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ABSTRACT KubeEdge (KE) is a container orchestration platform for deploying andmanaging containerized
IoT applications in an edge computing environment based on Kubernetes. It is intended to be hosted at
the edge and provides seamless cloud-edge coordination as well as an offline mode that allows the edge
to function independently of the cloud. However, there are unreliable communication links between edge
nodes in edge computing environments, implying that load balancing in an edge computing environment
is not guaranteed while using KE. Furthermore, KE lacks Horizontal Pod Autoscaling (HPA), implying
that KE cannot dynamically deploy new resources to efficiently handle increasing requests. Both of the
aforementioned issues have a significant impact on the performance of theKE-based edge computing system,
particularly when traffic volumes vary over time and geographical location. In this study, a node-based
horizontal pod autoscaler (NHPA) is proposed to provide dynamical adjustment for the number of pods of
individual nodes independently from each other in an edge computing environment where the traffic volume
fluctuates over time and location, and the communication links between edge nodes are not stable. The
proposed NHPA can dynamically adjust the number of pods depending on the incoming traffic at each node,
which will improve the overall performance of the KubeEdge-based edge computing environment. In the
KubeEdge-based edge computing environment, the experimental findings reveal that NHPA outperforms
KE in terms of throughput and response time by a factor of about 3 and 25, respectively.

INDEX TERMS Kubernetes, KubeEdge, horizontal pod autoscaler, dynamic resource provisioning, edge
computing, IoT.

I. INTRODUCTION
Over the past few years, the Internet of Things (IoT) has
emerged as an important technology for addressing numerous
social challenges such as agriculture, healthcare, and trans-
portation [1], [2]. IoT enables the communication between
billions of smart devices [3] for collecting and sharing sensi-
tive data. However, deploying and managing IoT applications
are challenging owing to application requirements such as
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latency, sensitivity, resource restriction of IoT devices, and
network bandwidth [4], [5].

Cloud computing has been widely considered in vari-
ous industrial fields, and its applicability has attracted the
attention of researchers [6], [7], [8]. However, the archi-
tecture of cloud computing has fundamental limitations
for deploying and managing IoT applications. The primary
limitation is that cloud computing resources are primarily
located far away from IoT devices. In other words, high
round-trip latency is added to the IoT application response
time. Moreover, because of the massive communication traf-
fic between devices and the cloud, which increases bandwidth
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consumption; hence, communication bottlenecks cannot be
avoided in cloud computing.

To overcome the limitations of cloud computing, edge
computing was introduced to move the computational
resources closer to the data sources (devices) and minimize
the propagation distance of packets from end devices to
the computational resources. By allocating computational
resources, IoT-based edge computing applications can main-
tain low latency and low bandwidth usage [9], [10] because
incoming requests do not need to be transferred to the cloud.

In addition, containerization, represented by Docker, is a
lightweight virtualization technology that packages applica-
tions and dependent libraries so that they can be run in an
independent environment. It has been widely used for deploy-
ing and managing applications in both cloud and edge com-
puting environments due to its portable, flexible, and easy
deployment features [11]. However, deploying and managing
containerized applications requires a container orchestration
platform, such as Kubernetes and KubeEdge (KE), to max-
imize application performance under various circumstances.
Kubernetes [12], [13] is a well-known container orchestration
platform that offers several features, such as service man-
agement and resource provisioning of edge nodes, as well as
assuring service availability. A pod is the smallest deployable
unit in Kubernetes that contains one or more containers.
In Kubernetes, IoT applications are deployed and run on
worker nodes in the form of pods [14]. Furthermore, hori-
zontal pod autoscaling (HPA) provided by Kubernetes can
optimize the application performance and resource cost by
dynamically adjusting the computational resources according
to the actual demand.

KE provides better resource orchestration in an edge com-
puting environment because it enables containerized appli-
cations to operate properly even when the communications
between the cloud node and edge nodes are disrupted [15].
Furthermore, the applications can be deployed to the desired
nodes based on the intentions of administrative personnel.
Load balancing is an important aspect to be considered for
providing seamless services in any computing environment.
In the KE-based edge computing environment, the EdgeMesh
agent distributes incoming requests to all pods in the cluster
for load balancing at each node. But in an edge computing
environment, there are no guaranteed communication links
between edge nodes, which is necessary for load balancing
using EdgeMesh. Load balancing between edge nodes fails
due to a lack of stable communication links between geo-
graphically dispersed edge nodes. Furthermore, because KE
lacks an HPA functionality, edge nodes cannot allocate more
resources dynamically to handle heavy traffic demands. As a
result of unstable communications links and the lack of HPA,
KE is constrained to providing high scalability in an edge
computing environment.

To solve the problems mentioned above, this study pro-
poses a node-based horizontal pod autoscaler (NHPA) that
allocates new computational resources independently for
each edge node to eliminate the effect of the absence of

communication links. Here the main idea is to dynamically
auto-scale the number of pods based on resource metrics
at each node independently to handle the incoming traffic
requirements at the node level. The primary concept of NHPA
is to apply HPA to each node to ensure that each node
can handle incoming requests locally regardless of unstable
communication links to the other nodes.

The remainder of this paper is organized as follows.
Section II presents related work, and Section III describes the
fundamental background of KubeEdge. Section IV describes
the proposed NHPA and how it solves the problem of
KubeEdge in an edge computing environment. The perfor-
mance evaluations of NHPA compared with KubeEdge in
various traffic scenarios are reported in Section V. Finally,
we conclude the paper in Section VI.

II. RELATED WORKS
Edge computing has been considered a new computing
paradigm that moves computing and storage capabilities to
the network’s edge, i.e., nearer to the end devices. Since
its advent, edge computing has received significant attention
from researchers.More specifically, edge computing has been
applied to improve the performance of several technologies,
such as voice/vision recognition [16] and 5G [17]. Moreover,
several studies have focused on resolving obstacles in deploy-
ing applications in an edge computing environment. These
studies have demonstrated that resource provisioning and
dynamic resource allocation play a vital role in the successful
deployment of the application.

Nguyen et al. [18] proposed ElasticFog, which re-allocates
computational resources between edge nodes based on the
network traffic accessing them. To be precise, ElasticFog
distributes more resources to nodes that have more incoming
traffic. Similarly, NetMARKS [19] enables resource provi-
sioning with network traffic awareness to improve the quality
of IoT services. It improves the efficiency of the Kuber-
netes scheduling mechanism by extending the Kube sched-
uler and applying the dynamic networkmetrics collected with
the Istio Service Mesh. Santos et al. [20], [21] proposed a
network-aware scheduling mechanism (NAS), which aimed
to improve the efficiency of the scheduling mechanism of
Kubernetes by extending the Kube-scheduler to reduce the
application response time and avoid bandwidth usage viola-
tion. Some studies suggest using a leader to coordinate tasks
among pods to achieve good performance. Because of its
inherent design, the leader often carries heavy workloads.
Having the leaders of multiple applications concentrated in
a particular node in a Kubernetes cluster may cause the
system to bottleneck. So some studies like [22] provide leader
selection algorithms that solve the bottleneck problem by
uniformly distributing the leaders among nodes in the cluster.
Although the experimental results of the study mentioned
above show that the developed mechanisms are highly effec-
tive, they cannot be thoroughly applied in such an edge com-
puting environment because they do not consider unstable or
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unestablished communication links resulting from the geo-
graphical distribution of the edge nodes.

Phuc et al. [4] proposed a traffic-aware horizontal pod
autoscaler (THPA) that provides proper resource autoscal-
ing according to the actual network traffic accessing edge
nodes in an edge computing environment. In other words,
THPA collects network traffic information and calculates
the number of pods that need to be adjusted on each edge
node to ensure that IoT service performance can be improved
compared with Kubernetes default autoscaling (KHPA). Sim-
ilarly, Libra [23] provides a hybrid resource autoscaling
mechanism by leveraging both the vertical and horizon-
tal autoscaling mechanisms of Kubernetes. Libra aims to
improve autoscaling by calculating and adjusting the appro-
priate resource limit for every pod in the cluster.

In addition to conventional approaches, several studies
have applied machine learning (ML) to improve the effi-
ciency of existing autoscaling mechanisms. One such mech-
anism that uses ML is HPA+ [24]. HPA+ was developed
to provide a proactive autoscaling mechanism to improve
the quality of IoT services by employing a multi-forecast
ML model to make scaling decisions. Tenfei Hu et al. [25]
applied a forecast model to precisely predict the num-
ber of pods in the cluster; thus, the application perfor-
mance can be optimized based on the load fluctuation.
Dong et al. [26] proposes JCETD (Joint Cloud-Edge Task
Deployment), a reinforcement learning and pruning algo-
rithm based resource management and task deployment
strategy.

In addition, the KE platform has also been considered
in certain studies to improve the application performance
in an edge computing environment. For instance, in [16],
KE was applied to improve the efficiency of spectrum intelli-
gent applications by solving terminal storage and computing
resource problems. The researchers proposed that the algo-
rithm can be trained on the cloud side based on KE spectrum
sensing architecture while interference occurs at edge nodes.
In [27], the authors proposed a novel edgemesh framework
developed on theKE platform to fit dynamic latency-sensitive
multiple service circumstances.

The studies mentioned above have made numerous con-
tributions to solving the problem of the existing resource
allocation mechanisms, such as KHPA and Kube scheduler.
However, they continue to ignore the unstable or estab-
lished communication links between nodes, which is one
of the essential characteristics of an edge computing envi-
ronment. Therefore, in this study, we propose the NHPA
mechanism that independently adjusts the number of pods
on nodes to maximize the application performance regarding
response time and throughput in a KE-based edge computing
environment.

III. PRELIMINARIES
This section introduces KubeEdge principles, the primary
components of KubeEdge, and how KubeEdge works.
We also address the Horizontal Pod autoscaling algorithm

and its working, as well as the issues that Horizontal Pod
autoscaling faces, particularly in Edge Computing contexts.

A. KubeEdge
KE is an open-source orchestration platform built on Kuber-
netes [15] for extending native containerized applications to
edge computing. One of the primary goals of KE is to pro-
vide a variety of functions in the network infrastructure that
connects the cloud and the edges, such as service deployment
and metadata synchronization.

Like Kubernetes, KE forms a cluster with a master node
in the cloud and edge nodes at the edges. The main com-
ponents of KE are Edged, EdgeHub, CloudHub, EdgeCon-
troller, EventBus, DeviceTwin, MetaManager, ServiceBus,
and DeviceController. EdgeD is an agent on edge nodes that
manages the pod life cycle. It helps users to deploy container-
ized workloads or applications at the edge node. EdgeHub
is a web socket client responsible for updating cloud-side
resources to the edge and reporting status changes from the
edge-side host and device to the cloud. In contrast, CloudHub
is a web socket server responsible for updating cloud-side
changes, caching, and sending update messages to EdgeHub.
In KE, the data can be targeted to a specific edge node
by the EdgeController, an extended Kubernetes controller.
In contrast to Kubernetes, KE supports components’ pub/sub
capabilities by implementing the EventBus, an MQTT
client/server model. DeviceTwin is responsible for storing
device statuses and updating their statuses on the cloud
side. Devices metadata can be stored in MetaManager in a
lightweight database (SQLite) that enables applications eas-
ily retrieve necessary information. Finally, DeviceController
manages devices to ensure that the device metadata/status
data can be synchronized between the edge and cloud by
extending the Kubernetes controller. In contrast, ServiceBus
offers a reachable HTTP connection from cloud components
to the servers running at the edge. In KE, the network con-
nectivity is provided by EdgeMesh [28], which ensures the
continuity of applications even when the connection between
the edge and cloud is disrupted. The EdgeMesh component
comprises two main sub-components: the EdgeMesh Server
and EdgeMeshAgent.While EdgeMesh Server is responsible
for establishing a connection with the EdgeMesh Agent to
provide relay and hole punching capability, EdgeMesh Agent
ensures that incoming traffic can reach the backend pods
running on the edges.

Load balancing allows you to spread the workload evenly
among available resources. Its goal is to provide contin-
uous service if any component fails by provisioning and
de-provisioning application instances to utilize resources
properly. Furthermore, load balancing tries to reduce task
response time and optimize resource usage, which improves
system performance at a reduced cost. Load balancing also
offers scalability and flexibility for applications whose size
may rise in the future and demand additional resources,
as well as prioritize jobs that require immediate execution
above other processes.
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Load balancing is achieved in KubeEdge-based edge com-
puting systems through the EdgeMesh agent, which acts as
a network load balancer by forwarding incoming requests
using the random, round-robin, and session persistence meth-
ods. As a result, device requests can be efficiently handled
by distributing them to local and remote backend pods on
the cluster’s edge nodes where the requests are processed.
However, in edge computing environments, this approach has
several disadvantages, including:

1) In Edge computing environments, the pods of an appli-
cation can be geographically dispersed, which can
incur significant delays when the requests are for-
warded from one node to another. Also, in geograph-
ically distributed systems, the traffic load varies by
location and time [29], resulting in a demand imbalance
across nodes.

2) Forwarding requests to nodes without knowing the sta-
tus of their resources can result in non-optimal results.
Some nodes are too busy to manage a high traffic
volume, while others remain idle [20], resulting in
degraded overall performance.

3) In an environment such as edge computing, where
communication links between nodes might be unstable
or even absent, any attempt to distribute the incoming
requests between nodes can reduce the overall perfor-
mance of the system.

B. HORIZONTAL POD AUTOSCALER
The Horizontal Pod Autoscaler (HPA) is a representative
technology for providing high scalability and availability in
Kubernetes that regularly alters the number of computational
resources (pods) in the cluster. It ensures that the cluster’s
state always meets the desired state according to the specified
metric values [30]. Furthermore, the HPA is configurable
with metrics such as CPU, memory, and custom metrics to
support various usage circumstances.

The workflow of HPA is illustrated in Algorithm 1 [4].
In each period denoted by HPA_Sync_Period , HPA collects
the number of current pods in the cluster (curPods), the
current metric value (curMetricVal), and the desired metric
value (dMetricVal). Subsequently, it calculates the desired
number of pods in the cluster (dPods) based on the ratio
(in line 5). If the desired number of pods in the cluster differs
from the current number of pods in the cluster, the number of
application pods in the cluster is adjusted by the HPA (line 8
in Algorithm 1).

The upscaling process is invoked if the desired number
of pods is greater than the current number of pods in the
cluster, whereas the downscaling process is invoked in the
opposite case. For instance, given that the CPU usage metric
is enabled, assume that all pods’ current average CPU usage
is 100 m (where m stands for millicore) and the desired CPU
metric value is 50 m. HPA doubles the number of pods in
the cluster. In contrast, when the current CPU metric value
is 50 m and the desired CPU metric value is 100 m, HPA
halves the number of pods in the cluster. Let n denote the

Algorithm 1 HPA Algorithm [4]
pods : list of application pods in cluster .
curPods : current number of application pods.
dPods : desired number of application pods.
curMetVal : current metric value.
dMetVal : desired metric value.
HPA_Sync_Period : HPA sync period .

——————————————————————-
1: while true do
2: curPods = getCurPods()
3: curMetVal = getCurMetricValue(app)
4: dMetVal = getDesiredMetricValue(app)
5: ratio = curMetricVal ÷ dMetricVal
6: dPods = ceil[ratio× curPods]
7: if dPods ! = curPods then
8: setDesiredPods(app, dPods)
9: end if
10: time.sleep(HPA_Sync_Period)
11: end while

number of nodes in the cluster. Lines 2-6 will take one unit of
time(constant) and the function setDesiredPods(app, dpods)
in line 8 sets the number of pods by allocating new pods for
each edge node (upscaling) or terminating pods for each node
(downscaling), it needs to send commands to n nodes. There-
fore, we can say that the time complexity of Algorithm 1
is O(n). Although HPA is an essential feature for dynamic
resource orchestration, it is not a default option of KubeEdge.
Thus, it cannot handle incoming traffic dynamically if the
amount of traffic is high.

IV. NODE-BASED HORIZONTAL POD AUTOSCALER
In this section, we will go through the KubeEdge-based edge
computing architecture and highlight some of the current
issues that KHPA is dealing with. Then, we discuss NHPA,
its working, and the detailed algorithm of NHPA.

A. KubeEdge-BASED EDGE COMPUTING ARCHITECTURE
Figure 1 (a) illustrates the architecture of a KE-based edge
computing system. The application is deployed on edge nodes
in the form of pods and can be accessed by IoT devices.
Notably, the EdgeMesh agent is enabled and configured with
a round-robin-based traffic forwarding mechanism on each
node to ensure that the traffic loads are evenly distributed
among application pods in the cluster. In other words, local
and remote pods handle incoming traffic at each node. Thus,
none of the nodes becomes overloaded solely because traffic
distribution of the EdgeMesh agent.

However, in an edge computing environment, edge
nodes are geographically dispersed. Thus, their communi-
cation links might not be stable or even existent. Because
EdgeMesh’s load balancing works on connected worker
nodes, it cannot provide round-robin-based traffic forwarding
in an edge computing environment where the links between
nodes are unstable or absent, as shown in Figure 1 (a).
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FIGURE 1. (a) KubeEdge-based edge computing architecture, and (b) Node-based HPA in
KubeEdge-based edge computing architecture.
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For example, although the volume of incoming traffic at
Node 1 is high as it deals simultaneously with seven devices,
the EdgeMesh agent on Node 1 cannot spread incoming
traffic because of unstable or absent links. Thus, traffic at
Node 1 can only be handled by local pods, which might
lead to an overload at Node 1 when handling heavy traffic
concentrated from seven devices.

In addition, the number of pods on edge nodes is fixed
because KE does not necessarily include an HPA feature.
However, to adapt to the actual demand from IoT devices
that fluctuates over time and locations in an edge computing
environment, the number of pods on edge nodes can be
adjusted based on their workload in real-time and locations.
In particular, as shown in Figure 1 (a), more application pods
should be allocated to Node 1 to adapt to the demand of
seven IoT devices to reduce resource overload and improve
application performance.

By carefully considering the abovementioned problems
in an edge computing environment, we propose an NHPA
that independently adjusts the number of pods on edge
nodes to maximize the application performance. As shown in
Figure 1 (b), because the communication links between edge
nodes are not established, the NHPA adjusts the number of
pods at each edge node independently based on resource
usage. Thus, the number of pods on Node 1 becomes nine,
while other nodes retain the same number of pods as earlier.
Therefore, the number of incoming requests at Node 1 can
be handled effectively and locally, even without cooperation
with other nodes.

B. NODE-BASED HORIZONTAL POD AUTOSCALER
This subsection describes the details of the proposed NHPA.
Generally, KE does not provide HPA, although it is inher-
ited from Kubernetes. Thus, it cannot provide scalability
for workload fluctuations. For example, in Figure 1 (a),
we assume that a KE system comprises three edge nodes
with one application pod, which are not mutually connected
because of the geographical distribution. Although the num-
ber of devices accessing Node 1 increases to seven, the
number of pods on Node 1 remains one because of the
lack of autoscaling features. Consequently, the application
performance at Node 1 will deteriorate as Node 1 becomes
overloaded with traffic from seven devices. Furthermore,
it cannot offload the traffic to the remote edge nodes because
of the absence of connecting links.

Therefore, to adapt to fluctuations in traffic for each loca-
tion (node), we propose NHPA that can independently adjust
the number of pods for each node based on its workload.
This approach is more flexible and efficient than HPA as each
node can independently adjust the number of pods as per its
requirement, hence it also doesn’t require any coordination
between edge nodes. Details of the underlying mechanism of
NHPA are presented in Algorithm 2. The primary benefit of
NHPA is that it works for each node individually in contrast
to the HPA in Algorithm 1. Thus, the information such as
the current number of pods in the cluster (curPods), current

Algorithm 2 NHPA Algorithm
Nodes : list of edge nodes in cluster .
pods : list of application pods in cluster .
curPods : current number of application pods of each
node.
dPods : desired number of application pods of each
node.
curMetVal : current metric value of each node.
dMetVal : desired metric value of each node.
HPA_Sync_Period : HPA sync period .

——————————————————————-
1: while true do
2: for node ∈ Nodes do
3: curPods = getCurPods(node)
4: curMetVal = getCurMetricValue(app, node)
5: dMetVal = getDesiredMetricValue(app, node)
6: ratio = curMetricVal ÷ dMetricVal
7: dPods = ceil[ratio× curPods]
8: if dPods ! = curPods then
9: setDesiredPods(app, dPods, node)

10: end if
11: end for
12: time.sleep(HPA_Sync_Period)
13: end while

metric value (curMetVal), the desired metric value (dMetVal)
and the desired number of pods in the cluster (dPods) are
measured and calculated from the perspective of an individual
node in Algorithm 2. Subsequently, if the desired number of
pods differs from the current number of pods, the desired
number of pods in the cluster will be updated, and scaling
will occur. For instance, in Figure 1 (b), NHPA can adjust
the number of pods at Node 1 to nine while retaining one at
Nodes 2 and 3 to handle the increasing traffic. Consequently,
the nine pods at Node 1 can efficiently handle incoming
traffic from seven devices without the need to distribute it to
other nodes. Let n denote the number of nodes in the cluster.
The loop started in line 2 of Algorithm 2 will be executed
n times and the rest of the lines 3-10 will take one unit of
time(constant). Therefore, we can say that the time complex-
ity of Algorithm 2 is O(n). Here we need to consider that the
setDesiredPods() function in line 8 of Algorithm 2 is executed
one time for a specific node, while the setDesiredPods()
function in Algorithm 1 requires a repetitive process for n
nodes. Hence, the proposed approach can ensure an effective
pod autoscaling feature in an edge computing environment
with unstable or absent links between edge nodes.

V. PERFORMANCE EVALUATIONS
In this section, we first define the experimental setup and the
performance assessment criteria. Then we enlisted some sce-
narios to be tested for performance comparison in normal and
overloaded behaviours. Further, we examine the outcomes of
pod distribution with and without NHPA. We also test the
performance of NHPA utilizing throughput and latency at one
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TABLE 1. Pods distribution according to network traffic accessing cluster.

FIGURE 2. Experimental setup.

edge node. Finally, we analyze the performance of NHPA at
the cluster level.

A. EXPERIMENTAL SETUP
In this section, we evaluate the performance of NHPA
in terms of throughput and latency in various scenarios.
A KE cluster was set up as shown in Figure 2, which includes
one master node, three edge nodes, and one for generating
traffic.

The communication links between edge nodes are unestab-
lished to simulate actual edge computing environment con-
ditions. All machines were equipped with six CPU cores
and 8 GB of RAM, and the KE version used in the cluster
was 1.9.1. A hey tool is installed on the traffic generator
machine to send requests to the application. The number
of pods in the KE cluster was set to three by default, and
they were evenly distributed across the three edge nodes. For
NHPA, the minimum and the maximum number of pods and
average CPU usage threshold were set as 3, 12, and 80%,
respectively.

B. PODS DISTRIBUTION ACCORDING TO NETWORK
TRAFFIC
Table 1 compares the pod distribution between the cases in
which KE is used without the NHPA feature and when NHPA

is applied to KE in various scenarios. From here on, we use
the format x:y:z to represent the proportion of concurrent
requests accessing nodes and x-y-z to represent the distribu-
tion of the pods in the cluster. For example, 1:1:1 indicates
the case with one request accessing each node, while 1-1-1
denotes each node having one application pod. Furthermore,
Table 1 shows that the number of pods in KE remains constant
regardless of traffic types, whereas NHPA adjusts them to
adapt to the traffic distribution. For example, in 1:1:1 traffic,
although one application pod cannot effectively handle one
concurrent request, KE maintains one pod on each node.
In contrast, NHPA adjusts the number of pods in each node
to 2-2-2 to effectively handle the traffic demand based on
the average CPU usage. In particular, NHPA scales up the
number of pods at the node scale to ensure that each node has
a sufficient number of pods to handle the incoming requests
locally. For example, when the distribution of traffic is bal-
anced (e.g., 3:3:3), NHPA increases the number of pods on
each node to 5. In contrast, the pod distributions in the cluster
are changed to 8-4-4 and 9-2-2, respectively, for imbalanced
traffic in cases such as 5:2:2 and 7:1:1. Consequently, appli-
cation performance when using NHPA is considerably higher
than that of KE, which will be scrutinized in the following
sections.

C. APPLICATION PERFORMANCE AT ONE EDGE NODE
To demonstrate the efficiency of NHPA in an edge computing
environment, we estimated the application throughput and
response time of NHPA and KE at Node 1, as shown in
Figure 3. Because the communication links between nodes
are not established, EdgeMesh Agent at Node 1 only for-
wards incoming traffic to the local pods of Node 1. Thus, the

FIGURE 3. Application performance at Node 1 in terms of response
time (a), and throughput (b).
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incoming traffic is handled locally by the pods on Node 1.
Furthermore, KE enables the configuration of the number
of pods to be changed according to traffic demand. Thus,
we used the 1, 3, and 6 pods configuration in this evaluation.
In NHPA, we initially set the number of pods to one. In any
case, it can dynamically autoscale the number of pods based
on the traffic volume. To compare the performance according
to the amount of traffic, we increased the number of concur-
rent requests accessing the application service on the node
from 1 to 9.

As shown by the observed average response time in
Figure 3 (a), a higher number of pods at Node 1 enables
the system to handle more incoming requests without delay,
thereby lowering the application response time. However,
KE lacks dynamic scaling of the number of pods, which
limits its ability to handle incoming requests effectively. For
example, as it requires two pods to handle one concurrent
request, as already discussed in Table 1, KE (one pod) results
in a high response time because it cannot increase the number
of pods. KE (three pods) and KE (six pods) achieved low
response times for one concurrent request based on sufficient
resources; however, the response times tended to increase
as the number of concurrent requests increased. In contrast,
NHPA exhibits a steady increment in response time from
2.6 ms to 4.9 ms because it allocates a sufficient number of
pods, i.e., 2, 5, 9, and 11 for 1, 3, 5, and 9 concurrent requests,
respectively.

Figure 3 (b) compares the throughput of NHPA and KE
according to the increase in traffic accessing Node 1. It shows
that the throughput increases as more pods are allocated in the
case of KE; however, the maximum achievable throughput
is limited by the number of pods. For example, the maxi-
mum throughput with one pod, three pods, and six pods is
approximately 65, 144, and 284 req/s, respectively, and it
cannot increase further, even in the case of higher network
traffic. Furthermore, the number of available resources lim-
its the maximum achievable throughput. In contrast, NHPA
dynamically adjusts the number of pods according to network
traffic. For instance, it allocates 2, 5, 9, and 11 pods for
one, three, six, and nine concurrent requests, respectively.
Therefore, we can conclude that NHPA improves throughput
by allocating pod resources proportionally to the network
traffic volume that accesses each node.

D. APPLICATION PERFORMANCE AT CLUSTER SCALE
To analyze the effect of pod distribution on the overall system
performance in an edge computing environment, this subsec-
tion evaluates the application response time and cumulative
throughput of KE and NHPA according to scenarios 2, 3,
and 4 of Table 1. We evaluated the network traffic access-
ing each edge node such as 3:3:3, 5:2:2, and 7:1:1, and
NHPA dynamically allocates the number of pods to 5-5-
5, 8-4-4, and 7-1-1 to accommodate each traffic pattern as
reported in Table 1. KE, on the other hand, cannot dynam-
ically adjust and has a fixed number of pods. By default,
KE allocates one pod to each node, noted as KE (1-1-1),

FIGURE 4. Application response time at three nodes.

as listed in Table 1, but we extend the evaluation cases such
as KE (3-3-3) and KE (6-6-6) that each edge node is allo-
cated three and six pods respectively for the fair comparison
with NHPA.

Figure 4 shows that the response time of KE varies accord-
ing to the amount of incoming traffic because it maintains
a constant number of pods at each node. In contrast, NHPA
maintains a low response time regardless of the type of traf-
fic. In other words, the application response times in both
KE and NHPA tend to be reduced for smaller traffic and
higher resources. This result can be attributed to the fact
that the incoming requests are handled by local edge nodes
owing to the lack of communication links between nodes.
When the traffic accessing the cluster is balanced (e.g.,3:3:3),
all nodes have the same response time because they have
the same number of pods. However, KE (1-1-1) exhibits a
response time greater than 50 ms, whereas others exhibit
a low response time of less than 10 ms. This discrepancy
in response time indicates that one pod at each node can-
not efficiently handle three concurrent requests immediately,
resulting in a processing delay. For imbalanced traffic, such
as 5:2:2 and 7:1:1, we observe that the response time at
Node 1 in KE increases as the incoming traffic increases.
This result demonstrates that each node in the KE has a
predetermined and fixed number of pods. Thus, the system
cannot dynamically adapt to increasing traffic. In contrast,
NHPA shows a low response time regardless of the traffic
pattern and amount of traffic accessing each node. This low
response time can be achieved because each node in the
NHPA adjusts the number of pods dynamically and inde-
pendently, according to the traffic load from the other edge
nodes.

Figure 5 shows the cumulative throughput of KE and
NHPA against diverse network traffic patterns. In general,
the cumulative throughput of the KE tends to increase for the
allocated pod resources, but it decreases as the traffic con-
centrates on Node 1. For example, the aggregated throughput
for 7:1:1 decreases compared with 3:3:3 for all pod distribu-
tions in the KE. However, in this case, the total amount of
incoming traffic of 3:3:3, 5:2:2, and 7:1:1 is the same, and
only the traffic distribution accessing each node is different.
In KE, as the traffic concentrates on Node 1, the throughput
of Nodes 2 and 3 decreases owing to the reduced incoming
traffic, whereas that of Node 1 is bounded owing to the fixed
number of pod resources. In contrast, NHPA independently
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FIGURE 5. Application cumulative throughput at three nodes.

adjusts the number of pods of each node in all traffic cases;
thus, it achieves a high aggregated throughput regardless
of the traffic distribution. Especially in imbalanced traffic,
such as in the case of 7:1:1, NHPA achieves approximately
219%, 81%, and 18% higher throughput than KE (1-1-1),
KE (3-3-3), and KE (6-6-6), respectively, by allocating more
pods to Node 1. Therefore, we can conclude that NHPA
improves the overall performance for all types of traffic dis-
tribution accessing the edge computing environment by fully
utilizing the available resources of each node independently
and dynamically.

VI. CONCLUSION
KubeEdge-based edge computing environments are widely
used in the distribution and administration of containerized
IoT applications because they allow applications to operate
smoothly even when connections between the cloud and the
edge are disrupted. However, communication links between
nodes may be weak or even nonexistent in edge comput-
ing environment where edge nodes are geographically dis-
tributed, therefore KubeEdge’s load balancing that forwards
requests to remote nodes may fail. Although the edge node
needs to handle the incoming request locally in this case,
KubeEdge lacks a mechanism for dynamically allocating
computing resources. In this study, we proposed NHPA,
which independently adjusts the number of pods in the cluster
for each edge node to maximize application performance
regarding response time and throughput. The experimental
results showed that the NHPA performed better than KE
in the KubeEdge-based edge computing environment. When
compared to KE, the throughput and response time of NHPA
were reduced by a factor of 3 and 25, respectively. Therefore,
we concluded that providing resource autoscaling indepen-
dently for each node can significantly improve application
performance by removing the effect of unstable communi-
cation links in an edge computing environment.
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