = 0.9881, LSMI[IMF3,y3] = 0.9958,
and LSMI[IMF4,y4] = 0.8658. From the LSMI values between
the IMF component and its corresponding simulation signal,
it can be observed that, except for the LSMI between compo-
nent IMF4 and simulation signal x(t), which is slightly less
than 1. In particular, there is a certain difference between
the information of components IMF4’ and y(t); the other
IMF components and their corresponding simulation signals
are almost the same. These results indicate that the EVMD
algorithm is viable and effective.

The above experiments confirmed the effectiveness of
EVMD. To further verify its superiority, the traditional
methods of VMD, CEEMDAN, LMD, and ITD, which are
commonly used for nonlinear and non-stationary signal anal-
yses, are compared. The decomposition results are presented
in Figs. 17 and 20. In Fig. 18, the values of the relevant
parameters of the VMD are set based on personal experience.
Four IMF components are obtained from the results shown
in Fig. 18. The IMF1 component is not a mono-component
signal, but a superposition of y1(t) and y2(t) in the origi-
nal signal, indicating that the component is not completely

FIGURE 17. IMF components are obtained by using the conventional
VMD decomposition.

FIGURE 18. IMF components are obtained by using the CEEMDAN
decomposition.

decomposed. In addition, by observing the IMF2 component,
we learn that it is nearly the same as y3(t) in the original
signal. Therefore, we can observe IMF3 and IMF4, which
are nearly the same component and the same as y4(t) in the
original signal, and are over-decomposed.
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FIGURE 19. PF components are obtained by using the LMD
decomposition.

FIGURE 20. PR components are obtained by using the ITD decomposition.

The final decomposition results indicate that the traditional
VMD method does not effectively decompose the original
signal. Fig. 18 shows the decomposition results of the CEEM-
DANmethod. Evidently, CEEMDANadaptively decomposes
the signal into 15 IMF components, and the number of com-
ponents does not match the fraction of components con-
tained in the original signal. Fig. 19 shows the results of
the LMD decomposition method, where the LMD adaptively
decomposes the signal into four components. However, the
waveforms are inconsistent with the actual components of the
original signal. Fig. 20 shows the results of the ITD method
decomposition. This approach adaptively decomposes the
signal into five PR components. Except for the fact that
the number of components is inconsistent with the origi-
nal signal, the waveform of the effective components could
not be identified. Therefore, from the experimental results
of the above comparison, the conventional signal analysis
methods, such as VMD, CEEMDAN, LMD, and ITD, do not

effectively extract the original signal x(t); however, the pro-
posed method is superior.

As mentioned previously, some researchers have proposed
several intelligent optimization algorithms (i.e., PSO, PIO,
and WOA) in [26], [27], [28], [29], and [30]. These methods
optimize the performance of VMD, and the premise is to
design an appropriate fitness function. Thus, a mixed mul-
ticomponent signal is decomposed by parameterized VMD
into several single and orthogonal IMF under ideal con-
ditions. These orthogonal IMFs are then superimposed to
reconstruct the original signal accurately. However, the fol-
lowing cases may occur in practical applications. For exam-
ple, the central frequencies of the two signal components are
close to each other, resulting inmodemixing and formation of
a false IMF. Nevertheless, this component is orthogonal to the
other IMF components and can reconstruct the original signal
to the greatest extent possible. If the above case occurs, the
orthogonality between the IMF components and the precision
of the signal reconstruction cannot be effectively used as
an evaluation index of the VMD performance nor can it
guarantee that the VMD parameters are optimal. To ensure
the effectiveness and consistency of the different intelligent
algorithms, a fitness function is designed as follows [63]:

Fitness :=

n∑
i=1

V IMF
LSMI[IMF(i+1),IMF(i)]

VLSMI[original,reconstructed]
(16)

where
n∑
i=1

V IMF
LSMI[IMF(i+1),IMF(i)] is the sum of the LSMI

of all neighboring IMFs. A smaller LSMI sum indi-
cates that contiguous IMFs have excellent orthogonal-
ity. VLSMI[original,reconstructed] is the LSMI of reconstructed
and raw signals. The larger the value, the smaller the
reconstructed error. According to (16), when the value of
n∑
i=1

V IMF
LSMI[IMF(i+1),IMF(i)] is considerably small and the value

of VLSMI[original,reconstructed] is considerably large, the ratio is
smaller. This indicates that the original signal is correctly
decomposed into several independent IMF components with-
out distortion. To ensure consistency in the experimental
conditions, the population is 30, and the maximum number
of iterations is 200. The results are illustrated in Figs. 21–22,
and the acquired indicators are listed in Table 2.

The optimal values of [K , α] are determined using intel-
ligent optimization algorithms such as PSO, PIO, WOA,
CQPSO, and VDCPIO. In Fig. 21, the number of iterations
and convergence values of the different intelligent optimiza-
tion algorithms vary, and the detailed data are presented in
Table 2. In the table, PSO, PIO, WOA, CQPSO, and VDC-
PIO correspond to different metrics such as the number of
iterations, fitness value, [K , α] combination value, and search
time. Comparing these index values, PIO has the least number
of iterations, VDCPIO has the smallest fitness value, and PSO
has the least search time. However, their search times are sig-
nificantly long and are not conducive to practical engineering
applications. The VMD decomposition results corresponding
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FIGURE 21. Optimization search results for different intelligent
optimization algorithms.

TABLE 2. Performance comparisons of different intelligent optimization
algorithms.

to the different intelligent optimization algorithms are shown
in Fig. 22. The VMD based on PSO, PIO, and WOA decom-
poses the original signal x(t) into three IMF components, and
the number of IMFs is not consistent with the number of real
components. In addition, they cannot effectively decompose
the first IMF component synthesized at two similar frequen-
cies. In addition, as shown in Figs. 22(d)–(e), the VMD
optimized by CQPSO and VDCPIO decomposes x(t) into
four IMFs, and the number of IMFs is the same as that of
the original signal. However, they cannot effectively decom-
pose the first IMF synthesized using two similar frequencies.
Finally, the experimental results indicate that when the signal
components in the original signal have similar waveforms
and frequencies, the VMD easily estimates their center fre-
quencies at the same center frequency; that is, the synthe-
sized signal is incorrectly estimated as one signal component.
In addition, utilizing an intelligent optimization algorithm to
search for the VMD [K , α] combination value is not exact.
This is because the VMD performance is also affected by
other parameters. Moreover, only the VMD optimal com-
bined value [K , α] is obtained, which consumes time and is

unsuitable for practical engineering applications. Therefore,
the results of these experiments indicate that the dichotomous
method-based empirical VMD algorithm is advantageous.

C. EVALUATION OF THE ETEO
When the mechanical equipment operates at a low speed
(less than 100 RMP) and heavy load for a long time,
the micro-impact signal is weak. It is difficult to directly
use existing signal-processing technology to extract fault
features. The TEO is commonly used to enhance the
micro-impact of mechanical vibration signals. However, this
changed the directionality of the raw vibration signal. There-
fore, the ETEOwas proposed to preserve the directionality of
the original signal. The signal in (15) was used for analysis to
illustrate and verify the effectiveness of the proposed method.
Because the actual micro-impact signal of the early fault is
extremely weak, the amplitude and frequency of the simu-
lated impact signal shown in Fig. 2 are set to 0.1 V and 8Hz in
this section to simulate the early fault feature of the low-speed
and heavy-load mechanical equipment. The mixed signal is
shown in Fig. 23(a).

Fig. 23(b) is an additive Gaussian white noise of −15 dB
added to Fig. 23(a). The envelope spectrum (ES) and
envelope energy spectrum (EES) of the mixed signal are
calculated in Figs. 24 (a) and 24 (b), respectively. In
Figs. 24(a)–24(b), the amplitude of the ES is smaller, and the
energy of the EES is more evident. However, their spectral
spikes corresponding to the 25, 47, 57, 65, 81, and 105 Hz
signals (marked in red) are not the correct multiplications.
When the SNR is small, it is difficult to correctly extract the
fundamental frequency and its multiplier frequencies infor-
mation. The mixed signal is then processed using the TEO
and ETEO. In Fig. 24, the enhanced signal is an energy signal
based on the TEO. In contrast, the enhanced signal based on
the ETEO maintains the directionality of the original signal
in Fig. 24(b). However, the enhancement effect of the two
methods cannot be significantly evaluated. Therefore, the
EES of the enhanced signal presented in Fig. 24 is calculated
separately, and it can better highlight the spectral lines of
the signal, as shown in Fig. 25. First, the ES and EES of
the original signal are calculated, respectively, as shown in
Fig. 25(a). Comparing the ES with the EES in Fig. 25(a), the
amplitude of the ES of the original signal is smaller, and in
Figs. 25(a)–25(b), the amplitude of the EES of the original
signal is larger. However, their octave spectra that the spectral
spikes corresponding to 25, 47, 57, 65, 81, and 105 Hz signals
(marked in red) are not the correct doubling frequencies.
This indicates that it is difficult to correctly extract the fun-
damental frequency of the impact signal characterizing the
fault and its multiplier frequency. Thereafter, the ES of the
TEO and ETEO are calculated in Fig. 25(b). Comparing
their ES, the TEO can correctly characterize the fundamental
and multiple frequencies of the fault frequency in its ETEO,
except for the deviation in the fivefold frequency. However,
the EES of the ETEO is fully capable of correctly charac-
terizing the fundamental and multiplicity frequencies of the
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FIGURE 22. Results of VMD decomposition based on different intelligent optimization algorithms. (a) PSO. (b) PIO. (c) WOA. (d) CQPSO. (e) VDCPIO.
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FIGURE 23. Simulation waveform of impact signal representing bearing
fault. (a) Impact signal without noise. (b) Impact signal with noise and
SNR = −15 dB.

fault frequency. Finally, the EESs of the TEO and ETEO
are calculated for the original signal, which are shown in
Fig. 25(c). Comparing their EES, the EES of the TEO can
correctly identify the fundamental frequency and its multi-
plications, except for the octave frequency. The EES of the
ETEO can completely and correctly characterize the funda-
mental and multiplicity frequencies of the fault frequency.
Comparing the ES and EES lines of Figs. 25(a)–25(c), the
amplitude of the EES of the enhanced signal based on ETEO,
and the spectral line representing the impact component is
significantly larger than that of the enhanced signal based on
the original TEO. Finally, to further illustrate the proposed
method validity, the kurtosis of the ES and EES is illustrated
in Figs. 25(a), 25(b), and 25(c), and is calculated. As shown
in Fig. 25(d), k0 denotes the kurtosis of the ES of the original
signal, and k1 is the kurtosis of the EES. k2 and k3 are the
kurtosis of the ES of the TEO and ETEO, respectively, and
k4 and k5 represent the kurtosis of the EES of the TEO
and ETEO, respectively. The kurtosis value of the EES of
the ETEO is the most significant. The above experimental
results indicate that the ETEO has a better enhancement effect
on the impact component of the signal and maintains the
directionality of the signal, as well as shows that the EES has
a better characterization of the fault characteristic frequency.

V. EXPERIMENT VERIFICATION
To further illustrate the applicability of the new method
in practical applications, a rolling bearing fault diagnosis

FIGURE 24. Enhanced signals obtained by using TEO and ETEO.
(a) Enhancement effect of simulation signal by TEO. (b) Enhancement
effect of simulation signal by ETEO.

TABLE 3. Theoretical value of the characteristic frequency.

platform with low speed and heavy duty is developed.
Fig. 26(a) shows the fault test bench, (b) structural diagram
of the bearing fault, and (c) and (d) faults in the outer and
inner parts of the rolling bearing, respectively. The theoretical
parameters of the fault frequencies are listed in Table 3.

Based on the collected data, the ES and EES of the signal
are shown in Fig. 27. Fig. 27(a) shows the collected fault
signal of the bearing, and its ES and EES are shown in
Figs. 27(b) and 27(c), respectively. The fault characteristic
frequency of the inner race is 7.17 Hz (the theoretical value
is 7.14 Hz), and its spectral line portraying is submerged
by other powerful interferences. This indicates that the fault
characteristics are difficult to identify.

The TEO effectively heightens the impact component
of the signal and is a good preprocessing method. There-
fore, The TEO and ETEO were used to process the
early fault signals of the bearing inner ring. The results
are shown in Figs. 28 and 29. Fig. 28 illustrates the
heightened signal based on the TEO and its correspond-
ing ES [7.1716 Hz, 0.0003 m/s−2] and EES [7.1716 Hz,
0.0043 m/s−2]. In Figs. 28(b) and 28(c), the features charac-
terizing the characteristic frequencies of the inner-ring faults
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FIGURE 25. Performance comparisons of envelope spectrum and
envelope energy spectrum under original signal, TEO based signal and
ETEO based signal. (a) ES and EES of the original signal. (b) Envelope
spectrum analyses of the TEO and ETEO. (c) Envelope energy spectrum
analyses of the TEO and ETEO. (d) Spectral kurtosis.

FIGURE 26. Low-speed, heavy-duty machinery rolling bearing fault test
bench. (a) Fault test bench. (b) Schematic diagram of a common fault in
rolling bearings. (c) Fault of the outer race of rolling bearing. (d) Fault of
the inner race of rolling bearing.

remain buried by invalid component lines. Fig. 29 illustrates
the heightened signal using the ETEO and its correspond-
ing ES [7.1716 Hz, 0.0002 m/s−2] and EES [7.1716 Hz,
0.0019 m/s−2]. In Figs. 29(b) and 29(c), the amplitudes
of the EES corresponding to the characteristic signal are
greater than those of the ES. Comparing the experimental
results in Figs. 27–29, the EES based on the ETEO is sig-
nificantly better than that based on the other two strategies.
However, the characteristic component is still disturbed by
other invalid spectral lines and is not in the entire frequency
band. Finally, the EVMD is used to decompose the signal
preprocessed by the ETEO, as shown in Fig. 29(a), and the
decomposition is shown in Fig. 30(a). The heightened signal
is decomposed into six IMF components ( IMF1–IMF6),
which correspond to the kurtosis of [1679.2, 755.72, 650.08,
761.13, 1297.7, 1688.4] and the corresponding information
entropy of [0.8910, 0.0278, 0.0305, 0.7850, 0.0126, 0.0676].
The ratios of kurtosis to information entropy (KER) are
calculated and found to be [1881.2, 27184, 61912, 969.59,
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FIGURE 27. Time domain waveform and spectra of the fault signal from
the bearing inner race at 60 r/min. (a) Time domain waveform of fault
signal. (b) ES of the fault signal. (c) EES of the fault signal.

21314, 24976]. The averages of all ratios are calculated as
23039, and ratios greater than the average value are screened
out, that is, [27184, 61912, 24976]. The IMF components
corresponding to the ratios [IMF2, IMF3, and IMF6] are
selected, and the new signal was reconstructed, as shown in
Fig. 30(b). By contrast, Fig. 30(c) shows the EES of the same
signal. The fundamental frequency (7.1716 Hz), which char-
acterizes the fault characteristic frequency of the inner part
and its harmonics (14.3433 and 21.5149 Hz), can be clearly
observed, whereas the interference spectral lines are also
significantly reduced. These results indicate that the proposed
method is more effective and superior than the comparison
methods. To further verify the effectiveness and superiority,
the extraction of the fault signal of the outer race is conducted,

FIGURE 28. Enhancement signal of the inner race fault based on TEO and
its corresponding spectrum. (a) Enhancement signal waveform of the
inner race fault using TEO. (b) ES of the enhancement signal. (c) EES of
the enhancement signal.

and the relevant steps and contents of the verification are the
same as those in the above verification process.

First, the ES and EES of the outer wall are calculated, and
the results are shown in Fig. 31. Fig. 31(a) shows the outer-
race fault signal. Figs. 31(b) and 31(c) show the ES and EES
of the outer race signal respectively, and the fault frequency is
4.88 Hz (the theoretical calculation is 4.86 Hz). The spectral
lines characterizing the fault frequency are overwhelmed by
other useless spectral lines.

The TEO and ETEO are used to heighten the early fault
signal of the inner defect, and the results are shown in
Figs. 32 and 33, respectively. Fig. 32 shows the height-
ened signal based on the TEO and its corresponding
ES [4.8828 Hz, 0.0015 m/s−2] and EES [4.8828 Hz,
0.0826 m/s−2]. However, the spectral lines characterizing the
fault frequency of the outer ring are overwhelmed by the
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FIGURE 29. Enhancement signal of the inner race fault based on ETEO
and its corresponding spectrum. (a) Enhancement signal waveform of the
inner race fault using ETEO. (b) The ES of the enhancement signal. (c) The
EES of the enhancement signal.

irregular interference. Fig. 33 shows the heightened signal
based on the ETEO, and its corresponding ES [4.8828 Hz,
0.0004m/s−2] and EES [4.8828Hz, 0.0074m/s−2] are shown
in Figs. 33(a) and (b), where the spectral line amplitudes and
relative amplitudes of the EES characterizing the fault fre-
quency of the inner are larger than those of the ES. However,
they are distracted by irrelevant spectral interference. Com-
pared with the experimental results shown in Figs. 31–33,
the EES based on the ETEO was significantly better than the
other two methods.

Finally, EVMD is used to decompose the heightened signal
based on ETEO in Fig. 32(a), and the process results are
shown in Fig. 33(a). The heightened signal is decomposed

FIGURE 30. The analysis result from bearing signal with inner race fault
using EVMD and ETEO. (a) The obtained IMF components.
(b) Reconstructed signal of the selected components. (c) The EES of the
reconstructed signal.
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FIGURE 31. The outer race fault signal of bearing and its corresponding
spectra. (a) Fault signal of outer race. (b) The ES of fault signal. (c) The EES
of fault signal.

into six IMF components (IMF1–IMF6), and their cor-
responding kurtosis are [86.625, 44.642, 23.157, 19.616,
26.918, 53.749]. The corresponding information entropies
are [0.2028, 0.1407, 0.2686, 0.2722, 0.2404], the ratios of
kurtosis to information entropy are calculated as [427.14,
317.18, 86.213, 72.064, 111.97, 158.45], and the average
value of the sum of all the ratios is 195.50. Ratios greater
than this average value are filtered [427.14, 317.18]. The

FIGURE 32. Enhancement signal of the outer race fault based on TEO and
its corresponding spectrum. (a) Enhancement signal of the outer race
fault using TEO. (b) The ES of the enhancement signal. (c) The EES of the
enhancement signal.

IMF components [IMF1, IMF2] corresponding to the ratios
are retained and the new signal is reconstructed, as shown
in Fig. 34(b). The envelope energy spectrum of the recon-
structed signal is shown in Fig. 34 (c). From the EES in
Fig. 34(c), the fundamental frequency (4.8828 Hz), which
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FIGURE 33. Enhancement signal of the inner race fault based on ETEO
and its corresponding spectrum. (a) Enhanced signal of the inner race
fault using ETEO. (b) The ES of the enhancement signal. (c) The EES of the
enhancement signal.

characterizes the outer fault frequency, as well as its double
frequency (9.7656Hz) and triple frequency (14.6484Hz), can
be clearly observed. The interference items are significantly
reduced. Therefore, the above experimental results indicate

FIGURE 34. The analysis result from bearing signal with outer race fault
using EVMD and ETEO. (a) The obtained IMF components.
(b) Reconstructed signal of the selected components. (c) The EES of the
reconstructed signal.
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that the proposed method is more accurate than other meth-
ods. Furthermore, it provides a reference diagnosis strategy
for early fault diagnosis of large-scale mechanical equipment
under low speed and heavy duty.

VI. CONCLUSION
In this study, EVMD based on a binomial tree and ETEO is
proposed and combined with EES for the early fault feature
detection of large-scale heavy-duty mechanical equipment
operating under low speed. The results of simulations and real
test experiments proved its effectiveness and superiority. The
conclusions are as follows.

1) The TEO can effectively increase the instantaneous
amplitude of the impact component in the signal. How-
ever, it changes the positive and negative nature of the
micro-impact signal amplitude, which in turn changes the
frequency distribution of the micro-impact signal. The ETEO
is an exact output form of the TEO that maintains the positive
and negative of the original signal; that is, it maintains the
frequency distribution of the original signal.

2) It is difficult to extract the early fault features of large-
scale machinery under low-speed and heavy loads. Conse-
quently, VMD tends to identify the early fault characteristics
as ‘‘noise,’’ and the corresponding shock components cannot
be correctly decomposed into the corresponding IMFs. Using
the ETEO to enhance the original fault signal before decom-
posing it with VMD can effectively prevent the VMD from
identifying it as ‘‘noise.’’

3) VMD parameters must be set in advance. The choice of
relevant parameter values significantly affects the decompo-
sition performance. Although the optimal values of the key
parameters of VMD can be selected automatically using an
intelligent optimization algorithm, the decomposition time
is considerably long, which increases the difficulty of prac-
tical application. In addition, most intelligent optimization
algorithms search only for the optimal value of the [K , α]
combination of the VMD and ignore the effects of the other
parameters on the performance of the VMD. The EVMD has
a fixed mode parameter of K = 2. The embedded parameters
α and τ are dynamically set by the signal to be decomposed
to α = round (E × (fs/2) × log(K ))) and τ = standard
deviation(σ ), respectively. The experimental results indicate
that the method significantly reduces the computing time of
VMD and has a higher accuracy of decomposition, which is
suitable for the real-time demand of practical engineering.

4) Large-scale and low-speed mechanical equipment with
heavy duty are characterized by complex transmission struc-
tures, large load capacities, and low operating speeds. They
work as a typical intermittent transmission mechanism,
and the transmission mechanism is constantly in transition
between starting and braking.

In future research, we will focus on verifying the effec-
tiveness of our proposed method. In particular, it can be used
for fault diagnosis of rotating machinery under noise interfer-
ence. The decomposition accuracy can be further improved

by studying the optimization of the theoretical model for
parameter selection.
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