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ABSTRACT In smart cities of the future, data will be generated, integrated, processed and utilized from
heterogeneous sources and at varying levels of complexity. For urban traffic planning in smart cities, one of
the biggest challenges is traffic congestion prediction and its avoidance. Traffic congestion is a complex
phenomenon and it is a manifestation of various contributing factors. In addition to vehicular mobility,
properties of road network, weather, holidays and peak hours play a significant role in traffic congestion
especially on arterial roads within a city. In this paper, we proposed a hybrid GRU-LSTM based deep learning
model and applied it on city-wide novel traffic data integrated from heterogeneous sources. We have devised
our indigenous data pipeline that is composed of a set of algorithms dealing with map matching, sparsity
handling, outlier removal, zero speed adjustments, Open Street Map (OSM) and segment mapping etc.
Extensive experimentations have been carried out to demonstrate the improved performance of the proposed
method. The comparative analysis reveals that our methodology yields 95 % accuracy that outperforms other
deep neural network models.

INDEX TERMS Intelligent transportation systems, traffic congestion, LSTM, GRU, deep learning, neural

networks.

I. INTRODUCTION

Smart Cities promise to improve quality of life by augment-
ing urban infrastructure with IT based utilities underpinned
by Internet of Things and smart services. The sensors and
services generate huge volume of data that may be tapped for
further utilization in various urban planning activities. One of
the biggest challenges in this regard is to aggregate and inte-
grate diverse nature of data from heterogeneous sources. The
integration process may contextually conform to compliance
standards and results into hybrid feature space. Various appli-
cations may result from such hybrid feature spaces embodied
with a variety of algorithms. These algorithm-driven applica-
tions may generate new data that may also become part of the
ecosystem thus giving rise to domain-specific data pipelines
and data lakes.
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In the last two decades, growing population and rapid
expansion of metropolitan cities have affected the eco-
nomic growth, and development. The main restrain for the
development was inefficient and inadequate transportation
infrastructure which causes serious traffic-related problems.
Traffic congestion is one of the main problem of people in
modern cities that deteriorates their quality of life in addi-
tion to its marked contribution to environmental pollution
while hindering urban development. It has caused problems
for commuters and lengthened their commuting time [1].
Moreover, wasted fuel, time lost and excessive air pollution
due to traffic congestion cause loss of billions of dollars to
the economy every year. The 2019 Urban Mobility Report
identified 179 billion dollar national congestion cost with
approximately 9 billion hours spent on extra travel time, and
3.3 billion gallons of fuel wasted due to traffic congestion for
the surveyed four hundred and ninety eight U.S. urban areas
in 2017. According to this report, there will be a 32 percent
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increase in national congestion cost, 9 percent increase in
wasted fuel cost and 14 percent increase in wasted time by
2025 [2].

Machine-learning and Deep learning models can be used
in the field of health, neurological states, cardiac monitoring
system and Intelligent Transportation System (ITS) for clas-
sification of health related data as well as transportation data
[3], [4], [5]. A well-planned ITS is desired that could notify
the drivers and commuters about the congested road sections
in a timely manner so that they can take the alternate routes
and plan their journey in a better way to avoid congestion.
Lower traffic congestion means lesser wastage of fuel, lower
pollution and time savings. Many cities around the world have
developed Global Positioning System (GPS)-based services
like Google Map, Baidu Map, and deployed sensors including
video image processors and inductive-loop detectors used
in road networks to observe traffic conditions in real-time.
The data collected from these devices and services have
opened new avenues for researchers to design and imple-
ment intelligent transportation systems to monitor real-time
traffic conditions, e.g., predicting city-scale congestion level,
traffic volume and speed estimation [6]. This can also help
government in decision making related to urban planning,
e.g., new land development styles, managing traffic flow and
applying new taxes etc. [7]. Besides, this can also facilitate
traffic management agencies to execute and optimize their
operations (e.g., traffic signal time optimization) in a better
way. Recently, there have been numerous studies on real-time
road traffic congestion level forecasting using Google Maps
API [8], [9].

Traffic related data can be classified into three types includ-
ing traffic data, road network data and associated data which
may be associated with traffic or road network e.g. weather
or peak times etc. Traffic data can be further divided into
three broad categories including speed data, estimated time
of arrival (ETA) data and vehicular count data. Road network
data describes road network in the form of a graph and
associates spacial characteristics with different roads such as
number of lanes, junctions and pavements etc. We use the
term traffic associated data for those set of attributes which
can either be derived from the traffic data e.g. traffic con-
gestion indices or can be correlated with the traffic data e.g.
weather or peak hours. The road network data in the forms of
various graphs constructs a GIS map and plays pivotal role to
interpret traffic data during the process of data integration as
well data visualization. Roads are subdivided into segments
on a map. Open Street Maps (OSM) is an open source system
that marks various nodes on a road. Two adjacent nodes may
serve as delimiters of a segment on the road. Traffic data
may be in the form of speed data, count data or ETA type.
Hence, it can be associated with specific segments of roads
thus giving them a spacial interpretation.

In this paper, we performed aggregation and integration
of multiple sources of traffic related data through an elabo-
rated data pipeline and then applied various machine learning
and deep learning algorithms for predictive analysis. Starting
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from classical techniques we culminated at a hybrid GRU-
LSTM model. We then optimized traffic congestion predic-
tion results through parameter tuning process.

Following are the outlines of the main contributions of this
paper:

o We described our indigenous data integration pipeline
that integrated both traffic data and a variety of exoge-
nous data from multiple sources. It eventually produced
a hybrid feature space.

o We presented a parallelized and batch processed map
matching mechanism of Floating Car Data (FCD) that
was based on OSRM’s nearest service. Further, a novel
mechanism was introduced to handle ambiguities of
missing nodes resulting from FCD data.

o This paper also contains algorithms for the preparation
of city-wise spatio-temporal data up to the spatial res-
olution of road segment defined between two adjacent
OSM nodes and a temporal resolution of 15 minutes.

o An elaborated Exploratory Data Analysis (EDA)
was followed by a comparative performance analysis
of different deep and machine learning algorithms.
We demonstrated how our proposed technique outper-
forms the rest.

« We performed a comparative analysis of different deep
and machine learning approaches on hybrid data sources
and reported our results.

The remainder of the paper includes: Section II that
throws light on the related research work whereas section III
illustrates the proposed GRU-LSTM based methodology.
Section IV depicts the experimental results followed by
the discussions. Finally, Section V concludes the present
research and also pinpoints future research directions.

Il. RELATED WORK

Traffic congestion has become one of the most persistently
growing problems across the globe. Predicting current or
future traffic conditions on different road segments is a very
challenging task due to irregularity of traffic flow patterns
and road network complexity. Recent years have witnessed
an extensive research in the domain of Intelligent Trans-
portation Systems (ITS) to address the traffic congestion
problem. In this regard, several machine learning models e.g.
Naive Bayes, SVM, SVR, Logistic Regression, Extra Tree,
PCA, FFT, Filter, Wrapper, Embedded, ada-Boost and deep
learning models including wavenet, Google deep mind’s neu-
ral network, autoencoder neural network, LSTM, GRU and
LSTM-SPRUM e.t.c., numerous statistical models e.g. bay-
seian network, ARIMA and STARIMA have been employed
to forecast traffic congestion [10], [11], [12], [13], [14], [15].

The limitations of a variety of previously described
machine learning, deep learning, and statistical models are
listed in Tablel.

In these research studies, temporal correlations had been
explored to predict traffic congestion by using different mod-
els including wave net network, google deep mind’s neural
network, LSTM, GRU, stacked auto-encoder and multi-step
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TABLE 1. Comparison table for related current research.

Methodology

Limitations

Reference

Wavenet net- work, google deep mind’s neural network,
LSTM , GRU, stacked auto-encoder
and multi-step forcasting models

multivariate regression model,temporal graph convolutional network,
LSTM, spatial-temporal residual graph attention network,
sequence-to-sequence model, GraphCNN-LSTM model,

dynamic tensor completion method and attention graph convolutional
bidirectional LSTM

average fusion, KNN fusion and weighted fusion

Queueing Theory for outlier detection
and segmentation, SVRGSA

hybrid LSTM and ResNet model

CNN, BILSTM

GRU

stack LSTM and transfer-learning

hybrid CNN-LSTM

Vehicular Ad hoc Networks

bagging, boosting, stacking, and random forest ensemble models
Deep Belief Network (DBN)

LightGBM-GRU

CNN

Support Vector Machine (SVM) and Multinomial Naive Bayes (MNB)

not explored spatial-temporal patterns of the road traffic data.

(81, [16]-[22]

LSTM + CNN + ATTENTION

not consider the impact of heterogeneous data sources [23]-[36]
ignoring weather, ETA and special events data sources [37]
data driven fusion such as hyper feature space ignored [38]

not considered integration of multiple data sources [39]-[46]
errors in sparse spatial areas lacks work on different nature of data sources [51]
external factors like weather, holiday and emergency traffic data [52]
did not consider other types of data sources. [53]
not consider Heterogeneous data sources [54]
other exogenous data sources [55]
not discuss probabilistic traffic prediction techniques and hybrid classifiers  [56]
not pay attention to deep learning and missing data imputation methods. [61]
works only ETA not work on heterogeneous data sources [62]
for enhancing features list heterogeneous data sources are ignored [63]
not work on hybrid deep learning models and exogenous data sources [64]
not work on hybrid deep learning models and exogenous data sources [65]
not works on heterogeneous data sources [66]

forcasting models [8], [16], [17], [18], [19], [20], [21],
[22]. However, the authors didn’t explored spatial-temporal
patterns of the road traffic data.

Spatial-temporal patterns [23], [24], [25], [26], [27], [28],
[29], [30], [311, [32], [33], [34], [35], [36] were exploited
to take into account the chronological deviations for traf-
fic congestion using multivariate regression model,temporal
graph convolutional network, LSTM, spatial-temporal resid-
ual graph attention network, sequence-to-sequence model,
Graph -CNN-LSTM model, dynamic tensor completion
method and attention graph convolutional. The limitation to
these studies is that the authors did not take into considera-
tion the impact of heterogeneous data sources on predicting
traffic congestion on road network. The authors in [37] intro-
duced the path based deep learning framework for capturing
spatial-temporal features as well as effective speed predic-
tion. In these studies, the authors used bidirectional LSTM
for the prediction of speed considering spatial-temporal fac-
tors. However, they only focused on single type of data
source (speed data) and ignored other data sources such
as weather, ETA and special events etc which directly or
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indirectly influence the prediction of correct speed. In [38],
the authors proposed multiple fuse predictor strategies such as
average fusion, KNN fusion and weighted fusion in order to
enhance overall performance of their individual model. How-
ever, they were unable to fuse feature driven hybrid feature
space.

The authors of [39], [40], [41], [42], [43], [44], [45],
and [46] used Queueing Theory for outlier detection
and segmentation, SVRGSA for selection of appropriate
hyper-parameters and hybrid model for the prediction of
traffic patterns. They further applied different machine learn-
ing techniques to predict problems on the segmented data
set posed by traffic congestion. They also experimented on
numerous speed data sets and compared different machine
learning and statistical models for congestion prediction.
However, they did not attempted to predict ETA. Further-
more, they did not consider integration of multiple data
sources like weather, special events and, road conditions.
Additionally, they had also not taken into account long-term
traffic patterns and road conditions like surface-turns and lane
features.

134335



IEEE Access

N. Zafar et al.: Traffic Prediction in Smart Cities Based on Hybrid Feature Space

The authors in [47], [48], [49], and [50] analyzed the
impact of various factors including road intersections, num-
ber of market places, and rickshaw free roads on the traffic
intensity. However, didn’t deal with integrated data sources.

Reference [51] suggested a hybrid integrated—DL model.
This model discussed both spatial-temporal dependencies in
predicting city wide spatial-temporal traffic flow volume. The
authors also presented a hybrid LSTM and ResNet model
that deals the spatial-temporal effects on a given volume of
traffic on the road. The demerits of the said proposed model
were large errors in test data in sparse spatial areas and non-
peak hours. Moreover, the research study also lacked work on
different nature of data sources like count and ETA e.t.c.

The authors [52] predicted the traffic congestion by
extracting spatial and temporal features from CNN and BIL-
STM, respectively. However, they did not address the exter-
nal factors like weather, holiday and emergency traffic data.
The authors in [53] used the GRU model on speed data
source and examined the weather impact on speed but did not
consider road network and other types of data sources like
ETA and count. The authors of [54] used stack LSTM and
transfer-learning in order to tackle the problems of missing
data, data insufficiency, and mitigated model over fitting.
However, the authors didn’t consider impact of different
input attributes that were gathered from exogenous data
sources, different traffic modes and traffic types(e.g. ETA,
FCD and count). Heterogeneous data sources might be use-
ful while applying transfer learning on the specific area.
The authors of [55] used hybrid CNN-LSTM model encom-
passing predictions about both city wide traffic congestion
data and its corresponding City wide pollution data source.
They achieved 92.3 percent model accuracy. However, other
exogenous data sources and other modes of traffic were not
dealt in this study. The authors of [56] worked on Vehicular
Ad hoc Networks for congestion detection and control line
strategies. They did not discuss probabilistic traffic prediction
techniques and hybrid classifiers.

Reference [58] worked on lane detection algorithm using
Hough transform and vehicle detection using SSD at the
beginning steps. After that, the violation-detection algorithm
was used to identify traffic violations. However, the authors
only focused on the data received from the camera and not
worked on heterogeneous data sources for the prediction of
traffic congestion on the road network.

The present study considered multiple heterogeneous data
sources generating features such as ETA, speed, weather,
Special events and road segments etc. We also worked on
hybrid feature space and explored the spatial-temporal pat-
terns using hybrid deep learning models i.e. GRU-LSTM and
LSTM-GRU.

Ill. PROPOSED RESEARCH METHODOLOGY BASED ON
HYBRID GRU-LSTM MODEL

Smart city speaks of various kinds of IoT devices, ser-
vices and heterogeneous data sources. Following the notion
of smart cities, we provided a mechanism to integrate
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heterogeneous data sources into a hybrid feature space for
forecasting traffic patterns. Various features in the hybrid
feature space played their contributing roles in analyzing and
predicting traffic congestion patterns. Hybrid feature space
included speed, estimated time of arrival (ETA), weather data
and road network data. FCD was obtained from a tracker’s
company in raw and then it was synthesized. ETA data
was gathered from Google Direction API. Weather data was
extracted from Yahoo API and Dark Sky API whereas OSM’s
road information data was fetched through Turbo overpass
API. Final integrated features were End-node, Start-node,
Way-id, DateTime, Peak-Hour, Special-Condition, Weather,
Speed, ETA and congestion level (Smooth, Congested, Higly
Congested). Multiple data sources were integrated on the
level of road segments as defined by OSM.

The flow of data integration and proposed approach is
illustrated in Figure 1. It is necessary to process diverse nature
of data into identical schema so that every data is uniformly
mapped on the OSM. For this purpose, it should go through
map matching process. Hence, the map matching was the very
first step in our pipeline. The design and flow of complete
Data Integration Pipeline and predictive model is shown in
Figure 1. Various activities of the proposed approach are
listed below:

1) Collection of requisite data from various Heteroge-
neous Data Sources is described in Section III-A.

2) Preprocessing included Map Matching algorithm and
zero speed correction in Section III-B.

3) Time Series Aggregation and Integrating all Data
Sources into a Hybrid Feature Space have been defined
in Section III-C.

4) Integrated Data Analysis is described in Section IV-A

5) Predictive Modeling explained in Section III-D.

6) Parameter optimization and performance evaluation are
discussed in Section IV.

A. DATA COLLECTION FROM HETEROGENEOUS DATA
SOURCES
The heterogeneous data sources that contributed in the hybrid
feature space included Floating Car Data (FCD), Estimated
Time of Arrival (ETA) data from Google maps API, road net-
work data from Open Street Maps (OSM), weather data from
Yahoo Dark Sky API, calendar data from Date-Time API as
well as special conditions and peak hours data. The features
list of heterogeneous data sources is defined in Table 2.

Special conditions data refer to traffic schedules due to
major events whereas peak hours are calculated from his-
torical data based on Congestion Index (CI). CI is a feature
derived based on average traffic flow on a specific road
segment. Figure 1 depicts multiple data sources and various
data pre-processing activities performed on them. Now we
examine each data source one by one in detail.

Floating Car Data (FCD) for the complete month of
September 2020 comprised of 2895 unique tracker IDs was
fetched from a local tracker company. GPS Chipset(U-blox
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TABLE 2. Heterogeneous data sources features list.

Data Sources ~ Features

FCD Date Time , Unit ID, Latitude, Longitude,
Speed, Reason, Direction, Altitude, Location.

Google Date, MinSpeed, Source_Latitude_Longitude, Destination_Latitude_Longitude, ETA.
Calendar Date Time, SystemTime, Day.

‘Weather Date Time, Type, Name , Precipitation_Intensity_Max, Precipitation_Type.

OSM MaxSpeed, Summary, StartNode, EndNode, SegmentId , Wayld .
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FIGURE 1. Proposed methodology for traffic congestion prediction with hybrid- deep
learning models using heterogeneous data sources.

EVA-M8M) and GSM Modem (Quectel M95) sensors were
used in trackers units. Trackers produced regular signals
of various alerts which constituted FCD. The feature-set of
FCD included unit ID, DateTime, latitude, longitude, speed,
reason, direction, altitude, address and location. Following
issues have been identified in FCD while the data cleaning
process:
o GPS data has an inherent spatial error which causes
off-road mapping of cars.
o There are garbage records in latitude and longitude
fields.
« Distances and time stamps are changed even if speed
values generated by trackers are zero.
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o There is redundancy in records.

o There is incomplete information that causes problem to
identify the exact position of the car.

o The resolution of individual triggering time is very high.

o There are missing Values in the map segment data due
to unavailability of FCD records on some segments of
roads.

o There is a huge number of zero values of speed parame-
ter due to parked cars. Zero values due to parked cars
need to be distinguished from the zero values due to
Highly Congested roads.

We resolved the first problem by Map Matching Algorithms.
The second issue was resolved by discarding the garbage
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TABLE 3. Total size of heterogeneous data sources.

Label Classes Size

smooth[0] 3,944,218
congested[1] 1,361,499
highly congested[2] 1,981,125

values. The third problem was tackled by building the tra-
jectory of each user separately. The fourth problem was
addressed by discarding the repeating records. The fifth prob-
lem was resolved by adding the direction. By using multiple
trajectories of different trackers, sixth issue was resolved.
To handle missing values in segments, values from the neigh-
boring segments lying on the same trajectory were utilized.
We tackled the last problem by using the reason feature avail-
able in FCD. The reason feature contained events such as igni-
tion_on, ignition_off, power_on, power_off, timer, and turn
etc. Figure 2 depicts the map of Islamabad and one month’s
processed data plotted on it. Red colour shows the density
of the data. Data has been collected from Kashmir Highway,
Constitution Avenue, Margalla Road, Jinnah Avenue, Faisal
Avenue, 7th Avenue, 9th Avenue, Ahmed Faraz Road, Ser-
vice Road E (F-10 and G-10), Service Road W (F-11 and G-
11), IJP Road, Ibn-e-Sina Road,, Route for Metro Bus Service
Islamabad, and main roads of sectors F-7, F-10, F-8, F-11, G-
8, G-9, G-10, G-11. FCD covers all of these roads as well as
the remaining roads.

We fetched data from Google Maps API in real-time and
and compiled our data by consigning start and endpoints to
the requisite Google Maps API [9]. We marked more than
500 points on the Islamabad map which covered all important
roads of Islamabad. Google data consisted of Date, System
Time, Day, Source Longitude, Destination Longitude, Desti-
nation Latitude, Source Latitude, and ETA.

OSM data was gathered from Turbo Overpass APL. The
OSM data was accessed by specifying a bounding box in
terms of latitudes and longitudes. OSM provided the geome-
try and important features of road network. The main features
extracted from OSM were way_id, end node, start node, Max
Speed, Min Speed, Max length and Motorway highway types.

OSM road network comprises of a set of large number of
nodes. The distance between any two adjacent node can be
treated as a segment which provide an excellent mean for
narrowing spatial resolutions. Though the distance between
any two adjacent nodes is not always equal. OSM provides
node_id and way_id but does not have a concept of segment.
We have created a customized map structure called City Map
Structure(CMS) that defines a road network in a city as a set
of road segments. In the present study, the concept of segment
was used to resolve issues related to map matching. CMS
is a table having fields of segment_id, start node, end node,
way_id and Road network.

Since Behavior and pattern of traffic was strongly depen-
dent on holiday data on a particular road network at a specific
moment therefore, the holiday data was extracted from date
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FIGURE 2. Islamabad road map.

Algorithm 1 Map Matching Process

1: Read coordinate point [lat, lon] from data
2: Initialize nodes-segment with empty start-point-list and
end-point-list
3: for t=1ton do
Initialize way-id to zero

5: nodes-segment[ ‘“‘start-point”,” end-
point”]:=get_nearest_segment(lat,lon)

6: if nodes-segment [ ““start-point”’] is zero then

7 Check end-point value and update the start-point
value with previous node value

8: else

9: nodes-segment  [“‘start-point”] and nodes-

segment [ “‘end-point’’] represents to same road points
10 Update way-id

and time.com website. Calendar Data consisted of Date, time,
type and name.

Weather data ws fetched from Dark Sky API and Yahoo on
the basis of latitude and longitude of the location.

Table 3 data set comprises of 7,286,842 records from
September 2020. In the data set, there were 3,944,218 smooth
conditions, 1,361,499 congested conditions, and 1,981,125
highly congested conditions.

B. DATA PRE-PROCESSING
Data Pre-processing is primarily a technique that works on
raw data. It is used to organize and clean data to make it
compatible with training machine learning models. In trans-
portation domain, map matching, sparsity handling, outlier
removal, zero speed adjustments and Open Street Map(OSM)
segment mapping, etc were addressed in data pre-processing.

GPS data usually has an error of up to several meters.
That error is resolved through map matching techniques in
order to accurately map an FCD data point on the exact road.
We developed a novel map matching mechanism based on
OSRM.

We used Open Source Routing Machine (OSRM) which
supported OSM for the purpose of map matching. A speed or
ETA data point was mapped on a road segment. We defined
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Algorithm 2 Map Matching Process

Algorithm 3 Zero Speed Correction Based on Events

1: Split file into m units
: Assign units to r processors
range = 10

: for n records in each unit do group the data by unit_id
sorted by date time to form trajectories
6: Read coordinate point [lat, lon, bearingangle] from
data
7: nodes-segment[ “‘startnode”,””endnode’’]:
8: =get_nearest_segment(lat,lon, bearingangle,range)

10: if nodes-segment [ “‘startnode’’] is zero then retrieve
way-id list of endnode from CMS
11: wayid= pick the matching way-id as per trajectory
12: nodelist = geometry of way-id from CMS
13: startnode = previous node of endnode in nodelist
nodes-segment [ “‘endnode’] is zero retrieve way-id
list of startnode from CMS

15: wayid= pick correct way-id as per trajectory
16: nodelist = geometry of way-id from CMS
17: endnode = next node of startnode in nodelist

18:
19: else
20: Assign way-id to coordinate point =0

road segments as a polyline on the map between two adjacent
OSM nodes. Therefore, our map matching algorithms did
not require a precise point rather a precise road segment on
the map. Hence a speed or ETA point was associated with
a specific road segment. We noticed that the online API of
OSRM had a very low response time so we setup an offline
OSRM server. The response time improved but still it was
very slow and there were memory leakage issues when huge
volumes of data was being processed. Therefore, we created
a multi-threaded and batch processing script that drastically
reduced the processing time. The parallelized mechanism
had already been documented in [57]. Map matching
procedure is represented by the following Algorithm 2. The
data comprised of specific coordinate points possessing lon-
gitude, latitude and the bearing angle of the specific located
geographical position. These coordinate points were sent to
the nearest API of OSRM server to obtain required pair of
nodes (marking the delimiters of the specific road segment)
depicting the location of the driving vehicle. Consequently,
the order of nodes on OSM maps differentiated between the
incoming and outgoing traffic bearing roads. Occasionally,
OSRM nearest API reached zero value at start or end node.
This was due to multiple available options at the nearest
end/start node owing to junctions on roads. For this purpose,
an algorithm for the correction of zero values was written.
Startnode and endnode contain zero values. To correct the
zero value pertaining to start or end node returned by OSRM,
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1: threshold = 2500
2: while next_record = NULL do
3: Read records from data

4: Initialize speed= data[ “avgspeed”]
5: Initialize elapsed timel= data[ “elapsed timel’’]
6: if speed > max_speed then
7: speed = max_speed
8:
9: if speed = = zero then
10: if reason =="*ignition OFF”’ and reason ==
“Power_OFF”’ then
11: delete record
12: if elapsed time > threshold then
13: delete record
14: if reason =="‘ignition ON”’and rea-
son == “Power_ON’ then
15: delete record
16:
17: if speed > zero and node.highway
= “Residential” then
18: delete record
19:
20: keep record
=0

the trip trajectory containing a sequence of OSM nodes was
obtained by retrieving the way_id of the trailing point. A road
can have a sequence of way_ids due to its changing attributes
e.g. number of lanes, condition of pavements etc. Similarly a
node can also be associated with more than one way_ids if it
is on a junction.

Identifying the right way_id of the node along the progress-
ing trajectory is the trick to fix the zero values. Zero value
associated with the start node was replaced with the value
of the node previous to the end node located on trajectory
segment described by the geometry of the retrieved way_id.
To fix the zero value of the end node, the same algorithm
was applied and zero value was replaced by the value of the
node next to the start node on the identified trajectory. A road
on OSM maps was divided into several different types of
sections, and each section was identified by the way_id of
the road. OSM did not define the concept of road segments.
As part of this research, we created road segments as the
segments between two adjacent OSM nodes on a way_id of
the OSM. We maintained the whole list of road segments of
a city (Islamabad in this case) and term it as the City Map
Structure (CMS).

Algorithm 3 addresses zero speed issues based on events.
Vehicles which have trackers installed on them spend a
significant amount of time staying idle i.e. in the parking
state. Therefore, almost 40 percent of the records contained
zero speed values. The zero speed values can not be discarded
right away as some of them may represent high congestion.
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Algorithm 4 Time-Series Aggregation and Integration
1: for each segment in CMS do

2: read data

3:

4: for each quarter of hour for each day do

5: if day is “Sunday(Sun)” or “Saturday(Sat)” or

“Holiday” then

6: data[ “Weekend”’ |=1

7:

8: else

9: data[“Weekend”’ =0

10: weighted_avg_speed = W(Wl %
Do Cai/n) + Wo x 3 (x/m)

11: data[ “weather_condition™ ]=get

weather_condition of the current day =0

There is a parking event in the tracker for automatic trans-
mission vehicles but for the manual transmission, the parking
state needs to be determined by examining the sequence
of ignition-off/power-off and ignition-on/power-on events.
Even in that case it is a bit tricky to identify whether the
vehicle is momentarily stuck in the congestion or parked for
a longer period. The straightforward technique is to check
the sequence of events between ignition-off and ignition-on
events of the vehicle. When the car is parked, it still generates
timer-on event but with huge gaps e.g. 2500 seconds or so.
The exact duration of the gap depends upon the specific
tracker. If that gap exceeds a threshold then the car is con-
sidered parked and the record is discarded. If the car is not
parked then the gap is much shorter.

C. TIME SERIES AGGREGATION AND INTEGRATING ALL
DATA SOURCES INTO A HYBRID FEATURE SPACE
Algorithm 4 addresses integration of heterogeneous data
sources based on time-series. A single road segments captures
different coordinate-points in different time windows. Our
data fusion technique grouped speed at different spatial points
lying on the same segment and computed their average in
specific duration of time. In this method, we switched from
latitude and longitude to more meaningful map attributes that
are OSM nodes.

Once the data had been transformed on OSM standard
nodes that ensured the uni-schema of each independent
geo-spatial data set with temporal facts, the traffic informa-
tion of each transformed data was aggregated into 15 minutes
separately, between start-node and end-node of a particular
way-ID. The aggregated data for both FCD and Google Maps
was then integrated on the basis of the start-node and end-
node between 15 minutes time-windows followed by merging
of resultant integrated data with date based holiday data. The
purpose of the same was to cope with the traffic congestion
effects during both working hours and those due to off days.
The integrated data was further aligned with various road
attributes including ways_id to obtain the adaptive traffic
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TABLE 4. Hybrid feature space text.

Features The Value of Features

Day 1to7

Startnode numeric

Endnode numeric

aggminutes 0-15, 16-30, 31-45, 46-60
Weather mostly sunny ,Sunny,rainy,cloudy
SpecialCondition  Yes, no

Time Rushhour, non_Rush_hour
Holiday 1,0

DateTime Varchar

patterns with respect to both time and space. Finally, we were
able to get the GPS trackers parameters along with max-
imum speed, surface and number of lanes on the partic-
ular road. Moreover, for combating various environmental
effects, we also merged weather data with integrated data
e.t.c. as depicted in Table 6.

D. MODEL SELECTION

The spatial-temporal characteristics of the data led to the
selection of algorithms specialized in spatial and temporal
data. Our problem is inherently time series and multi-class
problem. In the first instance, we applied classical classifica-
tion techniques like Random forest, Support Vector Machine
and XG Boost e.t.c. that failed to yield satisfactory results.
In the second attempt, we tried to solve our problem via
deep learning techniques and their ensembles such as LSTM,
MLP, GRU, GRU-LSTM and LSTM-GRU. The latter yielded
remarkable accuracy.

Stacked LSTM architecture consisted of hidden bilayers
with each layer further comprising of 64 hidden units. Here,
Tanh was used as an activation function in both hidden layers.
Dropout layer with ratio 0.2 was used to regularize not only
the network between the hidden and Dense (output) layer but
also between two hidden layers. Dense layer with softmax
activation function and 3 units activation function was applied
in the output layer followed by holdout cross validation that
divided data set into test and training sets. A batch learning
approach was used to train the model on the training data set
followed by checking of generalization of model on test data
set.

Recurrent neural networks applied in this paper control the
flow of the information. Gated Recurrent Network (GRU) is
similar to LSTM but it uses two gates i.e. reset gate and update
gate. The update gate decides whether previous information
should be used or not. In other words, the update gate deter-
mines the previous information amount (prior time steps)
needed to be passed along the next state whereas the reset
gate decides the past information needed to be neglected.

Different combinations of LSTM and GRU were applied.
First of all, we have discussed LSTM-GRU architecture
and then applied the GRU-LSTM model. GRU-LSTM per-
formed outstanding results as compared to LSTM, GRU, and
LSTM-GRU.
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TABLE 5. Testbed implementation details.

Features Details
Software  Linux 64 bit operating system
python version 3.7.16
simulation platform Keras(2.3.1)
based on tensorflow(2.1.0)
Hardware = NVIDIA GeForce GTX 1070 Ti-equipped machine.

In LSTM-GRU, First of all input features were passed to
two LSTM layers for extraction of temporal features and
then, two layers of LSTM were incorporated and connected
to the output layer. Output layer predicted congestion level
i.e smooth, congested, and highly congested. In each layer,
we used 128 units of neurons. The tanh activation func-
tion was applied in input to intermediate layers whereas
softmax activation function was used in the output layer.
Adam was applied as an optimizer whereas categorical
cross-entropy was used as a loss function. Validation accuracy
was 93.7 percent.

1) EXPERIMENTAL SETUP
See Table 5.

2) LONG SHORT TERM MEMORY

In this experiment, the proposed stacked LSTM architecture
consisted of two hidden layers each containing 64 hidden
units. Tanh is used as an activation function in both hidden
layers. Dropout layer with ratio 0.2 was used to regularize
the network between the two hidden layers and between
hidden and Dense (output) layer. Dense layer with 3 units
and softmax activation function was used in the output layer.
We employed holdout cross validation to split data set into
training and test sets. We firstly trained the model on the train-
ing data set by a batch learning approach and then checked
generalization of model on test data set. The proposed LSTM
model was applied to the data collected from Google and FCD
which comprised 7,343,362 records of September 2020. The
traffic condition data were collected every fifteen minutes
covering 1649 segments of arterial roads in Islamabad, Pak-
istan. There were three categories of traffic conditions, i.e.,
smooth condition, congested condition and highly congested
condition. In the data set, there were 4,218,750 smooth condi-
tions, 1,480,417 congested conditions and 2,634,256 highly
congested conditions. To evaluate the performance of the
proposed deep architecture, we adopted accuracy, precision
and recall, as a performance measure.

3) GATED RECURRENT UNIT (GRU)

Recurrent neural networks applied in this paper control the
flow of the information. Gated Recurrent Network (GRU) is
similar to LSTM but it uses two gates including update gate
and reset gate. The update gate is responsible for deciding
whether previous information should be used or not. In other
words, the update gate is responsible for determining the
amount of previous information (prior time steps) that needs
to be passed along the next state whereas the reset gate is used
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from the model to decide how much of the past information
is needed to neglect.

4) LSTM- GRU MODEL

First of all input features were passed to two LSTM layers for
extraction of temporal features and then, two layers of LSTM
were incorporated and connected to the output layer. Output
layer predicted congestion level i.e smooth, congested, and
highly congested. In each layer, we used 128 units in the layer,
and tanh activation function was used in input to intermediate
layers. In the output layer, softmax was used as an activation
function. Adam was used as an optimizer and categorical
cross-entropy was used as a loss function. Validation accuracy
was 93.7 percent.

5) PROPOSED GRU-LSTM MODEL

We proposed hybrid GRU-LSTM model because GRU deals
with the vanishing gradient problem. It also works on less
memory by using less training parameters as compared to
LSTM. LSTM has a capability to learn long term dependen-
cies in addition to remembering long period of time using
memory unit. In our proposed model, we used most promis-
ing time-series analyzers i.e. GRU and LSTM. GRU was
applied at front layer. The output of the GRU was subse-
quently passed to LSTM. GRU has two gates e.g. update gate
(utg) and reset gate (rt,). The mathematical formula of update
gate (utg) is explained in Equation 1:

uty = o(weyl[x;] + wey,[hd;1]) (1

Firstly, x, passed as input to the first layer of GRU (ut,) where
x; and hidden;_1 were got multiplied to weight and then were
added together. Then sigmoid activation function was used
to convert results between 0 and 1. Update gate (ut,) was
aimed at deciding how much past information was passed to
the future timestamp. Then this information was forwarded to
reset gate (rt,). The calculation of reset gate (rt,) is expressed
in Equation 2:

rty = o (we,[x:] + we,[hd;_1]) ()

In reset gate(rt,), calculation x;, and hidden,;_, were mul-
tiplied by its own weight and were then sum up together
followed by use of sigmoid activation function. rt, decided
which information needed to be stayed and which informa-
tion be forgotten. It also stored stayed information by using
the following Equation 3:

~ hd; = tanh(wey[x;] + rtg o wey[hd;_1]) 3)

x; was multiplied by its weight we,;. The element wise
product was performed to the previous output hd,_; an reset
gate rt,. Both results were added together and passed to
tanh function. The unit computed the hd; using following
Equation 4:

hd; = uty o hdy_y + (1 — utg)o ~ hd, )

if ug is near to 0, it means a big part of information was
lost because current information was found irrelevant for the
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prediction of traffic congestion. At the same moment, since ug
will be near to 0 at current time step, 1 — ug will be near by 1
and most of the past information will stay in memory. The
output of GRU(%,) was then passed to the layer of LSTM as
input. LSTM consists of three gates e.g. input gate( ig), output
gate (og) and forget gate ( fy). The behaviour of calculation
of iy is expressed in Equation 5:

ig = o(wejlhd;—1, hd;] + b;) &)

hd; after passed through the network unit got multiplied by
it’s own weight(we;). Like wise, hd;_1 was multiplied by
it’s own weight(we;) followed by its addition to the bias(b;).
A hd;_1 had the details of previous units t-1. In order to
produce the result in 0 and 1, sigmoid activation func-
tion was used. The input gate selected information that
needed to be eliminated from the given cell state. In the
second step forget gate(fy) was used in sorting information
needed to be stored in the cell state. Finally, output gate(og)
decided value to be updated using these two mathematical
Equations 6,7:

fe = o(wyrlhdi—1, hd;] + byr) (6)
0g = 0 (Wolhd;_1, hd;] + b,) (7

Furthermore, ~¢; being vector of candidate values was
generated through tanh layer. ~¢; is calculated by using the
Equation 8:

~cir= tanh(welhd;—y, hd;] + bc) ®

Furthermore, the previous state of the C; is updated by
using following Equation 9:

C=fixCi1+irx~c 9

~cr and C; differentiated between desirable information to be
kept in memory and irrelevant information that needed to be
forgotten. This was followed by the attachment to the dense
layer. The dense layer contained tanh as an activation function
that was predicted road traffic congestion at specific location
in a given time frame. The tanh function was employed to
transform the values lying between —1 to 1. It was then-
multiplied by sigmoid layer ouput in order to acquire the
desired output by using the Equation 10:

Cr =04 % tanh(c") (10)

We used adam as an optimizer and Categorical-Cross-
entropy was employed as a loss function in present case
of classification problem. Figure 3 shows the GRU- LSTM
architecture in order to extract spatial-temporal features.
Current Model was trained and validated on 3954765 and
1689234 samples, respectively. First of all input features
were passed to two GRU layers for extraction of temporal
features and then, two layers of LSTM were incorporated
and connected to the output layer. Output layer predicted
congestion level i.e smooth, congested, and highly congested.
In each layer, we used 128 units, and tanh activation func-
tion was used in input to intermediate layers. In the output
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TABLE 6. Proposed GRU-LSTM approach sumary report.

Layer(type) Output Shape parameter#
gru_I(GRU) (None, 28, 128) 49920
gru_2(GRU) (None, 28, 128) 98688
Istm_1(LSTM) (None, 28, 128) 131584
Istm_2(LSTM) (None,128) 131584
dense_I1(Dense)  (None,3) 387

A Lsm
CONGESTED
HIGHLY CONGESTED

uT
\,
LsTM

GRU LS™M

1sT 2ND 3RD 4TH

INPUT LAYER LAYER LAYER LAYER

FIGURE 3. Architecture diagram of proposed GRU-LSTM model.

layer, softmax served as an activation function, Adam as an
optimizer and categorical cross-entropy was used as a loss
function. Validation accuracy is 95 percent. The proposed
architecture is depicted in Table 6. The following step by step
process explains the functionality of input, output and hidden
layers:

Step 1: Cleaned the google and FCD data, and then read t;,
and to.

Step 2: we defined congestion index(CI) using Equa-
tion 11:

Cl = (tp —to)/to (11)

where t, denotes current time required for the road segment
and tp represents the least time required for the road seg-
ment. CI is a derived attribute that is used to define thresh-
olds of various categories of congestion. According to the
congestion index CI, the traffic situation could be divided
into A: smooth B: congestion C: highly congested as shown
in Table 6.

Step 3: So we modeled the speed and traffic flow in time.
For example: we can get the t+1 according to the in-front-of-
several-moments t, t-1,t-2,t-3,t-4.

Step 4: Got the input layer x = [t+1].

Step S: The model had 4 layers of hidden layers which used
the tanh activation function, with 128 neurons.

Step 6: The output layer used the softmax activation func-
tion, and categorical-cross entropy as loss function.

We discussed the integrated data analysis in section 4
whereas a discussion on parameter optimization and per-
formance evaluation was distributed among sections 4
and 5.

IV. RESULTS AND DISCUSSIONS

The limitations of a variety of previously described machine
learning, deep learning, and statistical models are listed in
Table1. We have described our research work results and their
discussions below.
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TABLE 7. Statistical measures of congestion index of heterogeneous data
sources.

Classes Mean  Median  Std Min  Max
Smooth 0.01 0.0 0.035 0.0 0.20
Congested 0495  0.499 0.179 020 092
Highly Congested ~ 1.39 1 0.67 092 4

TABLE 8. Congestion state level of proposed approach target classes.

CI Traffic State Level
0,0.2) Smooth
(0.2,0.92)  Congested
(0.92,4) Highly Congested

A. EXPLORATORY DATA ANALYSIS (EDA)

During this study, the traffic patterns on all week days includ-
ing weekends were statistically analyzed. The means, medi-
ans and standard deviations of all three output labels of data
are mentioned in the Table 7. Congestion Index (CI) was
used to label these classes. CI, a derived attribute provided
anormalized expected time of arrival. Thus it prevented from
having extreme values. Algorithm 4 explained the procedure
to calculate CI for all data points.

Algorithm 5 Segmentation Normalization of Congestion
Index (CI)

1: Segmented distribution of records

2: Label recorded of each segment

3:

4: for each Road Segment Ri do

5 t,, = min(ETA in Ri)

6:

7: while i < len(Road Segment R;i) do

8 Computed Clgsi = % *t— by

9 applied required label on the #; containing records

=0

The integrated data set was categorized into three classes
namely smooth, congested and Highly Congested as depicted
in Table 9.

Smooth class ranged between 0 to 0.20, nearest to zero
and had almost perfect mean, median and std. However, both
highly Congested and Congested classes ranging between
0.92 to 4 and 0.20 to 0.92 respectively had imperfect mean
and median.

Figure 5 depicts the congestion index vs time in hour on
various weekdays i.e. Different colour lines have been used
to show same on Monday to Friday. The Figure 5 evidenced
that a major deviation exists in the value of congestion index
over different time (in hours) of the same day e.g. the con-
gestion index was 0.69 at 8:00-9:00 am (a morning rush
hour) and was 0.90 between 11:00-12:00 pm, higher than
the average of the morning rush hours. During rush hours
(4:00-5:00 pm), the congestion index raised to 0.95. However,
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FIGURE 4. Heterogeneous data sources congestion index variation on
weekends.
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FIGURE 5. Heterogeneous data sources congestion index variation on
week days.

the highest congestion index valuing to 1.1 was observed at
7:00 — 8:00 pm (the evening rush hour). It advocated the
importance of congestion index behaviour at different time
slots in our present model development. Keeping in view
its importance, average of the time slot specific congestion
index was used as a predictor in prediction of congestion.
Time slots 8:00-9:00 am, 11:00-12:00 pm, 4:00-5:00 pm, and
7:00-8:00 pm thus showed peak traffic congestion on road.
Friday’s congestion index was however quite different from
other weekdays due to official breaks in offices to offer Friday
prayers, long weekend and half school timings. On Friday,
the congestion index was initially estimated to be 0.5 at 8:00-
9:00 am (the morning rush hou) that subsequently raised to
0.8 from (12:00-1:00 pm) owing to the offering of Friday
prayer during 12:00 to 1:00 pm. Again the highest congestion
index valuing to 1.2 was observed around 15:00 — 20:00 pm
(the evening rush hours) which was the highest among the
average of all morning and evening hours of all weekdays.
Figure 4 depicts congestion index variation on weekends
i.e. Saturday and Sunday. On Saturday, congestion index
remained uniform during 10:00 am to 03:00 pm valuing to 1.
The value of CI decreased during time slot 3:00 to 5:00 pm
and again achieved value of 1 between 5:00 pm to 8:00 pm
being recreational timing during weekends. A different trend
of CI was observed on various time slots of Sunday e.g.
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3 — 7th Avenue road
9th Avenue road
IJP road

5 === Jinnah Avenue road

1 === Kashmir highway road

Congestioq Index

Time

FIGURE 6. Heterogeneous data sources spatial impact on road traffic.

0.8 CI was estimated during 10 am to 11 am. Similarly CI
was 0.85 during 06:00 pm to 08:00 pm. Hence, the data
showed that traffic congestion trend was quite different for
both weekend and weekdays time slots.

Figure 7 shows the spatial impact of traffic on differ-
ent rushy roads. e.g. Seventh Avenue remained congested
from 10:00 am to 05:00 pm and blocked from 05:00 pm to
07:00 pm. The 9th Ave road showed congestion from 8:00 am
to 9:00 am, 2:00 pm to 3:00 pm, and 6:00 pm to 7:00 pm.
IJP road being a rushy road due to load of logistic trucks was
highly loaded from 10:00 am to 10:00 pm. Jinnah Ave showed
congestion from 2:00 pm to 3:00 pm and 6:00 pm to 7:00 pm
as itran through the business hub. Kashmir highway remained
congested for atleast two hours between 5:00 pm to 7:00 pm
due to official off timings. It also showed how spatial trends
affect traffic congestion. After detailed analysis of traffic data
set, it is revealed that traffic congestion is directly affected
by spatial as well as temporal aspects. Therefore both time
features and spatial features can be used to predict true traffic
congestion phenomenon.

B. FEATURE SELECTION TECHNIQUES

In order to reduce computation in the data obtained from
heterogeneous data sources, we selected the most relevant and
significant feature set by using Heat Map techniques.

1) CORRELATION MATRIX WITH HEATMAP

Correlation matrix technique was used for advanced and
detailed analysis of features set. A correlation matrix con-
sists of table showing correlation coefficients between two
features with the Correlation value lying between positive
1 to negative 1. Positive correlation means input feature is
more relevant to the target and vice versa. The visual effects
were further strengthened by using heatmap. Figure 7 shows
the correlation coefficients of all features along with their
correlation with the target variable i.e. Congestion-level. end-
node, start-node, day, way ID, hour, eta, agg-minutes, peak-
hour, CI and maxspeed-real had positive correlation with the
target where as quarter, agg-speed, holiday, min-time had
negative correlation with the target. Agg-speed had negative
correlation because we converted speed into eta standard
whereas min-time and max speed-real attributes were used to
detect outlier. Furthermore, CI was not only used to normalize
eta but also to derive congestion level.
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FIGURE 7. Correlation matrix of heterogeneous data sources.

2) RECURSIVE FEATURE ELIMINATION

Recursive Feature Elimination (RFE) is a wrapper selection
method that recursively removes the attributes while training
the model on the basis of remaining most relevant feature set.
The algorithm assigned the weights through the coefficients
of a linear model to feature set as an external estimator.
External estimator then prunes less weight features and keeps
the most significant features. Thus, RFE assigned the rank
in such a way that the most relevant features were assigned
rank 1 and true value. In our case, the heterogeneous data
sources input feature set is (start_node, end_node, way_id,
day, month, year, hour, agg_minutes, quarter, agg_speed,
Condition_Weather, eta, holiday, peak hour, maxspeed_real,
min_time, CI).

After applying RFE, 10 input features out of a pool
of 17 features namely start_node, end_node, way_id, day,
month, year, hour, quarter, agg_speed, maxspeed_real were
selected.

3) RANDOM FOREST FOR FEATURE IMPORTANCE
Random Forest is a combination of multiple decision tree that
are used to improve the accuracy by taking averaging of the
data set. It is also used to extract important features by using
scores. Figure 8 shows the features set and their respective
scores in x-axis and y-axis, respectively. Figure 8 depicts that
start-node, end-node, way-id, hour, aggregate speed, eta, max
speed, min time, and congestion index have highest score as
compared to others features.

We worked on multi time stamp, multi class and single
label classification data set. Our data set consisted of three
classes including smooth, congested and Highly Congested.
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FIGURE 8. Random forest for feature importance applied on hybrid
feature space.
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FIGURE 9. Accuracy values of the different Optimizers based on proposed
GRU-LSTM model.

TABLE 9. Accuracy table of different ML and deep learning models.

Model Accuracy
XGBOOST 71 percent
SVM 39 percent
RANDOMFOREST  83.9 percent
LSTM 92 percent
GRU 92 percent
MLP 67.4 percent
LSTM — GRU 93.7 percent
GRU—LSTM 95 percent

For applying the classification models, some features related
to traffic patterns including max speed per segment and
minimum estimated time, were derived in each segments at
specific interval of time from our integrated data. This derived
feature was then used in computing the congestion index
which is given in the equation 11. Algorithm 5 calculated
different segments of the road network Congestion Indices.
Same was then applied on various congestion labels in accor-
dance with the thresholds depicted in the Table 9. The final
form of proposed GRU_LSTM model is summarized in the
Table 10.

Data was recorded at 15 minutes of time resolution and less
than or equal to 1 km of the space resolution.
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TABLE 10. Proposed GRU_LSTM model hyper-parameters configuration.

Model Hyper Parameters

Values

LearningMode
BatchSize
LearningRate
Noofepochs
NoofHiddenLayers
HiddenUnits
DropoutRatio
ActivationFunction
OutputUnits
OutputType
OutputLayerActivationFunction
Optimizer
LossFunction

Batch Learning
512

tanh

3

Single Label, Multiple Classes
Softmax

Adam

Categorical Crossentropy

e

> o8 -
o ad
£ -
3
< —

Y Training Validation

Accuracy Accuracy

- Epoct;s

FIGURE 10. Impact of timestamp on LSTM.
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FIGURE 11. Impact of timestamp on GRU.

10 shows the timestamp positive trends towards training
accuracy as well as validation accuracy. X-axis shows the
timestamp and Y axis shows the accuracy. Figure 11 shows
that by increasing timestamp, training accuracy of LSTM and
GRU improved from 84 percent to 89.9 percent and 85 per-
cent to 90 percent respectively. Figure 12 visualizes the two
graphs. Left side shows the learning curve where as right side
shows the cost curve. X axis indicates the epochs and Y axis
shows the accuracy. In the learning curve, validation accu-
racy touches the 93.17 percent and training accuracy reaches
approximately 92 percent. In the cost curve, X axis indicates
the epochs and Y axis shows the loss. In cost curve training
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loss depreciates from 0.33 to 0.21. Where as validation loss
dropped from 0.25 to 0.19. Figure 13 describes that validation
loss decreases in GRU-LSTM from.25 to .16 with an average
validation accuracy of 95.19 percent. However GRU-LSTM
provided the most promising results in our scenario Table 9
depicts that GRU-LSTM yielded promising results with an
accuracy of 95 percent where as classical classification tech-
niques were unable to yield the suitable results. In classical
techniques, we applied XGBoost, SVM and Random Forest.
Among classical techniques, random forest provided results
with 83.9 percent accuracy. on the other hand, among deep
learning techniques including MLP, LSTM and GRU, GRU-
LSTM produced best accuracy.

Figure 14 shows the Precision Recall(PR) near to 1. X-axis
represents the recall and Y axis depicts the precision near to 1.
However GRU-LSTM provided the most promising results in
our case.
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Firstly, we fixed the time of epoch to 25 and tested the
accuracy behaviour when the optimizer changed. Optimizer
was used in the current model to minimize the loss and
maximize the accuracy. From Figure 9, the highest accuracy
value of GRU-LSTM was achieved from Adam when only the
optimizer function changed and other parameters remained
same as default values.

V. CONCLUSION

This paper describes a mechanism to integrate multiple
sources of data into a hybrid feature space. Basically, It uti-
lizes an ETA based congestion index as a road network state
evaluation indicator that distributes the traffic state primarily
into three categories ranging from smooth to congested to
Highly Congested class. We also integrated the traffic load,
GPS, weather, special conditions with the OSM data set and
employed different deep learning and machine learning algo-
rithms. Among classical learning techniques, Random Forest
provided the best results whereas in deep learning algo-
rithms, GRU-LSTM proved to be the best with the highest
accuracy. From current study, it can be concluded that deep
learning techniques are the most reliable learning techniques
providing maximum accuracy and better yield than classical
learning techniques when are applied in traffic congestion
problems on arterial roads. This further paves way towards
automatic labelling of the classes instead of using conges-
tion indexes and automatic optimization of hyper parameters
using adaptive techniques in future studies. In the future,
we will work on real-time traffic data on Vehicular Ad Hoc
Networks (VANET) [59], [60] that permit vehicles to com-
municate with each other and improve traffic safety.
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