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ABSTRACT This article proposes a digital twin design using a finite state machine (FSM) that can be
integrated and used for the simulation requirements of a production process. The FSM used to introduce
the proposed concept can create a fully fledged digital twin. The design of the state machine ensures the
functionality of the control systems, parts of the production line, and the associated Internet of Things (IoT)
devices. The concept can be extended using an interface that can communicate at the level of the required
protocol, thereby ensuring the possibility of integration into the production line. The digital twin can be
used as a model and basic platform to develop an IoT hardware device. The advantage of this system is
that its implementation can be verified with or without a physical prototype. It is possible to test hybrid
implementation, where hardware elements are partially integrated into the software model created based on
FSM. The design of the IoT device was verified on a production line, where it was adaptively controlled
the delivery rate of material for sorting. It introduces an opportunity to test or simulate a possible planned
change in production infrastructure, in which it is possible to better understand the solution and verify
the expected changes and their effect on production. The design can be fully used in accordance with
Industry 4.0.

INDEX TERMS Finite state machine, digital twin, the IoT device, simulation, production line.

I. INTRODUCTION
The Industry 4.0 framework transforms production from
standalone automated units into a fully integrated automated
and continuously optimized production environment [1].

This will allow companies to create ‘‘smart products’’
that are clearly identifiable and localizable knowing not
only their history and current status, but also understanding
the alternative methods that could create the final product.
Vertical production processes are horizontally interconnected
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within industrial systems that respond flexibly in real time to
immediate and changing demand for products [2].

These vertical production processes will be able to
respond to individual customer requirements and based on
these requirements, will also be able to produce products
efficiently.

The production process is continuously optimized and
can respond to unexpected changes caused by the failure of
a production facility [3]. The starting points of the fourth
industrial revolution arise from the implementation of new
models and approaches to human work activities using the
Internet of Things (IoT).
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This is related to new socio-economic behavior, new
modes of thinking, and changes in human society. However,
these changes also require necessary steps in terms of
technological preparation using the latest cybernetics and
other modern technologies and methods [4].

This has created new global networks based on the
interconnection of production facilities in the form of
cyber-physical production systems (CPPSs). CPPSs are
becoming an essential building block of ‘‘smart industries’’
which are characterized by the ability to exchange informa-
tion autonomously, to be able to trigger the necessary actions
in response to current conditions and to ensure mutual,
independent control.

The sensors, machines, and Information Technology (IT)
systems involved in CPPSs are interconnected within a value
chain that transcends the boundaries of individual companies.
CPS (Cyber-Physical System) connected in this manner
can interact and analyze data using standard IoT-based
communication protocols that allow them to foresee possible
errors or faults and configure and adapt themselves to
changing conditions in real time [5].

CPPSs, which change the field of production management
and present new possibilities for integrating entities in the
production process, make it possible to change the flexibility
of the production process as well as to incorporate new
production elements and define their mutual substitutability
and communication requirements [6].

In the Industry 4.0 concepts, processes are optimized
even before they are implemented in practice, thus enabling
the verification of parameter changes in the simulation
environment and the preparation of suitable parameters for
the production process [7].

Simulation and digital twins are used in the industry
to achieve set production goals, improve integration, and
reduce risks when changing production process parameters.
Specific production decisions are the parameters of a planned
operation that guarantee the achievement of the production
goal and can be characterized as job scheduling problems [8].

These parameters were verified using a digital twin. This
approach uses a set of attributes and properties of existing
physical devices. This approach records and updates data
throughout the life cycle of the system. The identification
and processing of data for the preparation of the digital twins
during the integration of the IoT device into the production
line and the data synchronization among the digital twins
make it possible to describe the behavior of the existing
system [9].

By integrating the digital twin concept with model-based
systems engineering (MBSE), hardware solutions can be
developed based on the digital twin software model [10].

The basic characteristic of a device developed in this man-
ner is a set of autonomous elements that can communicate
with each other. Simultaneously, these elements should be
able to adapt to the incoming changes in production and
should be able to record changes in the environment, as well
as to respond to them autonomously [11], [12].

All of these elements lead to the best possible management
processes. Performance indicators are the main parameters
for usability and quality of management. Every change in
production represents a risk that needs to be eliminated, and
owing to the variability of solutions, this task is not always
easy. Significant efforts have also been devoted to meeting
these requirements through machine learning [13].

To achieve these goals, and especially to achieve the
flexibility represented in Industry 4.0, it is necessary to
pursue the agile implementation of changes required using
the production process. A comprehensively solved task can
slow down the implementation of an eventual solution. Faster
adaptation and acceleration of development can be achieved
using an agile approach, which can help in the development
of software and hardware devices [14].

To achieve this goal, it is necessary to classify and identify
areas that can be prepared in parallel so that individual teams
can focus on their assigned tasks. The technical side of this
represents an area where it is possible to use a digital twin
and the CPPS system so that the individual subsystems of the
solution can be solved separately.

A. RELATED WORKS
The concept of a finite state machine (FSM) is relatively
complex, and its deployment presents a challenge. When
creating an FSM model, it is necessary to conduct an
accuracy test for the model. Testing and issues relating to
the deployment, synchronization, and identification of states,
as well as their verification, fault detection, and the evaluation
of testing, were described in the work of Bongjoo Koo et al.
in 2020 [15].

The design and implementation of a digital twin model
with the possibility of managing a production system
dealing with the development of the model and a systematic
framework for developing Digital Twin (DT) based CPPS
have been proposed previously [12]. In this study, the
possibility of integrating and developing a digital twin as a
possible development prototype was verified.

The communication itself was processed through protocols
related to a specific situation that occurs in asynchronous
communication. The solution to this problem was inspired
by the work of Muttersbach et al. [16], in which synchronous
modules were equipped asynchronous wrappers that adapted
their interfaces according to the required timing.

The preparation of the integration of the state machine
model was based on the principles of CPPS, for which
the configuration, automatic and integration elements, and
subsystems within the entire level of production are described
in the work of L. Monostor et al. [17].

The integration of IoT devices, applications of this
approach in Industry 4.0, the issue of safety communication,
and its integration into the production process are summa-
rized in the work of Kim [18].

The versatility of the proposed solution is based on the
concept of Industry 4.0, and it is possible to choose a suitable
communication protocol as needed.
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B. CONTRIBUTIONS
IoT systems are an integral part of every modern company
in Industry 4.0. IoT is a term for modern devices that can be
controlled remotely via the internet [19].

The Internet of Things (IoT) refers to technologies that
enable cheap wireless connections and the communication
of various sensors and devices to automate, speed up,
and streamline processes; measure distances; act as remote
controls; increase comfort; and enable better quality of
life, with many other uses in areas such as agriculture,
medical care, recycling of waste products, virtual real estate
production, and movement in the gaming industry [20].

The design of an IoT device and its physical or software
implementation can be divided into subtasks. The basic
element for ensuring such an implementation approach is the
development and implementation of an IoT device, which is
described in this article.

The idea is to create a model that provides better
transparency and simplifies the design of the IoT devices.
The design of the model and methods used were inspired by
the OPC UA, which is the Industry 4.0 standard. The project
framework is the realization of a digital twin as a finite-state
machine (FSM) [21].

The FSM was used in the OPC Unified Architecture
(OPC UA) to describe the internal functionality of the
device. This design of the model appears advantageous,
and it has been verified that it is possible to evaluate
the properties by which production can be influenced by
monitoring the parameters in the production process. It is
also possible to monitor the degenerative conditions during
production [22].

Each state defined in the FSM models also presents the
possibility of solving a specific problem through an inde-
pendent team, thus allowing the incorporation of software
and hardware solutions into the final product. The advantage
is the parallel implementation of several modules and the
testing of the partial solution using the created model of the
FSM [23].

The model can also be used for simulation or integration
into the production process in a prototype design, where part
of the tasks can be performed only by software or using a
hybrid approach. In such an approach, the individual parts of
the proposed solution can be combined with the hardware.
This procedure is enabled by the application of input and
output variables that affect the assignment of states to an
FSM [7], [24].

II. MATERIALS AND METHODS
According to the Industry 4.0, it is possible to design an IoT
solution or Programmable Logic Controller (PLC) program
in the form of a finite-state machine [12].

The proposed solution represents the principles of the
device. This device can facilitate integration into the produc-
tion process and allow the device to be tested and simulated
without the need to intervene or shut down the production
process. In the traditional understanding of Industry 4.0, the

digital twin is presented as a faithful copy of an existing
production process or technical device that serves as a real
existing model [25].

When designing a simulation or IoT device, it is often
necessary to test or provide a solution as quickly as possible
in relation to the actual product during development. After
exploring these possibilities, we focused on the idea of
preparing a digital twin as a prototype of the proposed
solution and enabling the preparation of the intended
extensions, which would accelerate the development, testing,
and deployment of real equipment without the need for prior
interventions in the production process.

To design this solution, it is advantageous to use the
industry standard OPC UA, which ensures the compatibility
and variability of the proposed equipment for use in the
industry. One level of the OPC UA standard involves a
description of the function of the device as a final-state
machine [26].

Programmed devices go through a prescribed sequence of
states during their execution. This is typically used to describe
the function of a device, and it provides a description of the
behavior of the device. According to the OPC UA standard,
FSM elements describe the phases of the program’s execution
in terms of valid transitions between a set of states, as well as
describing the stimuli or causes of these transitions and the
resulting effects of the transitions [27].

Therefore, in this article, we examined the possibility
of creating an IoT device design according to the OPC
UA methodology. First, a model is created on which the
possibility of agile management of device development is
tested. The result of this process is an IoT device integrated
into the production line. FSMwas tested at all developmental
stages.

According to our assumptions, the development process
set up in this manner should facilitate the development of
IoT devices. Simultaneously, the FSM model must guaran-
tee the parallel implementation of individual states. Each
condition can be implemented as required by an additional
FSM.

The defined design system of the final IoT device should
satisfy the attributes of Industry 4.0, in which the creation
of its digital twin is ensured, and the software component
can also be used for physical testing or verification of
functionality without the creation of a physical device that
can be validated in practice.

Verification was carried out on the design of the device
to improve the sorting quality of the material in the
production line. The model created can exist as a software
digital twin, where parts that are entered parametrically for
simulation purposes can be replaced with sensors, physical
or logical interfaces that supplement data from the production
line.

In this way, a prototype IoT device can be deployed
and verified that has been designed as a model using FSM
and the OPC UA interface has been used for solution
compatibility.

134006 VOLUME 10, 2022



P. Strelec et al.: IIoT Device Prototype Design Using State Machine According to OPC UA

A. THE PRODUCTION LINE
Manufacturing with IoT elements in industry is one of the
most important steps on the road to Industry 4.0. Integrating
the production environment with IoT devices significantly
increases the efficiency and quality of production and
minimizes unnecessary costs [28].

As shown in Figure 1., we use a real production line
for industrial material sorting. Specifically, this part of the
production line is used for the output quality control of
materials, and its task is to separate defective materials from
those that meet the prescribed requirements.

FIGURE 1. Real production line.

This system can be used for sorting various materials, such
as in the production of screws or in the food industry, sorting
corn, wheat, and other materials. It is beneficial for this part
of the production line to sort the defective material from
acceptable material as efficiently as possible.

The individual components of the production line are
connected by a switch and controlled by a Siemens type
S7-300 PLC controller. The production line contains Human
Machine Interface (HMI) panels, through which the operator
controls the production process.

The operator can determine the speed of the conveyor belt
using these HMI panels [29].

In our case study, the production line involved a sorting
device that evaluated the color of the sorted product using
a Red, Green, Blue (RGB) sensor (see below). The entire
production process is recorded and archived using a server.

This server is equipped with a manufacturing execution
system (MES) built on the Wonderware platform. The Won-
derware system enables efficient control and management
and enables the archiving of production operations.

The Wonderware platform is equipped with the Historian
subsystem, which enables efficient storage and archiving of
all production processes, on the basis of which it is possible
to analyze this data to adjust and streamline the production
process [30].

B. INDUSTRIAL IoT
The IoT improves manufacturing operations by improving
connectivity, device management, production monitoring,
and customer relationships. The IoT connects devices
between each other and to people and collects and shares large
amounts of data [31].

Other main benefits are
• The monitoring of production. Because IoT connects

intelligent machines and collects and shares large amounts of
data, it is possible to monitor production in real time. This
allows an immediate response to production interruptions,
helps eliminate downtime, and reduces the process inventory.
The planned production can be compared with the actual
production in real time. The speed of themachine and line can
be changed in real time, and the amount of process stock can
also be adjusted. IoT allows the production to be completed
on time and allows synchronization with both process stocks
and raw material stocks [32].
• The management of a remote device. Connecting

machines compatible with the IoT to the network allows
remote device management. The worker can manage or
monitor devices from anywhere and is not limited by
having to be directly in front of a device that requires
maintenance. For a better diagnosis of this problem, it is
advisable to equip the device with intelligent sensors. It is
possible to set up protocols to actively manage the device,
thus saving energy costs and reducing the overall operating
costs [33].
• The maintenance of the devices. Condition-based

maintenance alerts can easily be implemented with the
IoT. The IoT is a key factor in performing maintenance
based on its reliability and the use of machine learning to
support predictive maintenance. This is positively reflected
in increased production volumes, reduced downtime, lower
maintenance costs, high machine reliability, and a higher
return on investment in the form of better machinery use and
production volume [34].
• Continuous improvement through data analysis. Six

sigma and other continuous improvement concepts require
several data points to function properly. From this viewpoint,
industrial IoT is important. The IoT helps aggregate product
data and gather them for analysis. Subsequently, people
working in continuous improvement can identify problems,
work out the root causes, implement improvements, and
verify that these improvements are working [35].

III. RESULTS
The proposed solution was implemented on a production
line, with the main goal of increasing the quality of the
sorting module. The production line had a sorting device
that evaluated the color of the sorted product based on an
RGB sensor; in the case of an unwanted particle, which was
represented by gray, this particle was removed.

To improve the process and adaptation of the sorting of
several materials, it is necessary to ensure the adaptation
of the particle feed rate to the sorting line input. This
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FIGURE 2. Sorting module of the production line.

requires the design of an IoT device that is capable of
performing this task. For testing, it was necessary to verify
the proposed solution as simply as possible. Because the
production line was overworked, it is impossible to intervene
in the production process for the purpose for streamlining the
production process.

Therefore, it was necessary to design a digital twin model
for this part of the production line, which dealt with material
sorting, as shown in Figure 2.

This part of the production line, whichwas used for sorting,
was extended using the prepared IoT device, which, based on
the sorted material, sent a signal to change the feed speed of
the conveyor belt, which fed the material to the sorter input.
This parameter also changes in practice and is sufficient to
increase the quality of sorting. The quality classification of
the sorting process was determined by assessing the sorted
samples at the outlet of the sorter based on the collected
waste.

If the sorting was not of the required quality and the waste
also contained particles that were evaluated as satisfactory or,
conversely, if the sorted output also contained particles that
did not meet the quality requirements, it was necessary to
manually change the feed speed rate. However, changing the
feeding speed rate does not always sufficiently resolve this
issue. To better demonstrate the efficiency of material sorting,
the digital twin of an existing device was first realized.

Production process control was implemented using the
Manufacturing Execution System (MES) of the Wonderware
system. The data were collected using the Historian system,
and the Message Queue Telemetry Transport (MQTT)
protocol was used, which enabled the data to be read. It was
possible to use the data from the real environment and apply
them to the digital twin model.

As shown in Figure 3. These data can be used as live data.
This type of data can also be used in the Historian subsystem

FIGURE 3. Schematic integration of the FSM digital twin model.

and then delivered to the MQTT broker, from which the data
are drawn by the proposed digital twin.

The structure of the data blocks named Tags, which are
provided via MQTT or a Historian, is shown in Table 1.
Tag is defined by System Integrators. It represents a set of
attributes, keys and values with a specified type of the data.
It’s used for recording and displaying the status of a machine,
sensors or equipments. The basic definition is represented
by TagKey, which is a unique identifier and TagName and
additional values, which are defining limits, the expected
values, quality and raw values. There is a possibility of
having a parameter for the sampling interval for retrieving
data.

The MQTT broker was configured with subscriber iso-
lation settings and VerneMQ software was used for this
purpose. For each Tag, it was necessary to define the
subject under which the data were transmitted to the MQTT
broker [36]. The MES system that provided the integration of
the sorting modules of the production line was used to collect
the data. Each sector was controlled by a PLC system and the
following Tags were collected:
• Monitoring the filling status of the input bin for sorting
• Start signal for material shift.
• Material feed speed, where the reading frequency 2Hz
• Feed rate of the conveyor belt.
• Stop of the feed process
• Start signal for sorting
• Number of sorting hits
• Stop signal for sorting
• The frequency of extraction of sorted material.

This process was derived for the RGB sensor and a
signal was generated for each sorting action to record the
sorting activity of the material. The change in conveyor
belt feed speed setting was manually adjusted according to
the experience of the operator. The measurement of sorting
quality was carried out on the test samples. The material
sorting quality testing set was set up in 90% correct samples
to 10% samples to be sorted.

The frequency of image capture depends on the belt speed
offset. Distances are visible on Figure 4. It is also possible
to use video sequential processing, which showed a lower
accuracy rate.

The calculation of the displacement speed and frame rate
was calculated as follows:

134008 VOLUME 10, 2022



P. Strelec et al.: IIoT Device Prototype Design Using State Machine According to OPC UA

TABLE 1. Structure of the data block.

FIGURE 4. Scheme for calculating the scan rate of the sorted material
window.

Drive member speed:

n =
vmax
π ∗ D

(1)

from the circumferential velocity per second, it is possible to
determine the speed:

v = π ∗ D ∗ n (2)

Length of the area for taking picture:

Lt = L− (i− 1) ∗ Ls (3)

Speed of feed is:

v =
i∗L+Lt2

tn
(4)

From the known speed, we can determine the time tn

tn =
i ∗ L+Lt

2

v
(5)

D - diameter
L - axial distance
i - number of frames in the row
Lt - length of the scanned area
La - It is the distance of the i-th member of the decreasing

arithmetic series
tn - time required to move the area to the next frame
vmax- maximum allowed speed of feed
Figure 5 shows how the IoT device senses the sorting

quality at the output. Where a case of passing mis-sorted
material and its identification is shown.

FIGURE 5. Sorting of materials.

Images that contained multiple poorly sorted elements
were counted as a floating average. This is used to calculate
the feed rate control of the belt. All numbers that express
the rate of displacement take only positive values. To control
the velocity, it is necessary to vary the nature of the change
smoothly and for this purpose, the geometric mean of the
evaluated values is used.

The geometric mean xg is defined as the n-th root of the
product of n numbers x1, x2,x3. . . xn.

Exg = n
√
x1∗x2 ∗ x3. . .xn =

(∏n

i=1
xi
) 1
n

(6)

Figure 6 shows a comparison of the mixed samples as the
feed control was performed by the Operator OPS and by the
added IoT device - AI. The range of speed control is given in
percentage.

The IoT device, is configurable and the post-rotation speed
is increased by a value of 5% up to the detection of mis-sorted
material. At that point, a reduction in speed occurs. At each
detection of a mis-sorted material, the sorting process is
evaluated and the feed rate is changed. From the specification,
the belt speed has been defined.
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A. BASIC FSM MODEL
The digital twin is implemented in Python. A finite state
machine (FSM) was used to model the digital twin.

A model created in this manner can ensure the behavior
of an IoT device via software, and it can be easily used for
simulation. Implementation was performed using a transition
library [37].

When designing an IoT device, its implementation can
be considered through an FSM. The first level of the state
machine is the device itself. When START is switched on, the
start and setting of the initial states occur. STATE 1 represents
the functionality itself, and END is the shutdown process of
the device (Figure 6).

FIGURE 6. Basic FSM.

For a real design, it is necessary to create a nested STATE1
model and describe its internal operations. Each condition
represents another FSM. Modeling a real prototype usually
leads to a sophisticated system, and a system of individual
nodes is created in which each node represents a separately
solvable task.

Transitions are shown as arrows that can provide data
for the inputs and outputs of the states; in reality, they
represent a means of communication and the possibility of
connection using Application Programming Interface (API)
or by allocating memory addresses. The first abstraction
and the FSM levels for the IoT function are shown in
Figure 7.

FIGURE 7. The basic function level of FSM.

The node that representing the next FSM is designated
State 2, as shown in Figure 8, and can be represented as
an individual FSM. It is possible to create a tree of FSM,
in which every state has its own start section, process states,
and end state.

The input data are handled by the start state, and they
represent the reception of the input data. The tasks are
represented as states 1, 2, and 3. The final state, that is,
the end state, ensures the transfer of the parameters to its
superior state. A description of this principle is shown in
Figure 8.

FIGURE 8. An example of a simple FSM tree in which STATE3 is the next
FSM.

B. BASIC COMPONENTS OF FSM
Therefore, it is possible to prepare an FSM for this type of
device design. The basic components used to create the finite-
state machine are states and transitions. States define states,
and transitions provide links and logic as states change with
respect to the ongoing operations. Transitions can generate
signals and call back signals. To model a state machine, it is
sometimes necessary to provide transitions from multiple
states. A trigger can be connected to multiple transitions,
some of which can begin or end in the same state.

Reflexive transitions are transitions that have the same state
as the source and destination from multiple states and are
available for more complex state changes.

They are used when the same reflex trigger is required in
multiple states. Each state can perform a function triggered
by a trigger. Under trigger conditions, it is possible to imagine
changes in the state as well as changes in values.

After modeling the state machine, particularly in the case
of multiple transitions, it is appropriate to validate the FSM
model. The library allows for the checking and validation
of the prepared model. The basic element of the using of
state machines is the possibility of implementing conditional
transitions. For real deployment in the production process,
it is used to change the set parameters and influence the
behavior of the state machine.

Callbacks are another critical type of signal. These provide
feedback when moving from one state to another. In this
solution, it is possible to use two states that specify the
transition of the state: BEFORE and AFTER. Both usually
contain the methods or calls that need to be executed. In this
way, it is possible to respond to state changes and ensure that
the model responds to incoming data that affect the behavior
of the final state machine.

With callbacks and transitions, interfaces that can connect
a digital twin model to the real world can be added.
In the proposed solution, this property is used to ensure
communication during the integration of a digital twin into
the production line.

For the simple verification of functionality, because the
MES system was available, the MQTT broker provided live
data, and historized data were loaded from the relational
database of the Historian subsystem.

In Figure 9, a block diagram of the design is provided.
The proposed model was created using the Python software.
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Mmodel consists of a simulation interface that provides an
interface only for compatibility with simulation platforms.

FIGURE 9. Block scheme diagram of a digital twin design using FSM.

C. INTERFACES AND COMMUNICATION
A physical interface is the layer responsible for commu-
nicating with the outside world. Both the simulation and
communication layers rely on an API with input and output
methods in place to communicate with the real world.
The simulation layer may be independent of the physical
interface, and the API may vary as needed; thus, they have
been visibly separated.

The original proposal did not contain this distinction and
only one API was prepared. During development, however,
the reasons for modifying the simulation and physical
interfaces were discovered. The reason for this change in the
concept was that the digital twin can be used as a prototype to
which it is possible to connect physical parts and thus create
a hybrid digital twin, in which parts of the data are generated
by a physical device and others by software simulation. As an
example, the design of an IoT device for detecting the sorting
quality, in which the entire model was created as a software
digital twin, is discussed.

In the proposed model, an IoT device with a real camera
was tested, and its image signal processing offers the
possibility of connecting a combination of nodes. These
nodes are implemented using software and a modular
connection of a physical device, which can be replaced by
software.

For the camera, the original implementation consisted of
a selection of random images that were ready for artificial
intelligence (AI) learning.

Similarly, the AI module, which processed the signal
and evaluated the quality of the sorting as long as it was
communicating and receiving data, could integrate and enable
it in the digital twin or simply simulate its function, for
example, by using synthetic parameters of shift speed control.

A schematic of the prototype 4.0 hybrid digital twin
connection is shown in Figure 10.

Digital twin communication can occur in two ways. Live
data generated during production are available. The MQTT
broker is used for connectivity with the production line and
as a connector between the production line, MES system, and
the FSM model. The MQTT broker should be configured in
a manner that provides communication according to the first
in/first-out (FIFO) queue.

FIGURE 10. The connection of the model along with the physical device
of the camera.

This is a prerequisite for configuring the queue because
the FSM requires an exact sequence of the data. The goal
is to guarantee that the messages sent to the MQTT broker
will have the same exact order. However, the state machine
expects exact signals to implement changes in its state. In the
case of the simulation, this phenomenon is relatively easy to
maintain.

The sequence of data entering the input can be easily
observed. For practical use, however, it is better to create
an identifier and not rely on MQTT to ensure a FIFO
message queue. The timestamp, as a sequence identification
parameter, may not have the expected effect, as the MES
system does not read the timestamp directly on the controller,
but it generates its own during data loading.

For example, time is generated according to the system
time during which the MES system is running. For this type
of communication, it is advisable to introduce an identifier as
a sequence that identifies and guaranties the implementation
of the state changes in a guaranteed order.

The Industry 4.0 concept enables event-based generated
data that can be considered as a reliable source of data, as the
event is triggered by a state change, in which case the internal
timestamp is relevant and represents the correct value.

In a manufacturing process that relies on cyclic data
retrieval, a timestamp must be generated when the controller
state changes. Usually, however, a timestamp is used,
which is generated on the side of the system that collects
data.

D. DATA COLLECTION PROCESSES AND ANOMALY
DETECTION
Another source of data is the Historian system, in which data
from an already completed production process are stored.

Because these data were already recorded, it was only nec-
essary to ensure their loading. For simplicity, the data were
exported from a Structured Query Language (SQL) database,
applied to a General Data Protection Regulation (GDPR)
filter, and subsequently exported to comma-separated values
(CSV) before use. The data assigned in this way are suitable
for processing, but simultaneously, it is possible to detect a
state in which the read data are missing or have not yet been
saved.

The error state blocks the FSM, as it is impossible to decide
which subsequent state is necessary to move. It is possible to
detect the conditions and check the data sequence.
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FIGURE 11. Identification of failure.

If the error that occurred is relevant, it is possible to
continue to processing this information and decide whether
the situation needs to be solved at the level of production
control and possibly correct the program, IoT, or PLC
component. Failure identification is shown in Figure 11.
Failure occurred between sequences 13 and 14.

Sequence read number 14 indicates the start of a logical
value of one. The previous value is generated at a logical
value of zero, which explains why the state machine does not
register a state change.

It is possible to decide on the implementation of a state
machine to fix this behavior, and there are several options
to solve the problem. A simple solution is to rely on the
data generated using the production process. Here, each error
manifests itself as it occurs on the production line. The state
machine reports an error when, for instance, the maximum
time required to execute an activity on a given node is
reached.

The IoT device remains in this state. It is necessary to
perform manual interventions, which may be related to the
production process. This can also serve as a simulation for
operators of how the production process will change andwhat
needs to be provided to treat and resume production in a
failure situation.

If it is necessary to ensure the continuity of the state
machine, it is possible to turn on the option that allows the
process to continue by defining the maximum time during
which it is possible to wait for input data for a given state
of the state machine and to set its behavior to ensure the
possibility of continuation.

In the case that this state occurs in the connection, when
the model is a function of an integrated digital twin in the
production process, this step is performed using the parameter
called max lifetime. In principle, a configuration parameter
is always available, which defines the task of the proposed
model and its functional mode.

The mode can only be determined through the simulation
and testing of its integration into the production process.
Another possibility is the simulation of a devicewith prepared
data from the MES system Historian, which can also test

FIGURE 12. The basic model of state machine is used.

borderline situations and collisions arising from their possible
use in the production process.

For basic settings, it is possible to specify how the mean
data processing time for each state change is applied.

To meet these requirements, it is advantageous to use
data recorded during production, and based on their average
values, it is possible to determine the execution time of a given
operation.

For a more accurate simulation, it is appropriate to identify
and quantify defects that may occur during the manufacturing
process.

In this way, it is possible to determine the percentage
of failures, and for possible use as simulation entities,
it is appropriate to implement a parameter that will ensure
the representation of failures in the required number. This
parameter can be specified by the mean failure time, such
that the possible time between failures corresponds to the
actual production process or is completely dynamically
configurable.

Furthermore, it can be linked to other production parame-
ters as required, and it can follow simulations that may affect
the parameter. All the above parameters can be applied to
stream data used in real-time models.

In the case of a connection to a real production process,
it is possible to reconfigure the behavior of the state machine
with respect to the time priority of the given operation. In a
situation where this is a real error in the production process,
in terms of a delay of several seconds or minutes, it is
advisable to decide again how the state machine will behave
and allow the configuration of its behavior.

Here, it is required that the behavior used for the simulation
or testing does not occur; rather, the model works only with
the data generated by the manufacturing process.

E. IMPLEMENTATION OF THE IoT AS A DIGITAL TWIN
The proposed model is verified using an IoT device. The
IoT device evaluated the sorting quality and, based on the
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detected errors, provided feedback on the change in the feed
rate parameter of the sorted material. The basic model of the
state machine is shown in Figure 12.

The initial state, marked START, executes the start of
the system, sets the initial values, and resets the model
to the basic state. The get-picture state is responsible for
capturing the image or video sequence and sending it to
the artificial intelligence (AI) system, where an erroneous
sorting process is identified based on the detection of an
object that is otherwise color-coded in our implemented
case.

AI evaluation identifies the number of defective elements
at a given feed rate. This parameter is passed to the new speed
setting for evaluation..

The speed setting is done in a step-wise manner at the
beginning. It starts from a zero feed rate and continues until
the output starts detecting mis-sorted elements. It records the
geometric mean for the short-term sorting cycle. This detects
a short-term change in sort quality and indicates whether a
change in speed is required. The long-term sort quality is
recorded in the arithmetic mean and is recorded according
to the time window of the captured image.

The AI model was then trained for object shape and
color recognition. In the test case, it involves detection of
marbles and their color at the output of the sorting process.
A pre-trained model was used which was fine-tuned for bulk
material sorting.

The proposed Digital twin and prototype based on this
principle is implemented as a software solution. When data
available from the manufacturing process can be used, the
initial settings that affect the system behavior will contribute
to the system. The operation times, amount of data, required
evaluation speed, and other parameters can then be set during
the start of the START node.

To simulate a PICTURE ACQUIRED state, sets of images
were prepared. These images are also needed for learning the
AI module; therefore, it is sufficient to prepare sequences that
will simulate the connected physical device, which, if ready,
can be directly integrated into the state machine model, thus
creating a hybrid solution. The functionality was verified by
a test set of pictures.

In this way, it is possible to verify the basic algorithm of the
proposed solution, determine the deviations, verify the over
regulation, and determine the time required to achieve a stable
setting of the feed rate of the sorted material.

The final decision is based on the AI system results. The
calculation of maintaining the speed parameter is completed
and there is done decision base on geometry mean.

This condition indicates a parameter change that repeats
the process of monitoring the quality of sorting and
re-evaluation.

The entire solution can be advantageously tested during an
ongoing production process. It does not have to be a direct
part of the system; however, by using the data created by
the production process, it is possible to read these values
and monitor the behavior of the system. Based on real data,

it is possible to monitor how this affects the settings of the
production process.

IV. DISCUSSION
The implemented model was tested on a project that
worked with test datasets from a production line. A state
machine is designed for this study. Therefore, a functional
prototype is available. This makes it easier for development
teams to define tasks that can solve the tasks entrusted
to them. Simultaneously, they have the opportunity to test
the developed part of the solution, allowing them to better
understand and imagine the final product.

The advantage is that when defining the AI interface
for states in the FSM, the model determines exactly how
communication will occur, and their assigned tasks can be
validated against the prepared model. The disadvantage of
such a design may be changes in the states in the FSM or
changes in the initial design of the model, which are required
from time to time.

Figure 13 shows the course of speed adjustment manually
by the production operator, which is shown in blue. The
second waveform is calculated according to the verification
of the output control by AI detection. The readjustment
occurs in both cases. The control deviation was larger for
manual adjustment. Simultaneously, the additional manual
tuning and then the steady-state sorting setting, which is
set by the production operator, can be seen. When the
sorting quality is detected for the proposed solution, faster
speed adjustment but also speed sorting correction can be
observed, during the entire processing time of the material
batch.

FIGURE 13. Comparison of speed adjustment manually by the operator
and using IoT.

The model is implemented during the solution design.
IoT devices are mostly activity oriented; therefore, the FSM,
given the proposed IoT solution, is relatively simple. For
correct model design, it is appropriate to consider that
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each state represents one result of comprehensive activity.
If necessary, each state, action, or condition can be described
as a unique FSM. The proposed model was also tested
from the viewpoint of project management, with a focus on
parallel implementation. The model of the proposed state
machine was initially implemented only as a software model,
in which each state had defined input and output parameters
and, if possible, their address space or protocol was defined
by data that were exchanged between states. All states in
the prototype had preset data that were selected from the
MES system or generated randomly. The goal was to capture
the behavior as truthfully as possible, according to reality.
Randomly generated values can only be used to verify the
functionality. It is up to the teams to decide which data will be
prioritized. The test model was divided into six tasks, as listed
in Table 2.

TABLE 2. Defining states and division of into tasks.

The FSM is illustrated in Figure 12. The AI state is a sub-
FSM that causes other tasks to occur. For the input and output
in AI, it is possible to omit START and END or solve them
separately.

Here, we omit them because they represent only one
communication channel for data exchange.

The states designated as read speed and set-speed were
implemented as MQTT subscribers with push and pull func-
tionalities. Each of these was implemented independently.
The AI part was performed as an image recognition process
and split into sub-FSMs; out of this, the next three parallel
tasks were created.

Altogether, it was possible to prepare tasks for seven
independent teams, and the model provided the ability to start
working on their tasks with a better understanding and the
possibility of testing all their phases of development.

However, the agile style of the project was limited by the
use of the created model. It can be a disadvantage in those
teams do not have the possibility to discuss the design, but on
the other hand, it brings more stability into the development
process, providing each team with a basic definition and full
overview of the process. Subsequent decisions were made by
the teams, and they could prepare their own solutions, but
these were supported by the model.

An advantage of this model is that the representation of the
FSM can be used to devise an OPC UA solution by default.
However, if an improvement is needed in the basic concept of
themodel, it leads to a situation inwhich themodel evaluation
is needed and changes are required. In this scenario, there
should be another validation process and a decision on how
to continue with the development.

Nevertheless, not all states usually need to be changed,
and improvement is needed for only a few of them. The
described design for developing of an IoT system using an
FSM according to the application development delivered the
expected benefits and made it possible to plan and develop
each part of the process as a unique task. It can be performed
in parallel.

The model was tested using several designs. The solution
described here represents only one possibleway to implemen-
tation. The requirements defined in manufacturing factories
are not always clearly specified because of the time and speed
of adaptation of the manufacturing process; therefore, the
implementation was based on agile project management.

The model was tested several times in such an environ-
ment. Cicirelli et al. [38] described the IoT proposal using
an intelligent metamode environment model. In the case
of implementation through agile development, the goal of
involving entire teams is defined as one of the problem in the
design process. After an initial analysis, the topic of how to
create and assign multiple subtasks was developed to allow
scrum teams to work in parallel.

The FSM model was designed to provide stability and
transparency of the tasks so that each team could process or
select a specific part to implement or continue. The tasks were
defined as sprints, for which the time was set for a two-weeks
period.

Then, in the process of agile development called retro,
a revision of tasks and implementation was performed. It was
determined here which parts of the task are processed well
or not well enough, the areas that need improvement were
identified here as well as changed design and improvement
of the implementation, or whether another change is needed
as well. Comparisons of time, task, and error rates were made
for the same teams that worked on assignments, with and
without the model. An overview of this process is provided in
Table 3.

The tasks solved were similar. The basic overview
describes the time and number of tasks created, and the
number of registered errors.

The measurability of the impact and the impact of the
experience gained by the teams before implementation
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TABLE 3. The design of IoT with or without FSM.

and the definition of the exact differences in the project
may represent differences. Regardless of these inaccurately
defined parameters, the use of the FSM model and how the
model works were presented with positive feedback from the
teams.

Project planning and comparison of agile and „waterfall‘‘
project management are beyond the scope of this article, and
so it can be further analyzed.

The model can be used in both forms of management,
and can help identify and create tasks or subtasks, and
those after the implementation of the software model can be
implemented in parallel. Understanding the functionality and
tasks can improve the development of IoT devices.

The implemented solution was tested on a production line.
Small balls were selected for testing. They differed in color
and weight.

The feed rate is set manually by the production operator.
When changing the size of the sorting material, poor-
quality processing occurred, and the required quality was not
achieved.

The operator then changed the feed rate according to the
subjective perception of the sorting quality. A test set was
prepared in which 90% of the material was acceptable and
10% represented the defective particles to be sorted out. Three
different sets of materials are available, and their particle
weights are listed in Table 4.

TABLE 4. Particle weights of the material.

This set was used to evaluate the quality of the sorted
feed. Moreover, the model is into the production process. The
result is expressed as the evaluated speed of the conveyor belt
feed, which fed the material to the RGB sorter. A subjective
comparison of the sorting quality set by the operator and that
of the prepared model is shown in Figure 14.

The quality of the AI setting is represented by the speed
setting, which never reaches 100%. Thus, it was possible
to experiment with and evaluate or teach speed control
according to the weight or size of the sorted particles.

These results were obtained using a hybrid solution,
in which a camera was connected to the production process

FIGURE 14. Comparison of success and improvement in material sorting
quality.

and the other parts were implemented only in software
without the final hardware solution.

The results always showed an error rate, which was caused
by the adaptation of the AI to the situation. When processing
large batches, the percentage of error was insignificant
because inaccuracy occurred only when the wrong material
was fed. There is no guarantee that a faulty or correct particle
will enter the sorting system.

The simulation of the IoT device was prepared in the
first part of the design. In the case of implementation,
the parameters obtained were immediately ready for prac-
tical use in the simulation process. Each node in the
state machine was provided, either configured or based
on real datasets that were needed for the simulation.
In the case of software implementation, it is appropriate
to set the goal of achieving the proposed solution of the
IoT device.

This also involves a solution that ensures connectivity
using the selected protocols for simulation software develop-
ment, performance verification, and the possibility of an open
simulation interface (OSI) [39].

A design prepared in this manner will be easier to use for
complex tasks and will be sufficiently easy to integrate into
simulation processes.

V. CONCLUSION
The development of an IoT device based on the proposed
model makes it possible to verify the functionality of the
solution and demonstrate the capabilities of the intended
solution. Simultaneously, it is possible to use such a software
solution as part of the simulation and create a digital twin of
the IoT system based on the FSM model.

The proposed solution is suitable for the implementation
and design of a physical device and creates an opportunity
to verify the proposed method before the final imple-
mentation. It represents a flexible design, which makes it
possible to ensure the agile development of various parts
of the system, and it also represents an ideal opportu-
nity to approach the development of individual tasks in
parallel.
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A disadvantage of our solution is its inability to verify the
hardware requirements. The prototype itself still allows for a
functional solution, but no additional data collection options
are in place, such as the amount of data sent between nodes,
which can provide essential information when selecting
a hardware IoT design. Another desired parameter is the
power required to perform individual operations at a given
node.

This requirement is not currently addressed; therefore,
the prototype itself does not yet allow users to classify
and evaluate the requirements for computing power and the
possible power consumption of the device itself. Conversely,
the advantages of a rapid prototype solution and its imple-
mentation can help address various manufacturing scenarios,
and its ease of integration and adaptability can help decide
whether to integrate IoT systems and Industry 4.0 into the
manufacturing process.
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