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ABSTRACT We propose a method to form a non-uniform decision boundary (NUDB) forM -ary quadrature
amplitude modulation (MQAM) signals to reduce bit error floor (BEF) in the presence of phase error.
We put our focus on angle distances between MQAM symbols and adjacent decision boundaries to observe
minimum angle distance, and derive optimum intervals for the decision boundaries tomaximize theminimum
angle distance. Through computer simulations, we verify that the proposed NUDB shows lower BEF than a
conventional uniform decision boundary by 56% and 15% smaller for 16QAM and 64QAM, respectively.

INDEX TERMS Angle distance, bit error floor, non-uniform decision boundary, phase error, quadrature
amplitude modulation.

I. INTRODUCTION
Modern high-speed railways require an improved communi-
cation system to provide high mobility with high data rate
[1]. The latest mobile communication technologies such as
5G and upcoming 6G aim to support superior capabilities
with millimeter-wave: Mobility capability of 350 km/h and
500 km/h in 5G and 6G, respectively [2]. However, com-
munication systems for a high-speed platform experience
serious Doppler effect in millimeter-wave because Doppler
spread increases as both the frequency and the speed of plat-
form increase [3]. Because of large Doppler spread, a phase-
locked loop (PLL) requires large loop bandwidth, leading
to a decrease of signal-to-noise ratio (SNR) in the loop
bandwidth. Due to small SNR in the loop bandwidth, the
variance of phase error becomes large, thus the phase error
can seriously degrade the bit error rate (BER) performance
[4]. On the other side, since a large Doppler spread can
cause imperfect channel estimation, a random phase error
caused by the imperfect channel estimation also degrades
BER performance [5]. Therefore, the phase error is one of the
degradation factors in communication systems for high-speed
railways [6], [7].

It is very important not only to analyze the BER perfor-
mance of a communication system for the phase error, but
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also to improve the performance under noisy phase environ-
ments. In the case of constant envelope modulation schemes,
the BER performance of binary phase shift keying (BPSK),
quadrature phase shift keying (QPSK), andM -ary phase shift
keying (MPSK) in the presence of noisy phase reference has
been extensively studied in the literature [8], [9], [10], [11],
[12]. Especially, bit error floor (BEF) analyses for the random
phase error were established in [13] and [14] because a ran-
dom phase error causes BEF, which is irreducible bit error in
a high SNR region. To be specific, Jang et al. [13] proposed
a BEF expression of MPSK for Gaussian distributed random
phase error and Lee et al. [14] extended BEF analyses for
multi-level phase modulation, i.e., amplitude and phase shift
keying (APSK). Previous BEF results were mainly focused
on a phase modulation such as MPSK. In this paper, we
assume that a PLL is used for phase estimation based on a
pilot signal and the variance of the phase error is independent
of data SNR [13].
M -ary quadrature amplitude modulation (MQAM) signals

have been widely used for high-speed data transmission in
modern mobile communication systems due to its orthogo-
nality property. BER and BEF analyses for MQAM in the
presence of phase noise have been studied in the case of a
uniform decision boundary (UBD) [15]. It was observed that
the performance of MQAM can be degraded by a random
phase error. Because higher-order MQAM signals can be sig-
nificantly sensitive to the phase error, it is important to reduce
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the effect of the phase error on communication performance.
Recently, Mvone et al. [16] proposed new constellations of
16QAM and 32QAM robust to the phase noise. However,
the proposed method in [16] is difficult to compatible with
the existing communication system and increases complexity
of the receiver because the proposed constellations have a
specific configuration, which is not a simple square form.

For high-order MQAM, conventional receiver adopts a
uniform decision boundary (UDB) since it is the optimum
boundary for an additive white Gaussian noise (AWGN)
channel. However, the UDBwith the phase error might not be
optimal in a high SNR region because the effect of phase error
on BEF instead that of AWGN becomes dominant. Indeed,
in a high SNR region, BEF is mainly determined by angle
distances between symbols and decision boundaries rather
than Euclidian distances as pointed out in [14].

The high-order MQAM symbols have various angle dis-
tances on a signal constellation, whereas MPSK symbols
have uniform angle distances. Moreover, in a high SNR
region, the minimum angle distance of MQAM symbols
can significantly affect BEF. Thus, BEF of MQAM can be
improved by increasing the minimum angle distance.

In this paper, we propose a non-uniform decision bound-
ary (NUDB) for MQAM constellations in order to reduce
BEF under random phase errors. We derive angle distances
between MQAM symbols and adjacent decision boundaries
in the case of arbitrary intervals of decision boundary with the
phase error. Then, we derive an optimum interval expression
in a closed form for the NUDB to maximize the minimum
angle distance. Through computer simulations, we show that
the proposed NUDB reduces BEF compared to the UDB.

This paper is organized as follows. Section II describes the
system model. In Section III, angle distances of MQAM are
analyzed for uniform decision boundary. The optimal interval
of non-uniform decision boundaries is derived in Section IV
to maximize the minimum angle distance. Section V presents
the numerical results. Finally, Section VI concludes the paper.

II. SYSTEM MODEL
When a phase error is present, the k-th received signal of
MQAM can be expressed as

rk = xke−jθk + nk , k = 1, 2, . . . , (1)

where xk is the transmitted MQAM symbol, nk is the AWGN
signal, and θk is the phase error.

Real and imaginary components of xk are selected from the
uniform constellation set
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Note that Eb is the average bit energy.
In communication systems, a PLL can cause the random

phase error and the probability density function (PDF) of

FIGURE 1. Error probability caused by phase error.

phase error is assumed to have Gaussian distribution [4], [15].
In (1), θk can bemodelled as a Gaussian random variable with
PDF given as

p (θk) =
1

√
2πσθ

exp

(
−θ2k

2σ 2
θ

)
, −π ≤ θ ≤ π, (3)

where σθ is the standard deviation of phase errors [12]. When
the normalized loop SNR of PLL is α, the variance of phase
error is α−1 [13]. Because a high-speed vehicle causes a
large Doppler spread, a PLL of the receiver requires a large
loop bandwidth to process the frequency spread signal. The
large loop bandwidth leads to a decrease in SNR in the loop
bandwidth. Due to the small SNR in the loop bandwidth, the
variance of phase error becomes large. The phase error with
large variance can seriously degrade the BER performance.

In a high SNR region where the effect of AWGN on bit
error performance is negligible, the bit error can occur when a
transmit symbol rotates and crosses over a decision boundary
due to a phase error. We define the angle difference between
the transmit symbol and the adjacent decision boundary as the
angle distance. Fig. 1 describes the error probability caused
by phase error for the two-symbol case. Each symbol has a
Gaussian PDF which means the angle of the transmit symbol.
The shadowed region depicts the bit error region, and η and ε
are angle distances for each symbol. To help understanding,
a simple two-symbol case is shown as an example, and in the
case of MQAM, the decision regions appear more compli-
cated with multiple decision boundaries. However, the most
dominant one on error probability is the angular distance
between the symbol and the nearest decision boundary. This
is analyzed in detail in Section III.

By integrating (3) from angle distances to π as the same
approach presented in [14], BEF can be obtained as

PBEF =
∫
−π

−ε

p(θ )dθ +
∫ π

η

p(θ )dθ

=

∫ π

ε

p(θ )dθ +
∫ π

η

p(θ)dθ. (4)

When the value of angle distance is small, it causes large BEF
because of the large area of integration in (4). In the follow-
ing section, we analyze angle distances of MQAM for the
UDB.
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FIGURE 2. Clockwise angle distance of i -th decision boundary.

FIGURE 3. Counter-clockwise angle distance of i -th decision boundary.

III. ANGLE DISTANCE OF MQAM FOR UNIFORM
DECISION BOUNDARY
In a high SNR region, BEF is determined by angle dis-
tances between symbols and decision boundaries. Especially,
because the angle distances between symbols and adjacent
decision boundaries are small, those are dominant on BEF.
Thus, we derive and analyze the angle distances between
MQAM symbols and adjacent decision boundaries based on
the geometry of MQAM constellation. We present results for
the quadrature phase by taking advantage of the symmetricity
of a MQAM constellation between in-phase and quadrature
phase.

First, Fig. 2 shows the clockwise angle distance of the adja-
cent symbol located above the i-th decision boundary for the
quadrature phase. By analyzing angle rotations of symbols,
the angle distance η (k, i) between the i-th decision boundary
and symbols located above the i-th decision boundary can be
obtained as

η (k, i) = µ (k, i+ 1)− βu(k, i)

= tan−1
(2i+ 1)
(2k − 1)

− sin−1
2i√

(2k − 1)2 + (2i+ 1)2
,

(5)

TABLE 1. Angle distances for 16QAM.

TABLE 2. Angle distances for 64QAM.

where i = 1, 2, . . . ,
√
M/2 − 1 and k = 1, 2, . . . ,

√
M/2.

Using (5), the angle distance can be obtained for all the sym-
bols located above the i-th decision boundary for MQAM.

Now, Fig. 3 shows the counter-clockwise angle distance of
the adjacent symbol located below the i-th decision boundary.
The angle distance ε (k, i) between the i-th decision boundary
and symbols located below the i-th decision boundary can be
obtained as

ε (k, i) = βl (k, i)− µ (k, i)

= sin−1
2i√

(2k − 1)2 + (2i− 1)2
− tan−1

(2i− 1)
(2k − 1)

,

(6)

where i = 1, 2, . . . ,
√
M/2 − 1 and k = µ, . . . ,

√
M/2,

and µ is the smallest natural number that satisfies√
(2µ− 1)2+ (2i− 1)2 > 2i. It can be easily checked that

the angle distance ε(k, i) for k less than µ does not exist
because magnitudes of S (1, i) , . . . , S (µ− 1, i) are less than

2id when
√
(2µ− 1)2+ (2i− 1)2 < 2i. Using (6), the

angle distance for the symbol located below the i-th decision
boundary can be obtained.

Using (5) and (6), the angle distances of 16 and 64QAM
constellations are shown in Table 1 and Table 2. We can see
that ε (k, i) > η (k, i) for the same i. For the i-th decision
boundary, the angle distance η

(√
M/2, i

)
for the outermost

symbol S(
√
M/2, i + 1), is the minimum angle distance,

that is, the angle distance η
(√

M/2, i
)
is the most dominant

factor for determining BEF. If the decision boundary is set to
maximize the minimum angle distance, BEF can be reduced.
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FIGURE 4. 16QAM constellation with NUDB.

Therefore, in the following section, we propose a NUDB that
can maximize the minimum angle distance and derive the
optimal decision boundary intervals.

IV. NON-UNIFORM DECISION BOUNDARY FOR MQAM
As shown in Fig. 1, maximizing the minimum angle distance
is identical to maximizing the conditional probability density
for the correct bit. The minimum angle distance is determined
by the interval between the symbol and the adjacent decision
boundary. Therefore, the error probability caused by phase
error can be minimized by deriving the decision boundary
interval to maximize the minimum angle distance. In order
to reduce BEF by increasing the minimum angle distance,
we propose a NUDB for MQAM, which is not a UDB with
the conventional 2d interval.
Fig. 4 depicts an example of a 16QAM constellation with

the NUDB. The distance from the axis to the i-th decision
boundary for the NUDB is set as γid , while the distance for
the UDB is 2di. Note that γi is the interval coefficient of the
i-th decision boundary. As discussed in the previous section,
the minimum angle distance of each decision boundary is
defined as η

(√
M/2, i

)
. It can be easily checked that γi

becomes smaller than 2i to increase η
(√

M/2, i
)
. On the

contrary, when γi becomes smaller, ε
(√

M/2, i
)
decreases.

Therefore, the minimum angle distance can be maxi-
mized by obtaining γi that satisfies the boundary condition
ε
(√

M/2, i
)
= η

(√
M/2, i

)
due to the fact that the MQAM

symbols are transmitted equally likely and the likelihood
functions are symmetric. This condition can be written as

sin−1
(
γi

Li

)
+ sin−1

(
γi

Hi

)
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(
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√
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)
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)
, (7)

TABLE 3. Optimum interval coefficients for 16 and 64QAM.
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From (8), we can obtain the equation for γi as
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FIGURE 5. BEF of 16QAM for AWGN channel.
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FIGURE 6. BEF of 64QAM for AWGN channel.

Solving the quadratic equation (10), we finally obtain the
solution of γi as

γi =

√√√√√√
(
L2i + H

2
i

)
− 2LiHi

√
1− T 2

i(
L2i −H

2
i

)2
L2i H

2
i T

2
i
+ 4

. (11)

Finally, using (11), the optimum interval of the
i-th decision boundary that minimizes BEF can be straight-
forwardly obtained for MQAM signals. As examples, Table 3
shows γi for 16 and 64QAM.

Note that the interval coefficient γi is 2i in the case of UDB.
When the NUDB is adapted with the suggested interval coef-
ficient obtained by (11), BEF can be reduced by increasing
the minimum angle distance. It is noteworthy that the NUDB
can be easily implemented by applying the optimum interval
coefficients for the MQAM signal decision in the existing
receiver structure.

FIGURE 7. BEF of 16QAM for fading channel.

Because the proposed NUDB can reduce BEF without
complexity increase of hardware and software, it can be

FIGURE 8. BEF of 64QAM for fading channel.

very practical and useful for communication systems in the
presence of phase error.

V. NUMERICAL RESULTS
In this section, we present BEF performance under the effect
of phase error using Monte-Carlo simulations. Then, we ver-
ify that BEF performance can be improved for the pro-
posed NUDB. As for the conditions of simulation, 1,000,000
MQAM symbols were generated with equal probability for
each SNR and the number of error bit was counted for
the UDB and NUDB. In Figs. 5 and 6, we plot BEF of
16QAM and 64QAM for the UDB and NUDB in AWGN
channel when the deviations of the phase error are 4◦ and
2◦ for 16QAM and 64QAM, respectively [15]. In addition,
Figs. 7 and 8 depict BEF of 16QAMand 64QAM for theUDB
and NUDB in Nakagami-m fading channel.

As shown in the figures, BER performance in the fading
channel is worse than that in the AWGN channel but BEF
in fading channel converges to the same value as BEF in the
AWGN channel. This phenomenon is verified for MPSK in
[13] and we confirmed that for MQAM in this paper.

We can see that BER of the UDB is slightly less in a low
SNR region. However, in a high SNR region, BEF is reduced
when the NUDB is applied. For 16QAM, BEF of the UDB is
1.798×10−6, and BEF of the NUDB is 7.875×10−7, which
is about 56% smaller than that of the UDB. For 64QAM,
BEF of the UDB is 4.134 × 10−6 and BEF of the NUDB
is 3.525 × 10−6, which is about 15% smaller than that of
the UDB. Through these results, we can observe that the
application of NUDB to the receiver can improve BEF under
a random phase error.

When the constellation of 16QAM proposed in [16] is
adopted, low BEF can be achieved which is lower than that
of the proposed method of 16QAM in the same simulation
environment. However, to obtain optimal performance for the
specific constellation, M complex multiplications and com-
parisons per one symbol decision are required in the receiver
because Euclidian distances between the received symbol
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and all candidate symbols should be calculated, whereas the
proposed method requires only a few comparisons because
the conventional constellation of a simple square form is used.
Thus, the proposed method is more practical with very low
complexity and has compatibility with the existing commu-
nication system.

From the Figs. 5 and 6, we can also see that the better BEF
reduction performance is achieved for low-order QAM sig-
nals. Because of the large distance between the signal points
of low-order QAM, the differences between angle distances
are larger than high-order QAM as shown on Tables 1 and 2.
As a result, there is the opportunity for improving the mini-
mum angle distance for the low-order QAM constellation.

VI. CONCLUSION
In this paper, we proposed the NUDB to reduce BEF of
MQAM in a noisy phase situation. Through the derived
angle distance expressions for the MQAM symbols and adja-
cent decision boundaries, it was confirmed that the outer-
most symbol located above each decision boundary has the
minimum angle distance, and the outermost symbol located
below has the second minimum angle distance. The optimum
interval for the NUDB that maximizes the minimum angle
distance was derived, and it was verified that BEF of the
NUDB is improved compared to that of the UDB through
computer simulations. The proposed NUDB is highly prac-
ticable because it can reduce BEF only by setting the value
of the decision boundary without implementing additional
hardware and software when there is a random phase error.
In this paper, we focused on phase error which is one of
the impairments in communication systems. As future work,
an improved method can be expected for various impair-
ments, such as I/Q imbalance and nonlinearity of a high-
power amplifier.
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