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ABSTRACT Maximizing the damage by attacking specific nodes of the combat network can efficiently
disrupt enemies’ defense capability, protect our critical units, and enhance the resistance to the destruction
of system-of-system (SOS). However, the modeling of the combat network damage is not practical enough.
In this paper, we report a more realistic model to study the combat network damage maximization problems.
By analyzing realistic situations, the cost of damage is redefined based on the network topology and the
functional characteristics of nodes. The damage effect is also updated according to the combat network
topology and operational capability. Hence, a cost-limited damage maximization model for the combat
network is constructed. In addition, to obtain optimal solutions, an improved genetic algorithm (IPGA) based
on prior information is proposed. As a result, our method has a significant advantage in the feasibility and
effectiveness compared with other algorithms in experiments. The attack pattern of the combat network
and the convergence and complexity of the proposed algorithm are further explored. The improved model
and algorithm, as well as the mined attack patterns, can provide support for military decisions.

INDEX TERMS Combat network, damage maximization, improved genetic algorithm, limited costs.

I. INTRODUCTION
With the fast development of the social economy, there
is an increasing number of complex networks significantly
affecting our lives, such as the Internet, Internet of Things,
transportation networks, power networks, communication
networks and so on [1]. These complex networks have
stimulated the interest of many researchers. For instance,
Barabási et al. explored the emergence of scaling in random
networks and concluded that the nodes degree follows a
scale-free power-law distribution [2], Bollobás et al. [3] also
proved the same results; Boccalettia et al. [4] discussed the
structure and dynamics of complex networks and Orsini et
al. [5] further investigated the randomness in real networks.
The network has brought so many things together so it is
an era of network interconnection now. However, while the
network brings us considerable convenience, it also produces
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a lot of hidden dangers, such as computer viruses, epidemics
and rumors, which have led to plenty of disasters. How to
protect the critical elements of these networks from attacks
and maintain the robustness of those systems are the top
questions to be answered [6]. In addition, some harmful
networks, such as terrorist relationship networks and drug
trading networks, can be inversely traced or destroyed by
searching a set of important nodes [7]. From the perspec-
tive of network damage, mining the important nodes set
can effectively protect or destroy the network. This idea is
also applicable to combat networks. Under the condition of
informatization, there are complicated interactions among the
various subsystems and weapon equipment units, forming a
complex and large-scale combat network. In order to ensure
the reliability and survivability of the combat system in a
complex electromagnetic environment, it is essential to pro-
tect the combat network by finding the critical nodes [8]. For
the enemy, destroying important combat units can quickly
disrupt their combat network, which allows us to gain an
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operational advantage. Hence, analyzing the disintegration
strategy of the combat network can give strategic support
for military actions against the adversary and guidance for
improving our combat networks’ invulnerability [9]. What
we need to do is to find the best way to attack and destroy a
network by node removal [10]. In this paper, we will explore
the important parts of a combat network from a view of the
network attack, which enables us to protect our important
facilities in a targeted manner and quickly disintegrate the
enemies’ combat capabilities.

After extensive research on the robustness of the network
in the past, research topics related to network damage have
also received considerable attention in recent years. The
network damage maximization problem can be analogized
to the influence maximization problem [11]. The influence
maximization problem aims to affect others as much as pos-
sible by a small set of specified seeds according to a certain
propagation model [12]. Similarly, the performance of the
network is expected to be degraded as much as possible by
destroying a limited set of critical nodes in the network dam-
age maximization problem. However, conducting network
prioritized attacks through the most common importance
indicators, such as node degree centrality [13], [14], between-
ness centrality [15], eigenvector centrality [15], closeness
centrality [16] and topological potential [17], often fails to
achieve the optimal damage effect, despite their relatively
low computational complexity. In addition, network damage
maximization is as NP-hard as influence maximization. And
most of the current methods for solving these combinatorial
optimization problems require support from heuristic algo-
rithms [18], swarm intelligence algorithms [19], or other
algorithms to approximate the optimal solution. For example,
Liu et al. used the combination of degree and betweenness
as a heuristic factor to improve the search efficiency and
proposed a greedy algorithm based on node importance to
find an important set of nodes [20]; Deng et al. utilized a
tabu search optimization algorithm to find the optimal attack
strategy for complex network disintegration [21]; Consider-
ing the cascading failure in network damage, Zhang et al.
tested a multi-objective optimization algorithm to maximize
network damage in a simultaneous attack mode by adding
the minimum number of attack nodes into the target [22].
However, there are two disadvantages in the above studies,
namely ignoring the heterogeneity of damaged nodes and the
importance of damage cost, which make the damage cost of
each node almost at the same expensive level.

As for the network damage problem with heterogeneous
nodes, Qi et al. studied the multiple links connected by
layer nodes in multiplex networks, and reported an opti-
mal disintegration strategy based on tabu search [23], [24];
Deng et al. constructed the heterogeneous costs of network
disintegration based on the network topology and discussed
the disintegration strategy for complex networks under cost
constraints [25]; To reduce the total damage costs, Li et al.
[26] explored an elitism-based multi-objective evolutionary
algorithm to investigate the robustness of complex networks

based on Deng et al.’s research [25]. The node heterogeneity
and damage costs considered in these studies are mainly
derived from the topology of complex networks. However,
the functional characteristics of the network have not been
taken into account, which means the damage effect has less
practical meaning. Hence, they can not be directly applied
to combat networks. After the above analysis, a comparison
among the existing works are summarized in Table 1.

To improve the network damage maximization model by
measuring the node heterogeneity and damage cost properly,
and make it applicable to combat networks, it is necessary to
consider the damage maximization problem based on more
realistic assumptions, especially for the combat network.
The first step is to build a reasonable model of the combat
network. Li et al. [27] constructed a heterogeneous network
model of the combat system-of-system (SOS) with limited
information to disintegrate the network. According to the
modeling method reported in [27], we establish a more real-
istic combat network model compared with previous studies.
The second step is to estimate the damage cost. Since there
are limited resources that can be allocated in the practical
battle, the damage capability is limited by a certain cost.
As mentioned in the preceding, the damage cost can not be
estimated simply based on the network topology. In order to
reassess the damage cost more precisely, it is necessary to
introduce the node capability and defense efficiency into the
calculation model.What is more important, different levels of
strike intensity according to the combat determination should
also be considered in combat network damage. In this paper,
we establish a damage maximization model which can attack
a set of certain nodes in a combat network with limited costs.
We also propose an optimal algorithm to approximate the best
damage result. In addition, the performance of this algorithm
is examined under various conditions and constraints.

This paper is organized as follows. In Section II, the com-
bat network model is established at first. Then a realistic
calculation method of the combat network damage cost as
well as the damage effect is proposed, respectively. The dam-
age maximization model for a combat network with limited
costs is constructed accordingly. To solve the mathemati-
cal optimization problem, Section III presents an improved
genetic algorithm (IPGA) based on the prior information.
In Section IV, the comparative experiments based on the
simulated combat networks are carried out to illustrate the
feasibility and effectiveness of the proposed algorithm and
its superiority over common algorithms. The attack law and
algorithmic properties are further explored. Finally, the con-
clusions, limitations and future directions are remarked on in
Section V.

II. DAMAGE MAXIMIZATION MODEL OF COMBAT
NETWORK WITH LIMITED COSTS
A. COMBAT NETWORK MODEL
In general, when we apply network science to the study of
the modeling problem of combat SOS, combat units and
the interactions among them are often represented as nodes
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TABLE 1. Advantages and disadvantages of various methods.

(vi ∈ V ) and edges (ei ∈ E) of an undirected complex
network, denoted as G(V ,E). The scales of nodes and edges
are N = |V | and M = |E|, respectively. Note that different
combat units may have different functions in combat SOS,
which means that one unit can either be regarded as one node
by itself or be decomposed into several nodes with different
sub-functions. In this paper, we will adopt the early warning
intelligence combat SOS as the specific research context.
Accordingly, the nodes can be divided into four categories
by their functions, namely the intelligence obtaining node O,
intelligence processing node P, commanding and decision
node D, and attack/damage node A. In addition, there are
different relations among them, such as communication,
intelligence analysis and transmission, cooperative detec-
tion, coordinate command, and fire strike. For the early
warning intelligence combat network, the specific types of
node connections mainly include O–O, O–P, P–P, P–D,
D–D, and D–A, which constitute a complex network.
To express the heterogeneous information contained in the
actual combat network, we consider both the topology and
the functional attributes when measuring the damage costs.

For the convenience of reading, a glossary of the notations
used in this paper is presented in Table 2.

B. CALCULATION OF DAMAGE COSTS
For a complex network, Deng et al. adopted the exponential
power of node degree as the damage cost of each node [25],
which can measure the damage costs well. We will improve
the calculation of damage costs based on this.

In the practical combat network, different nodes possess
different levels of importance according to their functional
attributes (such as communication capabilities) and self-
defense attributes (such as deployed location, maneuverabil-
ity, camouflage capability, defense capability, and self-repair
capability), which will affect the damage costs significantly.
It is natural to apply a method of multi-attribute evaluation
to study the importance of different nodes. Then the damage
costs can be adjusted based on node importance. Taking the
intelligence obtaining node O as the reference, we define its
correction coefficient λ as 1 and the correction coefficients of
the remaining nodes P, D, and A as 1.4, 1.6, and 1.1, respec-
tively. We denote the corrected node damage cost vector as
C = [c1, c2, · · · , cN], then the damage cost of each node is

TABLE 2. List of symbols.

expressed as

ci = λdiγ , (1)

where di is the degree of node vi, γ is a power parameter
reflecting the sensitivity to damage costs and it is all the same
for nodes in the combat network [25]. When λ and γ are both
equal to 1, all network nodeswill have the same damage costs.
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During the damage process of a combat network through
finite nodes, the nodes with high damage costs will consume
a lot of resources. Therefore, it is necessary to select some
suitable targets to maximize the damage effect when there
is a cost upper bound constraint. The cost upper bound is
generally measured by a certain percentage of the total cost,
represented as

Cmax = ρ

N∑
i=1

ci , (2)

where ρ ∈ [0, 1] is the proportional parameter of the total
cost constraints.

C. MEASURE OF DAMAGE EFFECT
In the normal network damage problem with a damage
cost constraint, the measure of damage effect is usually
represented by the network efficiency (common indicator for
communication networks) or the relative size of the maxi-
mum connected patch. Considering the structural characteris-
tics and the actual operational meaning of a combat network
itself, the damage effect of a combat network is supposed to
be described from two aspects.

The first aspect is about the damage effect measure accord-
ing to the topology of a combat network. The scale of the
maximal component is selected as an index of the damage
effect of a combat network. One individual component is a
subgraph with connectivity and isolation in the network. As a
result, the maximal component is a subgraph with the largest
node scale in the network, which is denoted as Shuge. With the
increase of the scale of the maximal component in the combat
network, the interconnections among combat network nodes
get closer and the information flow efficiency of the combat
network becomes higher. In this paper, we adopt the approach
of node shrinking to iteratively calculate the scale of the
maximal component [28].

The second aspect is about the damage effect measure
based on the operational capability of a combat network. The
number of attack links can be used to describe the opera-
tional capability of a combat network [29]. In the case of
the combat network for early warning intelligence SOS, the
number of intelligence effectiveness links (IELKs) Slinks is
introduced to measure the operational capability. According
to the idea of Boyd’s OODA cycle [30], the combat network
exerts operational capability by forming an IELK of ‘intel-
ligence obtaining–intelligence processing-commanding and
decision–attack and damage’ around the target, namely the
OODA attack link. For a more general IELK, the mutual
coordination among the intelligence obtaining node O, the
intelligence processing node P, and the commanding and
decision node D should also be taken into consideration. The
flow of generalizing IELK with a target is demonstrated in
a generalized intelligence effectiveness loop (IELP), which
is shown in Figure 1. Since the node cooperation in gener-
alized IELK may lead to an infinite long link, seven types
of IELKs commonly used in practice are selected as the basis

FIGURE 1. Generalized IELP diagram.

TABLE 3. Seven types of common IELKs and their definitions.

for quantity calculation [29]. The detailed description of those
IELKs is indicated in Table 3.

The accessibility matrix S̃ of the entire combat network is
calculated according to the adjacency matrix S of the combat
network:

(S+ I)(1) 6= (S+ I)(2) 6= · · ·

6= (S+ I)(r) = (S+ I)(r+1) = S̃ , (3)

where I is the identity matrix. Equation (3) is the power
boolean operations on (S+ I), and r+1 is the times of power
multiplication. The connectivity among intelligence obtain-
ing nodes and attack/damage nodes can be easily obtained
through the accessibility matrix. For any node Oi and node
Aj, if S̃(i, j) = 1, then Oi can reach Aj according to a path
with practical meaning. Let S(j, i) = 1, we can get

S =


SOO SOP 0 0
0 SPP SPD 0
0 0 SDD SDA
SAO 0 0 0

 ,
then the number of IELPs is the trace of the product of
corresponding nodes’ accessibility matrices, which is also the
number of IELKs. Taking the ‘O–P–D–A’ link as an example,
the number of this link can be calculated by

Slink = tr(SOPDAO) = tr(SOP × SPD × SDA × SAO) . (4)
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This calculation process for the remaining types of links is
the same. Then we can obtain the number of IELKs of all
7 types as Slinks =

∑7
i=1 S

i
link.

After two aspects of analysis, we can calculate the measure
of the damage effect. The damage effect of a combat network
in this paper should be calculated by relative metrics. For the
original combat network G which has not been attacked, the
initial largest component scale is Shuge(G) and the amount
of IELKs is Slinks(G). For the attacked combat network G′,
the corresponding largest component scale and the amount of
IELKs are Shuge(G′) and Slinks(G′), respectively. We can mea-
sure the damage effect of a combat network in the following
expression:

R = 1−
[
α
Slink(G′)
Slink(G)

+ (1− α)
Shuge(G′)
Shuge(G)

]
, (5)

where α is a proportion parameter indicating the preference
for two different metrics. The default value of α is 0.5.

D. DAMAGE MAXIMIZATION MODEL OF COMBAT
NETWORK UNDER COST CONSTRAINTS
The damage maximization model of combat network under
cost constraints can be described as a combinatorial optimiza-
tion problem of selecting L nodes from N nodes to damage
under the given damage cost constraints Cmax, where L is the
damage intensity. In order to avoid complex operations on
the adjacency matrix of the combat network directly and to
describe the following optimization algorithm more conve-
niently, the nodes are first encoded to identify the nodes being
removed, then the damage effect on the combat network after
node removal can be calculated. In this mode, the description
of mathematical optimization can be carried out smoothly.
After obtaining the optimal encoding vector of the program-
ming model, the decoding algorithm is used to map the result
back to the nodes in the combat network, and then the set of
nodes that need to be destroyed in the combat network is clear.
The specific steps of the encoding algorithm and decoding
algorithm are shown in the Algorithm 1 and 2, respectively.

Algorithm 1 X = Encoding(G,Q)
Input: Combat network G(V ,E) and attacked nodes set Q
Output: Encoded vector X = [x1, x2, · · · , xN]
1: Initialize X = [x1, x2, · · · , xN] = [0, 0, · · · , 0]
2: for i = 1 : N
3: if vi ∈ Q
4: xi = 1
5: end if
6: end for

Based on the encoded vector X obtained by the encod-
ing algorithm Encoding(G,Q), the damage measure of
Equation (5) can be expressed as

8(X = [x1, x2, · · · , xN]) = R(Encoding(G,Q)) . (6)

Hence, the damage maximization model for the combat net-
work by attacking a fixed number of nodes with limited costs

Algorithm 2 Q = Decoding(G,X)
Input: Combat network G(V ,E) and encoded vector X =
[x1, x2, · · · , xN]
Output: Attacked nodes set Q
1: Initialize Q = ∅
2: for i = 1 : N
3: if xi = 1
4: Q = Q ∪ {vi}
5: end if
6: end for

is as follows:

max 8(X = [x1, x2, · · · , xN])

s.t.


CTX ≤ Cmax∑N

i=1 xi = L
xi = 0 or 1, i = 1, 2, · · · , N .

(7)

The Equation (7) is a zero-one integer programming
model. Let’s consider a simple example: If the nodes scale
of the combat network is 100 and 10 nodes are chosen to
be attacked, then the solution space size of the programming
model will reach C10

100 ≈ 1.7 × 1013. In reality, the scale of
the combat network is much larger than this, so the mag-
nitude of the solution space will be larger. It is obviously
inappropriate if we use traditional methods such as traversal
algorithms, because they could consume a lot of computation
and cause very high time complexity. In addition, since the
objective function value needs to be calculated independently,
it is not a simple explicit value. As a result, conventional
combinatorial optimization algorithms such as the branch and
bound method, can not work. For this kind of problem, it is
a good choice to solve it by means of heuristic intelligent
optimization algorithms. In the following, we will propose an
improved intelligent optimization algorithm to approximate
the optimal solution.

III. SOLUTION OF OPTIMIZATION MODEL BASED ON
IMPROVED GENETIC ALGORITHM
A. CLASSICAL GENETIC ALGORITHM
Genetic algorithm (GA) forms an adaptive global opti-
mization search mechanism by simulating the genetic and
evolutionary processes of organisms in nature [31]. It draws
on the concepts of selection, inheritance, and variation in
genetics to achieve the improvement of individual fitness
in a population. The steps of the classical GA [32] are
generally:

Step1: Initialize the population;
Step2: Calculate individual fitness;
Step3: Perform roulette-wheel selection;
Step4: Determine whether the termination condition is

reached. If the condition is satisfied, the algorithm ends;
otherwise, perform crossover and mutation operations and
then go to Step2.
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B. IMPROVED GENETIC ALGORITHM
Due to the large scale of the solution space, there are still
problems such as slow convergence speed and high compu-
tational complexity when the classical GA is applied to study
the combat network damage problem. In addition, the cost
constraints and the specified damage intensity require special
processing when using GA. Hence, it is necessary to improve
GA with the purpose of its application to practical problems.

1) HANDLING OF COST CONSTRAINTS
In the combinatorial optimization model of Equation (7), it is
required that the total cost of the nodes to be damaged does
not exceed the given cost threshold. As for this constraint,
the idea of penalty function is used to handle it equivalently.
When calculating the individual fitness function value, the
result of fitness will be penalized if the expected damage cost
is greater than the given cost constraints. That is, the fitness
function value will be a relatively small negative number such
as −2 while the ideal result is 1 if the expected damage cost
is within the constraints.

2) INITIALIZATION
When the classical GA produces the first generation of pop-
ulation, all initial solutions are generated at random with
equal probability. On the one hand, the fitness value may
not be satisfying, and on the other hand, it may lead to
premature convergence. Therefore, initializing the population
is a key step for this heuristic algorithm [33], and reasonable
initialization can effectively improve the performance of the
algorithm.

In fact, the combat network nodes vary in topology and
functions, thus some prior knowledge can be obtained from
them for initialization. When finding the set of important
nodes by means of network damage, the node centrality can
be introduced to adjust the initialization strategy. For one
thing, we hope to obtain an initial population with specific
guidance through this prior information. For another, wewant
to maintain a good diversity of the population. Therefore, the
initialization is divided into two steps. In the first step, the
nodes are sorted based on the degree centrality, betweenness
centrality, and topological potential, respectively. Then each
node will be assigned a probability according to the value of
the above metrics. Then L times sampling without replace-
ment are performed with three different indicators, and np
initial chromosomes are generated, respectively. In the sec-
ond step, the remaining (Np−3np) chromosomes are obtained
by randomly generated sequences, and the number of nodes
selected for the chromosome should be L. In this way, these
two steps generate an initial population of size Np (Np is an
even number) in total, which not only has specific information
to help improve the convergence speed and optimization
accuracy of the algorithm but also maintains the diversity dur-
ing the population differentiation. As a result, the generated
initial solutions can be more reasonable. Denote the initial
population matrix as X̂0, and each chromosome vector in the
population as X i

0(i = 1, 2, · · · ,Np).

3) CROSSOVER AND MUTATION
Crossover is to randomly match an individual in the pop-
ulation and exchange some chromosomes between them
according to a certain crossover probability. Generating new
offspring by crossover can improve the search capability of
GA. In order to maintain the stable damage intensity, the
crossover operation in the IPGA must be symmetric, that
is, after chromosome A and chromosome B perform a 0–1
exchange at one position, there must be a corresponding 1–0
exchange operation at another position at the same time. The
specific steps of the crossover operation are:

Step1: Initialize i = 0, cn1 = 0, cn2 = 0;
Step2: Let i = i + 1, then choose an unselected chromo-

some pair and generate a random number r . If r < Pc, go to
Step3, otherwise go to Step2;

Step3: Randomly select several positions that need to be
crossed, denoted as loc. If the chromosome pair codes at the
position lj (lj ∈ loc) are 0 and 1, cn1 = cn1 + 1. And if
the chromosome pair codes at the position lj are 1 and 0,
cn2 = cn2 + 1. Then randomly select k = min(cn1, cn2)
points to exchange value simultaneously as to the above two
code types. After that, let cn1 = 0 and cn2 = 0.
Step4: If i = Np/2, the crossover operation is com-

pleted, otherwise go to Step2 until the termination condition
is satisfied.

Similarly, when themutation operation brings a new search
space to the algorithm by reversing the code value according
to the mutation probability, the principle of symmetric muta-
tion should also be followed. The specific steps are:

Step1: Initialize i = 0;
Step2: Let i = i + 1, then choose an unselected chromo-

some and generate a random number r . If r < Pm, go to
Step3, otherwise go to Step2;

Step3: Randomly select some points that need to be
mutated, denoted as loc, and the length of loc should be less
than L. If the chromosome code at the position lj (lj ∈ loc)
is 1, a mutation point l ′j is also randomly selected at the
position where the coded value is 0, and the values at these
positions are reversed;

Step4: If i = Np, the mutation update is completed,
otherwise go to Step2.

4) PROCEDURE OF ALGORITHM
On the basis of the above analysis, the algorithm flow chart of
the IPGA to optimize the maximum damage effect of combat
network with limited costs is given, as shown in Figure 2. The
input parameters of the algorithm include the combat network
model G, the damage intensity L, the cost power parameter
γ , the cost constraint ratio ρ, and the initial parameters of
GA, which are the population size Np, the upper limit of
iteration times gen, the crossover probability Pc, and the
mutation probability Pm. The output of the algorithm is a set
of the damaged nodes Q. At the beginning, the population
of the chromosome X̂p is initialized when p = 0. The
Equation (8) reflects the relations among the population and
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FIGURE 2. Flow diagram of the IPGA.

chromosomes.

X̂p =


X1
p

X2
p
· · ·

X
Np
p

 =


[x11 , x
1
2 , · · · , x

1
N ]p

[x21 , x
2
2 , · · · , x

2
N ]p

· · ·

[x
Np
1 , x

Np
2 , · · · , x

Np
N ]p

 . (8)

The best chromosome X∗ in current generation is selected
by calculating the fitness value of each chromosome X i

p in
the population X̂p at the pth generation. If the termination
condition is not met, the crossover and mutation procedure
will be carried out, and the population X̂p will be updated to
Ŷp and Ŷ

′

p, respectively. And the set Q is finally obtained by
the decoding operation on the best chromosome X∗.

IV. EXPERIMENTS AND ANALYSIS
In order to study the performance of the IPGA, some sim-
ulation experiments of combat network damage with cost
constraints are carried out based on the model network. The
effectiveness and superiority of the IPGA are verified by
comparing it with other algorithms based on the prioritization
of centrality indicators. Then the optimal gap effect of IPGA
and the attack law of maximizing the damage for the combat
network under cost constraints are further explored. Finally,
the time complexity of the algorithm is demonstrated by
theoretical analysis and simulation experiments.

A. CONSTRUCTION OF COMBAT NETWORK
In general, the combat network consists of several subnets,
including the intra-layer subnets formed by nodes of the same
type and the inter-layer subnets formed by nodes of different

types. Due to the lack of real data and confidentiality, here
we use different model networks to simulate the intra-layer
subnets in the real world. The ER random network [34], [35],
BA scale-free network [2] and Goh scale-free network [36]
are chosen to generate subnets. The ER random network
adopts a probability to connect two nodes randomly. The BA
network tends to add nodes to those possessing a larger node
degree, and the distribution of node degree of it obeys the
power law whose parameter is about 3. The Goh network
is also a scale-free network, and it is a network with an
adjustable power parameter. As for the connection between
different subnets, nodes are connected randomly. And for
different model networks, the size of the subnet is set as
NO = 50, NP = 40, ND = 30, NA = 30 and the size
N of the total network is 150. The connection probability
of the ER random network is fOO = 0.02, fPP = 0.05,
fDD = 0.05, fAA = 0.03; the parameters of the BA scale-free
network are m0 = 5 and m = 3; the parameters of the
Goh scale-free network are β = 2.3 and 〈k〉 = 6, and the
connection probability between subnets is uniformly set to
0.03. In order to reduce the randomness of the simulation
experiments and improve the reliability of results, each type
of model network is repeatedly generated 100 times, resulting
in a total of 3× 100 networks.

B. SIMULATION EXPERIMENTS
The simulation experiments based on the generated model
network are divided into four parts: the damage effect
comparisonwith different algorithms, the damage effect com-
parison with different parameters and network size, the opti-
mal gap effect for reduced size networks, and the exploration
of the attack law in combat network damage maximization
problem based on the IPGA. The simulation software is
Matlab 2016b with Windows 10, and the hardware configu-
ration is Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz.

1) COMPARISON WITH DIFFERENT ALGORITHMS
The comparison algorithms of the IPGA mainly include
importance–first algorithms based on indicators such as
degree centrality, betweenness centrality, eigenvector cen-
trality, closeness centrality, and topology potential. For each
centrality indicator, the larger the indicator value, the more
important the node is. In order to meet the cost constraints,
a programming model is established when selecting impor-
tant nodes to attack by different indicators. The goal is to
maximize the sum of the indicator values of the selected
nodes, let the index vector be H , then the nodes based on the
importance indicator are selected according to the following
model:

maxHTX

s.t.


CTX ≤ Cmax∑N

i=1 xi = L
xi = 0 or 1, i = 1, 2, · · · , N .

(9)

The model of Equation (9) can be solved by a simple linear
programming algorithm. After obtaining the set of critical
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FIGURE 3. Damage effect comparison of different algorithms for various subnets. (a) The subnet is ER random network. (b) The subnet is BA
scale-free network. (c) The subnet is Goh scale-free network.

FIGURE 4. Damage effect comparison of different algorithms for various Goh subnets with adjustable parameter β. (a) β = 2.5. (b) β = 3. (c)
β = 3.5.
(d) β = 4. (e) β = 4.5. (f) β = 5.

nodes based on the importance index, combat networks of
different models are damaged according to the map between
encoding and decoding results. In the experiment, the damage
intensity ranges from 1 to 20 and the damage simulation
of each type of model network is repeated 100 times. The
average results of the experiments are shown in Figure 3.
The shaded area in the figure represents the 90% confidence
interval.

It can be seen from the figure that whether for the ER
random network or the scale-free network model, the IPGA
can find out the nodes set with the best damage effect on a
combat network, and this method has great advantages over
other algorithms. For the damage effect of algorithms based
on degree, betweenness, and topological potential, there is
not much difference in general. The result of degree-based
algorithm in ER random network is better than that based
on betweenness and topological potential, and the results of
the latter two are very similar. In the scale-free network, the

algorithm based on betweenness is better than the algorithms
based on degree and topological potential, and the damage
effects of the latter two are also very similar. The result
of algorithm based on closeness is a little worse than that
based on degree, betweenness, and topological potential, but
as the increase of damage intensity, the damage effects of
those algorithms are getting closer and closer. The algorithm
based on eigenvector is the worst, and the measure of damage
effect is always small. In summary, it is feasible and effective
to identify the critical nodes set by damaging the combat
network with limited costs based on the IPGA. According to
the confidence interval, we can see that the above conclusion
is clear and credible, so the confidence interval will not be
annotated in the following experiments.

2) COMPARISON WITH DIFFERENT NETWORK PARAMETER β
Simulation experiments based on the Goh subnet, whose
power law parameter is configurable, are conducted to
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FIGURE 5. Damage effect comparison for the IPGA with different
parameter β.

examine the effects of the various methods under different
network characteristics. The subnet’s parameter β ranges
from 2.5 to 5 with an interval of 0.5. The result is shown in
Figure 4. From the figure, it can be seen that the IPGA con-
tinues to be the optimal approach for maximizing the damage
effect of combat networks under cost constraints. The effect
comparison of the IPGA method under the different parame-
ter β is shown in Figure 5. In general, the damage effect of the
IPGA tends to decrease as the parameter β increases, but the
zoomed-in plot shows that the effect fluctuates slightly after
β > 4, which may be due to the large parameter making the
network structure uniformly distributed.

3) OPTIMAL GAP EFFECT FOR REDUCED SIZE NETWORKS
When the size of the combat network is reduced, the same
parameters are used as in the first experiment, and only the
number of nodes is changed to generate the network for sim-
ulation experiments. Here we still adopt the Goh subnet as the
model network. Figure 6 and Figure 7 give a comparison of
the damage effect of the different methods when the number
of network nodes is 70 and 50, respectively. From the figure,
we can see that as the size of the combat network decreases,
the gap among optimal solutions of all methods is getting
closer. In addition, the optimality gap of the IPGA appears
when the node size is 50, which indicates that the optimal
solution of the IPGA and method based on betweenness is
the same. If the network size is further reduced, all methods
will achieve the same optimal result. However, the actual
combat network has a large number of nodes and edges, so the
problem of this optimality gap will not arise.

4) ATTACK LAW OF COMBAT NETWORK DAMAGE
MAXIMIZATION
In order to explore the attack law of damage maximization
problem of combat networks based on the IPGA, the Goh
scale-free network is used as the model network for simu-
lation. The damage intensity in the experiment is the damage
intensity when the upper limit of the cost constraints is
reached. And the simulation results are themean results based

FIGURE 6. Damage effect comparison on the Goh subnet with a scale of
70 nodes.

FIGURE 7. Damage effect comparison on the Goh subnet with a scale of
50 nodes.

on 100 Goh networks. When the cost power parameter γ
varies from 0 to 2, the average degree d̂ of the damaged nodes
set is shown in Figure 8(a). It can be seen from the figure
that with the increase of γ , the curves of the average degree
corresponding to different cost constraints ratio parameters ρ
basically show a trend of first decreasing and then stabilizing.
When γ is small, the node with a large degree is more likely
to be attacked. As γ increases, the average degree of attacked
nodes set gradually decreases and keeps stable. In addition,
the looser the cost constraints, the higher the average degree
of the attacked nodes set.

When the constraint ratio parameter of cost changes from
0.1 to 0.9, the value of the average degree of damaged nodes
set is shown in Figure 8(b). It can be seen from the figure that
except for the case where the cost power parameter is zero,
the curves of average degree in other cases basically show a
trend of first increasing and then approaching a certain value.
When γ = 0, the damage costs of all nodes are the same.
So it is more inclined to attack the node with a large degree
under the cost constraints. While in other cases, attacks on
the node with a higher degree will not be performed, unless
the cost constraints are gradually released and resources are
sufficient to allocate.
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FIGURE 8. Relations among the average degree d̂ , cost constraint ratio ρ,
and cost power parameter γ . (a) The relation between d̂ and γ . (b) The
relation between d̂ and ρ. (c) The 3D view of the relation among d̂ , ρ,
and γ .

In order to better observe the above rules, the relation
among the average degree of damaged nodes set, the cost
power parameter, and the cost constraints ratio parameter is
plotted in Figure 8(c). It is clear that the observed results are
consistent with the previous description.

Apart from the average damage degree being affected by
γ and ρ, the damage intensity L for the combat network is
also inseparable from them. The relations among L, γ , and
ρ are shown in Figure 9. It can be deduced that with the
increase of the parameter ρ, the damage intensity increases
significantly, while the increase of γ has little effect on the

FIGURE 9. Relations among damage intensity L and parameters γ and ρ.
(a) Damage intensity L with different γ and ρ. (b) Front view of
sub-figure (a).

damage intensity, indicating that the damage effect of the
combat network with limited costs mainly depends on the
upper bound of the damage cost, and has little correlation
with the damage cost of a single node. Table 4 presents the
variance of L as the increasing of ρ. It can be known from the
table that the variance of damage intensity is small, and with
the increase of ρ, the fluctuation of damage intensity becomes
smaller and smaller, which further verifies the above point of
view.

C. ALGORITHMIC CONVERGENCE AND COMPUTATION
COMPLEXITY ANALYSIS
For the optimal problem with GA algorithm, the convergence
of the algorithm is supposed to analyze to strengthen the
confidence of the results. Chang et al. [37] proved the con-
vergence of the GA algorithm for network topology both
locally and globally. On the basis of this, we verify the
convergence of the proposed algorithm through multiple
simulations. Figure 10 shows the convergence curves for
damaging 18 nodes in a combat network based on the Goh
subnet with a total scale of 150 nodes, where the average
convergence curve is shown in blue and the convergence
curve for a particular experiment is shown in red. As can
be seen from the figure, the algorithm converges after about
400 iterations for both the result of a single experiment and
the average result of multiple experiments, indicating that
the IPGA algorithm can converge to the optimum, and the
theoretical and experimental results are consistent.
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TABLE 4. Variance of L with the increase of ρ.

FIGURE 10. Convergence curve of the IPGA.

FIGURE 11. Calculation time simulation of the IPGA.

As for the computation complexity of the IPGA, by ana-
lyzing the calculation process and related parameters, it can
be obtained that the complexity of fitness assessment mainly
depends on the calculation of the maximal component and
the number of attack links. The complexity of the former
according to the Breadth First Search (BFS) or Depth First
Search (DFS) is O(N (N + M )), and the complexity of the
latter is O(N 4

ON
2
PN

2
DN

2
A) at most. The damage strength is L,

but it is only involved in the encoding and decoding con-
straints and not in other calculations. During the crossover
and mutation process, the complexity of them are O(Np

2 NPc)
and O(NpNPm), respectively. On the basis of the above anal-
ysis and the procedure of the IPGA, combined with the
population size Np and iteration times gen, it can be deduced
that its computational complexity is O(Npgen(N (N + M ) +
N 4
ON

2
PN

2
DN

2
A+

Np
2 NPc+NpNPm)). That is, the complexity of

the IPGA is O(Npgen(N (N + M + Np) + N 4
ON

2
PN

2
DN

2
A)) at

the most. So the complexity of the algorithm is only related

to the size of the network, the population size and iteration
times of the IPGA, but has nothing to do with the damage
intensity. Theoretically, when the size of the network, the
population size, the iteration times, and other parameters
except the damage intensity remain constant, the running time
of the IPGA will largely remain stable. Figure 11 shows the
relation between the calculation time of the IPGA and the
damage intensity with the increase of iteration times. It can
be seen from the figure that the calculation time does not vary
greatly with the increase of damage intensity. And when the
number of iterations increases, the calculation time changes
significantly, which shows that our theoretical analysis is
correct.

V. CONCLUSION
The research on maximizing damage in a combat network
has clear practical significance and is very important for
protecting or destroying important units in the combat SOS.
In this paper, by studying the damage maximization prob-

lem for combat networks with limited costs, two main con-
tributions of this work can be summarized. On the one hand,
a more realistic damage maximization model is established,
and an effective optimization algorithm is proposed to solve
the model. On the other hand, a reference for the formulation
of the attack strategy in battle is provided by exploring the
attack law in the combat network. According to this, combat
units can be protected or destroyed in a targeted manner.
However, there are still some limitations to our proposal.

Our approach only consider the damage cost constraint for a
fixed number of nodes, so it is a single objective optimization
problem. In fact, the number of attacked nodes may not be
so easy to determine under conditions of incomplete infor-
mation. The multi-objective problem needs further study if
we want both low damage costs and good network damage
results, and the determination of the number of damage nodes
is also a difficult issue worth exploring. Apart from this, there
are twomore points worth investigating in the future research.
One is to study the application in the actual combat network.
The other is to improve the computing efficiency by opti-
mizing the algorithm, so as to be applied to the larger-scale
combat network damage problem.

APPENDIX

TABLE 5. Acronym and meaning.
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