
Received 3 December 2022, accepted 19 December 2022, date of publication 21 December 2022,
date of current version 29 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3231455

Model Compression via Position-Based
Scaled Gradient
JANGHO KIM 1, KIYOON YOO2, AND NOJUN KWAK 2, (Senior Member, IEEE)
1School of Artificial Intelligence, College of Computer Science, Kookmin University, Seoul 02707, Republic of Korea
2Department of Intelligence and Information, GSCST, Seoul National University, Seoul 08826, Republic of Korea

Corresponding author: Nojun Kwak (nojunk@snu.ac.kr)

This work was supported in part by the National Research Foundation (NRF) through Korean Government under Grant
2021R1A2C3006659, and in part by the Institute of Information & Communications Technology Planning & Evaluation
(IITP) through Korean Government under Grant 2021-0-01343 and Grant 2022-0-00953.

ABSTRACT We propose the position-based scaled gradient (PSG) that scales the gradient depending on the
position of a weight vector to make it more compression-friendly. First, we theoretically show that applying
PSG to the standard gradient descent (GD), which is called PSGD, is equivalent to the GD in the warped
weight space, a space made by warping the original weight space via an appropriately designed invertible
function. Second, we empirically show that PSG acting as a regularizer to the weight vectors is favorable
for model compression domains such as quantization, pruning, and knowledge distillation. PSG reduces the
gap between the weight distributions of a full-precision model and its compressed counterpart. This enables
the versatile deployment of a model either as an uncompressed mode or as a compressed mode depending
on the availability of resources. The experimental results on CIFAR-10/100 and ImageNet datasets show
the effectiveness of the proposed PSG in model compression including an iterative pruning method and the
knowledge distillation.

INDEX TERMS Convolutional neural networks, model compression, scaled gradientmethod, regularization.

I. INTRODUCTION
To reduce the generalization error and induce a prior to
the model, many regularization techniques have been pro-
posed [1], [2], [3], [4]. To inject a prior for the specific
purpose, we propose a novel regularization method designed
for the model compression. This regularizer non-uniformly
scales gradients to constrains the weight to a set of
compression-friendly grid points. The scale of gradient
depends on the position of the weight.

In this work, we propose a new optimizer position-based
scaled gradient descent dubbed PSGD. Compared to con-
ventional stochastic gradient descent (SGD), we replace a
gradient with position-based scaled gradient. We prove that
optimizing the model in the original weight space with PSGD
is equal to optimize the model in the warped weight space
which is warped by a proposed invertible warping function
with a SGD optimizer. This warping function helps to merge

The associate editor coordinating the review of this manuscript and

approving it for publication was Kathiravan Srinivasan .

the original weights to the desired target positions by scaling
the gradients.

PSGD, the scaling gradient elements, is the branch of
variable metric method [5] which utilizes a positive definite
matrix to scale the gradient vector by standing upon the loss
function. Unlike, variable metric method, our PSGD only
considers the current position of the weight for the scaling
gradient elements.

In recent years, deploying a deep neural network (DNN)
on restricted edge devices such as smartphones and IoT
devices has become a very important issue. For these rea-
sons, reducing bit-width of model weights (quantization)
and removing unimportant model weights (pruning), improv-
ing the performance of the given model with additional
knowledge (knowledge distillation) and proposing for the
specific domain have been studied and widely used for appli-
cations [10]. We apply the proposed PSG method to the
model compression problems such as quantization, pruning
and knowledge distillation. Fig 1 shows performances of
quantized models using various regularization methods with

133828 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-1334-4649
https://orcid.org/0000-0002-1792-0327
https://orcid.org/0000-0002-9352-0237

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

FIGURE 1. Top-1 accuracy on ImageNet with ResNet-18 with various bits.
Our PSGD is compared with various methods such as SGD, DQ [6],
G-L2 [7] and G-L1 [8]. FP indicates the full-Precision accuracy and W#A#
represents the number of bits for weights and activations. More details
are in Table 6.

ResNet-18 on ImageNet dataset. PSGD outperforms other
regularization methods with large margin.

Since Quantization Aware Training (QAT) methods need a
pre-trained model or the entire training dataset for the train-
ing, many works have focused on post-training quantization
(PTQ) methods that do not require full-scale training [11],
[12], [13], [14]. For example, [12] starts with a pre-trained
model with only minor modification on the weights by
equalizing the scales across channels and correcting biases.
Because of inherent discrepancy between the distribution of
the pre-trained model and that of quantized model, PTQ
methods tried to minimize the distribution gap. Fig. 2 illus-
trates the fundamental differences between full-precision
weights and quantized weights. because of the differences
in weight distributions, the quantization error and the clas-
sification error increase in accordance with the number of
bit-width.

Meanwhile, another line of research in quantization has
recently emerged that approaches the task from the ini-
tial training phase [8] considered as regularization methods.
Compared to PTQ methods, regularization methods tried to
reduce the inherent differences by adding the regularizer in
the pre-training phase.

Our method is classified as a regularization method. PSGD
trains a model from scratch like traditional SGD. Compared
to SGD, PSGD focuses to attain a compression friendly
model. This model can be effectively pruned or quantized
because of its shape of the weight distribution. Consequently,
a pre-trained model with PSGD does not require additional
post-processing, re-training and accessing the data when the
resources are limited. To achieve this goal, PSGD regulates
the original weights to merge to a set of grid points by scal-
ing the gradient of weights according to their error between
the original weights and the compressed weights (pruned or
quantized) (Fig. 3).

This work is the expanded version of our previous
research [15]. We additionally verify PSGD with the recent
iterative pruning framework. Also, we show that our PSGD
as an implicit regularizer not modifying the objective func-
tion [16] works well with knowledge distillation which is one
of the explicit regularizations. We interpret the geometry of

the warped space from PSGD using steepest descent method.
Finally, we provide the warped space and the original space
distribution analysis.

Our contributions can be summarized as follows:
•We interpret thewarped space of PSGDusing the steepest

descent method with quadratic norm, which tries to make
the space wide inversely proportional to quantization error
(Eq 26). This phenomenon is also experimentally observed
in Sec. V-B3.
•We verify the adaptability of PSGD as an implicit regu-

larizer, which do not modify the objective function by com-
bining iterative pruning methods and a traditional knowledge
distillation loss function.
• We provide the analysis of weights in both the warped

space and original space in Sec. V-A

II. RELATED WORK
A. QUANTIZATION
Quantization-aware training (QAT) trains the model to attain
the quantized model which performs well at the lower bits
such as 4,3 and 2 bit. QAT updates the model in the
full-precision domain but gradients are calculated in the
low-precision domain using the training dataset [17], [18],
[19]. To avoid using the whole training dataset and retraining
phase, post-training quantization (PTQ) has been researched.
These methods do not need a whole training dataset with
a simple proposed calculation to consider a resource con-
straint device [12], [13], [14]. Channel-wise quantization
methods require storing quantization parameters per channel
and calculations about the quantization bin size [13], [20].
However, layer-wise quantization is more hardware-friendly
as they calculate the quantization bin size and store quanti-
zation parameters at once per layer [11], [12], [14]. Refer-
ence [12] proposes a bias correction and a range equalization
of channels, which maintain quantization performance until
8-bit. On the other hand, [14] splits the outliers to reduce
the clipping error caused by them. However, these meth-
ods still suffer from a significant accuracy drop at the low-
bit. References [21] and [22] propose to directly minimize
the quantization error using a calibration dataset to achieve
higher performance at under 6-bit.

Contrary to previous QAT and PTQ methods, the reg-
ularization method has focused on quantization robustness
with explicit or implicit regularization terms at the initial
training phase. Reference [6] minimizes the Lipshitz constant
for robustness against adversarial attacks. Reference [8] pro-
poses an L1 penalty term on the gradients for quantization
robustness across different bit widths. This enables a quan-
tization without additional training, dubbed an on-the-fly
quantization.

B. PRUNING
Model pruningmethods [23], [24], [25], [26], [27], [28], [29],
[30] try to prune weights or filters in the model considered

VOLUME 10, 2022 133829

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

FIGURE 2. Results of ResNet-34 on CIFAR-100. (a) Mean-squared quantization error (line) and classification error (bar)
across different bits. Blue: SGD, Red: PSGD. (b) Example of weight distribution (Conv2_1 layer [9]) trained with standard
SGD and our PSGD. For PSGD, the distribution of the full precision weights closely resembles the low precision distribution,
yet maintains its accuracy.

unimportant units by proposed unique criterion [31], [32].
Many works prune the model in the training phase [33], [34],
[35], [36], [37]. Reference [35] proposes a L0 regularization
term to train a sparse model. Reference [36] finds a sparse
model only using a single shot by the gradient. Similarly,
PSGD also does not need a pruning schedule and a retrain-
ing phase. PSGD makes a model into a sparse model by
using gradient scaling to merge model weights to a zero
value.

C. KNOWLEDGE DISTILLATION
Knowledge distillation (KD) is one of the most popular
regularization method widely used in model compression
domain [3]. This framework uses a larger teacher network’s
knowledge to boost the performance of a small-size student
network. In general, KD encourages the student network
to mimic the softened distribution of the teacher network.
Another approach named as a feature distillation utilizes the
feature map from the teacher network to teach the student
network [4], [38].

In doing so, the student network absorbs the knowledge of
the teacher by mimicking the logit from the teacher network
using the Kullback–Leibler divergence (KL) loss. KD mod-
ifies conventional objective terms such as the cross-entropy
loss by combining the KL loss. Our PSGD can be combined
with this kind of the explicit regularizer because PSGD acts
regardless of the objective function.We conduct applying KD
with PSGD in Sec. IV-F.

III. PROPOSED METHOD
PSGD regularizes the original weight to converge at the
desired target points which can help to perform well in
uncompressed and compressed domains. The act of PSGD
optimization in the original weight space is equivalent to SGD
optimization in the warped weight space. With the invertible
function between the original and warped space, PSGD gives
the compression-friendly solution by converging a different
local minimum compared to the solution of SGD in the
original weight space.

A. OPTIMIZATION IN WARPED SPACE
Theorem 1: Let F : X → Y, X ,Y ⊂ Rn, be an arbi-

trary invertible multivariate function that warps the original
weight space X into Y and consider the loss function L :
X → R and the equivalent loss function L′ = L ◦ F−1 :
Y → R. Then, the gradient descent (GD) method in the
warped space Y is equivalent to applying a scaled gradient
descent in the original space X such that

GD(yyy,∇L
′

yyy) ≡ GD(xxx, (J F
xxx)−2∇Lxxx), (1)

where yyy = F(xxx) and ∇ba and J b
a respectively denote the

gradient and Jacobian of the function b with respect to the
variable a.

Proof: Consider the point xxx t ∈ X at time t and its
warped version yyyt ∈ Y . To find the local minimum of L′(yyy),
the standard gradient descent method at time step t in the
warped space can be applied as follows:

yyyt+1 = yyyt − η∇L
′

yyy (yyyt). (2)

Here, ∇L
′

yyy (yyyt) = ∂L′
∂yyy |yyyt is the gradient and η is the learning

rate. Applying the inverse function F−1 to yyyt+1, we obtain
the updated point xxx t+1:

xxx t+1 = F−1(yyyt+1) = F−1(yyyt − η∇L
′

yyy (yyyt))

= F−1(yyyt)− ηJ xxx
yyy (yyyt)∇

L′
yyy (yyyt) (3)

where the last equality is from the first-order Taylor approx-
imation around yyyt and J xxx

yyy = J F−1
yyy =

∂xxx
∂yyy ∈ Rn×n is the

Jacobian of xxx = F−1(yyy) with respect to yyy. By the chain rule,
∇
L′
yyy =

∂xxx
∂yyy
∂L
∂xxx = J xxx

yyy ∇
L
xxx . Because J xxx

yyy = (J yyy
xxx)−1 = (J F

xxx)−1,
we can rewrite Eq. 3 as

xxx t+1 = xxx t − η(J F
xxx (xxx t))−2∇Lxxx (xxx t). (4)

Now Eq. 2 and Eq. 4 are equivalent and Eq. 1 is proved.
In other words, the scaled gradient descent (PSGD) in the
original space X , whose scaling is determined by the matrix
(J F

xxx)−2, is equivalent to gradient descent in the warped
space Y . �

133830 VOLUME 10, 2022

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

FIGURE 3. The main idea of PSGD. Suppose the yellow points indicate the
quantization grid in a two-dimensional space. During training in the FP
domain, if the position of the weight vector is close to a quantization
grid, the gradient of that weight vector is scaled down proportionally to
prevent it from escaping. Conversely, if it is distant, the gradient is scaled
up so as to accelerate its escape from its original position.This idea is
equivalent to multiplying a scaling factor to the gradients based on the
distance from the nearest grid point.

B. POSITION-BASED SCALED GRADIENT
In this part, we introduce one example of designing the invert-
ible function F(xxx) for scaling the gradients. This invertible
function should cause the original weight vector xxx to merge
to a set of desired target points {x̄xx}. These kinds of desired
target weights can act as a prior in the optimization process to
constrain the original weights to merge at specific positions.
The details of how to set the target points will be deferred to
the next subsection.

The gist of weight-dependent gradient scaling is simple.
For a given weight vector, if the specific weight element is far
from the desired target point, a higher scaling value is applied
so as to escape this position faster. On the other hand, if the
distance is small, lower scaling value is applied to prevent the
weight vector from deviating from the position (See Fig. 3).
From now on, we focus on the design of the scaling function
for the quantization problem. For pruning, the procedure is
analogous and we omit the detail.

1) SCALING FUNCTION
We use the same warping function f for each coordinate
xi, i ∈ {1, · · · , n} independently, i.e. yyy = F(xxx) =
[f (x1), f (x2), · · · f (xn)]T . Thus the Jacobian matrix becomes
diagonal (J F

xxx = diag(f ′(x1), · · · , f ′(xn)) and our method
belongs to the diagonally scaled gradient method.

Consider the following warping function

f (x) = 2 sign(x − x̄)(
√
|x − x̄| + ε −

√
ε)+ c(x̄) (5)

where the target x̄ is determined as the closest grid point from
x, sign(x) ∈ {±1, 0} is a sign function and c(x̄) is a constant
dependent on the specific grid point x̄ making the function
continuous. We introduced c(x̄) for making f (x) continuous.
If we do not add a constant c(x̄), the f (x) has points of
discontinuity at every {(n+0.5)1|n ∈ Z} as depicted in Fig. 4,
where 1 represents step size and n1 means n-th quantized
value identical to x̄ corresponding to x. We can calculate the
left sided limit and right sided limit at n1+0.51 using Eq. 5.

f (n1+ 0.51−) = 2(
√
0.51+ ε −

√
ε)+ c(n1)

FIGURE 4. Scaling function f (x) for different step size 1. The red graph
depicts f (x) without c(x̄) and the green graph depicts f (x) with c(x̄)
(Eq. 6). Without c(x̄), there are points of discontinuity at every
{(n+ 0.5)1|n ∈ Z}. After adding c(x̄) to the scaling function f (x),
it becomes a continuous function (green).

f (n1+ 0.51+) = −2(
√
0.51+ ε −

√
ε)+ c((n+ 1)1)

Based on the condition that the left sided limit and the right
sided limit should be the same, we can get the following
recurrence relation:

c((n+ 1)1)− c(n1) = 4 (
√
0.51+ ε −

√
ε).

Using the successive substitution for calculating c(x̄),
it becomes

c(n1)− c(0) = 4n (
√
0.51+ ε −

√
ε).

Setting c(0) = 0 and because n1 = x̄, c(x̄) can be calculated
as below:

c(x̄) =
4x̄
1

(
√
0.51+ ε −

√
ε). (6)

ε is an arbitrarily small constant to avoid infinite gradient.
Then, from Eq. 4, the elementwise scaling function becomes
s(x) = 1

[f ′(x)]2
and consequently

s(x) = |x − x̄(x)| + ε. (7)

Using the elementwise scaling function Eq. 7, the ele-
mentwise weight update rule for the PSG descent (PSGD)
becomes

xit+1 = xit − ηs(xi)
∂L
∂xi

∣∣∣∣
xxxt

(8)

where, η is the learning rate.1 We further elaborate on the
geometry of the warped space using the concept of steepest
descent in the p-norm in Section III-E.

PSGD operates independent of the type of the loss function
as it does not modify the loss term, but rather non-uniformly
scales the gradient elements. Therefore, it can be applied to
KD loss containing task loss L (e.g. cross-entropy) and KL
loss.Assuming that there are n classes, softmax posterior with
temperature T can be calculated as follows:

pk (z; T) =
ezk/T∑n
j e

zj/T
, (9)

1We set η = η0λs where η0 is the conventional learning rate and λs is
a hyper-parameter that can be set differently for various scaling functions
depending on their range.

VOLUME 10, 2022 133831

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

where zk represents a k-th logit. The temperature value, T ,
is used to make soft logits for knowledge distillation. We can
compute the KL loss between student and teacher network
using following equation.

KL(zT ||zS; T) =
n∑
i=1

pk (zT ; T) log(
pk (zT ; T)
pk (zS; T)

). (10)

where ZT and ZS are teacher logit and student logit, respec-
tively. Then, we can use PSGD with KD loss combining task
loss and KL loss as below:

LKD = L+ T 2
× KL(zT ||zS; T) (11)

LKD refers to the KD loss. We multiply T 2 because the
decrease rate of the gradient scale is 1/T 2. Using KD loss,
the update ruls for the PSGD with KD becomes

xit+1 = xit − ηs(xi)
∂LKD
∂xi

∣∣∣∣
xxxt

(12)

Applying PSGD at the beginning hinders training the model
because of its regularization effect. To relieve this issue,
PSGD is applied after a few warm-up epochs. More details
are in Sec. IV-A2. The overall process of PSGD is depicted
in Algorithm 1.

Algorithm 1 Position-based Scaled Gradient Descent
1: Input: Network weights xxx, target bit B, Warm-up epoch
W

2: [Training phase]
3: for Iter = 1,. . . , T do
4: if Iter < W then
5: xit+1 = xit − ηs(xi) ∂L∂xi

∣∣∣
xxxt

{Update the model with
SGD}

6: else
7: xit+1 = xit − ηs(xi) ∂L∂xi

∣∣∣
xxxt

{Update the model with
PSGD}

8: end if
9: end for

10: Output: Quantization friendly model xxx
11: [Testing phase]
12: Quantize network weights xxx with target bit-width B and

inference with quantized network x̄xx

C. TARGET POINTS
1) QUANTIZATION
In this paper, we use the uniform symmetric quantiza-
tion method [11] and the per-layer quantization scheme
for hardware friendliness. Consider a floating point range
[minx ,maxx] of model weights. The weight x is quantized to
an integer ranging [−2n−1 + 1,2n−1 − 1] for n-bit precision.
Quantization-dequantization for the weights of a network is
defined with step-size (1) and clipping values. The overall
quantization process is as follows:

xQ = Clip(
⌊ x
1

⌉
,−2n−1 + 1, 2n−1 − 1),

1 =
max(−minx ,maxx)

2n−1 − 1
(13)

where b·e is the round to the closest integer operation and

Clip(x, a, b) =

b if x > b
a if x < a
x elsewise.

We can get the quantized weights with the de-quantization
process as x̄ = xQ × 1 and use this quantized weights for
target positions of quantization.

2) PRUNING
For magnitude-based pruning methods, weights near zero
are removed. Therefore, we choose zero as the target value
(i.e. x̄ = 0).

D. PSGD FOR DEEP NETWORKS
Many literature focusing on the optimization of DNNs with
stochastic gradient descent (SGD) have reported that multiple
experiments give consistently similar performance although
DNNs have many local minima (e.g. see Sec. 2 of [39]). Ref-
erence [40] analyzed the loss surface of DNNs and showed
that large networks have many local minima with similar
performance on the test set and the lowest critical values
of the random loss function are located in a specific band
lower-bounded by the global minimum. From this respect,
we explain informally how PSGD for deep networks works.
As illustrated in Fig. 5, we posit that there exist many local
minima (A,B) in the original weight space X with similar
performance, only some of which (A) are close to one of
the target points (0) exhibiting high performance also in the
compressed domain. As in Fig. 5 left, assume that the region
of convergence for B is much wider than that of A, meaning
that there exists more chance to output solution B rather than
A from random initialization. By the warping functionF spe-
cially designed as described above (Eq. 5), the original space
X is warped to Y such that the areas near target points are
expandedwhile those far from the targets are contracted. If we
apply gradient descent in this warped space, the loss function
will have a better chance of converging to A′. Correspond-
ingly, PSGD in the original space will more likely output A
rather than B, which is favorable for compression. Note that
F transforms the original weight space to the warped space
Y not to the compressed domain.

E. GEOMETRY OF THE WARPED SPACE
In this section, we further illustrate the exact geometry of the
warped space when PSGD is applied to quantization. Recall
from Eq. 4, Eq. 8, and Eq. 13 that the absolute magnitude of
the quantization error is used to scale the gradient elements.
This corresponds to left-multiplying a diagonal matrix with
the elements determined by the magnitude of the quantization
error. We use the concept of p-norm steepest descent [41] to
illustrate why this leads to a warped space that induces the
weight vectors to merge to the target points. First, we explain
some necessary preliminary details for completeness.

133832 VOLUME 10, 2022

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

FIGURE 5. Toy example of warping a loss function L(x) = cos ((x − 3.07)2). Left denotes the original loss
function. Right is drawn by warping the original function by Eq. 5 with the target x̄ = 0.

1) STEEPEST DESCENT METHOD
For a first-order optimization method, the steepest descent
direction, v is determined by minimizing the the first-order
Taylor approximation of L(x + v) around x.

L(x + v) ≈ L(x)+∇L(x)T v (14)

Since v can be chosen to have arbitrarily large magnitude in
a particular direction, the magnitude is normalized as

vnsd = argmin{∇L(x)T v | ‖v‖p ≤ 1} (15)

Naturally, using different values of pwill yield distinct steep-
est directions. Additionally, other family of norms can also
be used such as the quadratic norms, which is defined for a
positive-definite matrix A as

‖v‖A = (vtAvt)
1
2 = ‖A

1
2 v‖2 (16)

One can also consider the unormalized steepest descent,
which scales the normalized steepest descent by the dual
norm.

vsd = ‖∇L(x)‖∗vnsd (17)

where ‖ · ‖∗ denotes the dual norm

‖z‖∗ = sup
x
{|ztx| | ‖x‖ ≤ 1} (18)

For the Euclidean norm (p = 2), vnsd corresponds to−∇L(x),
which is denoted as gradient descent. Now we present our
theorem by interpreting PSGD as steepest descent method in
the quadratic norm.
Lemma 1: For a fixed iteration t, the unormalized steepest

descent direction in the quadratic norm ‖·‖A is equivalent to
the PSG descent direction if the symmetric, positive-definite
matrix A is given by

A(t) = diag(
1

s(x ti)
, · · · ,

1
s(x tn)

) (19)

where s(x) is given by Eq. 7 and n is the dimension of the
weight vectors.

Proof: First note that the normalized steepest descent in
the Euclidean norm is simply given by the negative direction
of the gradient scaled by its norm.

−
∇L(x)
‖∇L(x)‖2

= argmin{∇L(x)T v | ‖v‖2 ≤ 1} (20)

The steepest descent in the quadratic norm can easily be
formulated as above with change of variables.

vnsd = argmin{∇L(x)T v | ‖v‖A ≤ 1}

= argmin{∇L(x)T v | ‖A
1
2 v‖2 ≤ 1}

= argmin{∇L(x)TA−
1
2 h | ‖h‖2 ≤ 1} (21)

where the last equality follows from the change-of-variable
h = A

1
2 v. Then, the descent direction is given by

hnsd = −
A−

1
2∇L(x)

‖A−
1
2∇L(x)‖2

(22)

or equivalently,

vnsd = −
A−1∇L(x)

‖A−
1
2∇L(x)‖2

(23)

To yield the unormalized descent direction, we compute the
dual norm of ‖∇L‖A, which is precisely supx{|∇L(x)T x| |
‖x‖A ≤ 1} = ‖A−

1
2∇L(x)‖2. Thus the unormalized descent

direction is

vsd = −A−1∇L(x), (24)

which written in element-wise for the ith element is equiva-
lent to the PSGD update rule given in Eq. 8.

visd = −s(xi)
∂L
∂xi

(25)

�
Theorem 2: Given weight spaces X ,Y ⊂ Rn, and a

symmetric, positive-definite matrix A ∈ Rn∗n, let X and Y
be the weight spaces obtained by PSG descent method and
the gradient descent method respectively. Then, the linear
transformation from X to Y at iteration t is given by

Tt : X → Y = A(t)
1
2 x (26)

VOLUME 10, 2022 133833

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

Thus, for a weight vector x tj with small quantization error,
the jth basis is expanded inversely proportional to the error,
rendering x t+1j in the vicinity of the target point for a given
update.

Proof: For the simplicity of notation, t is omitted below
as the proof applies to any fixed t . Consider the loss function
defined in Y .

L̃(y) = L(A−
1
2 y) = L(x) (27)

The gradient descent direction in y is given by

vy = −∇yL̃(y) = −
∂L̃(y)
∂y

= −
∂x
∂y
∂L(x)
∂x

= −A−
1
2∇xL (28)

Applying the inverse transformation of Eq. 26 yields the
gradient descent direction in x, which is equivalent to the
unormalized steepest descent direction in the qudratic norm
given by Eq. 24 in y ∈ Y .

vx = T −1(vy) = −A−1∇xL (29)

By Lemma 1, this is equivalent to the PSG descent. �

IV. EXPERIMENTS
To verify the effectiveness of PSGD used in model compres-
sion, we apply PSGD in three model compression domains
including pruning, quantization and knowledge distillation.
For pruning, we train the sparse model by setting a target
point as 0 without any pruning method and compare this
sparse model with L0-regularization [35] and SNIP [36],
which are the regularization method and the single-shot prun-
ing method not requiring additional fine-tuning and pruning
schedules. Then, we apply our PSGD with iterative pruning
methods which require pruning phase and schedule using a
magnitude-based pruning criterion.

For quantization, we compare our PSGD with regulariza-
tion methods which train the model from scratch with reg-
ularization [6], [7], [8]. We choose the L1,L2 and Lipschitz
regularization methods as the baseline for the original paper
of [8]. Then, we also compare with layer-wise PTQ methods
that utilize the pre-trained model [12], [14]. Finally, we apply
our PSGDwith extremely low bits (2,3 bits), various architec-
ture and Adam optimizer [42] for verifying the adaptability.

For knowledge distillation, we conduct experiments to val-
idate the compatibility of PSGD with knowledge distillation
by applying it to the KD loss. To show the adaptability
of PSGD with other post-training method, we applied the
post-training method with PSGD-trained model.

A. IMPLEMENTATION DETAILS
1) HYPER-PARAMETER λs

λs is the hyper-parameters related to the scaling function
(Eq. 8) We tried to find the λs which does not bring the
performance degradation of uncompressed model, similar

TABLE 1. λs used in the sparse training experiment.

TABLE 2. λs used in the quantization experiments.

FIGURE 6. The weight distribution of SGD and PSGD models.

TABLE 3. Test accuracy of ResNet-32 across different sparsity ratios
(percentage of zeros) on CIFAR-100 after magnitude-based pruning [43]
without any fine-tuning.

to [8]. When we search the hyper-parameter, we utilize two
disjoint datasets, the training and validation dataset, from the
whole training dataset. After finding the hyper-parameter,
we train the model using the whole training dataset and the
hyper-parameter. Table 1 and 2 show the values of λs used in
experiments. The λs tended to rise for lower target bit-widths
or for higher sparsity ratios. In CIFAR-10, we observe that the
same λs value yields fair performance across all bit-widths.
In our observation, CIFAR-100 and ImageNet dataset need a
wide range compared to CIFAR-10.

2) METHODS
All experiments are conducted with the Pytorch framework.
For the Single-shot pruning, we used we used ResNet-32 [9]
on the CIFAR-100, following the training hyperparameters
of [48].We used released official implementations of [35] and
re-implemented [36] for the Pytorch framework. In iterative
pruning of Table 4, we followed the same setting of [44].

133834 VOLUME 10, 2022

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

TABLE 4. Test accuracy of unstructured pruning for ResNet-20 on CIFAR 10 dataset. All numbers except ours are from [44].

TABLE 5. MAC and FLOPS for ResNet20 model on CIFAR10 using a single
TITAN RTX GPU.

For quantization experiments of Table 6 and 7, we used
ResNet-18 and followed [8] settings for CIFAR-10 and Ima-
geNet. For [14], released official implementations were used
for experiment. All other numbers are either from the original
paper or re-implemented. For fair comparison, all quantiza-
tion experiments followed the layer-wise uniform symmet-
ric quantization [11] and when quantizing the activation,
we clipped the activation range using batch normalization
parameters as described in [12], same as [8]. PSGD is applied
from the last 15 epochs for ImageNet experiments and from
the first learning rate decay epoch for CIFAR experiments.
We use additional 30 epochs for PSGD at extremely low bits
experiments (Table 8). Also, we tuned the hyper-parameter
λs for each bit-widths and sparsity. Our search criteria is
ensuring that the performance of uncompressed model is not
degraded, similar to [8].

3) DATASETS
We use CIFAR-10/100 and the ImageNet datasets for exper-
iments. CIFAR-10 consists of 50,000 training images and
10,000 test images, consisting of 10 classes with 6000 images
per class. CIFAR-100 consists of 100 classes with 600 images
per class. The ImageNet dataset consists of 1.2 million
images. We use 50,000 validation images for the test, which
are not included in training samples. We use the conventional
data pre-processing steps.2, 3

a: ImageNet / CIFAR-10
For ResNet-18, we started training with a L2 weight decay
of 10−4 and learning rate of 0.1, then decayed the learning
rate with a factor of 0.1 at every 30 epochs. Training was
terminated at 90 epochs. We only used the last 15 epochs
for training the model with PSGD similar to [8]. This means
we applied the PSG method after 75 epochs with learning

2https://github.com/kuangliu/pytorch-cifar
3https://github.com/pytorch/examples/blob/master/imagenet/main.py

rate 0.001. For extremely low-bits experiments, we did not
use any weight decay after 75 epochs. We tuned the hyper-
parameters λs for target bit-widths. All numbers are results
of the last epoch. We used the official code of [14] for
comparisons with 0.02 for the Expand Ratio.4

b: CIFAR-100
For ResNet-32, the same weight decay and initial learning
rate were used as above and the learning rate was decayed at
82 and 123 epoch following [48]. Training was terminated
at 150 epoch. For VGG16 with batchnorm normalization
(VGG16-bn), we decayed the learning rate at 145 epoch
instead. We applied PSG after the first learning rate decay.
The first convolutional layer and the last linear layer are
quantizedat 8-bit for the 2-bit and the 3-bit experiments. For
sparse training, training was terminated at 200 epoch and
weight decay was not used at higher sparsity ratio, while all
the other training hyperparameters were the same. For [35],
we used the official implementation for the results.5

B. PRUNING
1) SINGLE-SHOT PRUNING
To figure out that PSGD can train the sparse model with
setting the target point at zero, we apply magnitude-based
pruning [43] after PSGD training across different sparsity
ratios. This setting can be fairly compared with sparsity reg-
ularization method and single-shot pruning method because
of no need for fine-tuning.

Table 3 shows that our PSGD outperforms two competitive
methods in terms of maintaining the performance across dif-
ferent sparsity ratios. Although all methods show promising
results at the low sparsity (∼10%), [35] suffers a signifi-
cant accuracy degradation, where the same phenomenon is
observed in another work [49]. Relatively, single-shot prun-
ing [36] maintains the performance at the high sparsity, but
PSGD is more potent in making a sparse model. Fig. 6 repre-
sents the distribution of weights in SGD- and PSGD-trained
models, which explains that the weights are well clustered at
the zero target value.

2) ITERATIVE PRUNING
We also consider the iterative pruning case. Comparing single
shot pruning methods, iterative pruning gradually increases
the sparsity while training. This can help the recovery the

4https://github.com/cornell-zhang/dnn-quant-ocs
5https://github.com/AMLab-Amsterdam/L0_regularization

VOLUME 10, 2022 133835

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

TABLE 6. Test accuracy of regularization methods that do not have post-training process for ResNet-18 on the ImageNet and CIFAR dataset. PSGD@W#
indicates the target number of bits for weights in PSGD is #. All numbers except ours are from [8]. At #-bit, PSGD@W# performs the best in most cases.

TABLE 7. Comparison with Post-training Quantization methods using
ResNet-18 on the ImageNet dataset. Results of DFQ are from [12].

TABLE 8. Test accuracy of ResNet-18 on the ImageNet dataset. The first
conv layer, the fully-connected layer and activation maps are fixed to
8-bit.

TABLE 9. Test accuracy of ResNet-32 on the CIFAR-100 using Adam
optimizer.

performance via finetuning steps included in iterative pruning
training schedule. We bring PSGD to the iterative pruning
methods from DPF [44] and AC/DC [47]. Table 4 shows
the performance of our method with competitive pruning
methods. DPF+PSGD and AC/DC+PSGD refer to com-
bine the DPF with PSGD and AC/DC with PSGD, respec-
tively. PSGD is also very effective in the iterative pruning
schemes. PSGD shows promising results by combining itera-
tive pruning method with gradient scaling in the SGD. These
results verify that PSGD performs well with only schedul-
ing comparable to the competitive iterative pruning. This
can be possible because PSGD only scaled the gradient to
regularize the weights to zero which is friendly to pruning.
We also report the Multiply and Accumulation (MAC) and
FLoating point Operations Per Second (FLOPS) of dense
model and PSGD model for comparing the efficiency in
Table 5.

TABLE 10. The performances of various architectures with PSGD.

C. QUANTIZATION
1) REGULARIZATION METHODS
Table 6 provides the results about on-the-fly quantization
domain on CIFAR-10 and ImageNet. The setting of on-
the-fly quantization evaluates performances across various
bit-widths using a single model without any modification.
We followed the same setting of [8]. PSGD performs well
on CIFAR-10 in every bit-width. In ImageNet dataset, PSGD
targeting 8-bit and 6-bit (PSGD@W8 and PSGD@W6) show
promising accuracy except 4-bit. Gradient L1 (λ = 0.05)
and PSGD@W4 maintain the performance of the quantized
models even at 4-bit. In general, PSGD outperforms other
competitive methods in every bit-width because of quantiza-
tion friendly weight distributions.

2) POST-TRAINING METHODS
Table 7 shows the performance of Post-training quantization
methods and PSGD model. PTQ methods have drastic drops
in low bits as depiced in Fig. 1 of the original paper of
DFQ [12]. On the other hand, PSGD outperforms OCS at
4-bit about 19% without any post-training method. PSGD
also can be combined with PTQ method as stated in
Sec. IV-H.

3) EXTREMELY LOW BITS QUANTIZATION
Certainly, the lower bit-width a model is used, the more
the performance of quantized model decrease because of its
representation power. To verify the expandability of PSGD
to extremely low-bits such as 2 and 3-bit, we conducted an
experiment targeting 2 and 3-bit except the first, last layers
and activation maps (8-bit) in Table 8. This experiment shows
that PSGD can be a key solution for the extremely low bit
quantization.

133836 VOLUME 10, 2022

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

TABLE 11. The performance of ResNet-32 on CIFAR-100. Teacher network
is ResNet-56. In this experiment, we do not quantize the activation.

TABLE 12. The performance of ResNet-18 on ImageNet, using ResNet-34
as a teacher network.

TABLE 13. Comparison with Post-training Quantization methods using
ResNet-18 on the ImageNet dataset. PSGD + LAPQ represents LAPQ
post-training method with PSGD-pretrained model.

FIGURE 7. Test accuracy of ResNet-18 on ImageNet dataset. PSGD-only
(red) and LAPQ-only (green) represent the quantization accuracy of the
model trained with PSGD and the post-training accuracy from the
pre-trained model with the LAPQ method, respectively. PSGD+LAPQ
(blue) means that the quantization accuracy with pre-trained model with
PSGD and the LAPQ method.

D. ADAM OPTIMIZER WITH PSG
All previous experiments are conducted with a naive stochas-
tic gradient descent method. To confirm that PSGD can be
combined with other optimizers such as Adam, we apply
PSGDwith Adam optimizer using ResNet-32 on CIFAR-100
dataset. We followed the same setting except for the initial
learning rate where 10−3 was used. Table 9 shows that PSGD
also can be used with another type of optimizer.

E. VARIOUS ARCHITECTURES WITH PSGD
To verify the adaptability of PGSD in the model architecture,
in this section, we show the results of applying PSGD to
various architectures. Table 10 shows the quantization results
of VGG16 [50] with batch normalization on the CIFAR-100
dataset and DenseNet-121 [51] on the ImageNet dataset,
respectively.

For DenseNet, we run additional 15 epochs from the
pre-trained model to reduce the training time.6 For fair com-
parisons in terms of the number of epochs, we also trained
for additional 15 epochs for SGD with the same last learn-
ing rate (0.001). However, we only observed oscillation in
the performance during the additional epochs. Similar to
the extremely low-bits experiments, we fixed the activation
bit-width to 8-bit.

For VGG16 on the CIFAR-100 dataset, similar tendency
in performance was observed with ResNet-32. The 4-bit tar-
geted model was able to maintain its full-precision accuracy,
while the model targeting lower bit-widths had some accu-
racy degradation.

F. KNOWLEDGE DISTILLATION
In this part, we show the adaptability of PSGD, which only
manipulates the magnitude of the gradients from the loss
function. We apply PSGD with another regularizer, Knowl-
edge Distillation. We follow the update rule (Eq. 12) for
quantization, using a KD framework. We utilize a pow-
erful teacher network to train a relatively small student
network. We conduct two experiments on CIFAR-100 and
ImageNet. In CIFAR-100, we use ResNet-32 as a student
and ResNet-54 as a teacher network. In ImageNet, we use
ResNet-18 and ResNet-34 as a student and teacher, respec-
tively. Table 11 and 12 show similar tendency. Regardless of
bit-width, network, and dataset, Combining KD and PSGD
(Eq. 12) outperform using PSGD alone (Eq. 8). From this
respect, we validate that PSGD can be used alongside with
other regularizer because of its adaptability.

G. QUANTIZATION-AWARE TRAINING VS PSGD
Conventional QAT methods [17], [18], [52] starts with

a pre-trained model initially trained with SGD and further
update the weights by only considering the low precision
weights. In contrast, regularization methods such as our work
and [8] starts from scratch and update the full-precision
weights analogous to SGD. In our work, the sole purpose
of PSGD is to find a set of full precision weights that are
quantization-friendly so that versatile deployment as low
precision (LP) is possible without further operation. There-
fore, regularization methods start from the initial training
phase analogous to SGD, whereas QAT methods starts with
a pre-trained model after the initial training phase such as
SGD and PSGD. The purpose of QAT methods is solely
focused on LP weights. In general, a coarse gradient is used
to update the weights attained by forwarding the LP weights,
instead of the FP weights by using the straight-through-
estimator (STE) [11]. Additionally, the quantization scheme
is modified to include trainable parameters dependent on
the low-precision weights and activations. Thus, QAT cannot
maintain the performance of full-precision as it only focuses
on that of low-precision such as 4 bit-width.

6https://download.pytorch.org/models/densenet121-a639ec97.pth

VOLUME 10, 2022 133837

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

FIGURE 8. Weight distributions trained with standard SGD and our PSGD of ResNet-34 on CIFAR-100. Blue: weights in warped
space, Red: weights in original space. (a) and (c) are from PSGD-trained model. (b) and (d) are from SGD-trained model. The
warped space is calculated by f (x) = 2 sign(x − x̄)(

√
|x − x̄| + ε −

√
ε)+ c(x̄).

H. POST-TRAINING WITH PSGD-TRAINED MODEL
Our model attains similar full-precision performance with

SGD and reasonable performance at low-precision even with
naive quantization. Thus, PSGD-trained model can be poten-
tially used as a pre-trained model for QAT or PTQ methods.
We performed additional experiments using themodel trained
with PSGD in Table 7 and Fig. 7 by applying a concurrent
PTQ work, LAPQ [21], using the official code.7 This attains
66.5% accuracy for W4A4, which is more than 3.1% and
6.2% points higher than that of PSGD-only and LAPQ-only
respectively as shown in Table 13. This shows that PTQ
methods can benefit from using our pretrained model.

V. DISCUSSION
A. THE WARPED WEIGHT SPACE AND THE ORIGINAL
WEIGHT SPACE
In this section, we provide the analysis of the weight distribu-
tion in both the warped weight space and the original weight
space. We already proved that PSGD in the original weight
space is equal to SGD in the warped space. And weights in

7https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq

the warped space can be calculated by Eq. 5. Fig. 8 shows
weight distributions trained with SGD and PSGD. Based
on the Eq. 5, if the quantization error is small, the warped
weights are converged at c(x̄) which is closely related to x̄.
The results of Fig. 8 reflect this phenomenon.Warpedweights
of PSGD are converged at specific points. On the other hand,
Warped weights of SGD are spread around specific points
compared to PSGD.

B. TOY EXAMPLE
We provide a toy example to give a intuition for the PSGD
solution. We trained two models with SGD optimizer and
PSGD optimizer under the 2-bit on the MNIST dataset. Each
model consists of two layers containing 50 and 20 neurons.
We show the weight distribution of the first layer and the
eigenvalues of the Hessian matrix.

1) MULTI-MODAL WEIGHT DISTRIBUTION
SGD produces the bell-shaped weight distribution which

is not suitable for model compression. On the other hand,
PSGD generates multi-moal weight distributions. In this toy
example, as we choose a 2-bit for the target bit, three modes

133838 VOLUME 10, 2022

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

FIGURE 9. Weight distribution and histogram of eigenvalues for MNIST dataset. The two-layered fully
connected network consists of 50 and 20 hidden nodes. Target bit of PSGD is 2. Note that both solutions
yield relatively small negative eigenvalues (λ > −1).

exist in the weight distribution of PSGDmodel as depicted in
Fig. 9a. PSGD has nearly the same accuracy with FP (∼96%)
atW2A32. However, the accuracy of SGD atW2A32 is about
9%, although the FP accuracy is 97%. This tendency is also
shown in Fig. 2b.

2) QUANTIZED AND SPARSE MODEL
In general, SGD produces the bell-shaped weight distri-

bution which is not matched for the quantization. However,
PSGD yields a multi-modal distribution. Three target points
are used (2-bit) so the weights are merged into three modes
as depicted in Fig. 9a. A large proportion of the weights are
near zero. Similarly, we note that the sparsity of ResNet-
18@W4 shown in Table 6 is 72.4% at LP. This is because
symmetric quantization also contains zero as the target point.
PSGD has nearly the same accuracy with FP (∼96%) at
W2A32. However, the accuracy of SGD at W2A32 is about
9%, although the FP accuracy is 97%. This tendency is also
shown in Fig. 2b, which demonstrates that PSGD reduces the
quantization error.

3) CURVATURE OF PSGD SOLUTION
In Sec III-D and Fig. 5, we claimed that PSGfinds aminimum
with sharp valleys that is more compression friendly, but has
a less chance to be found. As the curvature in the direction
of the Hessian eigenvector is determined by the correspond-
ing eigenvalue [53], we compare the curvature of solutions
yielded by SGD and PSGD by assessing the magnitude of
the eigenvalues, similar to [54]. SGD provides minima with
relatively wide valleys because it has many near-zero eigen-
values and the similar tendency is observed in [54]. However,
the weights trained by PSGD have much more large positive
eigenvalues, which means the solution lies in a relatively
sharp valley compared to SGD. Specifically, the number of
large eigenvalues (λ > 10−3) in PSGD is 9 times more
than that of SGD. From this toy example, we confirm that
PSG helps to find the minima which are more compression-
friendly (Fig 9a) and lie in sharp valleys (Fig. 9b) hard to
reach by vanilla SGD.we have also used official code8 of [55]
to qualitatively assess the curvature of Fig. 9, using the same

8https://github.com/tomgoldstein/loss-landscape

FIGURE 10. Visualizing the loss spaces of Fig. 9 using [55]; Left: Loss
space of SGD solution; Right: Loss space of PSGD solution.

experimental setting, which is depicted in Fig. 10 and it shows
a similar tendency. The solution of PSGD is in the more sharp
valley than it of SGD.

VI. CONCLUSION
We propose a new regularization method for model compres-
sion. Position-based scaled gradient (PSG) scales the gradient
to merge current weights into specific target points such
as quantization bins or zero values which are compression-
friendly points. Hence, By training the model with PSGD,
we can achieve a compression-friendly model. We proved
that optimizing the model with position-based scaled gra-
dient descent (PSGD) in the original space is equivalent to
optimizing the model in the original space with SGD. The
proposed PSGD can be applied at quantization and pruning.
Also, we showed that PSGD performs well with knowledge
distillation which is an explicit regularization. PSGD will
help further research in model compression, including quan-
tization and pruning.

REFERENCES
[1] A. E. Hoerl and R. W. Kennard, ‘‘Ridge regression: Biased estimation

for nonorthogonal problems,’’ Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[2] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ J. Roy.
Statist. Soc. B, Methodol., vol. 58, no. 1, pp. 267–288, 1996.

[3] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[4] J. Kim, S. Park, and N. Kwak, ‘‘Paraphrasing complex network: Network
compression via factor transfer,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 2760–2769.

[5] W. C. Davidon, ‘‘Variable metric method for minimization,’’ SIAM
J. Optim., vol. 1, no. 1, pp. 1–17, 1991.

VOLUME 10, 2022 133839

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

[6] J. Lin, C. Gan, and S. Han, ‘‘Defensive quantization: When effi-
ciency meets robustness,’’ in Proc. Int. Conf. Learn. Represent., 2019,
pp. 1–14.

[7] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
‘‘Improved training of Wasserstein GANs,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5767–5777.

[8] M. Alizadeh, A. Behboodi, M. van Baalen, C. Louizos, T. Blankevoort,
and M. Welling, ‘‘Gradient `1 regularization for quantization
robustness,’’ in Proc. Int. Conf. Learn. Represent., 2020,
pp. 1–15.

[9] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[10] J. Kim, J. Kim, and N. Kwak, ‘‘StackNet: Stacking feature maps for con-
tinual learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2020, pp. 242–243.

[11] R. Krishnamoorthi, ‘‘Quantizing deep convolutional networks for efficient
inference: A whitepaper,’’ 2018, arXiv:1806.08342.

[12] M. Nagel, M. V. Baalen, T. Blankevoort, and M. Welling, ‘‘Data-
free quantization through weight equalization and bias correction,’’
in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1325–1334.

[13] R. Banner, Y. Nahshan, and D. Soudry, ‘‘Post training 4-bit quantization of
convolutional networks for rapid-deployment,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 7948–7956.

[14] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, ‘‘Improving neural
network quantization without retraining using outlier channel splitting,’’
in Proc. Int. Conf. Mach. Learn., Jun. 2019, pp. 7543–7552.

[15] J. Kim, K. Yoo, and N. Kwak, ‘‘Position-based scaled gradient for
model quantization and pruning,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 33. Red Hook, NY, USA: Curran Associates, 2020,
pp. 20415–20426.

[16] C. Wei, S. Kakade, and T. Ma, ‘‘The implicit and explicit regular-
ization effects of dropout,’’ in Proc. Int. Conf. Mach. Learn., 2020,
pp. 10181–10192.

[17] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha,
‘‘Learned step size quantization,’’ 2019, arXiv:1902.08153.

[18] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, ‘‘Dif-
ferentiable soft quantization: Bridging full-precision and low-bit neural
networks,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 4852–4861.

[19] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort, and N. Kwak, ‘‘LSQ+:
Improving low-bit quantization through learnable offsets and better ini-
tialization,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2020, pp. 696–697.

[20] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, ‘‘Low-bit
quantization of neural networks for efficient inference,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Oct. 2019,
pp. 3009–3018.

[21] Y. Nahshan, B. Chmiel, C. Baskin, E. Zheltonozhskii, R. Banner,
A. M. Bronstein, and A. Mendelson, ‘‘Loss aware post-training quantiza-
tion,’’ 2019, arXiv:1911.07190.

[22] M. Nagel, R. Ali Amjad, M. van Baalen, C. Louizos, and T. Blankevoort,
‘‘Up or down? Adaptive rounding for post-training quantization,’’ 2020,
arXiv:2004.10568.

[23] P. Hu, X. Peng, H. Zhu, M. M. S. Aly, and J. Lin, ‘‘OPQ:
Compressing deep neural networks with one-shot pruning-
quantization,’’ in Proc. AAAI Conf. Artif. Intell., 2021, vol. 35, no. 9,
pp. 7780–7788.

[24] J. Kim, J. Yoo, Y. Song, K. Yoo, and N. Kwak, ‘‘Dynamic collective
intelligence learning: Finding efficient sparse model via refined gradients
for pruned weights,’’ 2021, arXiv:2109.04660.

[25] J. Kim, S. Chang, and N. Kwak, ‘‘PQK: Model compression via
pruning, quantization, and knowledge distillation,’’ 2021, arXiv:2106.
14681.

[26] T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi,
S. Yi, and X. Tu, ‘‘Only train once: A one-shot neural network training
and pruning framework,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
2021, pp. 19637–19651.

[27] J. Frankle and M. Carbin, ‘‘The lottery ticket hypothesis: Finding sparse,
trainable neural networks,’’ 2018, arXiv:1803.03635.

[28] S. Liu, T. Chen, X. Chen, Z. Atashgahi, L. Yin, H. Kou, L. Shen,
M. Pechenizkiy, Z. Wang, and D. C. Mocanu, ‘‘Sparse training via boost-
ing pruning plasticity with neuroregeneration,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, 2021, pp. 9908–9922.

[29] E. Tartaglione, A. Bragagnolo, A. Fiandrotti, and M. Grangetto, ‘‘Loss-
based sensitivity regularization: Towards deep sparse neural networks,’’
Neural Netw., vol. 146, pp. 230–237, Feb. 2022.

[30] M. Lin, R. Ji, S. Li, Y. Wang, Y. Wu, F. Huang, and Q. Ye, ‘‘Network
pruning using adaptive exemplar filters,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 33, no. 12, pp. 7357–7366, Dec. 2022.

[31] Z. Huang and N. Wang, ‘‘Data-driven sparse structure selection for
deep neural networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 304–320.

[32] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ 2016, arXiv:1608.08710.

[33] A. Renda, J. Frankle, and M. Carbin, ‘‘Comparing rewinding and fine-
tuning in neural network pruning,’’ 2020, arXiv:2003.02389.

[34] M. Zhu and S. Gupta, ‘‘To prune, or not to prune: Exploring the efficacy
of pruning for model compression,’’ 2017, arXiv:1710.01878.

[35] C. Louizos, M. Welling, and D. P. Kingma, ‘‘Learning sparse neural
networks through L0 regularization,’’ in Proc. Int. Conf. Learn. Represent.,
2018, pp. 1–13.

[36] N. Lee, T. Ajanthan, and P. Torr, ‘‘SNIP: Single-shot network pruning
based on connection sensitivity,’’ in Proc. Int. Conf. Learn. Represent.,
2019, pp. 1–15.

[37] M. Li, M. Zhao, T. Luo, Y. Yang, and S.-L. Peng, ‘‘A compact parallel
pruning scheme for deep learning model and its mobile instrument deploy-
ment,’’Mathematics, vol. 10, no. 12, p. 2126, Jun. 2022.

[38] J. Kim, M. Hyun, I. Chung, and N. Kwak, ‘‘Feature fusion for online
mutual knowledge distillation,’’ in Proc. 25th Int. Conf. Pattern Recognit.
(ICPR), Jan. 2021, pp. 4619–4625.

[39] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs,
J. T. Chayes, L. Sagun, and R. Zecchina, ‘‘Entropy-SGD: Biasing gradient
descent into wide valleys,’’ in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–19.

[40] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
‘‘The loss surfaces of multilayer networks,’’ in Proc. Artif. Intell. Statist.,
2015, pp. 192–204.

[41] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

[42] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[43] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[44] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi, ‘‘Dynamic
model pruning with feedback,’’ in Proc. Int. Conf. Learn. Represent., 2020,
pp. 1–22.

[45] T. Dettmers and L. Zettlemoyer, ‘‘Sparse networks from scratch: Faster
training without losing performance,’’ 2019, arXiv:1907.04840.

[46] H. Mostafa and X. Wang, ‘‘Parameter efficient training of deep convolu-
tional neural networks by dynamic sparse reparameterization,’’ inProc. Int.
Conf. Mach. Learn., 2019, pp. 4646–4655.

[47] A. Peste, E. Iofinova, A. Vladu, and D. Alistarh, ‘‘AC/DC: Alternating
compressed/decompressed training of deep neural networks,’’ inProc. Adv.
Neural Inf. Process. Syst., vol. 34, 2021, pp. 8557–8570.

[48] D. Zhang, J. Yang, D. Ye, and G. Hua, ‘‘LQ-Nets: Learned quantization for
highly accurate and compact deep neural networks,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 365–382.

[49] T. Gale, E. Elsen, and S. Hooker, ‘‘The state of sparsity in deep neural
networks,’’ 2019, arXiv:1902.09574.

[50] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[51] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
‘‘Densely connected convolutional networks,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4700–4708.

[52] J. Kim, Y. Bhalgat, J. Lee, C. Patel, and N. Kwak, ‘‘QKD: Quantization-
aware knowledge distillation,’’ 2019, arXiv:1911.12491.

[53] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

133840 VOLUME 10, 2022

J. Kim et al.: Model Compression via Position-Based Scaled Gradient

[54] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs,
J. Chayes, L. Sagun, and R. Zecchina, ‘‘Entropy-SGD: Biasing gradient
descent into wide valleys,’’ J. Stat. Mech., Theory Exp., vol. 2019, no. 12,
Dec. 2019, Art. no. 124018.

[55] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, ‘‘Visualizing the loss
landscape of neural nets,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 6389–6399.

JANGHO KIM received the B.S. degree in
information and communication engineering from
Dongguk University, in 2015, the M.S. degree
in computer science and engineering from the
Pohang University of Science and Technology
(POSTECH), in 2017, and the Ph.D. degree
from the Department of Transdisciplinary Studies,
Seoul National University, in 2022. He is cur-
rently an Assistant Professor with the School of
Artificial Intelligence, Kookmin University. His

research interests include computer vision, machine learning, and deep
learning applied to the image.

KIYOON YOO received the B.S. degree in food
science and biotechnology from Seoul National
University, in 2019, where he is currently pursuing
the Ph.D. degree with the Graduate School of Con-
vergence Science and Technology. His research
interests include machine learning, deep learning,
and their applications to various areas.

NOJUN KWAK (Senior Member, IEEE) was born
in Seoul, South Korea, in 1974. He received the
B.S., M.S., and Ph.D. degrees in electrical engi-
neering and computer science from Seoul National
University, Seoul, in 1997, 1999, and 2003, respec-
tively. From 2003 to 2006, he was with Sam-
sung Electronics, Seoul. In 2006, he joined Seoul
National University, as a BK21 Assistant Profes-
sor. From 2007 to 2013, he was a Faculty Member
with the Department of Electrical and Computer

Engineering, Ajou University, Suwon, South Korea. Since 2013, he has
been with the Graduate School of Convergence Science and Technology,
Seoul National University, where he is currently a Professor. His current
research interests include feature learning by deep neural networks and their
applications in various areas of pattern recognition, computer vision, and
image processing.

VOLUME 10, 2022 133841

