
Received 8 September 2022, accepted 18 December 2022, date of publication 21 December 2022,
date of current version 29 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3231449

Exploring Functionality and Efficiency of Feature
Model Product Configuration Solutions
CRISTIAN VIDAL-SILVA 1, JESENNIA CARDENAS-COBO 2, AURORA SÁNCHEZ ORTIZ 3,
VANNESSA DUARTE 4, AND MIGUEL TUPAC-YUPANQUI 5
1Escuela de Ingeniería en Desarrollo de Videojuegos y Realidad Virtual, Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile
2Facultad de Ciencias e Ingenierías, Universidad Estatal de Milagro, Milagro 091050, Ecuador
3Departamento de Administración, Universidad Católica del Norte, Antofagasta, Chile
4Escuela de Ciencias Empresariales, Universidad Católica del Norte, Coquimbo 1780000, Chile
5EAP Ingeniería de Sistemas e Informática, Universidad Continental, Huancayo 12001, Peru

Corresponding author: Cristian Vidal-Silva (cvidal@utalca.cl)

ABSTRACT Variability-intensive systems are software systems in which variability management is a core
activity. Examples of variability-intensive systems are the web content management system Drupal, the
Linux kernel, and the Linux Debian distributions. Feature models have been considered valuable tools for
modeling variability-intensive systems for more than 30 years, and their automated analysis is a thriving,
motivating, and active research area. In 2010, Benavides et al. published the survey results of the first 20 years
of Automated Analysis of Feature Model AAFM solutions. At that time, mainly sequential computing
solutions exist. The product configuration of feature models represents a relevant operation demanding
efficient automated solutions, which are now possible for assisting the feature model product configuration,
such as minimal conflict detection, diagnosis, and product completion. The two main goals of this article
are the following: First, to review the fundaments of product configuration of feature models. Second,
to assess the functionality and computing performance of commonly used AAFM solutions for minimal
conflict detection, minimal diagnosis, and the minimal completion of partial product configuration and the
approaches. This article summarizes research opportunities for developing new and more efficient solutions
for conflict detection, diagnosis, and product completion of large-scale configurations.

INDEX TERMS Feature model, product configuration, AAFM solutions, conflict detection, diagnosis,
product completion.

I. INTRODUCTION
Variability-Intensive Systems (VIS) are software systems
in which variability management and the product con-
figuration are core activity [1], [2]. Current examples of
variability-intensive systems are the Linux kernel, the Linux
Debian distributions, and the Android ecosystem.

Product configuration is the activity of designing a product
according to a set of requirements and configuration rules [1].
With further details, product configuration systems need
the knowledge base regarding the set of components and
combination rules and the customers’ requirements for
selecting product components (configuration) that match
their preferences [3]. A valid product configuration only

The associate editor coordinating the review of this manuscript and
approving it for publication was P. K. Gupta.

depends on the selected features in a consistent knowledge
base scenario; that is, each valid product results from the
composition of component type instances that respect the
set of defined combination rules [4]. Figure 1 shows a
motivating scenario of product configuration for updating
the set of installed packages in the Ubuntu Xenial operating
system [5]. In this example, all the packages for installing and
their dependencies represent the consistent knowledge base,
and already installed and selected for installing packages
correspond to the desired product requirements. Hence, after
selecting a package for installation, such as a dropbox plugin,
that package requires installing additional packages to respect
dependency rules.

Product configuration systems require systematically man-
aging all features and composition rules to analyze the feature

134318 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-1600-3447
https://orcid.org/0000-0001-8580-8743
https://orcid.org/0000-0001-8131-1780
https://orcid.org/0000-0001-5399-6620
https://orcid.org/0000-0002-9158-136X

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

FIGURE 1. Example of the packages configuration in the Ubuntu Xenial OS [1].

selection for desired products. Variability Models (VMs)
permit describing the different relationships and configu-
ration options for the variability management of software
systems in software engineering. Different VMs exist, such
as Feature Models (FMs) and Orthogonal Variability Models
(OVMs). FMs permit representing functional commonalities
and variabilities of software systems [6], whereas OVMs
permit describing the variant parts of the base model of
systems [7]. Kang et al. [8] introduced FMs as part of the
FODA (Feature-Oriented Domain Analysis) method, and
they became the most used VM in the SPL community
afterwards.

An FM defines a set of features and their relationships for
defining valid feature combinations or products, that is, sets
of features that respect the FM’s defined relationships. Such
as Apel et al. [9] remark, FM permits representing all the
products of an SPL. An FM organizes in a tree-like structure
that starts at the root feature that identifies the SPL and from
which tree branches of features emerge. We can then define
a product in terms of the set of features that compose it, and
each feature describes an increment of functionality in the
products containing that feature [10]. An FM supports binary
and set relationships between parent and child features and
cross-tree relationships to symbolize dependencies between
features. Figure 2 shows an FM for describing an operating
system SPL and a valid configuration of it (the grey-coloured
features). Figure 3 shows the same FM along with a non-valid
configuration of it.

A. PROBLEM STATEMENT, GOAL AND CONTRIBUTIONS
Product configuration permits assisting the mass customiza-
tion production [4]. Variability-Intensive Systems (VIS)
follow mass customization in software engineering by
addressing variability in the software development process
phases. Because VIS users expect that software products
can adapt to their needs, the management of the users’
requirements variability in VIS represents an important
activity for those systems [11]. Research works concerning
managing the variability of VIS already exist in the literature,
such as in the Linux operating system [12], [13], the
Debian-based distributions of Linux [14], with the Android
mobile system [15], and with the content management
framework Drupal [16]. Those works use variability models
for representing and analyzing VIS.

Software Product Line (SPL) is a case of VIS that sys-
tematically manages commonalities and variabilities for the
configuration of software products [9]. SPL defines domain
engineering as analyzing and developing reusable common
and variable functionalities (features) in the products’ domain
and applying engineering to produce customized products
regarding user feature selection. Defining valid configuration
in SPL is a complex task for the growing complexity of
the configuration knowledge base [15]. When the users’
feature selection conflicts with consistent configuration
knowledge bases, identifying those issues to solve them is
necessary. Such as Benavides et al. [6] remark, the manual
analysis of variability models, such as FMs, are error-prone

VOLUME 10, 2022 134319

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

FIGURE 2. Feature model with a valid configuration example [1].

and time-consuming tasks mainly for their increasing size.
For example, variability and configuration models for
Debian-based distributions describe around twenty-eight
thousand variability points [14], and manually analyzing
those models without mistakes is impractical. Mechanisms
for the Automated Analysis of Feature Models (AAFM) [6]
are a solution to face those issues.

A set of features in an FM is called a configuration,
and each software variant in an FM identifies a valid
configuration or product [17]. FMs permit organizing the
configuration space to facilitate the construction of soft-
ware variants by describing configuration options using
interdependent features or functionalities. Hence, AAFM
operations for assisting the obtention of conflict-free FMs and
configurations are high-value tasks. Nonetheless, existing
Automated Analysis of Feature Model operations usually
follow a sequential computing approach and cannot scale
to work on large-scale and high-variability models. Various
algorithms and solutions applicable for the AAFM exist in
the literature, such as QuickXPlain [18], FastDiag [19] to
detect a minimal conflict and minimal-preferred diagnosis
in a set of constraints in conflict, respectively, and solutions
for the completion of partial products. Concerning the
completion of products, defining and accomplishing all
users’ requirements for configuring large-scale systems is
a tedious and complex task, and non-efficient solutions
exist to assist in completing partial configurations. Those
solutions cannot use additional computing resources for
their sequential computing nature, such as multiple cores or
network technologies for parallel and distributed computing.
Next, we describe those operations in more detail.
• Minimal conflict set. For a consistent FM that we
can define as a set of constraints, a non-consistent
configuration violates those constraints. The features
model of Figure 2 exemplifies a consistent configura-
tion; that is, this configuration does not violate the FM
constraints. For that FM and configuration, if feature

gnuchess were also selected, the resulting configuration
would be non-consistent because a conflict exists
between features gnuchess and glchess. In this example,
{gnuchess, glchess} is a Minimal Conflict Set (MCS)
because we cannot find a subset of it that results being a
conflict set. Such as [19] remark, we can solve an MCS
by merely deleting one of its constraints. After finding
and solving all the MCS instances, the configuration is
valid (conflicts-free).
The functioning of QuickXPlain uses the consistency
check over constraint sets, a costly action, as a primary
step to achieve its main purpose: to identify a preferred
MCS. The QuickXPlain algorithm efficiently finds
preferred MCS regarding the order of the constraints
definition. The application of QuickXPlain for the
conflict analysis of large-scale FMs such as the Android
mobile operating system [15], the Linux kernel [12], and
the Linux distributions like Debian [14] are examples
of computationally expensive tasks. That occurs mainly
for the sequential nature of QuickXPlain and the high
demand for computing resources such as the execution
time and memory space to work with large-scale
models.

• Minimal diagnosis. Given the constraints of a consistent
FM and a non-consistent configuration that violates the
FM constraints, a diagnosis is the set of constraints that
permit a consistent configuration after removing those
constraints. For the consistent configuration of Figure 3
after selecting the feature gnuchess, we know that
{gnuchess, glchess} is a Minimal Conflict Set (MCS).
Then, either deleting gnuchess or glchess, we can obtain
a valid configuration (conflict-free); that is, gnuchess
and glchess are examples of diagnosis.
The functioning of FastDiag uses the consistency check
over constraint sets, a costly action, as a primary step
to achieve its main purpose: to identify a preferred and
minimal diagnosis. The FastDiag algorithm efficiently

134320 VOLUME 10, 2022

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

FIGURE 3. Feature model with a non-valid configuration example [1].

finds a preferred-minimal diagnosis regarding the order
of the constraints definition. The application of this
algorithm for the diagnosis analysis of large-scale FMs
such as the Android mobile operating system [15],
the Linux kernel [12], and distributions of Linux like
Debian [14] result in computationally expensive tasks.
That occurs mainly for the sequential nature of FastDiag
and the high demand for computing resources such as the
execution time and memory space to work with large-
scale models.

• Minimal completion of products. Achieving valid con-
figurations in large-scale FMs is a time-demanding and
complex task. Currently, reasoning tools usually part of
the AAFM process permit solving that issue.

Developing FM product configurations without conflicts
requires identifying each conflict and the necessary steps
to solve or diagnose them. Hence, conflict detection and
diagnosis are essential operations for getting conflict-free
models. Completing a product configuration of FM by
hand also represents an error-prone and time-consuming
task. Solutions for those tasks to work efficiently on
large-scale models represent high-value tasks nowadays.
Because AAFM solutions for the conflict detection, diagno-
sis, and completion of products already exist, the main goal
of this article is to review the functionality and computing
cost of existing AAFM solutions for assisting the product
configuration on large-scale models. Benavides et al. [6] in
2010 presented a Systematic Literature Review (SLR) about
FM and AAFM operations. Different AAFM proposals exist
with the use of various formal approaches such as CSP, SAT,
and BDD solvers [7]. The main contributions of this article
are:

• To analyze the functionality and computing performance
of commonly usedAAFM solutions for minimal conflict
detection, minimal diagnosis, and the minimal comple-
tion of partial product configuration.

• To describe a computing approach that can improve the
performance of AAFM solutions.

This article summarizes PhD research studies of the first
author to highlights research opportunities for developing
new and more efficient solutions for the conflict detection,
diagnosis and product completion of large-scale configu-
rations. The rest of this paper is organized as follows.
Section II describes and exemplifies the use of FMs.
Section III describe the Automated Analysis of Feature
Model (AAFM) and the product configuration processes.
That section also details the conflict detection, diagnosis
and product completion operations and existing solutions for
those purposes. Section IV presents practical results of the
analyzed solutions for the product configuration and partial
completion for a test set. Section VI details a few practical
issues of our research. The paper concludes by summarizing
the benefits of our academic experience and detailing the
motivation for continuing with it in the current and future
years.

II. BACKGROUND
A feature model is an information model that permits
representing the variant flexibility and maintainability for
systems’ variability, and configuration [20]. A feature is an
abstraction of a prominent or distinctive user-visible aspect,
requirement, quality, or functional characteristic of a family
of software systems [6], [21], [22], that is, each feature
constitutes a user-visible configuration option of the problem
domain [23]. An FM is a tree-like structure commonly used
to represent common and variable functionalities (features)
and their relationships to the configuration of products in a
Software Product Line (SPL) [8]. Kang et al. [8] introduced
FMs in the FODA (Feature-Oriented Domain Analysis)
method, and they are the ‘‘de facto’’ standard for describing
common and variable features in system families [24], [25]
regardless of their size because FMs facilitate the software
reuse [26].

VOLUME 10, 2022 134321

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

An FM starts with the root feature. Each successively
deeper level in the FM corresponds to a more fine-grained
configuration option for product-line variants. Features are
nodes of that tree, and their relationships are the edges
(relationships and constraints) between features [27]. The
relationships among features are of two types: structural
relationships between a parent and its child features and
cross-tree or cross-hierarchy constraints [4], [6]. FMs repre-
sent an effective communication medium between customers
and developers of SPLs [28]. Such as the work of Benavides
et al. describe [6], different FM dialects exist nowadays such
as basic FMs models [4], [10], cardinality based FMs [29],
[30] and extended FMs using feature attributes [31], [32].

1) BASIC FEATURE MODELS
A basic FM support two types of relationships between
features: structural relationships between parents and their
child features and cross-tree constraints [4], [6]. Thus, each
non-root feature has a parent feature and is either part of a
group or not [33]. The next lines describe each type of FM
relationship.
• Structural relationships between parents and their child
features:
– Mandatory: A mandatory relationship states that a

parent feature requires its child. The top-left figure
of Table 1 shows the graphic representation of a
mandatory relationship between a parent feature
and a child feature.

– Optional: An optional relationship states that a child
feature may be or not be present (its parent feature
does not require it). The top-right figure of Table 1
illustrates an optional relationship between a parent
feature and a child feature.

– Set: A defined number of features of a set of
children’s features (sub-features) are selectable for
products when their parent is selected. A cardinality
relation [x, y] gives this number of features for x
<= y and y<= number of child features in the set.
Two cases are XOR (alternative) and Or (inclusive)
sets.
∗ Inclusive Or: At least one child’s features must

be present. The cardinality relation is [1, n]
in this case (n corresponds to the number of
child features). The middle-left figure of Table 1
illustrates an inclusive relationship between a
parent feature and a set of children’s features.
The middle-right figure of Table 1 illustrates an
alternative relationship between a parent feature
and a set of children’s features.

∗ Alternative XOR: Only one child feature must
be present. The associated cardinality relation is
[1, 1] in this case.

• Cross-Tree Constraints.
– Requires: For two features A and B, if A requires

B, then A’s presence implies the presence of B
in a product. The bottom-left figure of Table 1

TABLE 1. Feature model relations.

illustrates a required cross-tree constraint relation-
ship between a source feature A and a target
feature B.

– Excludes: For two features, A and B, if A excludes
B, then A and B cannot be present in the same prod-
uct. The bottom-right figure of Table 1 illustrates an
excludes cross-tree constraint relationship between
features A and B.

Such as Benavides et al. [6] indicate that more complex
cross-tree relationships exist in the literature to define
constraints in the form of generic propositional formulas such
as ‘‘A and not B implies C’’.

Figure 1 illustrates a valid configuration for the FM of
the Debian operating system: nodes represent the features of
the model (i.e., selectable packages to install) and edges are
the constraints between features (e.g., packages that require
the installation of other packages). In this example, we can
observe that packages texteditor, bash and gui are mandatory
(i.e., they must be always included in any Debian configu-
ration) whereas the package games is optional. We can also
observed that textditor requires at least one of the packages vi,
gedit or openoffice. Likewise, feature gui requires at least one
of gnome or kde. In the case of the package games, we observe
that it requires either gnuchess or glchess, but only one, non
both. Similarly, the package openoffice.org-1 requires either
version openoffice.org-1.1 or openoffice.org-1.2. Finally,
we observe that openoffice.org-1 strictly requires the instal-
lation of gnome. Hence, the selection of features {Debian,
texteditor, vi, gedit, openoffice, openoffice-1, bash, gui,
gnome, kde, game, glchess} exemplifies a valid product.
Figure 2 illustrates a non-valid configuration for the FM
of the Debian operating system: the selection of features

134322 VOLUME 10, 2022

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

{Debian, texteditor, vi, gedit, openoffice, openoffice-1, bash,
gui, kde, game, gnuchess, glchess} exemplifies a non-valid
configuration that does not respect the requires cross-tree
constraint between the option openoffice.org-1 and gnome
(only the first option is selected), and gnuchess and glchess
are selected for the option game when only one feature must
be selected (game represents an alternative set of features).
The application and analysis of FMs is a common approach

to performing analysis tasks. Benavides et al. [6] mention
that the manual analysis of FMs is a time-demanding and
error-prone activity, and the Automated Analysis of Feature
Models (AAFM) process permits solving those issues. The
AAFM process starts by translating the FM and additional
information, such as global restrictions, into a logical set
of constraints. Afterwards, queries can proceed with the
translated model using an off-the-shelf solver and other
tools such as programming solutions, thus obtaining analysis
results [34]. Figure 4 illustrates the AAFM process.

Such as Galindo et al. [34] summarize, six different
variability facets exist where the AAFM is currently applied:
i) product configuration and derivation; ii) testing and
evolution; iii) reverse engineering; iv) multi-model variability-
analysis; v) variability modelling, and; vi) variability-
intensive systems. The first AAFM application results in the
most traditional usage of automated analysis mechanisms.
This thesis aims to contribute to it.

Developing FM and product configurations without errors
or conflicts requires identifying each conflict and the
necessary steps to solve or diagnose them. Hence, conflict
detection and diagnosis are operations needed for getting
conflicts-free models. Completing a product configuration
of FM by hand also represents an error-prone and time-
consuming task. Solutions for those tasks to work efficiently
on large-scale models represent high-value tasks nowadays.
AAFM solutions for the conflict detection, diagnosis, and
completion of products already exist.

III. AUTOMATED ANALYSIS OF VARIABILITY-INTENSIVE
SYSTEMS
The development process of a Variability Intensive System
(VIS) considers identifying and representing the system’s
components and relationships among those components as
two core activities. The application and analysis of FMs
is a common approach to performing those analysis tasks.
Benavides et al. [6] mention that the manual analysis of
FMs is a time-demanding and error-prone activity, and the
Automated Analysis of Feature Models (AAFM) process
permits solving those issues. The AAFM process starts by
translating the FM and additional information, such as global
restrictions, into a logical set of constraints. Afterwards,
queries can proceed with the translated model using an
off-the-shelf solver and other tools such as programming
solutions, thus obtaining analysis results [34].

Such as Galindo et al. [34] summarize, six different
variability facets exist where the AAFM is currently applied:
i) product configuration and derivation; ii) testing and

evolution; iii) reverse engineering; iv) multi-model variability-
analysis; v) variability modelling, and; vi) variability-
intensive systems. The first AAFM application results in the
most traditional usage of automated analysis mechanisms.
This thesis aims to contribute to it.

Developing FM and product configurations without errors
or conflicts requires identifying each conflict and the
necessary steps to solve or diagnose them. Hence, conflict
detection and diagnosis are operations needed for getting
conflicts-free models. Completing a product configuration
of FM by hand also represents an error-prone and time-
consuming task. Solutions for those tasks to work efficiently
on large-scale models represent high-value tasks nowadays.
AAFM solutions for the conflict detection, diagnosis, and
completion of products already exist. The next sections
describe an existing algorithm for detectingMinimal Conflict
Sets (MCS), a current algorithm for detecting Minimal
Diagnosis (MD), and traditional approaches to complete
product configurations.

2) PRODUCT CONFIGURATION SOLUTIONS
a: MINIMAL CONFLICT SETS (MCS) DETECTION
An MCS of a system represents a minimal set of constraints
in conflict. For definition 1 [4], it is necessary to identify the
set of constraints B that represents a consistent background
knowledge and the set of constraints C that is the suspected
subject of a conflict search.
Definition 1: A set AC = B ∪ C = {c1, c2, . . . , cn}

represents the set of all constraints in the knowledge base;
that is, AC is the union of the consistent knowledge base B
and the suspicious set of constraints subject of conflict search
C. Then, a conflict CS = {ca, cb, . . . , cz} is a non-empty and
non-consistent subset of C. CS is minimal if¬∃ CS ′ such that
CS ′ ⊂ CS CS is preferred if the order of its constraints follow
a defined ranking of preferences.

For the FM of Figure 3, concerning definition 1, the
consistent base knowledge B is a formal definition of the FM,
that is, a logic representation of the set of features and their
relationships. We can detect conflict in the configuration of
products for that model. For the product configuration C =
{Debian, texteditor, bash, gui, game, vi, gedit, openoffice.org-
1, gnome, kde, glchess, openoffice.org-1}, the resulting
minimal conflict set is {} because C represents a consistent
configuration. For the product configuration C = {Debian,
texteditor, bash, gui, game, vi, gedit, openoffice.org-1, kde,
gnuchess, glchess, openoffice.org-1}, the resulting preferred
minimal conflict set is {openoffice.org-1, ¬gnome}}. The
next lines describe the QuickXPlain algorithm for efficiently
detecting preferred MCS.

QuickXPlain [18] is an efficient approach to determining
a minimal conflict set. QuickXPlain receives C as the set
of suspicious constraints with conflict and B as consistent
constraints of the background knowledge. Then, a conflict
does not exist if B ∪ C is consistent or C is empty.
On the other hand, QuickXPlain proceeds by returning the
results of the function QX . QX receives the parameters C

VOLUME 10, 2022 134323

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

FIGURE 4. Automated Analysis of Feature Models (AAFM) process [1].

Algorithm 1 QUICKXPLAIN(C,B) : CS
1: if CONSISTENT(B ∪ C) then
2: return(’no conflict’)
3: else if C = ∅ then
4: return(∅)
5: else
6: return(QX(C,B,∅))
7: end if

Algorithm 2 QX(C = {c1..cm},B,Bδ) : CS
1: if Bδ 6= ∅ and INCONSISTENT(B) then
2: return(∅)
3: end if
4: if C = {cα} then
5: return({cα})
6: end if
7: k = bm2 c
8: Ca← c1 . . . ck ;Cb← ck+1 . . . cm;
9: 12← QX(Ca,B ∪ Cb,Cb);

10: 11← QX(Cb,B ∪12,12);
11: return(11 ∪12)

(initially the complete set of constraints with conflict), B
(initially the knowledge base), and Bδ (initially empty) that
represents the last items added to B. Function QX follows a
divide-and-conquer approach for conflict detection. Hence,
Bδ corresponds to the set of constraints added for reviewing
the consistency of the knowledge base, and C is the set of
constraints to continue analyzing if the currentB is consistent.
Algorithms 1 and 2 show the pseudo-code of the functions of
QuickXPlain.

QuickXPlain permits determining one MCS per compu-
tation. Felfernig et al. [4] indicate that we need to update
adequately or delete one of the constraints of an MCS for

solving it, and, if the model is non-consistent yet, to apply
QuickXPlain and repeat the process. When the resulting
model is consistent, the updated constraints represent a
diagnosis or solution for the model. Table 2 shows the
tracking steps of a QuickXPlain application for the FM
configuration example of Figure 3. Column B represents
the consistent constraints of the base knowledge for the FM
definition, and column C is the set of selected features. The
final result represents a minimal conflict that we can solve
by adequately updating one of its constraints. In this case,
a solution is to update the state of ¬gnome.

3) MINIMAL DIAGNOSIS DETECTION
Identifying and solving conflicts one by one is necessary to
obtain a conflict-free model: we need to identify a conflict
first, adapt (update or eliminate) constraints of that conflict
for its solution, and repeat this process until no more conflict
exists, that is, until reaching a consistent model. The set of
all the adapted constraints for getting a conflict-free model
represents a diagnosis. Definition 2 formally defines the term
diagnosis [4].
Definition 2: A set AC = {c1, c2, . . . , cn} represents the

set of all constraints in the problem for diagnosis; that is, AC
is the union of the consistent base knowledge B and the set of
constraints subject of conflict search C: AC = B ∪ C. Then,
a diagnosis is a set of constraints1 ⊆ C such that (B ∪ C −
1) results in a consistent or conflict-free set. 1 is minimal if
¬∃ 1′ such that 1′ ⊂ 1. A minimal diagnosis is of minimal
cardinality if there does not exist a minimal diagnosis1′ such
as |1′| < |1|.
A minimal diagnosis for the FM configuration of Figure 3

has to consider solutions for each conflict. Hence, this
example contains two diagnosis options. To get a conflict-
free model, the user has to solve each diagnosis. Cases
with multiple diagnosis instances exist, and determining

134324 VOLUME 10, 2022

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

TABLE 2. QUICKXPLAIN execution tracking on configuration example of Figure 3.

Algorithm 3 FASTDIAG(C,AC) : diagnosis 1
1: if C = ∅ or INCONSISTENT(AC − C) then
2: return(∅)
3: else
4: return(FD(∅,C,AC))
5: end if

all the diagnoses can be computationally expensive. Model
constraints can be in relevant order for obtaining a preferred
diagnosis, then obtaining all the diagnoses to look for the
preferred one is a time-demanding and lost time activity since
solving one diagnosis is enough for a conflict-free model.
The next lines describe the FastDiag algorithm to determine
a minimal preferred diagnosis.

FastDiag algorithm permits determining a preferred
or leading diagnosis concerning a previously defined
relevance order of constraints in the knowledge base.
FastDiag follows the algorithmic structure and reason-
ing of QuickXPlain for a different purpose: diagno-
sis detection without the calculation of MCS instances.
Hence, FastDiag is based on conflict-independent search

Algorithm 4 FD(D,C = {c1..cq},AC) : diagnosis 1
1: if D 6= ∅ and CONSISTENT(AC) then
2: return(∅)
3: end if
4: if |C| = 1 then
5: return(C)
6: end if
7: k = b q2c
8: Ca← c1 . . . ck ; Cb← ck+1 . . . cq;
9: 11← FD(Cb,Ca,AC − Cb);
10: 12← FD(11,Cb,AC −11);
11: return(11 ∪12)

strategies [35]. Algorithms 3 and 4 give the pseudo-code of
FastDiag functions.

Assuming that conflicts to diagnosis exist, If the conflict
setC is non-empty, andAC withoutC is consistent, algorithm
FastDiag calls and waits for the recursive results algorithm
FD. FD first reviews the consistency of AC as a source
of diagnosis. Because always AC contains C and does not
contain D, S is the constraints set with conflicts, and D is

VOLUME 10, 2022 134325

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

TABLE 3. Tracking of the FASTDIAG execution of configuration example of Figure 5 (part 1).

empty; when D is not empty, and AC is consistent, D is the
source of conflict. When that base case is not accomplished,
either because D is empty (such as at the beginning) or AC
is consistent (this is only possible after removing elements
from AC−D represents the last removed elements from AC),
then AC is still in conflict, and C is a source of conflict.
Then, FD reviews the size of C since if it were minimal
(size 1), then C is the diagnosis. If C is not of minimal
size, FD proceeds to partition C in the sets C1 and C2,
of which the last one corresponds to the most preferred
partition. Afterwards, FD calls FD overC2,C1 andAC−C2 to
review if C2 is the diagnosis source, and if not so, to continue
reviewing C1 with that goal. Tables 3 and 4 show the tracking
execution of FastDiag on the FM product configuration of
Figure 3. The diagnosis corresponds to the solution of each

MCS, in this case, {glchess, ¬gnome}. In column AC , the
symbol 0 represents the consistent knowledge base of the
FM.

A. PRODUCT COMPLETION
Completing partial configurations consists of finding the
non-selected components necessary to update that per-
mit evolving the partial setting into a complete prod-
uct configuration. In FM configurations, each feature is
decided to be either present or absent in the resulting
products, whereas in partial configurations, some features
are undecided. The completion of partial configurations is
a non-trivial and computationally expensive task mainly
for the FM constraints [36], a process that is usually
computationally more expensive in large-scale FMs. Product

134326 VOLUME 10, 2022

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

TABLE 4. Tracking of the FASTDIAG execution of configuration example of Figure 3 (part 2).

configurations can result in misconfigurations (i.e., non-
valid configurations) which can impact the system avail-
ability [37]. Unavailability of the Facebook platform [38],
service-level problems of Google [39], and invalid opera-
tion of Hadoop clusters [40] are known misconfiguration
examples.

A usual and efficient solution for the completion of partial
products is the application of reasoning tools such as CSP and
SAT solvers for obtaining a set of necessary features for the
completion of the partial configuration. Those solutions can
be minimal, but they do not always represent the preferred
configuration [41].

Figure 5 illustrates a conflict-free partial product and
features for a FM minimal completion. The partial con-
figuration presents the selection of four features, {Debian,
texteditor , bash, gui} (features in background color grey).
Given the rest of the model’s features (background colour
white and background colour green), features in background
colour green represent a preferred minimal completion; that
is, the set of features necessary for obtaining a preferred
and minimal completion of the partial configuration. That
completion per default takes the typographic order of each
non-selected feature as the order of preference.

In summary, QuickXPlain, FastDiag, and solvers for
completing the partial product are efficient algorithm and tool
solutions for identifying MCS, minimal diagnosis and the
completion of partial products. Even though they are efficient
sequential-computing solutions, such as Vidal et al. [2]
highlight, they are not adequate to workwith large-scale FMs.
The next section reviews the computing performance of those
solutions.

IV. AAFM PRODUCT CONFIGURATION SOLUTIONS IN
PRACTICE
Next, we summarize experiments to evaluate the computing
performance of QuickXPlain, FastDiag and the product
completion using a CSP tool.

QX Complexity: Assuming a splitting k = bm2 c of C =
{c1..cm}, the worst-case time complexity of QuickXPlain
in terms of the number of consistency checks needed for
calculating one minimal conflict is 2k × log2(mk)+ 2k where
k is the minimal conflict set size and m represents the
underlying number of constraints [18]. We should optimize
the computing performance of consistency checks becuase
they are the most time-consuming part of conflict detection.
FD Complexity: Assuming a splitting d = b n2c of S =
{s1..sn}, the worst-case time complexity of FD in terms of
the number of consistency checks needed for calculating one
minimal diagnosis is 2d×log2(nd)+2d where d is theminimal
diagnosis set size and n represents the underlying number of
constraints [35]. The runtime performance of the underlying
algorithmsmust be optimized because consistency checks are
the most time-consuming part of diagnosis detection.
Execution Environment: For QuickXPlain and FastDiag,

all experiments reported were conducted using an AMD
EPYC 7571 machine equipped with a CPU with eight
cores and 2.60GHz. Each core maintained up to 2 threads,
which means that 16 cores could be simulated using hyper-
threading. It had 64 GB of RAM.
Characteristics of the Knowledge Bases: For evaluation

purposes of QuickXPlain and FastDiag, we generated
configuration knowledge bases (feature models) from the
publicly available Betty tool suite [42], which allows for sys-

VOLUME 10, 2022 134327

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

FIGURE 5. Example of a partial product and features for completion in a Debian
derivative example [1].

tematic testing of different consistency checking and conflict
detection approaches for knowledge bases. The knowledge
base instances (represented as background knowledge B in
QuickXPlain and AC in FastDiag) that were selected for the
purpose of our evaluation had around 1.000 binary variables
(derived from the 1.000 features used) and also varied in
terms of the number of included constraints depending on the
different feature relationships and the total of derived clauses
(around 1,600 SAT clauses in the generated CNF files).
Based on these knowledge bases, we randomly generated
requirements (ci ∈ C) that covered 10% of the variables
included in the knowledge base. These requirements have
been generated so that conflict sets of different cardinalities
could be analyzed. We also shuffled C to get different orders
because this can affect the number of consistency checks
needed.
Completion of a Feature Model Partial Configuration

Complexity: The completion of a FM partial configuration is
the problem of how to extend that partial configuration into a
consistent configuration of the FM. Figure 6 illustrates a par-
tial configuration (grey features {Debian} represent selected
features), and the Figure 7 shows the complete configuration
by the preferred minimal solution (grey features {Debian,
texteditor, openoffice.org-1, openoffice.org-1.2, bash, gui,
gnome}).

A. QuickXPlain RESULTS
Table 5 presents a summary of the results of the QuickXPlain
performance analysis to identify a preferred minimal conflict
of product configurations. In this table, each entry represents
the average runtime in msec for all knowledge bases with
a preferred conflict set of cardinality n (1–16). We can
appreciate that the time increases when more conflicts exist
in the analyzed product configurations. For the mentioned
issue that QuickXPlain identifies only one conflict that,
after solving it, a new execution is necessary to identify the
remaining one.

FIGURE 6. Example of a partial product configuration [1].

FIGURE 7. Example of completion of partial product configuration of
Figure 6 [1].

B. FastDiag RESULTS
Table 6 presents a summary of the results of the Fast-
Diag performance analysis to identify a preferred minimal

134328 VOLUME 10, 2022

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

TABLE 5. Avg. runtime (in msec) of QX when determining minimal
conflicts.

TABLE 6. Avg. runtime (in msec) of FD (lmax=1) for determining
preferred diagnosis.

diagnosis of product configurations. In this table, each entry
represents the average runtime in msec for all knowledge
bases with a preferred diagnosis set of cardinality n (1–16).
We can appreciate a surprisingly time execution difference
between the conflict and diagnosis detection; that is, FastDiag
results more efficient than QuickXPlain even though they
pursue different tasks. We can appreciate in Table 6
that the time increases when more conflicts exist in the
product configurations because FastDiag requires identifying
diagnosis of more cardinality.

C. COMPLETION RESULTS
To evaluate the performance of the traditional CSP-based
approach for product completion, first, we generate a
set of random FMs using the Betty tool-suite [43] to
define the number of features and structure of randomly
generated FMs. Betty also allows us to define the number
of cross-tree constraints in the model. In our experiment,
we generate models with the following number of features
|F | = {50, 100, 500, 1000, 2000, 5000} and the following
percentages of cross-tree constraints c = {5, 10, 30, 50, 100}.
For each model, we generate partial configurations with
the following percentages of assigned features a =

{10, 30, 50, 100}. We generate 10 random instances for each
model and partial configuration. We evaluated the Choco
CSP solver [44] for consistency checks. We executed all
experiments in an Intel(R) Core (TM) i7-3537U CPU @
2.00 GHz with 4 GB RAM using a Windows 10 64 bits
operating system.

The QuickXPlain, FlexDiag and the product completion
code and data for experiments are available in,12 and,3

respectively.

1https://github.com/cvidalmsu/A-Python-QX-implementation
2https://github.com/cvidalmsu/A-Python-FD-implementation
3https://github.com/cvidalmsu/BOLON-FaMaProdConf-TestSuite

TABLE 7. Avg. time (in milliseconds) on the completion of partial product
configuration of randomly generated Betty FMs by the number of
features n.

V. DISCUSSION
Such as report Vidal-Silva [1], the Conflict detection,
diagnosis detection, and product completion represent the
most relevant operation for assisting the product completion
of VIS. Even though various solutions exist, some of the
most relevant and efficient still are QuickXPlain, FastDiag
and CSP tools. Just Vidal-Silva et al. [2] present an optimized
version of QuickXPlain for parallel computing that represents
the future for conflict detection. Likewise, Vidal et al. [45]
show the usability and efficiency of applying diagnosis
solutions such as FastDiag for product completion.

To show the functionality and evaluate the performance
of our solutions, we implemented them using Python and
FAMA [46]. Specifically, Python for QuickXPlain and
FastDiag, and FAMA and Java for the product completion.

VI. THREATS TO VALIDITY
This work presents relevant operations for the Automated
Analysis of Product Configuration of Feature Models.
Nonetheless, it is necessary to discuss the following practical
issues:
• We implemented our solutions to run in Python and
FAMA [46]. For executing QuickXPlain and FastDiag,
Python and FAMA should be in the computer. That
seems not a problem because Python in 2022 is one of
the most used programming environments, and FAMA
is freely online accessible.

• We used generated FMs by the use of Betty. Applying
product configuration solutions in real models and
configuration cases can be more precise. Nonetheless,
generated models are adequate for simulation goals.

VII. SPECULATIVE PROGRAMMING
Speculative programming is an optimization technique for
writing programs with portions of code that can execute
before needing their results. Speculative execution is the
pre-execution or pre-calculation of results that can contribute
to computing the expected outcome [47]. We can define
parallel tasks for executing those pre-calculations for a
Thread Level Speculation (TLS) [48]. We can differentiate
effective and non-valid speculative executions for which the
program execution time can improve or even deteriorate
for the cost of orchestrating the parallel tasks, respectively.
The current availability of parallel computing resources
permits developing solutions using speculative programming

VOLUME 10, 2022 134329

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

FIGURE 8. Flow diagram example with four tasks A, B, C, and D [1].

FIGURE 9. Tracking options for the tasks of Figure 8 [1].

FIGURE 10. Speculative tracking for the tasks of Figure 8 [1].

for eventually getting more efficient solutions [49]. Figure 8
shows a flow diagram with four tasks A, B, C, and D. A is
the first task, and after it, task B or C can occur depending on
a condition, and then task D would execute before the end.
Task D depends of the results of B or C to proceed. Figure 9
shows the tracking for the sequential execution options, each
one containing three steps according to the defined sequential
order. Figure 10 shows an speculative execution that executes
tasks A, B and C in parallel, and then executes task D. Then,
task D would proceed after getting the correct input from the
previous tasks. In this example, tasks B and C would give an
output; then, it is necessary to decide the correct input for
D before its execution. Executing this example in a machine
with adequate parallel resources would permit the execution
more efficient of the speculative solution than the sequential
one. This example illustrates that speculating about future
actions permits improving the execution time of a set of tasks
when resources for parallel computing are able. We can use
speculative programming to look for a parallel and more
efficient version of existing solutions to solve the first two
issues.

The work of Vidal et al. [2] presents the use of speculative
programming for conflict detection. Because that work
extends QuickXPlain for applying parallel computing and
efficiently detecting conflicts, we can apply the approach
for diagnosis (one of the ongoing works of this research
team). Regarding product completion, a speculative version
of FastDiag will be a more efficient solution for that purpose.

VIII. CONCLUSION
This article reviewed the functionality, computing perfor-
mance, and main details of QuickXPlain, FastDiag and the
use of CSP solver that are relevant solutions for conflict
detection, diagnosis, and product completion. Additionally,
the study provides the base and highlights the speculative pro-
gramming approach as an algorithmic optimization technique
applicable for solutions such as QuickXPlain, FastDiag and
diagnosis by completion solutions. This work supports this
line of research allowing the appreciation of the relevance of
product completion and the operation to follow that purpose.

ACKNOWLEDGMENT
The authors are currently living in a difficult time, plagued by
a pandemic. Regardless, they continue working as a research
team in the software engineering and product line areas. Their
special thanks, first to the University of Seville for giving
the fundaments base of this research. Then, thanks to the
University of Talca, Talca, Chile, the Universidad Católica
del Norte, Antofagasta, Chile, the Universidad Estatal de
Milagro, Milagro, Ecuador, and Universidad Continental,
Huancayo, Peru, for assisting them during the whole process
and providing them with the budget to fulfill their research
tasks. They feel encouraged to continue dealing with these
research activities in the coming years.

REFERENCES
[1] C. Vidal-Silva, ‘‘Configuration analysis for large scale feature models:

Towards speculative-based solutionse,’’ Ph.D. dissertation, Dept. de
Lenguajes y Sistemas Informáticos, Univ. Seville, Seville, Spain, 2021.

[2] C. Vidal-Silva, A. Felfernig, J. A. Galindo, M. Atas, and D. Benavides,
‘‘Explanations for over-constrained problems using QuickXPlain with
speculative executions,’’ J. Intell. Inf. Syst., vol. 57, no. 3, pp. 491–508,
2021.

[3] A. Felfernig, G. Friedrich, and D. Jannach, ‘‘Conceptual modeling for
configuration of mass-customizable products,’’ Artif. Intell. Eng., vol. 15,
no. 2, pp. 165–176, Apr. 2001.

[4] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-Based
Configuration: From Research to Business Cases, 1st ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers, 2014.

134330 VOLUME 10, 2022

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

[5] Ubuntu. (2019). 16.04.6 LTS (Xenial Xerus). accessed: Feb. 1, 2019.
[Online]. Available: http://cl.releases.ubuntu.com/16.04/

[6] D. Benavides, S. Segura, and A. Ruiz-Cortés, ‘‘Automated analysis of
feature models 20 years later: A literature review,’’ Inf. Syst., vol. 35, no. 6,
pp. 615–636, Sep. 2010, doi: 10.1016/j.is.2010.01.001.

[7] J. A. Galindo, F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, and
J. García-Galán, ‘‘Automated analysis of diverse variability models with
tool support,’’ in Proc. 19th Jornadas Ingeniería del Software Y Bases
Datos (JISBD), Jan. 2014, pp. 160–168.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
‘‘Feature-oriented domain analysis (FODA) feasibility study,’’
Carnegie-Mellon Univ. Softw. Eng. Inst., Pittsburgh, PA, USA,
Tech. Rep., CMU/SEI-90-TR-021, Nov. 1990.

[9] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-Oriented Software
Product Lines: Concepts and Implementation. Manhattan, NY, USA:
Springer, 2013.

[10] D. Batory, ‘‘Feature models, grammars, and propositional formulas,’’ in
Proc. 9th Int. Conf. Softw. Product Lines. Berlin, Germany: Springer-
Verlag, 2005, pp. 7–20, doi: 10.1007/11554844_3.

[11] M. Galster, ‘‘Variability-intensive software systems: Product lines
and beyond,’’ in Proc. 13th Int. Workshop Variability Model.
Softw.-Intensive Syst., New York, NY, USA, Feb. 2019, p. 1, doi:
10.1145/3302333.3302336.

[12] S. She, R. Lotufo, T. Berger, A. Wa̧sowski, and K. Czarnecki,
‘‘The variability model of the Linux kernel,’’ in Proc. 4th Int. Work-
shop Variability Model. Softw.-Intensive Syst., vol. 37, D. Benavides,
D. S. Batory, and P. Grünbacher, Eds. Linz, Austria: Universität Duisburg-
Essen, Jan. 2010, pp. 45–51. [Online]. Available: http://www.vamos-
workshop.net/proceedings/VaMoS_2010_Proceedings.pdf

[13] V. Rothberg, N. Dintzner, A. Ziegler, and D. Lohmann, ‘‘Feature models
in Linux: From symbols to semantics,’’ in Proc. 10th Int. Workshop
Variability Model. Softw.-Intensive Syst. (VaMoS), New York, NY, USA,
2016, pp. 65–72, doi: 10.1145/2866614.2866624.

[14] J. Galindo, D. Benavides, and S. Segura, ‘‘Debian packages repositories as
software product line models. Towards automated analysis,’’ in Proc. 1st
Int. Workshop Automated Configuration Tailoring Appl., 2010, pp. 29–34.

[15] J. A. Galindo, H. Turner, D. Benavides, and J. White, ‘‘Testing variability-
intensive systems using automated analysis: An application to android,’’
Softw. Quality J., vol. 24, no. 2, pp. 365–405, 2016, doi: 10.1007/s11219-
014-9258-y.

[16] A. B. Sánchez, S. Segura, J. Parejo, and A. Ruiz-Cortés, ‘‘Variability
testing in the wild: The Drupal case study,’’ Softw. Syst. Model., vol. 16,
no. 1, pp. 1–22, 2015, doi: 10.1007/s10270-015-0459-z.

[17] M. Lienhardt, F. Damiani, E. B. Johnsen, and J. Mauro, ‘‘Lazy product
discovery in huge configuration spaces,’’ in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., New York, NY, USA, Jun. 2020, p. 1509, doi:
10.1145/3377811.3380372.

[18] U. Junker, ‘‘QuickXplain: Preferred explanations and relaxations for over-
constrained problems,’’ inProc. 19th Nat. Conf. Artif. Intell., San Jose, CA,
USA, 2004, pp. 167–172.

[19] A. Felfernig, D. Benavides, J. Galindo, and F. Reinfrank, ‘‘Towards
anomaly explanation in feature models,’’ in Proc. 15th Int. Configuration
Workshop, Aug. 2013, pp. 117–124.

[20] C. Thörn and K. Sandkuhl, Feature Modeling: Managing Variability in
Complex Systems. Berlin, Germany: Springer, 2009, pp. 129–162, doi:
10.1007/978-3-540-88075-2_6.

[21] R. Mazo, R. Lopez-Herrejon, C. Salinesi, D. Diaz, and A. Egyed,
‘‘Conformance checking with constraint logic programming: The case of
feature models,’’ in Proc. IEEE 35th Annu. Comput. Softw. Appl. Conf.,
Aug. 2011, pp. 456–465.

[22] F. Zhou, J. R. Jiao, X. J. Yang, and B. Lei, ‘‘Augmenting feature
model through customer preference mining by hybrid sentiment analysis,’’
Exp. Syst. Appl., vol. 89, pp. 306–317, Dec. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417417304980

[23] M. Weckesser, M. Lochau, T. Schnabel, B. Richerzhagen, and A. Schürr,
‘‘Mind the gap! Automated anomaly detection for potentially unbounded
cardinality-based feature models,’’ in Proc. 19th Int. Conf. Fundam.
Approaches Softw. Eng., vol. 9633. New York, NY, USA: Springer-Verlag,
2016, pp. 158–175, doi: 10.1007/978-3-662-49665-7_10.

[24] A. R. Santos and E. Santana de Almeida, ‘‘Do #ifdef-based variation points
realize feature model constraints?’’ SIGSOFT Softw. Eng. Notes, vol. 40,
no. 6, pp. 1–5, Nov. 2015, doi: 10.1145/2830719.2830728.

[25] S. Segura, A. B. Sánchez, and A. Ruiz-Cortés, ‘‘Automated variability
analysis and testing of an E-commerce site: An experience report,’’ inProc.
29th ACM/IEEE Int. Conf. Automated Softw. Eng., New York, NY, USA,
Sep. 2014, pp. 139–150.

[26] M. Nieke, J. Mauro, C. Seidl, T. Thüm, I. C. Yu, and F. Franzke, ‘‘Anomaly
analyses for feature-model evolution,’’ in Proc. 17th ACM SIGPLAN
Int. Conf. Generative Program., Concepts Exper., New York, NY, USA,
Nov. 2018, pp. 188–201, doi: 10.1145/3278122.3278123.

[27] A.Khtira, A. Benlarabi, andB.Asri, ‘‘Duplication detectionwhen evolving
feature models of software product lines,’’ Information, vol. 6, no. 4,
pp. 592–612, Oct. 2015.

[28] D. M. Le, H. Lee, K. C. Kang, and L. Keun, ‘‘Validating consistency
between a feature model and its implementation,’’ in Safe and Secure
Software Reuse, J. Favaro andM.Morisio, Eds. Berlin, Germany: Springer,
2013, pp. 1–16.

[29] A. Gómez and I. Ramos, ‘‘Automatic tool support for cardinality-
based feature modeling with model constraints for information sys-
tems development,’’ in Information Systems Development, Business
Systems and Services: Modeling and Development. Prague, Czechia:
Charles Univ. Prague, Aug. 2010, pp. 271–284, doi: 10.1007/978-1-4419-
9790-6_22.

[30] C. Quinton, A. Pleuss, D. L. Berre, L. Duchien, and G. Botterweck,
‘‘Consistency checking for the evolution of cardinality-based feature
models,’’ inProc. 18th Int. Softw. Product Line Conf., NewYork, NY, USA,
Sep. 2014, pp. 122–131, doi: 10.1145/2648511.2648524.

[31] A. S. Karataş and H. Oğuztüzün, ‘‘Attribute-based variability in feature
models,’’ Requirements Eng., vol. 21, no. 2, pp. 185–208, 2016, doi:
10.1007/s00766-014-0216-9.

[32] F. Roos-Frantz, D. Benavides, A. Ruiz-Cortés, A. Heuer, andK. Lauenroth,
‘‘Quality-aware analysis in product line engineering with the orthogonal
variability model,’’ Softw. Quality J., vol. 20, nos. 3–4, pp. 519–565,
Sep. 2012, doi: 10.1007/s11219-011-9156-5.

[33] C. Hwan, P. Kim, and K. Czarnecki, ‘‘Synchronizing cardinality-based
feature models and their specializations,’’ in Proc. 1st Eur. Conf. Model
Driven Archit., Found. Appl. Berlin, Germany: Springer-Verlag, 2005,
pp. 331–348, doi: 10.1007/11581741_24.

[34] J. A. Galindo, D. Benavides, P. Trinidad, and A.-M. Gutiérrez-Fernández,
and A. Ruiz-Cortés, ‘‘Automated analysis of feature models: Quo vadis?’’
Computing, vol. 101, no. 5, pp. 387–433, 2019, doi: 10.1007/s00607-018-
0646-1.

[35] A. Felfernig, M. Schubert, and C. Zehentner, ‘‘An efficient diag-
nosis algorithm for inconsistent constraint sets,’’ Artif. Intell. Eng.
Des., Anal. Manuf., vol. 26, no. 1, pp. 53–62, Feb. 2012, doi:
10.1017/S0890060411000011.

[36] S. Ibraheem and S. Ghoul, ‘‘Software evolution: A features variability
modeling approach,’’ J. Softw. Eng., vol. 11, no. 1, pp. 12–21, Dec. 2016.

[37] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S.
Pasupathy, ‘‘An empirical study on configuration errors in commercial and
open source systems,’’ in Proc. 23rd ACM Symp. Operating Syst. Princ.
(SOSP), 2011, pp. 159–172.

[38] Facebook. More Details on Today’s Outage. Accessed: Jan. 26, 2021.
[Online]. Available: https://m.facebook.com/nt/screen/?params=
%7B%22note_id%22%3A10158791436142200%7D&path=
%2Fnotes%2F%7Bnote_id%7D&_rdr

[39] L. A. Barroso and U. Hoelzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, 1st ed. San
Rafael, CA, USA: Morgan & Claypool, 2009.

[40] J. Zhanwen-Li, S. He, L. Zhu, X. Xu, M. Fu, L. Bass, A. Liu, and
A. B. Tran, ‘‘Challenges to error diagnosis in Hadoop ecosystems,’’
in Proc. 27th Large Installation Syst. Admin. Conf. (LISA), 2013,
pp. 145–154.

[41] H. Riener and G. Fey, ‘‘Exact diagnosis using Boolean satisfiability,’’
in Proc. 35th Int. Conf. Comput.-Aided Design, New York, NY, USA,
Nov. 2016, pp. 1–8, doi: 10.1145/2966986.2967036.

[42] J. Galindo and D. Benavides, ‘‘Towards a new repository for feature model
exchange,’’ in Proc. 23rd Int. Syst. Softw. Product Line Conf. (SPLC),
C. Cetina, O. Díaz, L. Duchien, M. Huchard, R. Rabiser, C. Salinesi,
C. Seidl, X. Tërnava, L. Teixeira, T. Thüm, and T. Zadi, Eds. Paris, France:
ACM, 2019, p. 85, doi: 10.1145/3307630.3342405.

[43] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés,
‘‘BeTTy: Benchmarking and testing on the automated analysis of feature
models,’’ in Proc. 6th Int. Workshop Variability Model. Softw.-Intensive
Syst., 2012, pp. 63–71, doi: 10.1145/2110147.2110155.

[44] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, ‘‘FAMA: Tooling
a framework for the automated analysis of feature models,’’ in Proc. 1st
Int. Workshop Variability Model. Softw.-Intensive Syst. (VAMOS), 2007,
pp. 129–134.

VOLUME 10, 2022 134331

http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1007/11554844_3
http://dx.doi.org/10.1145/3302333.3302336
http://dx.doi.org/10.1145/2866614.2866624
http://dx.doi.org/10.1007/s11219-014-9258-y
http://dx.doi.org/10.1007/s11219-014-9258-y
http://dx.doi.org/10.1007/s10270-015-0459-z
http://dx.doi.org/10.1145/3377811.3380372
http://dx.doi.org/10.1007/978-3-540-88075-2_6
http://dx.doi.org/10.1007/978-3-662-49665-7_10
http://dx.doi.org/10.1145/2830719.2830728
http://dx.doi.org/10.1145/3278122.3278123
http://dx.doi.org/10.1007/978-1-4419-9790-6_22
http://dx.doi.org/10.1007/978-1-4419-9790-6_22
http://dx.doi.org/10.1145/2648511.2648524
http://dx.doi.org/10.1007/s00766-014-0216-9
http://dx.doi.org/10.1007/s11219-011-9156-5
http://dx.doi.org/10.1007/11581741_24
http://dx.doi.org/10.1007/s00607-018-0646-1
http://dx.doi.org/10.1007/s00607-018-0646-1
http://dx.doi.org/10.1017/S0890060411000011
http://dx.doi.org/10.1145/2966986.2967036
http://dx.doi.org/10.1145/3307630.3342405
http://dx.doi.org/10.1145/2110147.2110155

C. Vidal-Silva et al.: Exploring Functionality and Efficiency of Feature Model Product Configuration Solutions

[45] C. Vidal, J. A. Galindo, J. Giráldez, and D. Benavides, ‘‘Auto-
mated completion of partial configurations as a diagnosis task. Using
FastDiag to improve performance,’’ in Proc. ISMIS. Graz, Austria:
Graz Univ. Technology, Sep. 2020, pp. 107–117. [Online]. Available:
https://ismis.ist.tugraz.at/industry-session/

[46] How to Prevent and Fix Package Dependency Errors in Ubuntu. Accessed:
Feb. 10, 2020. [Online]. Available: https://www.isa.us.es/fama/

[47] J. Tatemura, ‘‘Speculative parallelism of intelligent interactive systems,’’
in Proc. 21st Annu. Conf. IEEE Ind. Electron. (IECON), Nov. 1995,
pp. 193–198.

[48] J. F. Martínez and J. Torrellas, ‘‘Speculative synchronization: Applying
thread-level speculation to explicitly parallel applications,’’ in Proc.
10th Int. Conf. Architectural Support Program. Lang. Operating Syst.,
New York, NY, USA, 2002, p. 18, doi: 10.1145/605397.605400.

[49] B. Bramas, ‘‘Increasing the degree of parallelism using speculative
execution in task-based runtime systems,’’ PeerJ Comput. Sci., vol. 5,
p. e183, Mar. 2019.

CRISTIAN VIDAL-SILVA received the B.S. degree
in information engineering from the Faculty of
Engineering, Catholic University of Maule, Talca,
Chile, in 2003, the M.S. degree in computer
science from the University of Concepción, Con-
cepción, Chile, in 2007, the M.S. degree in
computer science fromMichigan State University,
East-Lansing, MI, USA, and the Ph.D. degree
in software engineering from the University of
Seville, Seville, Spain.

From 2004 to 2007, he was a Research Assistant with the Engineering
Faculty, University of Concepción, Concepción, Chile, and a part-time
Professor at the Catholic University of Maule. From 2008 to 2013, he was a
Professor at the Faculty of Economics and Business, University of Talca,
Talca. From 2014 to 2018, he worked as a Professor and a Researcher
in software engineering and computer science at the University of Playa
Ancha, the University of Viña del Mar, and the Autónoma University
of Chile, Chile. From 2019 to 2021, he worked as a Professor at the
Administration Department, Catholic University of the North, Antofagasta,
Chile. He is currently a full-time Professor and a Researcher with the
VideogameDevelopment and Virtual Reality Engineering (VDVRE) School,
Engineering Faculty, University of Talca. He is the main author of more
than 30 articles in research areas, such as feature-oriented and aspect-
oriented software engineering, machine learning, and digital circuits and
programming. He worked as a Reviewer of WOS and Scopus journals. He is
a Fulbright Scholar.

JESENNIA CARDENAS-COBO received the
B.S. degree in information systems from the
Escuela Superior Politecnica del Litoral (ESPOL),
Ecuador, the Diploma degree in higher education
by competences from the Technical University
of Ambato, Ecuador, and the M.Sc. degree in
business administration from the Business and
Technological University of Guayaquil, Ecuador.
She is currently pursuing the Ph.D. degree in soft-
ware engineering with the University of Seville,

Spain. She is also a full-time Professor and the Dean of the Faculty of
Engineering Sciences, State University of Milagro (now UNEMI). She has
more than 20 years of professional experience in higher education. Her main
research interests include software products and arti?cial intelligence applied
to engineering education.

AURORA SÁNCHEZ ORTIZ received the M.Sc.
degree in industrial engineering from the Univer-
sidad de Chile, Chile, and the Ph.D. degree in
information science with a minor in management
information systems from the University of North
Texas, Denton, TX, USA, in 2003. She is currently
an Associate Professor of information systems
and the Director of the Information Technology
Management Research Center, Business School,
Universidad Católica del Norte, Chile, and the

‘‘Collaboration Network in Information Technology and Systems in Chile’’
(RedSTI). She has been published in journals, such as Sustainability,
Journal of Theoretical and Applied Electronic Commerce Research, and
Formación Universitaria. She also has academic articles in Springer books
and conferences, such as AMCIS, Academy of Management, and Conf-
IRM. Her research interests include e-government, smart cities, and digital
transformation. She received the Fulbright Scholarship for her Ph.D. degree.

VANNESSA DUARTE received the degree in com-
puter science engineering from the Universidad
Nacional Experimental del Táchira, Venezuela,
and the D.Eng. degree from the Universidad
Central de Venezuela. She has ten years of expe-
rience in university education. She is currently
working as a Professor and a Researcher at
the School of Business Sciences, Universidad
Católica del Norte, Coquimbo, Chile. Her research
interest includes bioengineering, mainly in the

development of biological models of bone remodeling with mechanical
and piezoelectric loads, and data science. Her particular attention to the
implementation ofmachine learning applied to different areas, such as health,
business, robotics, and decision making.

MIGUEL TUPAC-YUPANQUI received the mas-
ter’s degree in systems engineering with a major in
business systems management from the National
University of the Center of Peru. He is currently a
full-time Teacher with the Continental University,
Peru. He is also an Electronics Engineer with
Ricardo Palma University, Peru. Since 2005,
he has been the Academic Director in charge
of the Professional Academic School (EAP) of
Systems Engineering and Informatics, Continental

University, contributing with academic and administrative management.
He has contributed to teaching and research.

134332 VOLUME 10, 2022

http://dx.doi.org/10.1145/605397.605400

