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ABSTRACT In real-world driving scenarios, the model mismatch can severely impair the robustness of
the tracking system controlled by Model Predictive Control (MPC). Tube-based MPC (TMPC) addresses
this problem by keeping the model mismatch error in an invariant tube. The TMPC algorithms, however,
cannot deal with state-dependent uncertainty since TMPC relies on the fixed tubes. This paper presents
a practical algorithm for improving the capability of TMPC to handle multiplicative uncertainty. Firstly,
this algorithm adopts a Homothetic Tube-based MPC (HTMPC) framework to optimize the system’s future
trajectory and tube geometry simultaneously, which dynamically resizes tubes according to uncertainty
and the system’s current state. Secondly, this algorithm provides both the feasible formulation of the tube
and the homothetic factor with low computational complexity. Thirdly, we aim to systematically evaluate
the algorithm’s robustness by the simulations of different scenarios where the system parameters and the
measurement noises might change over time. We have conducted and analyzed the Monte-Carlo simulations
to compare the robustness and tracking capability of the proposed algorithm and other control algorithms.
The comparative analysis shows that the HTMPC algorithm provides a higher level of performance than
MPC and TMPC, and it performs closely to the robust controller based on the immersion and invariance
(I&I) principle.

INDEX TERMS Autonomous vehicles, immersion and invariance (I&I), path tracking, robustness, state-
dependent uncertainty, tube model predictive control.

I. INTRODUCTION
Due to the high non-linearity of the vehicle system and the
uncertain disturbances caused by the driving environment,
robustness is a critical issue in the control design. A robust
controller should cope with disturbances and parameter
uncertainties such as tire cornering stiffness. Hence, some
researchers adopted many robust control methods to main-
tain robustness and tracking performance. State-of-art control
approaches, including Fuzzy Control [1], Optimal Control
[2], SlidingMode Control (SMC) [3], Flatness-based Control
(FLAT) [4], Immersion and Invariance Principle (I&I) [5],
Robust H∞ [6], Model Predictive Control (MPC), and Rein-
forced Learning [7], are developed successfully and likely to
be applied to the vehicle control at complex driving. A robust
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T-S fuzzy output- feedback controller has been developed
for the automated driving considering the obstacle avoidance
[8]. Sliding mode control are effective for compensating
the model parameter variations. However, SMC can output
aggressive control action: tracking performance are signifi-
cantly reduced due to the rapid change of the control input.
Flatness-based control has the advantage of high tracking
precision and stability. However, FLAT show some weakness
in rejecting the noise. Additionally, FLAT is sensitive to the
model parameter variation. I&I and optimal control are robust
against measurement noise. Robust H∞ requires extensive
computation and behaves conservatively. Most approaches’
main disadvantage is not explicitly considering vehicles’
state and actuator constraints. By contrast, MPC has been
widely applied to vehicle control because it can systemati-
cally utilize system’s current sates and satisfy Multiple-Input
Multiple-Output (MIMO) constraints. The explicit modeling
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of autonomous vehicles is inherently subject to uncertainties,
for example the variation in tire cornering stiffness. Thus,
the reliance on accurate modeling makes MPC susceptible
to modeling mismatch errors and external disturbances, lead-
ing to poor performance or instability. Therefore, it is dif-
ficult to essentially eliminate the environment’s interference
through the open-loop feedback law of MPC. In recent years,
researchers have proposed several robust MPC techniques
to strengthen the robustness of MPC under uncertainty [9].
One of these methods is a so-called feedback min-max opti-
mization [10], which provides a robust conservative solution
for the optimization problem with bounded disturbances by
considering all possible uncertainties realizations. Because
of its inherent complexity, this method helps search for a
more conservative but efficient approximation of the optimal
solution, which is computationally tractable in practice by
utilizing the linear matrix inequality (LMI) [11].

Tube-based MPC (TMPC) is an efficient alternative to
the min-max MPC, which decomposes the robust MPC into
a robust local controller and an online open-loop nominal
MPC controller. The nominalMPC drives the nominal system
states to equilibrium. At the same time, the robust local
control steers the error system into a tiny region (so-called
‘‘tube’’) near the trajectory of the nominal system. The tube
design utilizes the information of the upper and lower bounds
of the disturbance set. The feedback law can ensure that the
error system never goes out of the tube under any admissible
disturbance. Therefore, the TMPC keeps the actual trajec-
tory of the uncertain system inside the nominal-trajectory-
centered region. Researchers in [12] and [16] applied the
TMPC approach for vehicle path tracking to deal with exter-
nal disturbances. In [13], TMPC algorithm presented strong
robustness under additive disturbance, such as the wind, road
slope, and estimation errors. Furthermore, the variation of
tire characteristics directly influences vehicle tracking perfor-
mance [14]. Tire characteristics are related to the temperature,
wear, and road friction coefficient. This paper focuses on
applying the TMPC algorithm considering the variation of
tire cornering stiffness. Wang et al. [15] proposed an adaptive
TMPC to deal with uncertainties, which directly estimates
uncertain tire cornering stiffness online by a recursive least
square (RLS) estimator. The robustness of the control system
highly depends on the accuracy of estimation. Sun et al. [16]
proposed a robust tube MPC method based on tube-division
for vehicle path tracking control considering the uncertain
friction coefficient, which selected a corresponding tube from
a sequence of the candidate tubes based on the vehicle states.
TMPC approach needs to ensure the robustness by minimiz-
ing the tube size. A minimal tube typically leads to a high-
bandwidth corrective controller that aggressively behaves to
any disturbances, including noise or parameter perturbation.
Aggressive behavior can severely degrade performance or
exceed the actuator limit for vehicle control systems that rely
on onboard sensors for estimation or perception. Therefore,
modifying the tube geometry online would be advantageous
compared to the fixed tube geometry [17]. It is a crucial focus

of this paper how to parameterize the tube to strike a good
balance between computational complexity and robustness of
the control system.

Because of the conservative property of rigid tubes,
researchers have proposed multiple kinds of dynamic tube
as an alternative, including homothetic tube [18], [19] and
elastic tube [20]. According to [21], homothetic tube consists
of a sequence of scaled copies of the basic shape set, repre-
sented by the tube centers (i.e., the nominal system trajec-
tory) and the scaling factor. Homothetic TMPC (HTMPC)
algorithm treats the state and control tubes as homothetic
tubes. Thus, the HTMPC algorithm is of advantage to dynam-
ically adjust tube geometry and the constraints to avoid con-
straint violation given that the system states are close to the
limit. In [22], a much more flexible parameterization has
been studied, allowing the online computation of tube shape
sets. While the HTMPC has been applied to the constrained
linear systems under additive disturbance, the uncertainty
enters multiplicatively into the control system in the case
of parametric uncertainty. In this way, researchers devel-
oped the concept of HTMPC for controlling multiplicative
uncertain systems [23]. In [24], Hanema et al. proposed the
so-called heterogeneous tube, where the parameterization of
the tube cross-sections can vary over the prediction horizon.
This parameterization reduces conservatism and provides
more flexibility in constructing the tubes. The homothetic
tube-based economic MPC synthesis for constrained linear
discrete-time systems has integrated a moving horizon esti-
mator to achieve constraint satisfaction [25]. Nevertheless,
one of the drawbacks of this algorithm is its computational
burden. The researchers in [25] pointed out that the solution
is to adopt the polyhedral or ellipsoid sets to approximate
the exact robust invariant sets. Thus, it needs more in-depth
investigation on obtaining a feasible tube shape set in an easy-
to-calculate way.

Current literature on TMPC in vehicle path-tracking usu-
ally utilizes a matrix polytope to represent the tube shape
set in case of parametric uncertainty [26], [27]. This tube
parameterization can accurately approximate the uncertainty
set in the form of a convex hull of its vertices. Gao et al. [28]
computed the robust positively invariant set by the com-
plex set computations: the Pontryagin difference and the
Minkowski sum. However, the number of vertices can be
vast to model high-dimensional uncertainty sets. Thus, if the
matrix uncertainty set is structured but not low dimensional,
the ellipsoidal modeling approach has advantages in terms of
computational complexity and the minimum approximation
size [29], [30]. Researchers computed an ellipsoidal invariant
set [31] or an ellipsoidal reachability set [32] by means of
LMI. Xu et al. [33] proposed the robust positively invariant
(RPI) set and the terminal constraint set for the RMPC algo-
rithm in the form of the ellipsoidal set by resolving the LMIs,
which realized the accurate tracking control in the presence
of the tire cornering stiffness uncertainty. Furthermore, using
tubes with ellipsoidal cross-sections allows online minimiz-
ing a quadratic cost [34], which enables the shape size of the
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tube cross-section to be optimized online by semi-definite
programming (SDP) [35]. Thus, this paper establishes an
efficient process to obtain the ellipsoidal tube shape set to
approximate the exact mRPI set [36]. The optimal size of
the tube is determined online by calculating the homothetic
factors. Homothetic factors are defined as the decision vari-
able of the HTMPC optimization problem. The solution to the
online optimization problem provides an online homothetic
factor.

This paper proposes a control framework for the practical
application of vehicle systems based on the developed theory
of Homothetic TMPC synthesis [19]. The contribution of
this paper is the efficient formulation of the dynamics model
such that the resulting optimization problem is feasible in
real time. This paper will investigate the possible robust
performance gains from applying this control framework.
Simulink and Carsim simulate a path tracking environment
under uncertainties, which validates the robust performance
of the controller. Moreover, the existing application of TMPC
theory in the vehicle’s path tracking has yet to be compared
to other robust control methods concerning the robustness
to attenuate the uncertainties such as varying tire corner-
ing stiffness. Thus, we systematically compare the proposed
method with three control approaches for the vehicle tracking
a double lane change path in several specific scenarios to test
the robustness in [5], [14], and [15]. The work of this paper
therefore can be divided into three parts, including the vehicle
modeling, the formulation of the HTMPC control framework,
and the co-simulation of different scenarios, illustrated in
Fig. 1. The main work of this paper is summarized in the
following aspects:

1) We propose a calculation process for a homothetic tube
utilizing linear matrix inequality with minimum com-
putational complexity, which can resize the tube geom-
etry in response to the state-dependent uncertainty.

2) This paper presents an HTMPC control framework for
a linear path-tracking system where the tube geometry
and open-loop nominal trajectory are optimized simul-
taneously, giving the controller more freedom to adjust
the tube to improve its robustness.

3) This paper utilizes a benchmark to evaluate the robust-
ness of control algorithms and quantify their perfor-
mance in several scenarios involving sensor noise and
parametric uncertainties [37].

The rest of this paper is organized as follow. In Section II,
the vehicle lateral dynamics, and the vehicle kinematics
for path tracking are integrated into a simplified uncertain
model. In Section III, we formulate the HTMPC framework.
In Section IV, the different simulation results are provided,
and the robustness of the proposed strategy is discussed.
Finally, the paper ends in Section V with concluding remarks
of the work.

II. SYSTEM MODELING
In this research, the vehicle path-following model con-
sists of the vehicle lateral dynamics model and the vehicle

tracking-error model. We adopt a 2-Dof bicycle model to
describe the lateral dynamics of the vehicle, which has been
widely used in automated driving. Furthermore, we have used
the modeling technique of approximating the tire dynamics
in linear regions to obtain a simplified tire model [11], [38].
The assumptions regarding vehiclemodeling and vehicle path
following are listed as follows:

1) This study assumes that the vehicle operates at a con-
stant speed of 60 km/h. We assume the longitudinal
force of the tire is equal to the road friction and wind
resistance. Therefore, this work focus on the tire’s side
slip and neglects the tire’s longitudinal slip.

2) Vehicle motions such as vertical, roll, and pitch are not
considered. The normal load of each tire is assumed
to remain constant and has no impact on the lateral
force of tires. Therefore, the roll stability will not be
considered in this work.

3) Tire side-slip angles are expected to be small in normal
driving conditions. The tire’s side-slip angle βi is equal
to or below the side-slip angle βmi that corresponds to
the peak force. In consequence, the lateral force of the
tire is approximately proportional to the side-slip angle.

4) This work assumes that the relative orientation angle
between the vehicle and the desired path is slight, so a
linear vehicle model regarding the tracking errors can
describe the path tracking.

A. VEHICLE LATERAL DYNAMICS MODEL
The dynamic model of the vehicle is built in two stages.
A simplified two-degree of freedom (DOF) ’bicycle’ model
is proposed in the first step, as shown in Fig. 2. The lateral
dynamics of vehicle includes the main features of vehicle
motion in normal driving. In the second step, we utilize a
linearized tire model that accounts for the uncertainty of
tire cornering stiffness. Under the assumption of a constant
longitudinal velocity vx , the lateral dynamics of a vehicle can
be expressed as follows:

m(v̇y + vxω) = Fyf + Fyr
Izω̇ = lf Fyf − lrFyr (1)

For the sake of simplicity of vehicle modeling, the approx-
imate tire model could be substituted for the nonlinear tire
model when the tire operates in the linear operating zone.
In this case, we utilize the linear function to approximate the
relationship between lateral force and side-slip angle:

Fyf ≈ −Cf 0βf
Fyr ≈ −Cr0βr (2)

where Cf 0 and Cr0 denote the nominal cornering stiffness of
front and rear tires. βf and βr denote the side-slip angle of
the front and rear tires, respectively, which are determined by
linearized vehicle kinematics as:

βf = (vy + lf ω̇)/vx − δf
βr = (vy − lr ω̇)/vx (3)
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FIGURE 1. General architecture of this paper including three parts: modeling, control framework, and simulation test.

FIGURE 2. Lateral dynamics of autonomous vehicle.

B. UNCERTAIN TIRE MODEL
The proposed vehicle model simplifies tire lateral dynamics
as a linear model. However, this simplification will result
in a significant mismatch between real and nominal vehicle
models. Thus, non-linearity in tire dynamics should be taken
into account by the vehicle model. The Fiala brush model
may be appropriate for modeling the nonlinear relationship
between tire side-slip angle and lateral force as follows:

Fyi =

{
aitanβi+bi|tanβi|tanβi+citan3βi if|βi|≤βsati

−µiFzsgn(βi) otherwise.
(4)

where µi denotes the friction coefficient. Fz denotes the nor-
mal load and the subscript ‘‘i’’ denotes the term f and r cor-
responding to the front axle and rear axle, respectively. Then,

ai = −Ci0, bi =
C2
i

3µiFz
, ci = −

C3
i

27µ2
i F

2
z
, βsati = tan−1 3µiFzCi

.

The peak of tire lateral forceFpeakyi and its corresponding side-

slip angle βpeaki can be derived as follows:

Fpeakyi = µiFzi

β
peak
i = tan−1

3µiFzi
Ci

(5)

Additionally, the instantaneous slope of the peak of the tire
force concerning the side-slip angle determines the minimum
cornering stiffnessCmin

i :Cmin
i = Fpeakyi /β

peak
i . Tire cornering

stiffness varies between the maximum and minimum values
in the approximate linear domain. The maximum cornering
stiffness, Cmax

f and Cmax
r , are equivalent to the cornering

stiffness when the corresponding side-slip angle is zero.
We rewrite Eq. (2) to take this characteristic into account:

∀|βi| ≤ β
peak
i ∃|γi| ≤ 1 :

Fyf = −(Cf 0 + γf C̃f )βf
Fyr = −(Cr0 + γr C̃r )βr

C̃f =
Cmax
f − Cmin

f

2
, C̃r =

Cmax
r − Cmin

r

2

Cf 0 =
Cmax
f + Cmin

f

2
,Cr0 =

Cmax
r + Cmin

r

2
(6)

where Cf 0 and Cr0 denote the nominal cornering stiffness
that are assumed to be the mean value of maximum and
minimum cornering stiffness. C̃f and C̃r denote the expected
range of varying cornering stiffness. With the factor γf and
γr , we describe the degree of cornering stiffness variation
influenced by the road adhesion or vertical force of the tire.
γf and γr are uncertain variables that are norm-bound such
that |γf | ≤ 1 and |γr | ≤ 1.
Remark 1: From the relations in Eq. (6), the lateral force

Fyi is significantly affected by the term γiC̃i. The uncertain
cornering stiffness could significantly affect the vehicle’s
dynamics. A low friction coefficient could reduce the tire
lateral force in snow-ice tracks. Thus, it is apparent that the
uncertain parameters γf and γr are closely related to the road
adhesion coefficient µi. A vehicle’s path-tracking strategy
needs to minimize the impact of uncertain road friction.
We construct a vehicle path tracking model that takes tire
uncertainty into account in the next section. The formulation
of this model is a state-space model, where the uncertain
cornering stiffness affects both the state matrix and input
matrix. To address the uncertainty, we propose a homothetic
tube-based MPC control framework based on the established
works [19].

134392 VOLUME 10, 2022



K. Hu, K. Cheng: Robust Tube-Based MPC for Autonomous Vehicle Path Tracking

TABLE 1. Nomenclature.

FIGURE 3. Kinematic error-based tracking model of autonomous vehicle.

C. FORMULATION OF PATH TRACKING
We adopt the widely used path following model illustrated
in Fig. 3, which illustrates two points representing the actual
location of the vehicle’s center of gravity (CG) and the target
destination on the path. The lateral offset from the CG to the
destination point is denoted by ey. The heading angle error eψ
is the difference between the orientation angle of the vehicle
ψ and the reference orientation angle ψd , expressed as eψ =
ψ − ψd . Based on a constant longitudinal velocity vx and a
predicted curvature cR, we obtain the derivative of the desired
orientation angle ψ̇d = vxcR. The lateral tracking error ey

and yaw angle error eψ , and the corresponding derivatives
are expressed as follows:

ėy = vy + vxeψ
ėψ = ψ̇ − ψ̇d
ëψ = ψ̈ − ψ̈d
ëy = v̇y + vx ėy (7)

By integrating the vehicle lateral dynamics into the path
tracking modeling approach, we eliminate the terms v̇y, ψ̈ .
Substituting Eq.(1) for Eq.(7), we replace ëy and ψ̈ with
ey, eψ and its derivatives ėy and ėψ , which is expressed as
follows:

ëy =
Cf
m
δf −

Cf + Cr
mvx

(ėy − vxeψ )

+ [
(Cr lr − Cf lf )

mvx
+ vx](ėϕ + ϕ̇d )+ vx ėψ (8)

ëϕ =
Cf lf
Iz
δf −

Cf lf − Cr lr
mvx

(ėy − vxeψ )

−
(Cr l2r + Cf l

2
f )

Izvx
(ėϕ + ψ̇d )− ψ̈d (9)

By rearranging the relation in Eq. (8-9) into the form of
matrix, we can obtain the state-space model as follows:

ż(t) = (A+1Aj)z(t)+ (Bu
+1Bj)u(t)+ Br w(t) (10)

where z(t) = [ey(t), eψ (t), ėy(t), ėψ (t)]T is the state vector.
u(t) denotes the control input.w(t) denotes the path curvature
cR(t).A andB denote the nominal matrices of state and input.
1Aj and 1Bj denote the uncertain matrices, which supple-
ment the nominal matrix A and Bu to take the uncertainty
into account.
Remark 2: Eq. (6) shows that γf and γr denote the chang-

ing degree of the tire cornering stiffness. To formalize the
uncertain parameter γf and γr , we propose a polytope 1
that contains j = 4 vertices, 1j, equivalent to the minimum
and maximum of γf and γr . γf and γr are bounded within a
range of [−1, 1]. Thus, the vertices of the polytope1j can be
expressed as follows:

11 =

[
1 0
0 1

]
12 =

[
1 0
0 −1

]
13 =

[
−1 0
0 1

]
14 =

[
−1 0
0 −1

]
For the simplicity of mathematical formulation, we use the
matrix decomposition to deal with the uncertain matrices
1Aj and 1Bj, which are expressed as the product of the
matrices Bw,Cy,Du

y and the vertices1j. The nominal matri-
ces A,Bu,and Br and the uncertain matrix 1Aj,1Bu

j , are
given by:

A =


0 0 1 0
0 0 0 1
0 − (Cf 0+Cr0)

mvx
(Cf 0+Cr0)

m
(Cr0lr−Cf 0lf )

mvx

0 (Cr0lr−Cf 0lf )
Izvx

(Cr0lr−Cf 0lf )
Iz

−
(Cr0l2r+Cf 0l

2
f )

Izvx


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Bu
=


0
0
Cf 0
m

Cf 0lf
Iz

 Br =


0
0

(Cr0lr−Cf 0lf )
m − v2x

−
(Cr0l2r+Cf 0l

2
f )

Iz


1Aj = Bw1jCy,1Bj = Bw1jDu

y

Bw
=

[
0 0 − 1

mvx
−

1
mvx

0 0 − lf
Izvx
−

lr
Izvx

]T
Cy =

[
0 0 C̃f lf C̃f
0 0 −C̃r lr C̃r

]
Du
y =

[
−C̃f
0

]
1j =

[
γf 0
0 γr

]
(11)

Model predictive control algorithm is usually applied to
the linear discrete time system. Therefore, we transform the
continuous-timemodel in Eq. (10) into a discrete-timemodel,
expressed as follows:

zk+1 = (Ad +1Aj)zk + (Bu
d +1Bj)uk (12)

where Ad and Bu
d denote the constant matrices discretized

from A and Bu. 1Aj,1Bj denote the uncertain matrices
discretized from 1A and 1B.

III. HOMOTHETIC TUBE-BASED MPC PATH FOLLOWING
CONTROL STRATEGY
Based on the established uncertain path tracking model with
four vertices, the control framework can describe the extreme
parametric uncertainties due to the changing tire cornering
stiffness. In the next step, we propose the min-max opti-
mization problem. The structure of this optimization problem
has been illustrated in Fig. 1. The optimization problem can
be solved to determine the control action sequence corre-
sponding to the minimized upper bound of the cost function
when the control system is assumed to be under the worst-
case uncertainty. The actual control input to the vehicle in
simulation platform Carsim, namely the steering angle of
front axle δf , is the summation of the nominal control action
δ̄f and corrective control action δ̃f . The corrective action δ̃f is
derived from the corrective control law: δ̃f = Kk (ẑk − z̄k ),
where (ẑk − z̄k ) denotes the difference between the actual
system and nominal state.

A. PROBLEM DEFINITION
The discrete time system used in the control framework is
described by z+ = Az + Bu + w. z is the state vector.
u is the control vector. z+ is the succeeding state vector.
w is the disturbance vector and its values are assumed in
the set W, and the matrix pair (A,B) ∈ Rn×n

× Rn×m is
unknown due to the parametric uncertainty, but it is assumed
to satisfy:(A,B) ∈ C with C := convh(Aj,Bj). The vertices
of matrix pair (Aj,Bj) are the summation of the nominal
matrix A,Bu and the uncertain matrices vertices 1Aj,1Bj
in Eq.(11). At any time instant k ∈ N, the state vector zk

and the control input uk are assumed known while the matrix
pair (Ak,Bk) are not known and may be any arbitrary values
(Ak,Bk) ∈ C, i ∈ N≥0.
Remark 3: Unpredictable uncertainties could affect the

predicted system’s state and control action progress due to
the uncertain matrices (Aj,Bj). Consequently, it is critical
to restrict all possible predicted state and their corresponding
control input into a feasible bound. The HTMPC framework
can achieve this restriction by using the homothetic states and
control tubes to describe all possible states and control input.
The detailed description of control theory regarding HTMPC
can be referred from the established publications [18], [19].
A brief introduction to the theoretical background of HTMPC
is presented as follows.
Definition 1: For any non-empty sets S ⊆ Rn,R ⊆ Rm,

any control function ν(·) : Rn
→ Rm, and any N ∈

N≥1, the homothetic state tube and homothetic control tube
are sequences of sets ZN := {Zk}k∈NN , and UN−1 :=

{Uk}k∈NN−1 . For each relevant time instant k , the sequence
of the state and control input are defined as:

Zk := z̄k ⊕ αkS
Uk := vk ⊕ αkR

where z̄k ∈ Rn denotes the nominal state vector, vk ∈ Rm

denotes the nominal control action vector, and αk ∈ R≥0
denotes the scaling factor. The control policy is a sequence of
control laws

∏
N−1 := π (ẑk , z̄k , vk )k∈NN−1 , which includes

the corrective control to suppress the deviation between the
nominal state z̄k and the real state ẑk :

∀ẑk ∈ Zk , πk (ẑk , z̄k , vk )) := Kk (ẑk − z̄k )+ vk ) (13)

According to the theory of HTMPC [19], the necessary con-
ditions are provided as follows:

∀z̄k ∈ Z ∀k ∈ NN−1

αk ≥ 0

z̄k ∈ z̄0 ⊕ α0S
z̄k ⊕ αkS ⊆ Z (14)

vk ⊕ αkR ⊆ U (15)

∀(Aj,Bj) ∈ C,∀ẑk ∈ z̄k ⊕ αkS,
{Ajẑk + Bj(vk + π (·))} ⊆ z̄k+1 ⊕ αk+1S (16)

∀ẑk ∈ z̄k ⊕ αkS,Kk (ẑk − z̄k ) ∈ αkR (17)

(z̄N , αN ) ∈ Gf (18)

where Gf ⊆ Rn+1 is a suitable terminal set. From the above
conditions, we can speculate that the sequence of tube centers
{zk ∈ Rn

}, and {vk ∈ Rm
}, and tube scaling factor {αk ∈

R≥0} result in the homothetic state tube ZN , homothetic
control tube UN−1 and control policy

∏
N−1. Then, the deci-

sion variable dN := (z̄0, . . . , z̄N , v0, . . . , vN , α0, . . . , αN ) ∈
RN(n+m+1)+n+1 is introduced into the optimization problem to
obtain its feasible solution.

With the decision variable dN , we define a cost function:

VN(dN ) :=
∑

k∈NN−1

`(z̄k , αk , vl)+ Vf(z̄N , αN ) (19)
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FIGURE 4. Homothetic tube-based MPC strategy. Tubes are resized by homothetic factor αk ; the difference between the actual trajectory and the
nominal trajectory is compensated by the corrective control Kk ; the optimization problem is based on the tightened constraint Z	 αkS to solve the
nominal trajectory.

where `(z̄k , αk , vk ) and Vf(z̄N , αN ) are the stage and terminal
cost function, respectively. The stage cost function and the
terminal cost function are defined as:

`(z̄k , vk , αk ) : z̄Tk Qz̄k + vTk Rvk + α
T
k Qααk (20)

Vf(z̄N , αN ) := z̄TNPz̄N + αNPααN (21)

Remark 4: This paper aims to propose a novel robust tube-
based MPC controller by utilizing the established theory of
HTMPC. The controller is required to produce an optimal
solution under possible parametric uncertainties. The homo-
thetic state tubes ZN and control tubes UN−1 could ensure
the feasibility by providing less conservative constraints.
In the HTMPC framework, we optimize the problem under
the worst condition corresponding to the most significant
deviations between the nominal state z̄ and actual state ẑ. The
maximum deviation is associated with the extreme deviation
of the model matrices Ad and Bu

d, such as the matrix pair
(Aj,Bj). Therefore, we enumerate all vertices of set C to
examine its resulting deviations and minimize the cost func-
tion in the worst condition.

B. HOMOTHETIC TUBE-BASED MPC STRATEGY
As the vehicle system entails uncertainties due to the
unknown variation of tire cornering stiffness, the future
state’s predictions could be misleading to cause significant
performance loss and instability of the control system. Hence,
we consider a homothetic tube-based MPC strategy to pro-
duce a sequence of optimal solutions under the worst uncer-
tainty. The process of the HTMPC control framework has
been illustrated in Fig. 4. The core of the HTMPC strategy is a
min-max optimization problem that minimizes the cost func-
tion VN(dN) of the worst case. The worst uncertainty leads to
a significant error in the prediction of the controller through
the entire receding horizon. By going through all vertices of
the matrix pair (Aj,Bj), the prediction model Ajẑk + Bjπ(·)
produces the nominal state ẑk+1 at the next step that has the
largest deviation from its predefined value z̄k+1. We can use

the relation in Eq. (16) to transform the upper bound of this
deviation to the homothetic tube αkS of the error system’s
state. Thus, the cost term of stage cost in Eq. (20) can describe
the influence of the parametric uncertainties. Therefore, the
min-max optimization problemminimizes the upper bound of
the cost function in Eq. (19) to produce an optimal sequence
of decision variables dN including the homothetic factor αk .
Z, U and Gf represent the original constraint of system state,
input and terminal state, respectively. This strategy impose a
set of more tightened constraints following the relations in
Eq. (14-17) such that Z	αkS,U	αkR,Gf 	αkS. Assume
that a measurement of the system state ẑ is available at the
current time instant k .

min
dN

max
(Aj,Bj)∈C

{VN(dN )} (22)

s.t. z̄k ∈ Z	 αkS (23)

vk ∈ U	 αkR (24)

z̄N ∈ Gf 	 αkS (25)

(Ajz̄k + Bjπk )⊕ αkS ≤ z̄k+1 ⊕ αk+1S (26)

where VN (dN ) and dN denote the cost function and deci-
sion variable defined in Eq. (19). The decision variables dN
include zk , vk , and αk representing the predicted state, input,
and homothetic factor at current time instant k , respectively.
To efficiently solve the optimization problem in Eq. (22),
we formulate a recursive online algorithm as follows.
Algorithm 1 (Online Process of HTMPC)

1) At each time instant k , given the known states ẑk , the
action uk and the homothetic factor αk , set the initial
value z̄0 = ẑk , v0 = uk , α0 = αk and then solve the
min-max optimization problem in Eq. (22).

2) Use the first element of the solution of the optimization
problem, i.e., v1 and z̄1 to evaluate the HTMPC control
law π1(ẑ1, z̄1, v1) = v1 + Kk (ẑ1 − z̄1).

3) Set u(ẑk ) = π1(·) and implement the control action
u(ẑk ) to the control system.
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In the following subsections, we will present the process of
constructing the ellipsoidal tube set and the associated local
control law. Then, we will discuss the stability of the HTMPC
in subsection.(E).

C. HOMOTHETIC TUBE
As one of the distinctive characteristics of the robust MPC,
robust MPC approach can withstand the disturbance caused
by uncertainty.Within the context of the HTMPC framework,
we divide the control system in Eq. (12) into a nominal
system and an error system.We assume to control the nominal
system in a disturbance-free environment. The disturbance is
assumed to influence the error system.

zk+1 = Azk + Bνk (27)

ek+1 = Aek + Bρk + Bwwk (28)

where zk and νk denote the state and the control input
sequence of the nominal system. ek and ρk denote the error
system’s state and associated control action. wk denotes the
disturbance added to the error system.

The disturbancewk is related to the state-dependent uncer-
tainty involving the states and control actions of the nominal
system. The uncertain component of the nominal system
1Ajzk and 1Bjνk is introduced in Eq. (12). The matrix
coefficient 1Aj and 1Bj are given in Eq. (11). Combining
the Eq. (11-12), the disturbance wk is expressed as follows:

wk = 1k (Cyxk + Du
yνk ) (29)

In an uncertain environment, the disturbance wk occurs
to the error system that contributes to the propagation from
the current state ek to the future state ek+1 at time step k .
Ideally, the state ek should be bound by the Robust Positively
Invariant (RPI) set E to ensure the asymptotic stability of the
error system.
Definition 2 (RPI Set): The set E is said to be a robust

positively invariant set for the error system in Eq. (28) if

e0 ∈ E H⇒ ek ∈ E,∀wk ∈W,∀k ∈ N+ (30)

Definition 3 (Minimal RPI Set): The mRPI set E of the
error system is the RPI set in that is contained in every closed
RPI set E of the error system.

To reduce the conservatives of the mRPI set E, we intro-
duce a scaling variable αk to resize the mRPI setE. Following
the above definitions, we can conclude:

ek ∈ αkE ∀k ∈ N+ (31)

We apply a feedback control law Kk to the error system to
ensure the error state ek bounded in the mRPI set E. The
control law, ρk = −Kkek , contributes to the control action
ρk . The relation between the control action ρk and the mRPI
set E is stated as follows:

ρk ∈ αk (−Kk )E (32)

By combining the state and control action of the nominal
system and the error system, the state xk and control action

uk of the real system could be unified as follow:

xk
.
= zk ⊕ ek −→ zk ⊕ αkE

uk
.
= νk ⊕ ρk −→ νk ⊕ (αk (−Kk )E) (33)

By normalizing the disturbancewk to facilitate the mathemat-
ical processing, we define a disturbance setW in the form of
the unit set, expressed as

W = {w |wTw ≤ 1} (34)

Combining Eq. (29) and Eq. (34), we define an adjustable dis-
turbance set λkY that bounds the state-dependent disturbance
of real system related to its state and control input, expressed
as

λkY = {xkuk |(Cyxk + D
u
yuk )

T (Cyxk + Duyuk ) ≤ λk} (35)

From the relation between Eq. (33) and Eq. (35), we can
obtain the following relation:[

zk ⊕ (αkE)
νk ⊕ (αk (−KR)E)

]
⊆ λkY (36)

To describe the future state ek+1 by the elastic mRPI set
αk+1E, we invoke Eq. (28) and conclude a relation between
the error state set E and the disturbance set Y as follows:

(A− BKk )αkE⊕ BwλkY ⊂ αk+1E (37)

This relation provides insight into the evolution of the elas-
tic mRPI set αk+1E under the influence of the disturbance
λkBwdY. We can use this relation to guarantee the stability of
the error system in the presence of the disturbance wk . There-
fore, the relation is the necessary component for the constraint
of the homothetic tube-based control system, corresponding
to Eq. (26).
Remark 4: Direct computation of mRPI set E for the

control system is often infeasible [27]. Then, we utilize
the approximate method to substitute the original mRPI set
E. The approximate mRPI set is an ellipsoidal set E =
{x|xTMx ≤ 1}. M denotes the matrix coefficient related to
the cross-section of the ellipse. This approximate method is
convenient for the mathematical realization of the mRPI set.
As the reasoning behind the approximate method is much
more complex, we present the critical theorem here. More
details can be referred from [38].
Theorem 1 (Approximate Minimal RPI Set): R(σ ) is an

ellipsoidal approximate minimal robust positively invariant
set for the control system subject to a given feedback control
law uk = Kkxk if there exists ασ ∈ [0, 1] where the following
semi-definite problem has a solution:

inf
X ,Y ,αα,ασ

Tr(X )−X AX − BuY Bw

∗ −Xaα 0
∗ ∗ −ϒp

 � 0

∀j ∈ N1:q :

[
−Inqi Cy,jX − Du

y,jY
∗ −X

]
� 0
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ᾱ +

s∑
i=1

aσi ≤ 1 (38)

where M = X−1, Y = KkX and ϒp is the S-Procedure
variable. By solving the linear inequality matrix presented in
Eq. (38), we can obtain the matrix coefficientM that has the
minimum matrix diagonal denoting the minimal volume of
the set.

D. CORRECTIVE CONTROL LAW AND TERMINAL COST
MATRIX
As an effective robust control technique for the uncertain
system, the guarantee-cost control (GCC) produces a state-
feedback control law and a cost coefficient to regulate and
stabilize the error system in Eq. (28) for compensating the
disturbance. We define the quadratic performance index for
the error system for all admissible uncertainty as follows:

J (N ,1Al
e,1Bl

e) =
N−1∑
k=0

(eTk QGek + ρTk RGρk ) (39)

where 1Ale,1B
l
e denote the uncertainty matrices, which is

the l th-vertex on the extreme realization of the uncertainty set
1A and1B. QG and RG are the predefined cost matrices on
state and control action, respectively. To present this method,
we utilize three theorems proposed in the previous related
research [40]. The proof of the theorems can be found in
the publications [39], [40], and we will concentrate on the
specific application of the GCC method.
Theorem 2: For a control system in Eq. (12) with the

cost function in Eq. (39), the closed-loop control system is
asymptotically stable if there exists a feedback control law
uk = Kkxk and a positive definite cost matrix P satisfying
the matrix inequality

ÂTk P+ PÂk + KT
k RGKk + QG ≺ 0 (40)

where Âk = Ad +Bud Kk +B
w
d 1k (1Cy+1Duy Kk ). By using

the control law uk = Kkxk , the closed-loop system could
achieve to such a performance index for all admissible uncer-
tainties as follows:

J (N ,1Ale,1B
l
e) < eT0 Pe0, e0 6= 0 (41)

where eT0 Pe0 denotes the guaranteed cost for the uncertain
system. We need to obtain a feasible solution of matrix P
with the minimum eigenvalues to minimize the bound of
guaranteed cost.
Theorem 3: For the closed-loop system, there exists matrix

P = PT > 0 and the feedback gain Kk such that the linear
matrix inequality in Eq. (40) holds if and only if there exist
scalar δ > 0 and matrix X and Y , such that the following
condition is satisfied as

Ak BTk X Y T

Bk −δI 0 0
X 0 −Q−1G 0
Y 0 0 −R−1G

 ≤ 0 (42)

where Ak = AX + BuY + (AX + BuY )T + δBw(Bw)T .
Bk = 1CyX + 1DuyY . Taking the Schur complement to
transform the condition in Eq. (40) into the linear inequalities,
the inequality in Eq. (42) is obtained with homogeneous
transformations X = P−1 and setting Y = KkP−1. If the
matrix inequality in Eq. (42) has a feasible solution (δ,X ,Y ),
the cost matrix P and the feedback gain Kk can be obtained
by P = X−1 and Kk = Y X−1.
Theorem 4: For the uncertain control system in Eq. (12)

with the cost function in Eq. (39), uk = Y X−1xk is an
optimal state feedback control law, if there exists a solution
(δ,X ,Y , S) for the optimization problem give by:

min
δ,X ,Y ,S

Tr(S)

s.t. (i)


Ak BTk X Y T

Bk −δI 0 0
X 0 −Q−1G 0
Y 0 0 −R−1G

 ≤ 0

(ii)
[
S I
I X

]
≥ 0 (43)

As a result of the minimization of the problem in Eq. (43),
the problem’s solution (δ,X ,Y , S) can determine the cost
matrix P = X−1 and the control gain Kk = YX−1. Taking
the Schur Complement, the constraint (ii) of the Eq. (43) is
equivalent to S > X−1 > 0; then, the minimum of Tr(S) can
ensure the minimum of the eigenvalue of the cost matrix P.
The control law gain Kk calculated by the corrective control
algorithm could be applied in Eq. (13) to complement the
actual control action. The matrix P will be applied as the
weighting coefficient of terminal cost in Eq. (21).

E. ANALYSIS OF STABILITY
In this section, we discuss the stability property of the pro-
posed HTMPC controller. The proposed controller with ter-
minal cost Vf (zN , αN ) and terminal region constraint Gf can
asymptotically stabilize the uncertain system. Sufficient con-
ditions over Vf (•) and Gf are necessary to guarantee stability
and are presented as follows:

1) The terminal region constraint Gf must be an admissi-
ble robust positive invariant set of the system.

2) The terminal cost function Vf (•) is a Lyapunov func-
tion of the closed-loop system that is regulated by the
local controller u = ū+K (z− z̄). The condition for the
terminal cost function is presented as:

Vf (Akzk )+ `(zk ,Kzk ) ≤ Vf (zk ) ∀zk ∈ Gf (44)

The terminal cost function can guarantee that the optimized
cost is strictly decreasing. In this scenario, the difference
between the cost function of V 0

N (Azk + Bκ0N ) and the previ-
ously optimized cost V 0

N (zk ) for the optimization problem is
presented as follows:

V 0
N (Azk+Bκ

0
N )−V

0
N (zk ) = −`(zk )+ `(Azk + Bκ

0
N , κ

0
N )

+Vf (Azk+Bκ0N )−Vf (zk ) (45)
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TABLE 2. Vehicle and road parameters for simulation.

With condition in Eq. (44), the second term in the summation
in Eq. (45) is guaranteed to be non-positive, so the feasible
cost function has a lower cost than the previous optimized
function. According to the principle of optimality, the overall
cost V 0

N (zk+1) will also have a lower cost than the previously
optimized V 0

N (zk ). Then, the new condition is given by:

V 0
N (zk+1)− V

0
N (zk ) ≤ −J (zk , uk )

where the optimized cost V 0
N (zk ) represents a function of

Lyapunov that decreases throughout the evolution of the nom-
inal system, which guarantees the asymptotic stability of the
system.

F. CONTROLLER PARAMETER CALCULATION
The nominal configurations of the vehicle and control frame-
work are listed in Table 2. By solving the optimization
problems in Eq. (42-43), we can obtain the solution X ,Y
of the optimal problem, which determines the local control
feedback gainKk and terminal cost matrixP.We can solve the
LMI-based optimization problem in Eq. (38) by substituting
the feedback gain Kk into this formulation. The solution
to this problem, X , is equivalent to the matrix coefficient
M representing the cross-section of the approximate ellip-
soidal tube shape set E. Subsequently, the above controller
parameters, including the feedback gain Kk , the homothetic
tube shape set E, and the terminal cost coefficient P, lead
to the solution of the optimization problem in Eq. (22-26).
For simplicity, we directly present the feedback law Kk , the
terminal cost coefficient P, and the matrix coefficient M as
follows:

Kk =
[
1.8351 2.3578 0.2447 0.1046

]

FIGURE 5. The reference trajectory of the double lane change maneuver,
starting from X = 0 and ending at X = 100. The vehicle is tracking the
reference trajectory at the constant speed.

P =


329.78 185.08 28.79 −0.23
185.08 9793.49 39.14 43.67
28.89 39.14 7.53 −0.16
−0.23 43.67 −0.16 6.39



M =


0.0067 −0.0065 −0.0004 −0.0091
−0.0065 0.0122 0.0103 0.0003
−0.0004 0.0103 0.4861 −0.0716
−0.0091 0.0003 −0.0716 0.9137



IV. FRAMEWORK FOR ROBUST PERFORMANCE
COMPARISON
We construct a driving environment in the professional vehi-
cle simulation software CARSIM. The platform allows us to
adjust road conditions to simulate the actual road closely,
including adhesion coefficient, road elevation, and surface
roughness. We simulate a high-fidelity D-class SUV model
in the typical double lane change (DLC) maneuver. The
parameters for the reference path are provided in Table 2.
DLC is typically an emergency avoidance maneuver, shown
in Fig. 5. In the ideal condition, vehicle is controlled to track
the reference trajectory with slight deviation. However, the
uncertain disturbance would cause sharply increasing devia-
tion. The tracking offset would demonstrate the controller’s
ability to reject the disturbance and enhance the vehicle’s
lateral dynamics capacity to complete the DLC maneuver.
In this way, we can test the controllers when tracking this
DLC trajectory subjected to unknown disturbances. We per-
form various tests to evaluate the robustness of the controllers
against low road adhesion, measurement noise, and paramet-
ric uncertainties due to random road friction. We conduct
the Monte Carlo simulations in the last two tests. In order
to obtain a quantitative evaluation of the robust performance
of different controllers, we use the following measures to
compare the tracking performance according to the lateral
deviation of the CG of vehicle (XCG,YCG) to the target point
of path (X (t),Y (t)) as ey:
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1) maximum tracking error: max
t∈[0,T ]

|ey|

2) average cumulative tracking error: 1
T

∫ T
0 |ey|dt

In this section, the three tests are considered and run on these
controllers. These tests include:

1) Normal and low road adhesion coefficient:We simulate
the two road conditions, including the standard friction
coefficient as 0.85 and the low friction coefficient as
0.6.

2) Measurement noise: White Gaussian noise is added to
the state of the vehicle system to model measurement
noise. The vector [XCG,YCG, ψ, vx , vy, ω] is ’mea-
sured’; and the variance of each dimension of the error
process is selected as σi = ε̂. The value of ε is given in
Table 2.

3) Uncertain friction coefficient: The uncertain road fric-
tion condition simulates the typical situation on a
snow-ice track, where the surface condition constantly
changes for a normal distribution over [0.4 0.8] and
changes every 0.1 seconds.

In this paper, we compare the robustness of four controllers,
including the proposed control algorithm and robust control
techniques studied by other researchers. The first controller
utilizes the homothetic model predictive control algorithm
proposed in Section III. The second controller is a tube-
based model predictive control (TMPC), which calculates
the maximal robust positive invariant(MRPI) set for the con-
trol system when the external disturbances occur. Like the
HTMPC, TMPC also uses feedback control to compensate
for the error between the nominal and actual systems. The
third controller is a deterministic MPC controller, which is
not equipped with any robust control component. The last one
is based on a robust control algorithm, the Immersion and
Invariance Principle (I&I). The I&I controller is resilient to
parametric uncertainties and external disturbances. Further-
more, all simulations ran on a desktop computer (i5 2.8GHz,
8GB RAM) and were implemented in co-simulation platform
of Matlab and Carsim using the Simulink software together
with the Gurobi solver. The simulation scripts have been
made available at https://github.com/HuKangle/Trajectory-
tracking-for-vehicle.git.

V. RESULTS AND DISCUSSION
In this section, we present the results of the selected test cases.
We evaluate the controllers from the following aspects: the
standard deviation of lateral tracking errors, maximum lateral
tracking error, and the control action of different controllers.
Besides, the result of the homothetic factor α could illustrate
the mechanism of the proposed HTMPC algorithm.

A. NORMAL AND LOW ROAD ADHESION SCENARIO
The purpose of this test is to determine whether the con-
trollers are robust against low road coefficient. Fig. 6(a)
illustrates the tire cornering stiffness of the front tire and rear
tire in normal road friction and low road friction, respectively.
We utilize a recursive least square (RLS) algorithm to give

FIGURE 6. The tire cornering stiffness and the resulting homothetic factor
of the proposed controller in the normal and low road friction
coefficients, respectively: (a) the front and rear tire cornering stiffness
Cf ,Cr in the standard friction coefficient and low friction coefficient,
respectively; (b) the homothetic factor α in the normal friction coefficient
and the low friction coefficient.

FIGURE 7. The trajectory tracking error of the controllers in the scenario
of the standard and low road friction coefficient: (a) the tracking errors
under the condition of the standard friction coefficient; (b) the tracking
errors under the condition of the low friction coefficient.

a rough estimate of the tire cornering stiffness. From the
changing trend of the tire cornering stiffness in different road
friction, we can infer that the variations of both tire cornering
stiffness are associated with the varying friction coefficient.
As the vehicle begins a drastic steer around 3 seconds, the dif-
ference in the tire cornering stiffness increases significantly.
However, the difference gradually decreases as the vehicle
drives to the target lane. This changing trend suggests that
variations of tire cornering stiffness are closely related to the
state and input of the vehicle. The apparent deviation, there-
fore, leads to state-dependent uncertainties of tire cornering
stiffness that could result in a mismatch between the nominal
system and the actual system of the vehicle path tracking.

The proposed HTMPC controller can include this state-
dependent uncertainty in the control framework. On the one
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FIGURE 8. The trajectories of different controllers in the Monte-Carlo
simulation regarding the measurement noise: (a) MPC; (b) TMPC;
(c) HTMPC; (d) I&I.

hand, it constructs the min-max optimization problem based
on the extreme value of the cornering stiffness. This frame-
work enables the controller to produce a feasible solution to
the problem under the worst condition. On the other hand,
the controller utilizes the homothetic factor α to stretch the
‘‘tube’’ and bound the increasing disturbance caused by the
state-dependent uncertainties. Fig. 6(b) illustrates the homo-
thetic factor α at different road friction coefficients. The
homothetic factor α increases mildly for a slight decline of
tire cornering stiffness in the normal condition. In contrast,
the factor α increases rapidly for the dramatic reduction of
tire cornering stiffness in the low friction condition. The con-
straints of system state and input are tightened by an enlarged
‘‘tube’’ following Eq. (14-15), which could ensure the con-
straint satisfaction and the feasibility of the optimization
problem. On the contrary, the deterministic MPC controller
depends on the constant cornering stiffness of the tire, so the
controller cannot adapt to the changing tire cornering stiffness
caused by low road friction.

Fig. 7 illustrates the controllers’ tracking offset in the con-
ditions of the standard and low road adhesion, respectively.
All controllers produce similar tracking errors in normal con-
ditions. In the low adhesion condition, HTMPC and TMPC
controllers perform well in rejecting the disturbance so that
their tracking errors are more minor than that of deterministic
MPC controller. I&I controller produces the lowest tracking
error in the low road adhesion, suggesting its robustness to
deal with the uncertainty. The result of the low road adhesion
scenario illustrates the improvement of the HTMPC con-
troller relative to the deterministic MPC controller. Further,
we will compare the HTMPC controller with TMPC and
I&I controllers regarding their robustness to the unknown
disturbance and uncertainty in the following subsections.

B. MEASUREMENT NOISE
In this case, we test the robust performance of the controllers
due to sensor noise using Monte Carlo simulation. We eval-
uate the robustness of the controllers from two aspects: the

FIGURE 9. The comparison of the robustness of different controllers
using Monte Carlo simulation regarding the measurement noise:
(a) standard deviation of error; (b) Maximum error.

standard deviation of the tracking error and the maximum
error. The standard deviation of the tracking error can be used
to assess the robustness of the controllers through its ability
to quantify the distribution of the random trajectory. The
maximum position error indicates the controller’s ability to
suppress the most severe disturbance. This index is critical in
evasive maneuvers since minimized tracking errors are nec-
essary to guarantee collision avoidance. As the measurement
noise is unknown to the vehicle system, the controllers pro-
duce the randomly distributed trajectories, shown in Fig. 8.
Fig. 9(a) shows the standard deviation of the tracking errors
of all controllers. At the beginning of maneuver, HTMPC
exhibits an overshoot of the standard deviation of tracking
error, which demonstrates the drawbacks of HTMPC to sup-
press the noise at the beginning. Nonetheless, HTMPC could
adjust the homothetic factor αk to enhance the robustness to
the noise and then behaves similarly to other optimal con-
trollers. Besides, I&I controller produces a higher standard
deviation through the whole maneuver, indicating that the
I&I controller is highly influenced by noise. Meanwhile,
as shown in Fig. 9(b), the I&I controller causes more sig-
nificant fluctuations in the maximum tracking error. The I&I
controller behaves less robustly than model-based controllers
under noise. Fig. 9(b) also illustrates that MPC and TMPC
controllers display an increase in the maximum tracking devi-
ation between 4 s and 5 s corresponding to a rapidly changing
path. The vehicle violently steers to track this path segment,
intensifying the disturbance caused by measurement noise.
The TMPC controller achieves a slightly lower maximum
error than the MPC controllers, while the HTMPC con-
troller produces a much lower maximum tracking error than
both MPC and TMPC controllers. This difference indicates
that the HTMPC controller has a more effective and robust
mechanism to suppress the noise. Comparing both evaluation
metrics indicates that the proposed HTMPC could maintain
strong robustness in the presence of measurement noise.
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FIGURE 10. The trajectories of different controllers in the Monte-Carlo
analysis regarding the uncertain road friction coefficient: (a) MPC;
(b) TMPC; (c) HTMPC; (d) I&I.

FIGURE 11. The comparison of the robustness of different controllers
using Monte Carlo simulation regarding the uncertain road friction
coefficient: (a) standard deviation of error; (b) Maximum error.

C. UNCERTAIN ROAD ADHESION
In this case, we test the robustness of the controllers when the
tire-road adhesion is unpredictable and constantly changing.
As shown in Fig. 10, compared to the tight trajectory in the
scenario of measurement noise in Fig. 8, all controllers pro-
duce a wider distribution of tracking trajectory in the scenario
of random road friction. This difference indicates that random
road friction causes more disturbances than the measurement
noise. Because the random friction dramatically changes the
tire cornering stiffness, which magnifies the model mismatch
when the vehicle is conducting intense driving. Therefore,
we can observe a significant tracking deviation and tracking
overshoot in the second half of the trajectory.

We use the standard deviation and the maximum of the
tracking error derived from the trajectory in Fig. 10 to
evaluate the robustness of the controller. Fig. 11 shows all
controllers’ standard deviation and maximum tracking error,

FIGURE 12. The comparison of the control action of different controllers
in Monte Carlo simulations regarding the uncertain road friction
coefficient: (a) MPC; (b) TMPC; (c) HTMPC; (d) I&I.

respectively. Both indicators of all controllers follow the same
trend: two peaks corresponding to the maximum trajectory
deviation and overshoot. As shown in Fig. 11, the HTMPC
controller produces a similar level of both indicators com-
pared to MPC and TMPC controllers at the first peak. The
HTMPC controller provides the lowest level of both indica-
tors at the second peak. Meanwhile, MPC and TMPC con-
trollers exhibit a sharp increase in both indicators. Besides,
compared with the I&I controller, the HTMPC controller
produces a higher peak at first and then a similar peak of
both indicators. Different results in Fig. 11 indicate that the
HTMPC controller is as robust as the I&I controller, while
both controllers are more robust than the MPC and TMPC
controllers.

The advantage of the HTMPC controller is twofold:
(a) optimizing the tube geometry according to the uncer-
tainty; (b) adopting the corrective control action to deal with
the model mismatch. As the HTMPC controller counteracts
the deteriorating uncertainty at the first peak, the controller
enlarges the tube to tighten the constraints and provides an
aggressive control action. With the uncertainty decreasing
afterward, the tube is resized to relax the constraints, and the
control action is decreased subsequently with a less corrective
component. In this way, as shown in Fig. 12(c), the control
action of the HTMPC controller increases near the limit and
shrinks to a low level after 4 seconds. Although the control
actions of the other controllers are also aggressive close to
4 seconds,MPC and TMPC controllers still provide an unnec-
essary substantial control action, as shown in Fig. 12(a-b).
Therefore, MPC and TMPC cause the prominent trajectory
overshoot because of this improper control input, irrespective
of the decreasing disturbance.

D. AVERAGE CUMULATIVE-ERROR-BASED SCORING
In this subsection, we displays the scores of different algo-
rithms in each scenarios. The mean of cumulative tracking
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TABLE 3. Scores of all controllers on the average cumulative tracking
error.

errors in the corresponding simulation scenarios determines
the score. A sequence of the average of all cumulative track-
ing errors constitutes the vector Ccomb. The score si of the
controllers is defined by: si =

Ccumu,i
min(Ccomb)

. In this manner, for

each control algorithm, the controller with the lowest error is
given a score of 1; the lowest errors normalize the errors of
other controllers.

Table.3 presents the score of controllers in three scenarios.
The scores of the HTMPC and TMPC are superior to MPC in
all scenarios. Both robust controllers employ corrective feed-
back control to resist the disturbances. Whereas TMPC still
performs behind the HTMPC in two scenarios of parametric
uncertainty. The reason is that TMPC relies on the predefined
fixed tube so that TMPC cannot bind the disturbance out
of the preset range. HTMPC controller performs better than
the I&I control in the case of measurement noise, while
both controllers present similar robustness in other cases.
TheHTMPC controller has strong robustness tomeasurement
noise, while measurement noise badly misleads the I&I con-
troller. Based on the results, we conclude that the HTMPC
provides comprehensive robustness under various scenarios.

VI. CONCLUSION
In this work, a homothetic tube-based MPC (HTMPC) strat-
egy has been developed and validated on a front-steer vehicle
tracking a double-lane-change trajectory. The proposed strat-
egy aims to compensate for the model mismatch and improve
the tracking system’s robust performance. We develop a
dynamical path tracking model combining the lateral dynam-
ics of the vehicle and simplified tire dynamics considering the
uncertainty of tire cornering stiffness. The HTMPC scheme
ensures the robustness of the tracking system under worst-
case uncertainty by optimizing an online min-max problem
that minimizes the upper bound of the cost function for
all realizations of extreme uncertainty. Also, we use some
effective methods to complement the strategy, including the
guaranteed-cost control method and the homothetic tube
method. The former decides the terminal cost weighting
matrix and the local control law. The latter chooses an approx-
imate tube based on the homothetic factor evolution equation
considering the bound of state-dependent disturbances.

The Monte-Carlo simulation results are analyzed based on
specific methodologies and metrics to evaluate the robustness
of the proposed strategy. Based on the qualitative analysis,

the HTMPC controller outperforms the I&I controller in
the presence of measurement noise, and it provides better
robustness under parametric uncertainty compared to MPC
and TMPC. In the scenario of measurement noise, HTMPC
produces the lowest cumulative tracking errors; likewise,
HTMPC achieves a similar level of tracking error as I&I con-
sidering random road friction. Therefore, HTMPC controller
offers a higher level of robustness than deterministic MPC
and TMPC controllers and is comparable to the I&I control.

The advantage of the HTMPC is to employ the homo-
thetic factor to dynamically resize the tube to reduce the
conservative performance of TMPC that depends on the fixed
tube. Nevertheless, the HTMPC algorithm only considers the
extreme realizations of the parametric uncertainty. To obtain
accurate predictions of the bounds of varying parameters,
HTMPC could integrate the Dual Extended Kalman Filter,
widely used for vehicle state and parameter estimation.
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