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ABSTRACT The uncertainties and disturbances in the actual driving conditions of hybrid electric vehicles
(HEVs) complicate the design of energy management strategy (EMS). To achieve better EMS performance
for a battery-supercapacitor HEV, this paper proposes an improved and adaptive deep learning-based velocity
prediction control EMS that can prolong the battery lifetime through efficient utilization of both the battery
and supercapacitor. First, feature engineering techniques are used to extract and increase the key features
from the historical driving cycle data of known driving conditions. With the extracted features, an improved
long short-term memory (LSTM) velocity predictor was developed to predict future driving cycles for a real-
time EMS under an unknown driving condition. Second, a real-time EMS based on the rule-based framework
optimized with a neural network is proposed to optimize the power allocation online. Simulation results show
that the proposed strategy smoothens battery peak power (i.e. prolongs battery life span) by approximately
26.85% on average and increases supercapacitor participation in the EMS, as evidenced by its increased
energy throughput. Furthermore, compared with other EMS approaches, the proposed strategy improved the
efficiency by significantly reducing total energy losses by approximately 22.25%. These results validate the
reliability and robustness of the proposed strategy.

INDEX TERMS Battery, deep learning, drive cycle, electric vehicle, energy management, feature
engineering, k-medoids, rule-based, supercapacitor.

I. INTRODUCTION
Electric vehicles (EVs) have proven to be a sustainable and
efficient solution to the rising global environmental issues
related to gas emissions [1]. Generally, batteries are used as
the main energy source in EVs because of their high energy
density property and ability to store most of the onboard
electrical energy. However, batteries have low power density,
hence cannot meet the peak power demand of EVs under
climbing conditions or acceleration. This shows dynamics
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of batteries necessitate the use of auxiliary energy sources,
such as supercapacitors (SCs). Thus, hybrid electric vehicles
(HEV), which combine batteries and SCs have been studied
in recent years. SCs have high power density but low energy
density hence these contrasting properties of battery and SC
make them good complements [2]. The SC and battery hybrid
energy storage system (HESS) of HEVs is such that combines
the merits of both the battery and SC. It utilizes the high
energy density of the battery to supply energy to the vehicle
over a driving mission and the high power density of the
SC to satisfy a gap of peak power demand during transients
and regenerative braking of the vehicle [3], [4]. As such,

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133789

https://orcid.org/0000-0003-2533-3496
https://orcid.org/0000-0001-6259-3209


C. U. Udeogu, W. Lim: Improved Deep Learning-Based EMS for Battery-SC HEV With Adaptive Velocity Prediction

FIGURE 1. System configuration.

the SC can handle high power peaks and elongate battery
lifetime [5].

Energy management is a critical technology in HEV, which
can determine the optimal power split control for the energy
source subsystems. Generally, the existing energy manage-
ment strategies (EMSs) of HEVs are grouped into heuris-
tic and optimization-based strategies [6], [7]. The heuristic
strategies include the rule-based [8] and the fuzzy logic-
based [9] while the optimization-based strategies include
dynamic programming (DP) [10]. [8] proposed a rule-based
EMS for the HESS based on the adequate discharge of the
SC pack to ensure the utilization of all available energy from
the regenerationmode, hence improving EV performance and
range. [9] proposed an EMS for a HESS in EV based on fuzzy
logic which elongates the battery lifetime by considering the
state of charge (SOC) of the SC, power demand, and speed of
the EV. [10] utilized a DP-based optimal control algorithm
to formulate an EMS for a plug-in HEV which conquered
the numerical problems associated with the accuracy and
computational burden of DP.

There are other popularly used algorithms for EM
control strategies of HEVs. Some of these include Pon-
tryagin’s minimum principle (PMP) [11], [12], model
predictive control (MPC) [13], equivalent consumption
minimization strategy (ECMS) [14], [15], robust con-
trol [16], slope-weighted energy-based rapid control analysis
(SERCA) [17], frequency-based [18], wavelet-based [19],
hybrid approach [20] and so on. Varying degrees of improve-
ment are realized using these schemes in hundreds of liter-
ature. Amongst all the optimization-based strategies, DP is
the only algorithm broadly recognized to possibly guarantee
theoretical optimal control results [21]. However, it operates
with the assumption that the entire drive cycle and power
demand profile are known and hence cannot provide real-
time or online applications. This is because real-life driving
situations always have degrees of uncertainty and disturbance
of actual conditions [22]. Thus, an EMS that can capture the
degree of future driving uncertainties is needed.

With the rapid development of artificial intelligence tech-
nologies, machine learning-based methods are increasingly
applied to EMS [23]. They have been used in combination
with some of the optimization-based strategies to achieve
real-time application of optimal EMS control [24], [25],
[26], [27]. However, these results are achieved on the basis
of a degree of certainty and known driving conditions. Since
the uncertainty and disturbance of actual conditions hugely
increase the difficulty of EMS design of HEVs, it is important
to develop an efficient and adaptive EMS that can achieve
real-time application in unknown driving conditions. Adap-
tive and real-time applications of the formulated EMSs in
complicated unknown future driving situations are still the
struggling direction since the existing techniques are based
on known driving situations. Future driving information is
a prerequisite for an adaptive EMS [28]. The more realistic
the forecasting driving information provided for the EMS is,
the more likely it is to make an appropriate decision for the
power split between the component energy sources even in
an unknown driving situation. The driving cycle is a random
time-series data and machine learning can be exploited to
deal with enormous driving data. Therefore, to adaptively
control the power split of the HEV energy sources for real-
time applications in unknown driving scenarios, we propose
an improved deep learning-based energy management strat-
egy for battery-SC HEV with an adaptive velocity predic-
tion utilizing the long short-term memory (LSTM) model
to predict future driving velocity of an unknown driving
scenario. LSTM is a deep learning model, well-known for
its strong abilities in handling and forecasting time series
data made possible by its unique ability in learning and
remembering historical information. It is also well-suited to
be trained to learn a highly nonlinear input/output relation-
ship. Since velocity prediction is a nonlinear problem with
high dynamics, LSTM is a suitable solution and is then uti-
lized. Hence, the expectation is that designing an EMS based
on velocity prediction will lead to load demand prediction
for the energy source subsystems of the HESS which is
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essential in prolonging the lifetime of the component energy
systems.

The contributions of this paper are as follows:
1) To address the challenge of uncertainties and distur-

bances of actual driving even in unknown driving condi-
tions, the paper proposes an adaptive LSTM-based velocity
prediction EMS for HEVs that considers and handles the
future uncertainties of real-life driving conditions to improve
mobility and extend battery life.

2) To enhance velocity prediction accuracy, an improved
time-series LSTMmodel with feature engineering prediction
scheme is implemented.

3) To ensure better EMS performance and achieve
enhanced efficiency, a new approach to split the power
between the battery and SC in such a way that both battery
and SC SOCs drain at an overall similar rate is proposed. This
is also geared towards better utilization of both energy storage
devices.

The rest of the paper is organized as follows: The system
architecture and HEV modeling are presented in Section II.
Section III describes the velocity prediction implementation.
The design of the energymanagement strategy and simulation
results analysis is presented in Section IV and V, respectively.
Section VI summarizes and concludes the paper.

II. SYSTEM CONFIGURATION AND HEV MODELING
Figure 1 shows the overall system configuration of the pro-
posed EMS model. It is composed of the velocity prediction
part and the power distribution part. During the velocity
prediction, the LSTM model is used to predict the velocity
of the vehicle. Historical driving cycle profile dataset from
known driving conditions is used to train the LSTM model
offline. The trained LSTM model is then used to predict
future velocities of unknown driving condition scenarios in
the online testing stage. With the predicted future veloci-
ties, the vehicle system generates the corresponding power
demand by extension. The system’s power distribution part is
responsible for accurately splitting the future power demand
among the onboard energy sources in the HESS i.e., battery
and SC. The dual converter topology was adopted for the
onboard energy sources following research [29]. The battery
and SC are connected to the system through their dc-dc
converters, as shown in Fig. 2, using the component data
given in Table 1. Both the battery and SC are actively con-
trolled through their individual dc-dc converters. Interlinking
the individual energy source controller with the motor drive
through an inverter is the dc-link. The dc-link acts as the
power bus of the system. The battery and SC powers can be
controlled by tuning the duty cycles of their dc-dc converters.

The building blocks of the vehicle model for establishing
the power flow are given in [30] andADVISOR [31] as shown
in Fig. 3. As seen in the figure, the vehicle wheels and axles
which are connected to a one-stage gearbox through the final
drive is driven by themotor. There are two stages of the power
flow, that is, backward- and forward-facing approaches. The
backward-facing approach determines the power required

FIGURE 2. EV dual converter topology.

TABLE 1. Components of the dc-dc converter.

TABLE 2. Components of the dc-dc converter.

TABLE 3. Vehicle model files.

by each building block of the vehicle based on the driving
cycle. However, the forward-facing approach takes the overall
power input from the backward-facing approach as the power
that the battery and SC should contribute, while meeting each
building block constraint. The regenerative braking mode of
the vehicle occurs when power flows from the wheels of the
vehicle to the onboard energy sources, hence it is denoted
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FIGURE 3. Building blocks of battery-SC vehicle model [30], [31].

with a negative power convention in this paper. Similarly, the
propulsion (driving) mode occurs when power flows from the
onboard energy sources of the vehicle to the wheels, thus a
positive power convention. The vehicle parameters andmodel
files used in this paper are according to [32] and given in
Tables 2 and 3.

III. VELOCITY PREDICTION BASED ON LSTM NETWORK
In this section, the dataset and feature engineering techniques
used are described. Furthermore, single and multiple time-
series velocity prediction methods using the LSTM network
are discussed.

A. DATASET AND FEATURE ENGINEERING
To predict velocity, information like historical driving data,
weather, traffic, and road information is needed [33]. Since
this information is difficult to obtain, in this paper, typical
driving cycles are adopted. The driving cycle is a vehicle
velocity profile with random, time-varying uncertainties. The
drive cycle prediction can be treated as a non-linear time
series prediction with high dynamics. Hence, LSTM is uti-
lized due to its capacity in dealing with such problems. LSTM
has proven strong abilities in handling and forecasting time
series data due to its unique ability in learning and remember-
ing historical information. It is also well-suited to be trained
to learn a highly nonlinear input/output relationship [34],
[35], [36].

Eight different standard driving cycle datasets were
obtained and combined to form a known driving condi-
tion scenario using the Driving Cycle Simulink Block in
MATLAB. The obtained combined driving cycle dataset
was used to train the LSTM model. The eight driving
cycles include NYCC, REP05, US06, WVUINTER, NEDC,
WVUCITY, US06_HWY, and WVUSUB. The velocity pro-
file of the training driving cycle dataset is shown in Fig. 4.
For testing the network, three different sets of standard driv-
ing cycle datasets were obtained to depict an unknown driving
condition scenario as the network does not know these driving
cycles nor was it trained with them. The three driving cycles
include UDDS, SC03, and HWFET. The criteria for selecting

FIGURE 4. Sample training driving cycle dataset.

FIGURE 5. (a) Non-randomized testing driving cycle combination.
(b) Randomized testing driving cycle.

these three driving cycles are based on: 1) They should come
from real vehicle testing to reflect real-life driving condi-
tions. 2) They should be standard driving cycles that are
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popularly used. 3) They should be typical of three kinds
of driving scenarios: urban (UDDS), suburban (SC03), and
highway (HWFET) [37]. To further test the adaptability of
the model to predict future velocities, especially in unknown
driving scenarios, a new driving cycle dataset called random-
ized driving cycle was created. The randomized driving cycle
was created with data points obtained by moving randomly
and interchangeably from the UDDS to SC03 to HWFET
driving cycles. Thus, two sets of testing drive cycles were
evaluated: non-randomized (i.e. UDDS, SC03, and HWFET)
and randomized. Figure 5 shows the velocity profile of the
testing driving cycle dataset.

Feature engineering involves the transformation of data
into features that state the problem of the predictive model
well to improve model performance and reduce complex-
ity [38]. The driving cycle dataset has only one feature
of velocity, v, this hampers the prediction performance of
the LSTM model as many input features can improve its
accuracy. To cope with this challenge, feature engineering
was conducted on the dataset to obtain more features that
represent the dynamic operating nature of vehicles in diverse
driving conditions. The steps of the feature engineering pro-
cess are outlined as follows:

1) The dataset is divided into segments of 60 seconds each.
2) Corresponding average velocity and average accelera-

tion are calculated for each segment.
3) Using the velocity profile, the acceleration/deceleration

profile is obtained.
4) Utilizing the obtained acceleration/deceleration profile,

uniform velocity and maximum velocity are obtained.
Hence, for each segment, five features (three velocity

and two acceleration) each are obtained i.e., Velocity fea-
tures: average velocity vavg, uniform velocity vunif and
maximum velocity vmax ; Acceleration features: average
acceleration aavg, and instant acceleration, a. Therefore, each
time instant [v] of the original dataset is transformed into
[v, vavg, vunif , vmax , aavg, a]. Next, the features are clustered
into different driving conditions using the k-medoids cluster-
ing algorithm. Here, k-medoids is chosen due to its ability
to effectively deal with noise and outliers in data [39]. The
k-medoids algorithm flowchart is shown in Fig. 6. The algo-
rithm can be explained as follows:

1) Randomly choose k objects from N objects in data and
assign k objects to k medoids, each medoid represents a
cluster. 2) For all remaining non-medoid objects, compute the
distance from all medoids, then assign non-medoid objects to
clusters according to the similarity measure.

3) Re-calculate k medoids according to similarity measure,
if within the error limits for the termination criterion, ter-
minate the algorithm. If the conditions are not met, return
to step 2.

Finally, the driving conditions are classified into three
conditions describing real-world driving conditions namely
urban, suburban, and highway denoted by one, two, and three,
respectively.

FIGURE 6. Flowchart of k-medoids algorithm.

FIGURE 7. (a) Overall diagram of LSTM network. (b) Structure of LSTM cell.

FIGURE 8. Framework of LSTM (a) single time-series scheme (b) multiple
time-series scheme.

B. VELOCITY PREDICTION USING LSTM
The LSTM network is designed to learn long-term dependen-
cies. It remembers information for long periods of time, can
discard redundant information and selects key information
to be stored in the internal state. It controls the flow of
information throughout its network via its three gates namely
the input gate it , forget gate f t and output gate ot . The
overall diagram of LSTM network is shown in Fig. 7 (a) and
Fig. 7 (b) is an illustration of a single LSTM cell. The c̃t is
the candidate cell status, the ct is the new cell status and the
LSTM cell hidden state at transfers signals to the next cell.

VOLUME 10, 2022 133793



C. U. Udeogu, W. Lim: Improved Deep Learning-Based EMS for Battery-SC HEV With Adaptive Velocity Prediction

TABLE 4. Results of the time-series schemes.

Themathematical representations of the different weights and
gates of the LSTM cell are [40]:

it = σ (Wi

[
a(t−1),X t

]
+ bi) (1)

f t = σ (Wf

[
a(t−1),X t

]
+ bf ) (2)

c̃t = ϕ(Wc

[
a(t−1),X t

]
+ bc) (3)

ct = f t ∗ ct−1 + it ∗ c̃t (4)

ot = σ (Wo

[
a(t−1),X t

]
+ bo) (5)

at = ot ∗ ϕ(ct ) (6)

where, c̃t is candidate to update ct , ϕ is ReLU, it is input
gate, f t is forget gate, ot is output gate, and W� is weights
for different activations, �∈{c, i, f , o; c and i are input, f is
forget, o is output}.

The LSTMnetwork is used in predicting the future velocity
of the HEV. The velocity, acceleration, and type of driving
situation at any given time, as obtained from the feature
engineering process described earlier, served as input, X t ,
of the LSTM network i.e. X t =[vt , at , d t ], where vt , at , d t

are velocity, acceleration, and type of driving situation at
time, t , respectively. By brute-force search, the structure of
the LSTM is set to have one hidden layer with 50 cells.
To improve the prediction accuracy of the model, single and
multiple time-series prediction schemes were carried out with
the input features. The framework of the single time-series
scheme is shown in Fig. 8(a). For n number of inputs, each
input feature passes through all the cells of the LSTM. For
themultiple time-series scheme, the input features are divided
into subgroups, n. Each subgroup input feature targets one
output at any time instant, as illustrated in Fig. 8(b).

C. COMPARISON OF THE TIME-SERIES
PREDICTION SCHEMES
To evaluate the performance of the model in predicting future
velocity, the single time-series prediction with and without
feature engineering results (i.e. original dataset) and the mul-
tiple time-series prediction with feature engineering results
are compared. The evaluation is based on the mean absolute
error (MAE) and root mean square error (RMSE). Generally,
the lower these values, the higher the prediction accuracy.

FIGURE 9. Velocity prediction results of the multiple time-series (with
feature engineering) scheme for (a) UDDS, (b) Randomized driving cycles.

1) NON-RANDOMIZED DRIVING CYCLE
The results of the velocity prediction of the UDDS, SC03,
and HWFET driving cycles are displayed in Table 4 with
the prediction result plot of the UDDS shown in Fig. 9 (a).
As shown in Table 4, for the UDDS, the single time-series
prediction without feature engineering results had MAE and
RMSE values of 1.005 and 1.450 respectivelywhile the single
time-series prediction with feature engineering results had
MAE and RMSE values of 0.224 and 0.256 respectively. This
represents a 77.71% and 82.34% improvement in the MAE
and RMSE values of the two single time-series prediction
schemes, respectively. Similar results were seen with the
SC03 and HWFET datasets. This illustrates the improvement
capabilities of the feature engineering technique on the veloc-
ity prediction process. Furthermore, the multiple time-series
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prediction (with feature engineering) scheme for the UDDS
had MAE and RMSE values of 0.121 and 0.131 respectively.
The results when compared with the single time-series (with
feature engineering) scheme showed a further improvement
of the prediction accuracy by 45.98% and 48.38% in MAE
and RMSE, respectively. As shown, the multiple time-series
prediction (with feature engineering) scheme had the best
results on all three non-randomized driving cycle datasets.
Hence, it is an improved time-series method for velocity
prediction using LSTM.

2) RANDOMIZED DRIVING CYCLE
The randomized driving cycle, which represents a further
higher level of uncertainty and disturbance while driving in
an unknown driving scenario, is also tested to see how well
the model responds in predicting the velocity. The results as
shown in Fig. 9 (b) and Table 4 indicate similar outcomes
with the non-randomized cycles. The single time-series (with
feature engineering) scheme enhanced the results of the
single time-series (without feature engineering) by 72.46%
and 87.67% in the MAE and RMSE values, respectively.
With MAE and RMSE values of 0.141 and 0.213, respec-
tively, the multiple time-series (with feature engineering)
scheme exhibited further improvement when compared with
the results of the single time-series (with feature engineering)
scheme. To be precise, it improved by 53.16% and 49.76% in
MAE and RMSE, respectively. This implies that the LSTM
model having effectively learned the driving conditions of the
known scenarios in the offline stage, when deployed online,
had adaptively adjusted and was capable of successfully han-
dling the uncertainties encountered in the unknown driving
conditions, thus predicting future velocity more accurately.
Additionally, the results further validate the multiple time-
series (with feature engineering) scheme as the best-improved
LSTM velocity prediction scheme among the three schemes.
Moreover, the real-time velocity prediction of the single time
series took 0.337 ms, while that of the multiple time series
took 0.975 ms. Although the multiple time series scheme
consumes more computational burden, it takes less than 1 s.
This processing time accords with the requirement for real-
time energy management, hence it can give the prediction
within the instant control time step and can be implemented in
real-time. Therefore, this scheme was adopted for predicting
future velocities in this paper.

IV. POWER DISTRIBUTION SCHEME
In this section, a decentralized control scheme to distribute
power for the HESS based on a rule-based framework is
developed. The objectives of the framework are geared
towards better utilization of both battery and SCwhile achiev-
ing enhanced efficiency. It intends to manage the state of
charge (SOC) of the SC by ensuring its availability all through
the battery discharge period. Hence, the control philosophy
of the proposed approach is to manage and regulate the SC
discharge rate based on the knowledge of the vehicle velocity,
the current status of the SC, and the battery SOC. To achieve

FIGURE 10. Flowchart of the original rule-based energy management
strategy.

FIGURE 11. Flowchart of the proposed energy management strategy.

these objectives, the following principles are adhered to:
1) SC participates during regenerative braking. 2) Battery
does not charge SC but only supports the load. 3) Both the
battery and SC participate during acceleration. With these
concepts, an original rule-based control strategy is developed.
However, in order to achieve the proposed power distribution
scheme, a neural network-based approach is developed and
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integrated into the rules to achieve enhanced efficiency. The
original rule-based energy management (i.e., power distribu-
tion) strategy and the proposed neural network-based scheme
are explained in the following subsections.

A. ORIGINAL RULE-BASED ENERGY
MANAGEMENT STRATEGY
In this scheme, the SC only get to contribute to the vehicle
propulsion stage when its SOC is above a certain minimum
value and the vehicle is accelerating or decelerating at a
certain speed. Once the required conditions are met, the SC
participates in the power-sharing as the remaining power is
handled by the battery. The flowchart of the original rule-
based control strategy is shown in Fig. 10. At first, the power
required by the vehicle, PReq, is calculated. If PReq is below
zero (i.e., negative), it implies regenerative braking mode.
The state of the SC, SOCSC , is evaluated, and based on its
level it is either charged or not. If PReq is above zero (i.e., pos-
itive), it implies propulsion (driving) mode hence the vehicle
needs energy to move. The SOCSC is evaluated again but this
time against its minimum threshold, SOCSCmin. If below the
value, the battery alone supplies all the power requirements
of the vehicle as the SC cannot support below its minimum
threshold. This minimum threshold value is determined based
on the minimum voltage required by the motor drive as
modeled in ADVISOR. If the SOCSC is above its minimum
threshold, then the vehicle dynamics is analyzed. Based on
the present and previous velocities of the vehicle, it can be
computed if the vehicle is accelerating or decelerating or
at a constant velocity. The SC supports only when there
is a change in velocity (i.e., acceleration or deceleration).
If the vehicle is established to be accelerating/decelerating,
the SC will only support if the vehicle velocity, v, is greater
than vmin. vmin is established by finding a velocity at which
regeneration power is zero during braking as simulated by
ADVISOR. Next, to elongate the battery lifetime and ensure
better utilization of the battery and SC during the power
distribution, a Pmin value is established. Pmin is set to be the
peak power requirement of the vehicle during regenerative
braking. The idea here is that a vehicle experiences several
accelerations and deceleration/regenerative braking events
according to its driving cycle. Hence, for every acceleration,
there will be a certain deceleration/regenerative braking at
some point during the cycle thus this provides information
to the HESS on the amount of energy that could be required
during propulsion. If the PReq is greater than this value,
then the battery supplies the Pmin while the SC supplies the
remaining. But if PReq is less than the Pmin, then the SC
supports with as much power as possible as it can to the
motor while the battery supplies the rest. Thus, at any given
instance, the power distribution between the battery and SC
is represented mathematically as:

PReq = PB + PSC (7)

where PReq denotes power requirement of the motor of the
vehicle, PB denotes battery power and PSC denotes SC power.

FIGURE 12. Architecture of the ANN.

B. OVERALL PROPOSED ENERGY
MANAGEMENT STRATEGY
To reduce energy loss, achieve enhanced efficiency, and better
utilization of the battery and SC during the power-sharing
stage of the original rule-based EMS explained earlier in the
previous section, an artificial neural network (ANN) -based
approach is designed and incorporated into the rules. ANN
has been broadly used for optimal parameter estimation as it
is capable of producing the desired results once trained offline
and its hidden layer weights are fine-tuned. It can then be
deployed in real-time to yield the desired output [41]. The
original rule-based EMS is adjusted and updated, as shown
in Fig. 11. The ANN introduces intelligence to the power-
sharing during the period when PReq ≤ Pmin. Its decision
is made upon consideration of the vehicle velocity, v, current
status of the SC, iSC , and battery SOC, SOCB, at such periods.
This will ensure better participation of both the battery and
SC based on their states during this period as against what is
obtained in the original rule-based EMS. The architecture of
the ANN is shown in Fig. 12. The purpose of the ANN is to
determine how much power the SC is expected to contribute
during power-sharing with the vehicle velocity, v, current
status of the SC, iSC , and battery SOC, SOCB as inputs. The
output of the ANN, PNN , is the power the SC is expected
to contribute during the power-sharing, while the battery
supplies the remaining. The simulation was carried out in
MATLAB/Simulink using the ANN toolbox. The Levenberg-
Marquart training algorithm was used to train the ANN as it
is known for its fast convergence and robustness. Data points
from the 3 driving cycles – UDDS, SC03, and HWFET are
used in training the ANN to obtain optimal parameters that
will yield optimal PSC and PB when PReq is less than Pmin.
Furthermore, to achieve the goal of ensuring that both battery
and SC deplete approximately at a similar rate, a depletion
factor is used during the training process for each driving
cycle.

V. EMS VALIDATION AND RESULTS ANALYSIS
This section presents brief explanations of the model simula-
tion and the results of the EMS.

A. SIMULATION OF THE ESS AND HESS MODELS
As shown in Fig. 3, both the single ESS (battery only) and
HESS (battery and SC) vehicle models were implemented
in ADVISOR. According to [30] and [31], some of the
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FIGURE 13. Power allocation results of the proposed EMS on (a) UDDS, (b) SC03, (c) HWFET, and (d) Randomized driving cycles.

variables associated with both the battery and SC models
include internal resistance, Rint , open circuit voltage, OCV ,
temperature, T , maximum capacity, Cn, and coulombic effi-
ciency, η. For the battery model, η and Cn are mapped
according to battery temperature, TB variation,OCV , and Rint
are mapped with SOCB and TB while Rint has a different
mapping model for charge Rch and discharge Rdch. Similar
mapping is used for the SC model utilizing its correspond-
ing parameters. The capacity of SC, compared to battery
capacity Cn, is related to the SC capacitance. However, the
OCV of SC follows an exponential relationship with SOCSC
in accordance with the specified minimum and maximum
voltage levels. The model files and parameters used in mod-
eling the single ESS and HESS vehicle models are shown
in Tables 2 and 3.

B. PERFORMANCE OF PROPOSED EMS
The minimum and maximum SOC levels of the vehicle bat-
tery are 10% and 100%, respectively, while that of the SC
are 40% and 98%, respectively. This is to satisfy the inverter-
motor minimum operational voltage level requirement as
modeled in ADVISOR.

1) NON-RANDOMIZED DRIVING CYCLE
The regenerative braking peak power requirement of the
vehicle, which is set as Pmin value, for the 3 non-randomized
driving cycles used in this paper –UDDS, SC03, andHWFET
are 20.5 kW, 27.6 kW, and 29.5 kW, respectively, while the
vmin values are 20.8 m/s, 22.5 m/s, and 24.1 m/s, respectively,
as simulated by ADVISOR. The power allocation perfor-
mance results of the proposed strategy for the first cycle of
the UDDS, SC03, and HWFET driving cycles are illustrated
in Fig. 13. As seen, the peak power demand requirement of
the vehicle is effectively absorbed by the SC throughout the
entire driving cycle and as a result, minimizes the stress on the
battery and maximizes the battery lifetime. Moreover, the SC
power output staggers between positive and negative values
by following the charging (regeneration) and discharging
(propulsion) operations of the vehicle. As such, it effectively
handles all the demand fluctuations and gives a great response
capability to all the load changes of the vehicle.

2) RANDOMIZED DRIVING CYCLE
The Pmin and vmin values of the randomized driving cycle
as simulated in ADVISOR were obtained as 26.4 kW and
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FIGURE 14. Results plot of (a) battery output power, (b) SC output power, (c) battery SOC, and (d) SC SOC for UDDS drive cycle.

TABLE 5. Performance comparison results on UDDS drive cycle.

21.9 m/s respectively. The performance result of the power
allocation of the proposed strategy for the first cycle of the
randomized driving cycle, as shown in Fig. 13 (d) indicates
that despite the degree of uncertainties and disturbances
encountered while driving in unknown scenarios, the stress
on the battery is effectively minimized through the absorption
of the vehicle peak power demand by the SC. This ensures
that the battery lifetime is maximized and the vehicle load
demand fluctuations as a result of uncertainties are ade-
quately handled.

C. COMPARATIVE ASSESSMENT
To effectively illustrate and evaluate the performance of the
proposed strategy in fulfilling the overall objectives of the
paper, which is to extend the battery lifetime and enhance
efficiency, two other approaches are compared. The first

is the single ESS where the vehicle is powered only by
battery, which is also the base case and the second is the
original rule-based EMS described earlier. To assess the per-
formance of these approaches in meeting the objectives of
the paper, the following evaluation parameters were consid-
ered: i) peak propulsion power, ii) energy throughput, and
iii) power losses. The energy throughput is determined based
on the expression [42]:

ET =
n∑
i=1

(Cnom · DoDi) · CF
n

(8)

whereCnom denotes nominal capacity,DoDi denotes depth of
discharge, and CF denotes the number of cycles to failure for
the specific DoD.

It is worth noting that to manage the energy throughput
of the battery and SC, the SOCs of the battery and SC
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TABLE 6. Performance comparison results on SC03 drive cycle.

TABLE 7. Performance comparison results on HWFET drive cycle.

are used as prime indicators as they are important factors
influencing battery life and the overall power loss. The power
losses associated with the battery and SC during charging and
discharging are determined using these expressions [31]:

PB,loss,ch = η2BI
2
BRch,B − IV (1− ηB) (9)

PB,loss,dch = I2BRdch,B (10)

PSC,loss,ch = η2SC I
2
SCRch,SC − ISCV (1− ηSC ) (11)

PSC,loss,dch = I2SCRdch,SC (12)

1) NON-RANDOMIZED DRIVING CYCLE
The results of the single ESS, original rule-based, and pro-
posed approaches under the UDDS driving cycle are shown
and compared in Fig. 14. Table 5 lists the performance com-
parisons of the three approaches under the UDDS driving
cycle. The percentages represent the performance of the other
approaches relative to the single ESS approach, where nega-
tive values indicate a reduction and better performance over
the single ESS approach. The power output profile of the
battery is shown in Fig. 14 (a). It is important to note that
the battery in the single ESS (base case) has both propulsion
and regenerative power as there is no SC in this case. From
Fig. 14 (a), it can be observed that the original rule-based
approach reduced the battery peak propulsion power from
57 kW of the single ESS approach to 33.5 kW representing
a 41.32% reduction, whereas, the proposed approach fur-
ther reduced it to 29.9 kW representing a 47.47% reduction
compared to the base case. This reduction resulted in better
utilization of the SC as its peak propulsion power increased
from 36.5 kW for the original rule-based approach to 48.1 kW
for the proposed approach, indicating a 31.77% increase,
as shown in Fig. 14 (b). This demonstrates that the proposed
approach can effectively suppress battery peak current as well

as reduce battery current variation and as such extend the
battery lifetime.

The SOC profiles of the battery are shown in Fig. 14 (c).
As observed, the single ESS with no SC noticeably has the
highest decay rate as it is the only main energy source in
comparison to the other approaches. The SC SOC profiles
are displayed in Fig. 14 (d). For the original rule-based
approach, the SC is depleted at about 1.5 cycles while the
proposed approach sustains the SC even beyond 2 cycles.
This result indicates the capability of the proposed approach
to ensure the availability of the SC throughout the battery
discharge period, as such the battery and SC SOCs decay
at an approximately similar rate. This will also give rise to
better utilization of both ESS. The merits of the proposed
approach can be further substantiated by the battery energy
throughput (ET) results as given in Table 5. As shown in
Table 5, the original rule-based approach reduced the battery
ET by 30.43% in comparison to the single ESS, while the
proposed approach yields a 40.59% reduction in comparison
to the single ESS case. This shows that the proposed approach
enhances the battery ET by approximately 15% when com-
pared to the original rule-based approach. Correspondingly,
the SC ET results as shown in Table 5 indicate that the pro-
posed approach is the highest of the other methods, with an
SC ET value of 1.054 kWh. A look at the total energy losses
as seen in Table 5 indicate that in comparison to the single
ESS approach, the original rule-based approach enhances the
overall energy loss by 8.03%, while the proposed approach
significantly enhances it by 29.92%.

Correspondingly, similar results were obtained with a fur-
ther comparative assessment of the performances of the three
approaches under the SC03 and HWFET driving cycles. The
result for the SC03 driving cycle is provided in Table 6 while
that of the HWFET driving cycle is provided in Table 7.
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FIGURE 15. Results plot of (a) battery output power, (b) SC output power, (c) battery SOC, and (d) SC SOC for Randomized drive cycle.

TABLE 8. Performance comparison results on Randomized drive cycle.

The proposed approach outperformed the other approaches
regardless of the driving cycle. The SC energy is effectively
utilized not just for one drive cycle, but for the entire battery
discharge period (i.e., multiple cycles).

2) RANDOMIZED DRIVING CYCLE
The results of the single ESS, original rule-based, and pro-
posed approaches for the randomized driving cycle are pro-
vided in Fig. 15 and Table 8. Similar to the non-randomized
driving cycles and as shown in Fig. 15 (a), the battery peak
propulsion power was reduced from 55.9 kW of the single
ESS approach to 42.9 kWof the original rule-based approach.

This result depicts a 23.18% reduction. However, the pro-
posed approach reduced it to 35.6 kW, depicting a 36.35%
reduction in comparison with the single ESS. Correspond-
ingly, the SC peak propulsion power as shown in Fig. 15 (b),
rose from 35.9 kW of the original rule-based to 42.1 kW of
the proposed approach depicting an increment of 17.08%.
These results indicate better utilization of the SC and reduced
battery current variation despite the huge fluctuations in load
demand caused by the uncertainties of the unknown driving
scenario.

The battery SOC profiles as shown in Fig. 15 (c) reveal that
while the single ESS had the highest decay rate, the original
rule-based approach had the least decay rate in the first cycle.
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This implies a corresponding highest SC decay rate for the
first cycle, as shown in the SC SOC profile in Fig. 15 (d).
However, this could not be sustained in the second cycle
as the battery in the original rule-based approach decayed
faster in the second cycle when compared to the proposed
approach. As observed, the faster decay rate of the battery
of the original rule-based approach in the second cycle was
obviously in meeting the vehicle power demands as the SC
could not support much during this period, having reached its
minimum level. This reveals the intelligence brought about
by the ANN in the proposed approach which considers the
vehicle velocity, the current status of the SC, and the battery
SOC before determining how much power the SC should
support the propulsion with at periods when PReq ≤ Pmin.
Hence, for the original rule-based approach, SC is depleted
after one cycle, whereas the proposed approach sustains the
SC throughout the battery discharge period (i.e., 2 cycles).
Furthermore, the battery ET results displayed in Table 8 show
that in comparison to the single ESS, the original rule-based
approach and the proposed approach reduced the battery ET
by 13.25% and 21.70% respectively. This result shows that
the proposed approach enhances the battery ET by 9.73%
in comparison to the original rule-based approach. Also,
the proposed approach had the highest SC ET of about
0.818 kWh.

Evaluating how well each approach was able to reduce
energy losses in comparison to the single ESS reveals that
the original rule-based approach enhances the overall energy
loss by 2.06%, while the proposed approach enhances it
significantly by 23.71%. Furthermore, the sum total of all
the energy losses for the original rule-based approach under
the UDDS, SC03, HWFET, and randomized drive cycles,
as shown in Tables 5-8, gives 0.385 kWh while that of the
proposed strategy gives 0.299 kWh. This represents approx-
imately a 22.5% reduction in the total energy loss. Based on
the obtained results, it can be inferred that in comparison to
the other approaches, the proposed approach can effectively
enhance the overall energy efficiency, reduce battery energy
throughput and improve battery lifetime.

VI. CONCLUSION
In this paper, an adaptive velocity predictor based on an
LSTM network and an artificial neural network enhanced
energy management strategy that aims at better utilization
of the two energy sources of a battery-supercapacitor hybrid
electric vehicle was proposed. First, feature engineering was
utilized to extend the features of the original driving cycle
dataset of the known driving condition scenarios. The LSTM
network used for the vehicle future velocity prediction of
the unknown driving condition scenario utilized a multiple
time-series prediction scheme. The results showed that, for
each of the non-randomized (i.e. UDDS, SC03, and HWFET)
and randomized test driving cycles used, the scheme when
compared with the other prediction schemes, improved the
velocity prediction accuracy by at least 45.98%. This result
implies that the velocity predictor model can learn driving

conditions of known scenarios, adaptively adjust and predict
future velocity in real-timewhen encountering unknown driv-
ing conditions. Next, to distribute the vehicle power demand
amongst the battery and SC, an original rule-based EMS
was proposed. However, to manage the energy losses, ensure
the availability of the SC throughout the battery discharge
period, and achieve better utilization of the battery and SC,
an artificial neural network-based approach was designed and
incorporated into the rules. Simulation results showed that
the proposed approach in comparison to the single ESS (bat-
tery alone) and the original rule-based approaches, reduced
battery peak propulsion power by at least 33.62% across the
four driving cycles. Thus, ensures efficient utilization of the
SC energy throughout the complete battery discharge period
(i.e., multiple cycles). Furthermore, the results shown in the
paper indicate that for each of the four driving cycles, the pro-
posed approach in comparison with other methods, enhanced
battery energy throughput and the overall total energy loss
by at least 10.23% and 17.98% respectively. These improve-
ments reflect the effectiveness of the proposed approach to
prolong battery lifetime and enhance efficiency.
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