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ABSTRACT In this paper, an event-triggered transmission scheme for the networked control systems is
investigated. The probabilistic cyber attacks and extended dissipative are considered in the systems. Firstly,
an event-triggered transmission schemewith aperiodic sampling is proposed to establish a time-delay closed-
loop system model. Then, a novel two-sided Lyapunov-Krasovskii functional is constructed by use of the
characteristic of sawtooth structure. As a result, the sufficient conditions are derived in terms of linear matrix
inequalities, which ensure the global stability of the networked control systems. The feedback controller gain
matrix is figured out to guarantee the stability with extended dissipative. Finally, two numerical examples
are given to illustrate the feasibility and effectiveness of the theoretical findings.

INDEX TERMS Event-triggered transmission scheme, networked control systems, extended dissipative,
cyber attacks.

I. INTRODUCTION
At present, with the in-depth development of computer
technology, network communication technology and control
technology, networked control systems (NCSs) have been
researched by scholars. Functional nodes such as sensor, con-
troller, actuator and controlled objects are mainly included
in NCSs. These plants are discretely distributed. Information
interaction between these nodes can be realized through the
digital network, especially remote information exchange [1],
[2], [3], [4], [5]. However, the defects of the network also
brought huge challenges, such as network-induced delays,
packet loss, disorder, time-varying transmission interval and
data quantification, which caused the instability of NCSs [6].
The control pattern based on periodic sampling mechanism
(also called time-triggered) is used in the most of NCSs. All
sampling signals are transmitted through the network, which
will lead to occupancy of the resource. When the sampling
period is selected, the requirement of system control perfor-
mance needs to be satisfied in theworst case (e.g., the external

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

disturbance factors, network-induced delays and packet loss
are simultaneous [7], [8], [9], [10], [11]).

In order to deal with the problems of time-triggered mech-
anism, an event-triggered transmission scheme (ETTS) was
proposed in the late 1990s [12]. In ETTS, when the trigger
condition is satisfied, the sampled-data is sent by the trig-
ger. The ETTS is an effective approach to reduce the data
transmission. Compared with the traditional time-triggered
method, ETTS can reduce the burden of network bandwidth
occupation and the calculation cost of the controller [13],
[14], [15]. In [16] and [17], the event triggers depend on the
continuous monitoring of the system state to detect whether
the current state exceeds the trigger threshold. The exist-
ing systems need to be overhauled in order to build this
kind of triggers, which is difficult to realize. In these cases,
a self-triggered scheme was proposed in [18], [19], [20],
[21], and [22]. In [23], in order to ensure the stability of
the L2 finite gain for the generated self-triggered feedback
systems, a new self-triggered scheme was proposed. This
scheme could economize additional energy for the sensor
and decrease the complexity of implementation. However,
the design of a self-triggered controller was required more
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restraints on the system configuration. Since the predicted
deadline depended on the system model which needed to
be given in advance [22], the self-triggered scheme was
hard to be applied. In [24] and [25], an event transmission
scheme was proposed to transmit sampled-data whether or
not. No special hardware was required in this scheme to
continuously measure. Then, the periodic sampling system
was modeled as a sampled-data error system. Peng et al. [26]
proposed the non-periodic sampling event-triggered output-
feedback control system based on [24]. Yan et al. [27] added
quantification to the event-triggered NCSs based on periodic
sampling. A network communication model was submitted
including network conditions, status and event triggering
strategies. The L2 controller was designed simultaneously.

As we all know, the presence of external interference also
affects the performance of the systems. The extended dissipa-
tion performance is introduced to guarantee the system stabil-
ity. Extended dissipative analysis for theMarkov jump system
was proposed in [28]. The authors added the analysis of the
L2 − L∞ performance to traditional dissipation. Extended
dissipative performance included the following special cases:
H∞, L2 − L∞, passive, (Q,S,R)-dissipativity performance.
Lee et al. [29] applied the extended dissipative analysis to
the neural network systems. In [30] and [31], extended dis-
sipative was applied to NCSs and network singular systems
respectively.

Recently, the problem of cyber attacks for network security
systems has been received more and more attention. It should
be highlighted that in most of the NCSs, the cyber attacks
occur naturally. The communication line may be destroyed.
The system performance would be seriously affected by the
malicious attacks [32], [33], [34]. Hence NCSs with cyber
attacks have to be investigated. Deception attacks, replay
attacks and denial-of-service (DoS) attacks have been mainly
studied. Deception attacks send incorrect data to the sensor
or network instead of the actual data to destroy the stabil-
ity. In replay attack scenario the adversary does not have
any model knowledge but is able to access and corrupt the
sensor data. The replay attackers sent the repeated messages
from the operator to the actuator. It is a particular kind of
deception attack [35]. DoS attacks block the transmission of
signals and data to damage the stability and operation. For
example, Sathishkumar et al. [36] presented the dissipative
control problem of singular NCSs with deception attacks.
Wu et al. [37] described the guaranteed cost control problem
of hybrid-triggered network systems under deception attacks.
However, it should be noted that both deception attacks and
extended dissipative for NCSs are rarely considered in previ-
ous papers, which is a intention of our study.

As far as the authors’known, few papers deal with the
extended dissipative and deception attacks in the NCSs
with ETTS motivated by above investigations. In this paper,
we focus on the extended dissipative analysis of aperi-
odic sampling NCSs with ETTS and probabilistic deception
attacks. The main contributions of this paper can be general-
ized as following:

(1) Both ETTS and stochastic deception attacks are consid-
ered in the NCSs with aperiodic sampling. A random variable
satisfying Bernoulli distributed is used to govern the cyber
attacks.

(2) An appropriate augmented two-sided Lyapunov-
Krasovskii functional is constructed to acquire complete
information about the actual sampling pattern.

(3) Several different performance indexes are unified in
the extended dissipative analysis of NCSs. By adjusting the
scalars and weighting matrices, the extended dissipative per-
formance can be converted into four common performance
indexes, which increases the comprehensiveness of the anal-
ysis results.
Notations: In this paper, Rn stands for the n-dimensional

Euclidean space. Rm stands for the m-dimensional Euclidean
space, the notation E refers to the mathematical expectation
in Probability Theory. Moreover, the symbol diag{. . .}means
a the block diagonal matrix and col{. . .} means the matrix
column. Superscripts ‘‘T ’’ and ‘‘−1’’ respectively stand for
the transposition and the inverse of a matrix. ‘‘∗’’ is used
to denote the entries induced by symmetry. For ω(t) ∈

L2[0,∞), its norm is given by ‖ω(t)‖2 =
√∫
∞

0 ωT (t)ω(t)dt ,
provided that it exists.

II. PROBLEM STATEMENT
A linear time-invariant plant is considered as:{

ẋ(t) = Ax(t)+ Bu(t)+ Bωω(t),
z(t) = Cx(t),

(1)

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the
control input vector; z(t) ∈ Rm is the control output vector;
ω(t) ∈ L2[0,∞) is the exogenous disturbance; A, B, Bω, C
are constant matrices with appropriate dimensions. The initial
condition of system (1) is x(0) = x0.
Assumption 1: Consider matrices ϒ1, ϒ2, ϒ3 and ϒ4 sat-

isfying the conditions as follows:
(1) ϒ1 = ϒ

T
1 ≤ 0, ϒ3 = ϒ

T
3 > 0, ϒ4 = ϒ

T
4 ≥ 0,

(2) (‖ ϒ1 ‖ + ‖ ϒ2 ‖)ϒ4 = 0.
Definition 1 [30]: For given matrices ϒ1, ϒ2, ϒ3, ϒ4 sat-

isfying Assumption 1, any tf ≥ 0 and ω(t) ∈ L2[0,∞],
system (1) is extended dissipative if the inequality is existed
as follows:∫ tf

0

(
J (t)− sup

0≤t≤tf
zT (t)ϒ4z(t)

)
dt ≥ 0,

where

J (t) = zT (t)ϒ1z(t)+ 2zT (t)ϒ2ω(t)+ ωT (t)ϒ3ω(t).

Remark 1: The extended dissipative performance indices
could be divided into the following four special cases. The
matrices are set as follows:
(1) H∞: ϒ1 = −I , ϒ2 = 0, ϒ3 = γ

2I , ϒ4 = 0;
(2) L2 − L∞: ϒ1 = 0, ϒ2 = 0, ϒ3 = γ

2I , ϒ4 = 0.09I ;
(3) Passivity: ϒ1 = 0, ϒ2 = I , ϒ3 = γ I , ϒ4 = 0;
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(4) (Q,S,R)-dissipativity: ϒ1 = Q, ϒ2 = S, ϒ3 = R−
βI , ϒ4=0.
A sampled-data controller for system (1) is established as:

u(t) = Kx(tk ), (2)

where K is the feedback controller gain.
In this part, an ETTS will be applied to produce the

transmission events by means of the aperiodic sampled-data.
When the sampling period is time-varying, researching the
model formation, stability analysis and controller design are
significative. The sampled-data error between the current
sampling instant and the last triggered instant tk is detected
through the event generator. The next triggered instant tk+1 is
designed as follows by ETTS:

tk+1= tk+
l−1∑
j=1

hj+inf
l
{hl |eT (il)8e(il)≥δxT (tk )8x(tk )},

(3)

where e(il) = x(il) − x(tk ) denotes the state error, il =
tk +

∑l
s=1 hs is the current sampling instant, l ∈ R+.

Define ik as the next sampling instant. hl = ik − il is an
non-uniform sampling period as same as hs. δ ∈ [0, 1) and8
are the given threshold parameter and the designed positive
weighting matrix, respectively. If the condition (3) is met,
the transmission event is generated. From (3), it is obvious
that the minimum transmission interval includes at least one
sampling period, which prevents the Zeno behavior from
happening.

Not all sampled-data need to be transmitted in ETTS,
which is the difference with the time-triggered scheme. Only
those satisfying the condition (3) can be transmitted. More-
over, the frequency of sampled-data transmission is deter-
mined by δ and 8. When δ = 0, the ETTS can be turned
into a time-triggered scheme.

For introducing the ETTS at every sampling instant to
decide whether the current sampled-data should be transmit-
ted or not, we divide the holding interval � of the ZOH into
subsets �l = [il + τil , il + hl+1 + τil+hl+1], that is � = ∪�l
(l = 0, 1, . . . , tk+1 − tk − 1). The τil and τil+hl+1 mean the
transmission delay at different transmission instants. Define
η(t) = t − il, t ∈ �l . The control law (2) is redefined as:

u(t) = K (x(t − η(t))− e(il)), t ∈ �l . (4)

Assume that the lower and upper bounds of network-
induced delay are known, that is, τ1 and τ2, respectively.
Then based on the condition of hl+1+ τil+hl+1 , the allowable
sampling period can be set as:

hm = η̄ − τ2 ≤ hl ≤ hM = η̄ − τ1. (5)

The cyber attacks may occur in the network, since the
network channel is unreliable. The attackers would attack at
any moment. Therefore, the controller is rewritten as:

u(t) = (1− α(t))u0(t)+ α(t)Kf (x(t − d(t))), (6)

where u0(t) = K (x(t − η(t)) − e(il)) and f (x(t − d(t))) are
the signal of cyber attacks, d(t) ∈ [0, d̄], α(t) ∈ {0, 1}. α(t)
is a Bernoulli distributed variable governing the probabilistic
cyber attacks with Prob{α(t) = 1} = α, Prob {α(t) =
0} = 1 − α. The random variable α(t) describes whether
the network is attacked. α(t) = 1 signifies the attacks are
appeared and α(t) = 0 signifies the data can be transmitted
normally through the network. Considering the above, the
system (1) can be written as:{

ẋ(t) = A+ (α − α(t))B,
z(t) = Cx(t),

(7)

where
A = Ax(t)+ (1− α)BK [x(t − η(t))− e(il)]

+αBKf (x(t − d(t)))+ Bωω(t),
B = BK [x(t − η(t))− e(il)]− BKf (x(t − d(t))).

Assumption 2 [33]: For given constant matrix F > 0, the
signal of cyber attacks f (x(t − d(t))) satisfies

‖ f (x(t − d(t))) ‖2≤‖ Fx(t − d(t)) ‖2 .

Lemma 1 [38]: Given scalar θ ∈ (0, 1), matrix H > 0 ∈
Rp×p, matricesM1,M2 ∈ Rp×q, for all vector ζ ∈ Rq, if there
exists the matrix X ∈ Rp×p that satisfies [ H ∗X H ], it can be
established that

1
θ
ζ TM1JM1ζ +

1
1− θ

ζ TM2JM2ζ

≥

[
M1ζ

M2ζ

]T [H ∗

X H

] [
M1ζ

M2ζ

]
.

Lemma 2 [39]: Assume 0 ≤ η(t) ≤ ηM and91, 92, 9 are
matrices with appropriate dimensions, then

9 + η(t)91 + (ηM − η(t))92 < 0,

if the following exist:{
9 + ηM91 < 0,
9 + ηM92 < 0.

III. MAIN RESULTS
In this section, sufficient conditions for the system (7) are
derived to ensure the asymptotic stability.
Theorem 1: For given constants δ ∈ [0, 1), α ∈ [0, 1], η̄ >

0, d̄ > 0, and matrices K , ϒ1, ϒ2, ϒ3, ϒ4, under the com-
munication scheme (3), the system is mean-square asymptot-
ically stable and extended dissipative, if there exist matrices
P > 0,Q1 > 0,Q2 > 0,R1 > 0,R2 > 0,8 >

0, S3 > 0, , S4 > 0, [ R1 ∗U1 R1
] > 0, [ R2 ∗U2 R2

] > 0 and
S1, S2,U1,U2,N1 with appropriate dimensions such that

P− CTϒ4C ≥ 0, (8)111 ∗ ∗

121 122 ∗

131 0 133

 < 0, (s = 0, 1), (9)
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where

111 = 50+04+0
T
4 +(1− s)51+s52,

121 = col{η̄R101, d̄R201, η̄R106, d̄R206, 05},

122 = −diag{R1,R2,R1,R2, I },

131 = col{(1− s)η̄S301+sη̄NT
1 , (1− s)η̄S306},

133 = −diag{η̄S3, (1− s)η̄S3},

50 =

[
5̀1 ∗

5̀2 5̀3

]
,

5̀1 =


511 ∗ ∗ ∗

521 522 ∗ ∗

531 532 533 ∗

541 0 0 544

 ,

5̀2 =


551 0 0 554
561 562 0 0
571 0 0 0
581 0 0 0

 ,

5̀3 =


555 ∗ ∗ ∗

0 566 ∗ ∗

0 0 577 ∗

0 0 0 588

 ,
511 = PA+ ATP+ Q1 + Q2 − S1 − ST1 − R1 − R2

−CTϒ1C,

521 = (1− α)KTBTP+ R1 − U1 − ST2 + S1,

522 = −R1 + U1 + UT
1 + S2 + S

T
2 − R1 + δ8,

531 = U1, 532 = −U1 + R1,

533 = −Q1 − R1, 541 = R2 − U2,

544 = −R2 + U2 + UT
2 − R2,

551 = U2, 554 = −U2 + R2, 555 = −Q2 − R2,

561 = −(1− α)KTBTP, 562 = −δ8,

566 = (δ − 1)8, 571 = αKTBTP, 577 = −αI ,

581 = BTωP− ϒ
T
2 C, 588 = −ϒ3,

51 = 2η̄0T7 01 + η̄0
T
2 S402,

52 = −η̄0
T
2 S402,

01 =
[
A B 0 0 0 − B αBK Bω

]
,

02 =
[
0 I 0 0 0 0 0 0

]
,

03 =
[
0 0 0 I 0 0 0 0

]
,

04 =
[
N1 − N1 0 0 0 0 0 0

]
,

05 =
[
0 0 0

√
αF 0 0 0 0

]
,

06 =
[
0 D 0 0 0 − D D 0

]
,

07 =
[
S1 + ST1 S2 − ST1 0 0 0 0 0 0

]
,

B = (1− α)BK , D =
√
α(1− α)BK .

The following notations are defined to simplify writing.

%1(t) = x(t)−x(t−η(t)), %2(t) = x(t−η(t))− x(t−η̄),

ζ1(t) = x(t)−x(t−d(t)), ζ2(t) = x(t−d(t))−x(t−d̄)

and the matrix ξT (t) = [xT (t), xT (t−η(t)), xT (t− η̄), xT (t−
d(t)), xT (t − d̄), eT (il), f T (x(t − d(t))), ωT (t)].

The Lyapunov-Krasovskii functional candidate is con-
structed as follows:

V (t) = V1(t)+ V2(t)+ V3(t), (10)

where

V1(t) = xT (t)Px(t),

V2(t) =
∫ t

t−η̄
xT (v)Q1x(v)dv+

∫ t

t−d̄
xT (v)Q2x(v)dv

+ η̄

∫ t

t−η̄

∫ t

s
ẋT (v)R1ẋ(v)dvds

+ d̄
∫ t

t−d̄

∫ t

s
ẋT (v)R2ẋ(v)dvds,

V3(t) = 2(hl − η(t))%T1 (t)[S1x(t)+ S2x(t − η(t))]

+ (hl − η(t))
∫ t

t−η(t)
ẋT (v)S3ẋ(v)dv

+ (hl − η(t))η(t)xT (t − η(t))S4x(t − η(t)).

Remark 2: In this paper, V3(t) is the two-sided functionals.
We only need to ensure that they are positive definite at the
sampled points. Their derivatives need to be negative definite
during the sampling intervals. Not only [il, t], but also [t, ik ]
is considered. This makes the results less conservative.

Taking the time derivative ofV (t) and expectation, we have

E{V̇1(t)} = 2E{xT (t)Pẋ(t)},

E{V̇2(t)} = xT (t)(Q1 + Q2)x(t)−xT (t − η̄)Q1x(t−η̄)

− xT (t−d̄)Q2x(t−d̄)+η̄2E{ẋT (t)R1ẋ(t)}

+ d̄2E{ẋT (t)R2ẋ(t)}−η̄
∫ t

t−η̄
ẋT (s)R1ẋ(s)ds

− d̄
∫ t

t−d̄
ẋT (s)R2ẋ(s)ds,

E{V̇3(t)} ≤ −2%T1 (t)[S1x(t)+ S2x(t − η(t))]

+E{2(η̄ − η(t))ẋT (t)[S1x(t)+ S2x(t − η(t))]}

+E{2(η̄ − η(t))%T1 (t)S1ẋ(t)}

−

∫ t

t−η(t)
ẋT (v)S3ẋ(v)dv

+ (η̄ − η(t))E{ẋT (t)S3ẋ(t)}

− η(t)xT (t − η(t))S4x(t − η(t))

+ (η̄ − η(t))xT (t − η(t))S4x(t − η(t)).

Notice that E{α(t)} = α,E{α(t) − α} = 0,E{(α(t) −
α)2} = α(1− α), thus, we get

E{2xT (t)Pẋ(t)} = 2xT (t)PA,
E{ẋT (t)R1ẋ(t)} = ATR1A+ α(1− α)BTR1B,
E{ẋT (t)R2ẋ(t)} = ATR2A+ α(1− α)BTR2B,
E{ẋT (t)S3ẋ(t)} = AT S3A+ α(1− α)BT S3B.

For −η̄
∫ t
t−η̄ ẋ

T (s)R1ẋ(s)ds and −d̄
∫ t
t−d̄ ẋ

T (s)R2ẋ(s)ds,
utilizing Lemma 1, we can get

−η̄

∫ t

t−η̄
ẋT (s)R1ẋ(s)ds
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≤ −

[
%1(t)
%2(t)

]T [ R1 ∗

U1 R1

] [
%1(t)
%2(t)

]
, (11)

−d̄
∫ t

t−d̄
ẋT (s)R2ẋ(s)ds

≤ −

[
ζ1(t)
ζ2(t)

]T [ R2 ∗

U2 R2

] [
ζ1(t)
ζ2(t)

]
. (12)

For −
∫ t
t−η(t) ẋ

T (s)S3ẋ(s)ds, utilizing the Newton-Leibniz
formula, for matrices N1 with appropriate dimensions,
we obtain

2ξT (t)N1[x(t)− x(t − η(t))−
∫ t

t−η(t)
ẋ(v)dv] = 0. (13)

The following inequalities are established

−2ξT (t)N1

∫ t

t−η(t)
ẋ(v)dv

≤ η(t)ξT (t)N1S
−1
3 NT

1 ξ (t)+
∫ t

t−η(t)
ẋT (v)S3ẋ(v)dv.

(14)

From Assumption 2, it is clear that

αxT (t − d(t))FTFx(t − d(t))

≥ αf T (x(t − d(t)))f (x(t − d(t))). (15)

From (3), it is clear that

eT (il)8e(il) < δxT (tk )8x(tk ). (16)

Combining (11)-(16) together, we can figure out that

E{V̇ (t)− J (t)} ≤ ξT (t)40ξ (t), (17)

where

40 = 50 + (η̄ − η(t))41 + η(t)42 + 05 + 0
T
5

+ η̄20T1 R101 + d̄
20T1 R201

+ η̄20T6 R106 + d̄
20T6 R206,

41 = 20T7 01 + 0
T
2 S402 + 0

T
1 S301 + 0

T
6 S306,

42 = −0
T
2 S402 + N1S

−1
3 NT

1 .

Using Lemma 2 and Schur complement, 40 < 0 is a convex
combination of 41, 42, 43 and 44. Then, we can get

E{V̇ (t)} ≤ E{J (t)}. (18)

Integrating both side of (18) from 0 to t ≥ 0 , the following
inequation can be received

E
{∫ t

0
J (s)ds

}
≥E{V (t)− V (0)}≥E{xT (t)Px(t)}. (19)

Based on Definition 1, we can represent the H∞, passiv-
ity and (Q,S,R)-dissipativity performance conditions when
ϒ4 = 0 and the L2−L∞ performance criterion whenϒ4 > 0.

Firstly, considering ϒ4 = 0, we can obtain

E
{∫ t

0
J (s)ds

}
≥ 0. (20)

Then, we consider ϒ4 > 0 and the matrices ϒ1 = 0,
ϒ2 = 0 and ϒ3 > 0 in Assumption 1. For any 0 ≤
t ≤ tf and considering (19), we can obtain E{

∫ tf
0 J (s)ds} ≥

E{
∫ t
0 J (s)ds} ≥ E{xT (t)Px(t)}. Therefore, according to (8),

we have

E{zT (t)ϒ4z(t)} = E{xTCTϒ4Cx(t)}

≤ E{xT (t)Px(t)} ≤ E
{∫ tf

0
J (s)ds

}
.

Considered the two cases of ϒ4 = 0 and ϒ4 > 0, the
system (7) is asymptotically stable with extended dissipative
for ω(t) ∈ L2[0,∞]. This is the end of the proof.
Using Theorem 1, the feedback controller gainK is derived

under the ETTS.
Theorem 2: For given constants δ ∈ [0, 1), α ∈ [0, 1], η̄ >

0, d̄ > 0, and matrices ϒ1, ϒ2, ϒ3, ϒ4, under the communi-
cation scheme (3), the system is mean-square asymptotically
stable and extended dissipative with a state feedback gain
K = YX−T , if there exist positive scalars λ, matrices X >

0, Q̂1 > 0, Q̂2 > 0, R̂1 > 0, R̂2 > 0, Ŝ3 > 0, Ŝ4 > 0, 8̂ >

0, [ R̂1 ∗
Û1 R̂1

] > 0, [ R̂2 ∗
Û2 R̂2

] > 0 and Ŝ1, Ŝ2, Û1, Û2, N̂1,Y with
appropriate dimensions such that[

X ∗

CX ϒ−14

]
≥ 0, (21)

�11 ∗ ∗ ∗

�21 �22 ∗ ∗

�s
31 0 �s

33 ∗

�s
41 0 0 �s

44

 < 0, (s = 0, 1), (22)

where

�11 = 5̂0+0̂4+0̂
T
4 +(1− s)5̂1+s5̂2,

�21 = col{η̄0̂1, d̄0̂1, η̄0̂6, d̄0̂6, 0̂5},

�22 = −diag{XR̂
−1
1 X ,XR̂−12 X ,XR̂−11 X ,XR̂−12 X , I },

�s
31 = col{(1− s)η̄0̂1 + sη̄N̂T

1 , (1− s)η̄0̂6,

�s
33 =−diag{(1−s)η̄XŜ

−1
3 X+sη̄Ŝ3, (1− s)η̄XŜ

−1
3 X , },

�s
41 = col{(1−s)0̂1, (1−s)η̄0̂7,CX09},

�s
44 = −diag{(1− s)λ1 I , (1− s)Xλ

−1
1 X ,−ϒ−11 },

5̂0 =

[
ˆ̀
51 ∗

ˆ̀
52

ˆ̀
53

]
,

ˆ̀
51 =


5̂11 ∗ ∗ ∗

5̂21 5̂22 ∗ ∗

5̂31 5̂32 5̂33 ∗

5̂41 0 0 5̂44

 ,

ˆ̀
52 =


5̂51 0 0 5̂54

5̂61 5̂62 0 0
5̂71 0 0 0
5̂81 0 0 0

 ,

ˆ̀
53 =


5̂55 ∗ ∗ ∗

0 5̂66 ∗ ∗

0 0 5̂77 ∗

0 0 0 5̂88

 ,
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5̂11 = AX + XAT + Q̂1 + Q̂2 − Ŝ1 − ŜT1 − R̂1 − R̂2,

5̂21 = (1− α)Y TBT + R̂1 − Û1 − ŜT2 + Ŝ1,

5̂22 = −R̂1 + Û1 + ÛT
1 + Ŝ2 + Ŝ

T
2 − R̂1 + δ8̂,

5̂31 = Û1, 5̂32 = −Û1 + R̂1, 5̂33 = −Q̂1 − R̂1,

5̂41 = R̂2 − Û2,

5̂44 = −R̂2 + Û2 + ÛT
2 − R̂2,

5̂51 = Û2, 5̂54 = −Û2 + R̂2, 5̂55 = −Q̂2 − R̂2,

5̂61 = −(1− α)Y TBT , 5̂62 = −δ8̂, 5̂66 = (δ − 1)8̂,

5̂71 = αY TBT , 5̂77 = −XαX ,

5̂81 = BTω − ϒ
T
2 CX , 5̂88 = −ϒ3,

5̂1 = η̄0
T
3 Ŝ403, 5̂2 = −η̄0

T
3 Ŝ403,

0̂1 =
[
AX B̂ 0 0 0 − B̂ αBY Bω

]
,

0̂4 =
[
N̂1 − N̂1 0 0 0 0 0 0

]
,

0̂5 =
[
0 0 0

√
αFX 0 0 0 0

]
,

0̂6 =
[
0 B̂ 0 0 0 − B̂ B̂ 0

]
,

0̂7 =
[
Ŝ1 + ŜT1 Ŝ2 − ŜT1 0 0 0 0 0 0

]
,

09 =
[
I 0 0 0 0 0 0 0

]
,

B̂ = (1− α)BY , B̂ =
√
α(1− α)BY .

Define Y = KX ,X = P−1,XQ1X = Q̂1,XQ2X =
Q̂2,XR1X = R̂1,XR2X = R̂2,XS1X = Ŝ1,XS2X =

Ŝ2,XS3X = Ŝ3,XS4X = Ŝ4,X8X = 8̂,XU1X =

Û1,XU2X = Û2,XN1X = N̂1. For any scalars λ1, λ2 > 0,
it follows that

2η0T7 01 ≤ 0
T
1 λ
−1
1 01 + η̄

20T7 λ107.

Then pre- and post-multipiying both sides of (8)
with X and (8) with diag{X, I , I , I , I } (s = 0)
and diag{X,X} (s = 1), respectively, where X =

diag{X ,X ,X ,X ,X ,X ,X , I , I , I , I , I , I }.
By Schur complement, we can obtain non-convex matrix

inequalities (21) and (22), which include nonlinear items
XαX , XR̂−11 X , XR̂−12 X , XŜ−13 X , and Xλ−1X .
Remark 3: It should be noted that (22) is non-convex.

Hence, (22) is failed to be resolved by LMIs approach. In this
note, we use a simple linear approach and a cone comple-
mentarity linearization (CCL) [40] method to deal with the
nonlinear items. We can obtain

−XαX ≤ ρ21α
−1I − 2ρ1X ,

−XR̂−11 X ≤ ρ22 R̂1 − 2ρ2X ,

−XR̂−12 X ≤ ρ23 R̂1 − 2ρ3X ,

−XŜ−13 X ≤ ρ24 Ŝ3 − 2ρ4X .

For Xλ−1X , we define G such that

Xλ−1X > G. (23)

Then, the solvability of (22) can be replaced by (22)’,
where (22)’ is derived from (22) by replacing these nonlinear

items and (23). The above minimization problem can be
solved by a CCL algorithm.
By Schur complement, (23) is equivalent to[

λ−1I ∗

X−1 G−1

]
> 0. (24)

Define λ̄I = λ−1I , Ḡ = G−1, X̄ = X−1. Then, we provide
the following linearization algorithm for Theorem 2.
Algorithm 1:
Step 1: Find a feasible solution {X , X̄ , λ̄I , λI , Ḡ,G} to

LMIs (22)’ and[
λ̄I ∗

X̄ Ḡ

]
> 0,

[
λI ∗

I λ̄I

]
≥ 0,[

G ∗

I Ḡ

]
≥ 0,

[
X ∗

I X̄

]
≥ 0.

Set k = 0.
Step 2: Solve the following minimization problem:

min tr(Gk Ḡ+ ḠkG+ λk λ̄+ λ̄kλ+ Xk X̄ + X̄kX ),

subject to LMIs (22)’.
Step 3: If (22)’ is satisfied, a controller is given by K =

YX−T . Otherwise, set k = k + 1, if k < n, go to step 2;
otherwise, EXIT (There is no result).

If the extended dissipative and external disturbance are
not existed, the following corollary could be obtained by
Theorem 2.
Corollary 1: For given constants δ ∈ [0, 1), α ∈

[0, 1], η̄ > 0, d̄ > 0, under the communication scheme (3),
the system is mean-square asymptotically stable with a state
feedback gain K = YX−T , if there exist positive scalars
λ, matrices X > 0, Q̂1 > 0, Q̂2 > 0, R̂1 > 0, R̂2 >

0, Ŝ3 > 0, Ŝ4 > 0, 8̂ > 0, [ R̂1 ∗
Û1 R̂1

] > 0, [ R̂2 ∗
Û2 R̂2

] > 0 and

Ŝ1, Ŝ2, Û1, Û2, Ñ1,Y with appropriate dimensions such that


�̃11 ∗ ∗ ∗

�̃21 �̃22 ∗ ∗

�̃s
31 0 �̃s

33 ∗

�̃s
41 0 0 �̃s

44

 < 0, (s = 0, 1),

where

�̃11 = 5̂0 + 0̃4 + 0̃
T
4 + (1− s)5̃1 + s5̃2,

�̃21 = col{η̄0̃1, d̄0̃1, η̄0̃6, d̄0̃6, 0̃5},

�̃22 = −diag{XR̂
−1
1 X ,XR̂−12 X ,XR̂−11 X ,XR̂−12 X , I },

�̃s
31 = col{(1− s)η̄0̃1 + sη̄ÑT

1 , (1− s)η̄0̃6},

�̃s
33 = −diag{(1−s)η̄XŜ

−1
3 X+sη̄Ŝ3, (1− s)η̄XŜ

−1
3 X},

�̃s
41 = col{(1−s)0̃1, (1−s)η̄0̃7},

�̃s
44 = −diag{(1− s)λ1 I , (1− s)Xλ

−1
1 X},
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5̃0 =



5̂11 ∗ ∗ ∗ ∗ ∗ ∗

5̂21 5̂22 ∗ ∗ ∗ ∗ ∗

5̂31 5̂32 5̂33 ∗ ∗ ∗ ∗

5̂41 0 0 5̂44 ∗ ∗ ∗

5̂51 0 0 5̂54 5̂55 ∗ ∗

5̂61 5̂62 0 0 0 5̂66 ∗

5̂71 0 0 0 0 0 5̂77


,

5̃1 = η̄0̃
T
2 Ŝ40̃2, 5̃2 = −η̄0̃

T
2 Ŝ40̃2,

0̃1 =
[
AX B̂ 0 0 0 − B̂ αBY

]
,

0̃2 =
[
0 I 0 0 0 0 0

]
,

0̃3 =
[
0 0 0 I 0 0 0

]
,

0̃4 =
[
Ñ1 − Ñ1 0 0 0 0 0

]
,

0̃5 =
[
0 0 0

√
αFX 0 0 0

]
,

0̃6 =
[
0 B̂ 0 0 0 − B̂ B̂

]
,

0̃7 =
[
Ŝ1 + ŜT1 Ŝ2 − ŜT1 0 0 0 0 0

]
.

When α(t) = 0, there are no cyber attacks. The system (7)
is rewritten as:

ẋ(t) = Ax(t)+ BKx(t − η(t))− BKe(il)+ Bωω(t).

The following corollary may be expected by Theorem 2.
Corollary 2: For given constants δ ∈ [0, 1), η̄ >

0, and matrices ϒ1, ϒ2, ϒ3, ϒ4, under the communication
scheme (3), the system is mean-square asymptotically stable
and extended dissipative with a state feedback gain K =
YX−T , if there exist positive scalar λ, matrices X > 0, Q̂1 >

0, R̂1 > 0, Ŝ3 > 0, Ŝ4 > 0, 8̂ > 0, [ R̂1 ∗
Û1 R̂1

] > 0 and

Û1,
¯̄N1,Y with appropriate dimensions such that[

X ∗

CX ϒ−14

]
≥ 0,[

¯̄50 +
¯̄04+
¯̄0T4 +(1− s)

¯̄51+s ¯̄52 ∗

�s
21 �s

22

]
< 0, (s=0, 1),

where

¯̄50 =


¯̄511 ∗ ∗ ∗ ∗

¯̄521
¯̄522 ∗ ∗ ∗

5̂31 5̂32 5̂33 ∗ ∗

¯̄541
¯̄542 0 ¯̄544 ∗

¯̄551 0 0 0 ¯̄555

 ,
¯̄�0
21 = col{η̄ ¯̄01, η̄ ¯̄01, ¯̄01, η̄ ¯̄05,CX ¯̄02},
¯̄�0
22 = −diag{XR̂

−1
1 X , η̄XŜ−13 X , λI ,Xλ−1X ,−ϒ−11 },

¯̄�1
21 = col{η̄ ¯̄01, η̄ ¯̄NT

1 ,CX
¯̄02},

¯̄�1
22 = −diag{XR̂

−1
1 X , η̄Ŝ3,−ϒ

−1
1 },

¯̄511 = AX + XAT + Q̂1 − Ŝ1 − ŜT1 − R̂1,
¯̄521 = Y TBT + R̂1 − Û1 − ŜT2 + Ŝ1,
¯̄522 = −R̂1 + Û1 + ÛT

1 + Ŝ2 + Ŝ
T
2 − R̂1 + δ8̂,

¯̄541 = −Y TBT , ¯̄542 = −δ8̂,
¯̄544 = −(1− δ)8̂,

¯̄551 = BTω − ϒ
T
2 CX ,

¯̄555 = −ϒ3,

¯̄51 = η̄
¯̄0T3 Ŝ4
¯̄03,

¯̄52 = −η̄
¯̄0T3 Ŝ4
¯̄03,

¯̄01 =
[
AX BY 0 − BY Bω

]
,

¯̄02 =
[
I 0 0 0 0

]
,

¯̄03 =
[
0 I 0 0 0

]
,

¯̄04 =
[
¯̄N1 −

¯̄N1 0 0 0
]
,

¯̄05 =
[
S̃1 + S̃T1 S̃2 − S̃T1 0 0 0

]
.

IV. NUMERICAL EXAMPLES
In this section, we provide two numerical examples to demon-
strate the effectiveness of the proposed method.
Example 1: Consider a model with the following

parameters:

A =
[

0 1
−2 3

]
, B =

[
0
1

]
, K =

[
1 4

]
.

In this example, the system with ETTS is ω(t) = 0, and
α(t) = 0. From Theorem 1, we can get the different δ
corresponding to the upper bound of η̄ in Table 1. The stability
of the networked control system is verified.

TABLE 1. Different δ corresponding to the upper bound of η̄.

From Table 1, we can get that the upper bound of η̄ is
larger than the one in [26], which means that the results of
our method using a novel LKF are less conservative and more
generalizable.
Example 2 The following parameter matrices [30] is con-

sidered in the system:

A =


0 1 0 0

0 0
−mg
M

0

0 0 0 1

0 0
g
l

0

 , B =



0
1
M
0

−
1
Ml

 ,

C = BTω =
[
0.5 0.5 0.5 0.5

]
,

whereM = 10kg, m = 1kg, l = 3m and g = 10m/s2.
The initial state is x0 = [0.98, 0, 0.2, 0]. Set ω(t) =

0.01 sin(2π t). The networked control structure is shown in
Fig.1.

Set δ = 0.2, ρ2 = ρ4 = 1 and γ = 200 in Case 1, Case 2,
Case 3, β = −500 in Case 4.
By solving Corollary 2 with MATLAB toolbox and the

parameters in Table 2, we can get the upper bound for η̄
in Table 3, where SP is Sampled Points, TP is transmission
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FIGURE 1. Networked pendulum control on a cart.

TABLE 2. Matrices for each case.

TABLE 3. The simulation results for each case.

points, TR is transmission rate. The corresponding feedback
gain and trigger matrix in each case are received as follows:
Case 1:

K =
[
4.3588 15.6636 315.2232 176.5967

]
,

8 =


0.3781 1.2195 22.6974 12.7407
1.2195 4.2305 80.6140 45.2177
22.6974 80.6140 1591.4636 891.9445
12.7407 45.2177 0891.9445 499.9118

 ;
Case 2:

K =
[
1.5494 7.3968 237.2290 131.8949

]
,

8 =


0.0326 0.1386 4.1283 2.2978
0.1386 0.6493 19.5885 10.9010
4.1283 19.5885 618.8916 344.1684
2.2978 10.9010 344.1684 191.3966

 ;
Case 3:

K =
[
0.2919 3.1004 194.0046 107.1092

]
,

8 =


0.0005 0.0005 0.3291 0.1817
0.0053 0.0560 3.4942 1.9292
0.3291 3.4942 218.5644 120.6689
0.1817 1.9292 120.6689 66.6211

 ;

FIGURE 2. State response curves in Case 1.

FIGURE 3. Transmission instants and release intervals in Case 1.

FIGURE 4. State response curves in Case 2.

Case 4:

K =
[
25.1830 62.1277 681.3800 387.7602

]
,

8 =


5.132 12.368 132.863 75.698
12.368 30.185 326.186 185.749
132.863 326.186 3549.454 2020.557
75.698 185.749 2020.557 1150.260

 .
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FIGURE 5. Transmission instants and release intervals in Case 2.

FIGURE 6. State response curves in Case 3.

FIGURE 7. Transmission instants and release intervals in Case 3.

According to (5), the sampling period 0 < hl ≤ η̄. When
choose hl ∈ (0, η̄], the Fig.2,4,6,8 are the state response
curves with K and 8 in each case. From these figures, it can
be seen that the response curves gradually close to zero.
It can be easily received that the designed controller with
extended dissipative is effective. The Fig.3,5,7,9 show the
release instants and release intervals in each case. Analysing
the transfer rate in Table 3, we can see that not all signals are

FIGURE 8. State response curves in Case 4.

FIGURE 9. Transmission instants and release intervals in Case 4.

transmitted. The ETTS could reduce the number of transmit-
ted points to save the communication resources.

V. CONCLUSION
An extended dissipative control is designed with ETTS for
NCSs under probabilistic cyber attacks. The extended dissi-
pative performance is considered as follows: H∞, L2 − L∞,
passivity and (Q,S,R)-dissipativity. When sampling signal
is transmitted over the networks, the networks subject to prob-
abilistic cyber attacks. The event trigger determines whether
the sampled-data needs to be transmitted or not. A novel
Lyapunov-Krasovskii functional which takes full character-
istic of the sawtooth structure is constructed to derive the sta-
bility criterion. By utilizing the Lyapunov theory, sufficient
conditions are obtained to ensure the stability with extended
dissipative. Meanwhile, the feedback controller gain could be
calculated. Two examples are given to prove the effectiveness
of this NCSs which we designed. The obtained results are
much less conservatism than the existing one. In the future,
it is necessary to design a more efficient event triggering
algorithms.
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