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ABSTRACT Over the past two years, the spread of COVID-19 has spurred the use of information and
communication technologies (ICT) in aid of healthcare. The need to guarantee continuity to care has pro-
moted research and industry activities aimed at developing solutions for the digitalization of the procedures
to be performed to provide health services, even in emergency scenarios. Digital collection, transmission,
and processing of health data represent the starting point for fulfilling this innovation process but also
bring heterogeneous challenges. These motivations led to the elaboration of this work, which analyzes
innovative and technological tools for the development of digital health (eHealth) through the collection
of multisectoral literature, produced thanks to the cooperation of varied research groups, thus providing
a multidisciplinary survey. Since digital health is expected to be one of the leading applications of the
sixth-generation (6G) wireless cellular networks, this paper covers the related telecommunications aspects.
Furthermore, the exploitation of artificial intelligence paradigms to elaborate massive amounts of biological
data is examined. Given the extreme sensitivity of health data, this paper also investigates security and privacy
issues. In particular, the main techniques and approaches to guarantee security properties (i.e., anonymity,
responsibility, authentication, confidentiality, integrity, non-repudiation, and revocability) are studied. Appli-
cations involving innovative electromagnetic systems for healthcare and assisted living services are described
to provide an example of an eHealth scenario leveraging ICT. Finally, the telemedicine-related regulations of
the European Commission are analyzed, with particular reference to the General Data Protection Regulation
(GDPR).

INDEX TERMS eHealth, telemedicine, 6G, data, security, artificial intelligence, neural network, electro-
magnetism, GDPR.

I. INTRODUCTION population and the vision that the latter has of the digitaliza-

The worldwide and uncontrolled spread of COVID-19 infec-
tion has changed, for some years now, both the impact of
technological progress on the quality of life of the worldwide
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tion of several activities affecting everyday life. In particular,
the healthcare sector has been hit by a wave of change fos-
tered by the need to guarantee continuity of care and health
assistance during the lockdowns imposed in the different
countries of the world, which have made in-person meetings
between the doctor and the patient impracticable. Currently,

134623


https://orcid.org/0000-0002-7048-2071
https://orcid.org/0000-0001-9731-3641
https://orcid.org/0000-0002-2660-0405
https://orcid.org/0000-0002-8036-7464
https://orcid.org/0000-0002-3038-8574
https://orcid.org/0000-0001-6557-1283
https://orcid.org/0000-0002-5226-0870
https://orcid.org/0000-0003-4962-3500
https://orcid.org/0000-0003-0734-9136
https://orcid.org/0000-0001-8670-9413
https://orcid.org/0000-0001-5063-8801

IEEE Access

C. Suraci et al.: Next Generation of eHealth: A Multidisciplinary Survey

the digitalization process of the healthcare sector is not at
the same point in different parts of the world. However,
it has undergone an acceleration everywhere. Data play a
significant role in the provision of health services, and their
effective digital treatment must be the basis of the innovation
process. When digital health (eHealth) services are provi-
sioned, technologies and paradigms from different fields can
play critical functions in health data processing, including
telecommunications for the collection and transmission of
data, artificial intelligence for data elaboration, and security
for the protection of data and people.

With regards to telecommunications, existing network
infrastructures are insufficient to support the full achievement
of a radically digitalized healthcare sector. This is confirmed
by the authors of [1] and [2], who describe the trends that
will lead to the development of the sixth generation (6G) of
wireless mobile networks, placing healthcare among the driv-
ing applications of the next decade. The continuous growth
in the percentage of the world’s elderly population is among
the factors that will spur the digitalization process of the
medical field, leading to an increasingly pervasive presence
of the eHealth paradigm among cellular network applications.
The need to monitor chronic and old-age diseases will thrive
over the years, thus fostering the tendency to resort to infor-
mation and communication technologies (ICT) to support
the remote execution of services, such as monitoring and
medical assistance. The Internet of Things (IoT) technology
has contributed to the digitalization process that has changed
our current world and is considered disruptive and essential
to provide connectivity to heterogeneous objects deployed
for collecting data [3]. In particular, although the use of the
Internet of Medical Things (IoMT) is already underway for
the collection and transmission of data in healthcare scenar-
ios, only the deployment of the Internet of Everything (IoE)
paradigm (expected concurrently with the evolution of net-
works towards 6G) will enable the execution of many cutting-
edge services. The discussion of how IoE and other 6G
paradigms will empower eHealth will be addressed through-
out the paper.

Advanced artificial intelligence (Al) algorithms for biolog-
ical data elaboration are increasingly needed to aid the evolu-
tion of the eHealth sector. Biological data, by their nature,
are very complex and originate from different application
fields (e.g., neurophysiological signals, magnetic resonance
imaging, blood oxygenation values) and sources (e.g., hos-
pitals, telemedicine platforms), which determine their wide
variety in terms of structure and availability. Therefore, prop-
erly elaborating these data implies a preliminary analysis
of intrinsic characteristics, such as structure and amount.
At an engineering design level, three macro-groups can be
identified for the structure of the data: time series, images,
and sequences [4]. The origin of data determines the type and,
thus, a possible optimal elaboration pipeline, which could
involve many algorithms of diverse complexity. Defining a
tight cluster of sources is not trivial since they are very
wide and related to the target application [5]. The amount
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of biological data determines the approach to use for their
proper management. Biological data collected sporadically
and in limited quantities can be processed by the physician or
analyzed using standard signal elaboration methods. When
quantity and frequency of acquisition far exceed the avail-
able elaboration capacity and time, it is essential to entrust
autonomous systems equipped with Al to process or label
them automatically. A considerable amount of data is also
advantageous and necessary for training Al systems, but
always considering that data must be adequately structured
to be well-processed without human support.

The diverse stages of the data lifecycle present privacy and
security concerns, especially if data contain highly sensitive
information on users and come from heterogeneous sources.
The benefits introduced by innovative paradigms and tech-
nologies have the side effect of increasing the attack surface
for malicious adversaries. As a consequence, a dramatic num-
ber of cybersecurity attacks [6] have been conducted, also
recently [7], [8], [9]. Applying security patches to existing
solutions is not enough from this perspective, but it is very
important to follow security-by-design methodologies.

When dealing with the digital treatment of health data,
another aspect that should not be overlooked is that under-
standing the regulations of health law that govern the
various processes is crucial. Without uniform legislation,
eHealth services are governed by sectoral regulations,
including best practices and guidelines, which should be
approached with prudential criteria in light of the principle of
self-determination and patient empowerment. Consequently,
standards for the efficiency of the digital public health sys-
tem should be adopted [10]. The security of personal and
sensitive data used in the provision of services is a tool to
realize the right to health, both in its individual and col-
lective dimensions. There is a functional link, in the health
sector, between the issue of security in the training, conser-
vation, use, and circulation of clinical data and the one of
privacy. According to the General Data Protection Regulation
(GDPR), the strategy for the security of personal data is
focused on the “general principle of processing”. Therefore,
a personal data protection approach emerges based on over-
all risk management and on the proactive accountability of
the Data Controller, in charge of concretely modulating the
implementation of the principles enshrined in the Regula-
tion. With a view to accountability, the security of personal
data, involving the application of different measures, requires
an integrated vision of multiple competencies (including
legal, IT, and organizational ones) in a balanced integration
dimension between human and technological advancement in
healthcare [11].

A. MOTIVATIONS AND TARGET AUDIENCE

The primary motivation that led to the elaboration of this
work is to contribute with a multidisciplinary survey to the
process of analyzing the role of data and their treatment in
the context of eHealth.
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To the best of our knowledge, there are no investigations of
this type in the literature, but only works that individually face
some of the aspects we examine. An in-depth review of secu-
rity and privacy challenges can be found in [12], where no
data transmission or elaboration aspects are treated. Another
interesting discussion about security in eHealth is provided
in [13], where we can find the same security properties pre-
sented in our paper in a slightly different meaning; the authors
of [13] also mention biometric cryptography as a means
of authentication, but there is no reference to blockchain
technology. On the contrary, we have devoted much effort
to discussing blockchain-based approaches, as it is a mature
technology already implemented in several real-life eHealth
applications. Likewise, a state-of-the-art review of the fifth-
generation (5G) cellular networks and Internet of Things
(IoT) enabled smart healthcare is in [14], which is very
focused on 5G and communication technologies, neglect-
ing the topics of artificial intelligence and regulations and
lightly treating the security, trust, and privacy challenges.
The work in [15] deals with themes similar to our paper
despite the point of view of the proposed analysis and the
insight provided for the various topics being different, and it
does not mention the regulatory aspect that is fundamental
for the success of the digitalization of health services. Our
work provides an original approach as it introduces a clas-
sification of technologies linked to the use that they have
in the processing of health data and proposes innovative
electromagnetic systems for eHealth as an application exam-
ple of the collection/elaboration/security paradigm described.
Even the authors of [16] discuss the role of 6G in health-
care systems but, unlike our work, their study focuses on
communication technologies suitable to emergency scenarios
and disaster management. The authors of [4] thoroughly
investigate different deep learning (DL) architectures and
applications for processing biological data, but they do not
address the complementary processes of data transmission
and protection. The work in [17] provides an overview of the
current and future potential of Al in medicine applications,
including a historical outline of Al in medicine, deep neural
network components, and different Al approaches; however,
it does not address the benefits of integrating Al with efficient
and secure transmissions for better accessibility and legal
protection of biological data in medical workflows, which are
necessary for decentralized eHealth services.

Table 1 highlights the differences between our paper and
others similar in the recent literature, reporting which topics
are covered in each work and to what extent; the “partial”
value is to be understood with respect to how much the topic
is deepened in our work.

We opine that in the future new professional profiles will
arise in the eHealth sector, and they will require transver-
sal competencies in different fields. Therefore, unlike other
reviews that offer predominantly single-viewpoint analysis,
we propose a cross-sectoral overview that could be very
useful for the physician/scientist of the future, who, beyond
traditional medical skills, should be characterized by highly
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technological and multidisciplinary knowledge. This paper is
intended both for expert readers (interested in investigating
a particular approach or technology) and non-expert readers
(interested in a high-level vision of eHealth) who might ben-
efit from this paper to acquire a multidisciplinary view of
eHealth.

The multidisciplinarity in our work is achieved thanks to
the collaboration of different research groups gathered within
the iCare project (it is a University project funded within
POR FESR FSE 2014/2020 of Calabria Region with the
participation of European Community Resources of FESR
and FSE, of Italy and of Calabria), which has the dual purpose
of strengthening research infrastructures and enriching the
healthcare sector. In detail, this project will contribute to the
realization of a state-of-the-art telemedicine research labora-
tory within the university, which will foster the cooperation
of worldwide researchers to conduct activities targeted at
studying innovative solutions for the management of health
services. The latter aspect is directly addressed by the project,
since, also thanks to the collaboration with external con-
sultants from the industrial and business sectors, it aims to
create a telemedicine system that integrates the procedures
that are currently implemented by some local health facilities
with others that leverage ICT for remote management of ser-
vices. Therefore, the synergy between University, Industry,
and Hospital represents the backbone of the iCare project,
promoter of research and development activities supporting
the healthcare sector. Almost at the end of the first year of the
project, this work has been produced to reap the benefits of
the research activities on the topics of telecommunications,
artificial intelligence, information technology, electromag-
netism, and health law, which can contribute to providing
different viewpoints on the analysis of the digital processing
of health data.

A taxonomy of the topics subject of the multidisciplinary
survey on eHealth we provide is illustrated in Figure 1.

B. CONTRIBUTIONS

Based on these considerations, the main contribution of
this work is to address the matter of data processing in
the provision of eHealth services by offering a multidis-
ciplinary survey, which provides insight into the fields of
artificial intelligence, electromagnetism, health law, security,
and telecommunications, for the first time in literature to the
best of our knowledge. This is articulated in the delivery of
the following micro-contributions:

1) The central role that data play in eHealth services is
emphasized by dealing with a thorough technical anal-
ysis of the different steps necessary for their processing.
In particular, the three steps of (i) collection and trans-
mission, (ii) elaboration, and (iii) security are identified
and individually addressed through the gathering and
analysis of the related literature. A Readiness to Adopt
(RTA) value is indicated to provide a qualitative esti-
mate of the readiness to be adopted in eHealth applica-
tions for each technology or technique mentioned for
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TABLE 1. Comparison between our paper and others similar in the recent literature.

2)

3)

4)

5)

134626

Reference Artificial Electromagnetic Health law Security Telecommunications
Intelligence systems
[4] YES NO NO NO NO
[12] NO NO NO YES NO
[13] NO NO NO YES NO
[14] NO NO NO PARTIAL YES
[15] YES NO NO PARTIAL YES
[16] PARTIAL NO NO PARTIAL YES
[17] YES NO PARTIAL NO NO
Our paper YES YES YES YES YES
| Multidisciplinary survey on eHealth |
Digital processing of data | | Electromagnetic systems for eHealth | | Regulations

Telecommunlrjatlons Artificial Intelligence Security GDPR
technologies
| Data collection | | Learning paradigms | | Properties |
\ \ |
| Data transmission | | Network architecture | | Techniques |
| Explainability Al | | Approaches |

FIGURE 1. Taxonomy of the multidisciplinary survey on eHealth.

the three data processing steps. It can take on a high,
medium, or low value based on how much we believe
the rapid use of the technology/technique in eHealth is
likely. Mainly, the study of the most recent literature
and the knowledge of the mentioned paradigms are the
basis for the RTA evaluation that will be discussed later.
The 6G technologies expected as enablers in health data
processing are investigated, and a collection of diverse
classifications related to [IoMT devices in the literature
is provided to demonstrate the heterogeneity of these
devices.

Al techniques proposed in the literature for ana-
lyzing biological data are explored and given the
telemedicine-focused focus of our review, Al clinical
applications to evaluate their potential impact are also
proposed.

The main security properties that an eHealth solution
should guarantee are introduced. Furthermore, the lead-
ing techniques and approaches offering security fea-
tures in the eHealth ecosystem are surveyed, showing
how they can ensure the above security properties.

As an example of the application of the defined data
processing paradigm (collection/elaboration/security),
research proposals concerning innovative electromag-
netic systems applied to the remote and safe monitoring
of patient status are described.

6) An in-depth analysis of telemedicine-related regula-
tions is provided, particularly dwelling on some spe-
cific articles of GDPR (this research work has been
funded by the European Community). Besides, a crit-
ical discussion of the reliability that should legally
be granted to machines and algorithms is addressed
through an example based on the use of Al

The paper is structured as follows. The next section
introduces three technological perspectives on health data
processing: collection and transmission, elaboration, and
security. Section III discusses the applications of electromag-
netic systems in eHealth. In Section IV, a juristic vision of the
current challenges related to the healthcare sector is given.
Open issues and future research directions are discussed in
Section V. Finally, Section VI draws conclusions.

We summarize the meaning of all acronyms used in the
paper in Table 2.

Il. DIGITAL PROCESSING OF HEALTH DATA: A
MULTISTEP METHOD

Nowadays, health data may be efficiently and securely col-
lected, transmitted, and elaborated through the exploitation of
ICT, thanks to recent technological advances. In this section,
we analyze three different data processing steps (i.e., collec-
tion, elaboration, and security), focusing on the technological
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and innovative tools in the literature that can help digital-
ize the operations to be accomplished so that the data can
be detected on the patient and elaborated by the healthcare
professionals in the best possible way. Table 3 collects all
the technologies/techniques and works cited in this section
grouped by data processing steps and reports the RTA value
for each technology/technique.

A. COMMUNICATIONS PARADIGMS FOR DATA
COLLECTION

The authors of [2] point out that digital healthcare applica-
tions will require increasingly stringent data rate, latency, and
reliability requirements, thus making the support of pioneer-
ing technologies necessary. IoE, Device-to-Device (D2D),
Edge Computing, Al, Digital Twin, Holography, Robotics,
Tactile Internet, and Non-Terrestrial Networks (NTNs) are
among the technologies that will play a pivotal role in the
6G era and can help in meeting the strict requirements of
future applications. In the following, we discuss recent works
in the literature that propose using some of these technolo-
gies to support the collection and transmission of data on
6G-oriented networks for eHealth services. For each cited
technology, a description is provided supported by the advan-
tages, disadvantages, and challenges deriving from its use in
the eHealth context. Figure 2 provides a graphical represen-
tation of the mentioned technologies.

1) INTERNET OF EVERYTHING (loE)

IoE is defined, in [18], as the paradigm able to enable the con-
nection on a wireless channel of a plethora of heterogeneous
devices, mostly portable and featuring low energy resources.
According to [19], IoE belongs to the revolutionary tide of
the fifth generation (5G) that includes the most innovative
and forward-looking trends. Furthermore, the authors place
telemedicine among the IoE applications that will foster the
birth of 6G, whose hallmarks will be mainly set based on
the performance requirements of IoE services, increasingly
imposing in the panorama of current and future cellular net-
works. In [20], the origin of the term “IoE” is attributed
to CISCO that, in 2012, defined it as a network of net-
works connecting people, processes, data, and things, thus
being an evolution of the Internet of Things (IoT). To date,
the IoT affects many of the most widespread everyday-life
applications, and the IoE, as its evolution, will guarantee
requirements never yet explored to the services expected for
the future 6G cellular networks. Moreover, the cooperative
use of IoE with other technologies, such as machine learn-
ing, could favor the emergence of new consumer services
increasingly oriented towards improving the quality of life
of the world population. Representing the evolution of the
10T, the IoE inherits some challenges, including the need
to be combined with energy-saving techniques, as it will
mainly affect portable and low-power devices; besides, being
a revolutionary technology expected for 6G, the IoE is not
fully utilized by the current generations of cellular networks,
and only some of its “‘subsets’ are.
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TABLE 2. List of acronyms.

2D Two-Dimensional

3GPP 3rd Generation Partnership Project

5G Fifth Generation

6G Sixth Generation

Al Artificial Intelligence

ANNs Artificial Neural Networks

ABE Attribute-Based Encryption

CP-ABE Cipher-Policy Attribute-Based Encryption

CP-ABPRE Cipher-Policy Attribute-Based Proxy Re-Encryption
CNNs Convolutional Neural Networks

DL Deep Learning

D2D Device-to-Device

ECG Electrocardiogram

EEG Electroencephalogram

eHealth Digital Health

EHR Electronic Health Record

eIDAS electronic IDentification Authentication and Signature
EU European Union

FC Fully-Connected

GDPR General Data Protection Regulation
IBE Identity-Based Encryption

ICT Information and Communication Technologies
IoE Internet of Everything

IoMT Internet of Medical Things

1oST Internet of Space Things

IoT Internet of Things

IPFS Interplanetary File System

KP-ABE Key-Policy Attribute-Based Encryption
LEO Low-Earth Orbit

MAC Message Authentication Code

MEC Multi-access Edge Computing

NLP Natural Language Processing

NTNs Non-Terrestrial Networks

PDTs Personal Digital Twins

PKG Private Key Generator

PKI Public Key Infrastructure

PPDP Privacy-Preserving Data Publishing
RNNs Recurrent Neural Networks

RTA Readiness to Adopt

SVMs Support Vector Machines

UAVs Unmanned Aerial Vehicles

uv Ultraviolet

XAI explainable Al

For example, in the healthcare field, the [oMT paradigm
has made its way, which consists of the use of “medical
things” to collect and transmit biomedical signals over a
network for monitoring patients’ diseases [21]. Literature
provides several classifications based on different criteria
concerning the IoMT systems. As one of the contributions
of this work, we have collected in Table 4 some of the most
noteworthy IoMT-related taxonomies in the literature. The
authors of [21] rank the different sensors that can be used
in eHealth environments according to the type of remote
monitoring that must be carried out, distinguishing between
the five categories shown in Table 4. Two different clas-
sifications can be drawn from [22], both related to IoMT
but one about the sensors and the other about the general
smart healthcare systems: the first distinguishes categories
based on the positioning of the sensors inside or outside
the patient’s body; the latter characterizes systems based on
their purpose and function. The macro-categories that can
be identified thanks to these classifications are illustrated
in Table 4. IoMT devices are classified according to where
they are used in [23]; Table 4 portrays the detected macro-
categories. Also, in [24], two distinct criteria are considered
to classify IoMT sensors, both reported in Table 4: one based
on the operating principle of the sensor, the other on the type
of medical application in which it is employed. The collection
of these taxonomies presented in the literature mainly aims to
demonstrate the growing importance that IoMT devices are
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TABLE 3. References and readiness to adopt (RTA) value for technologies/techniques analyzed in each data processing steps.

Data processing step Technologies/techniques Literature RTA
Data Collection IoE [18]-[24] MEDIUM
D2D [11, [25]-[29] HIGH
Digital Twin [301-[34] LOW
Robotics [32], [35] HIGH
NTNs, Space communications, and IoST [36]-[38] LOW
Data Elaboration Image-based diagnosis [39]-[42] HIGH
Genome interpretation [43]-[45] HIGH
Biomarker discovery [46]-[50] HIGH
Patient monitoring and clinical care prediction [51]-[54] MEDIUM
Health assessment using wearable devices and Al [551-[57] MEDIUM
Autonomous robotic surgery [58]-[62] LOW
Data Security k-anonymity, I-diversity, and t-closeness [63]-[67] LOW
ABE and IBE [68]1-[74] MEDIUM
Blockchain and IPFS [751-190] HIGH

assuming in the panorama of wireless network applications,
given the numerous criteria that can be used to classify them.

2) DEVICE-TO-DEVICE (D2D)

D2D communications enable data transmissions among
devices in mutual proximity, thus bringing gains mostly in
terms of high data rate and low latency [25]. In the litera-
ture, D2D falls within the enabling technologies for smart
healthcare applications [26]. In particular, the telemonitor-
ing service could significantly benefit from the exploitation
of D2D. For example, [oMT devices can be employed to
remotely detect medical parameters and vital signs (e.g., tem-
perature, pressure, oxygen, pulse oximetry, and electrical bio-
signals) on patients. Personal wireless devices (e.g., smart-
phones) may receive the gathered data through D2D links
(i.e., sidelinks) and forward them to the doctor via the cellular
network. A similar application of D2D is presented in [27],
where it is considered a valuable solution to support reliable
healthcare monitoring services; the authors list enhancements
in data rate, latency, coverage, and system capacity among the
advantages that D2D could offer to eHealth services. A strong
point of [27] is that the major research challenges of D2D
communication in wireless networks are highlighted, among
which security stands out. Although the more general aspects
of the ““security for eHealth data” topic will be treated later,
in this section, we want to emphasize the key challenge of
the security issues deriving from the use of D2D communi-
cations in healthcare. Thus, in the following, some research
proposals introducing solutions for the security of D2D-aided
eHealth systems are briefly described. In [28], an escrow-free
identity-based aggregate signcryption scheme is proposed to
secure a D2D communication protocol in a cloud-centric
IoMT-enabled smart healthcare system. In [91], a lightweight
and robust security-aware D2D-assist data transmission pro-
tocol exploiting a generalized signcryption technique without
a certificate has been designed for health systems. Recently,
in [1], a novel eHealth system architecture, integrating D2D
communications and Multi-access Edge Computing (MEC)
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and supporting security mechanisms, has been introduced for
handling sensitive health data gathered by IoMT devices.

3) DIGITAL TWIN

The digital twin is a virtual representation of elements and
dynamics of a physical system [30] that, if exploited in future
6G networks, could help meet the requirements of upcoming
applications (including healthcare). It could be considered as
closely related to the IoE since it requires the deployment of
several sensors to create a replica of the physical object.

The potential for utilizing the digital twin in eHealth
and wellness applications has increased since its concept
has been extended to the reproduction of living and non-
living entities [31]. It is generally agreed that the realization
of the digital twin requires the support of various sensing
algorithms, communications technologies, data analysis tech-
niques, and security paradigms to make the virtual copy a
faithful and updated replica of the physical entity. In this
regard, the great success that the use of wearables has recently
enjoyed makes the adoption of the digital twin easier and
more user-friendly in the health and well-being contexts [31].
For example, personal digital twins (PDTs) are mentioned
in [32] as valid applications in healthcare for developing
virtual replicas of human organs. According to the authors,
PDTs can offer numerous profits in this field, among which
self-generation of alerts, better personal awareness, quicker
feedback, and faster triage emerge. The role of the digital
twin as a game-changer in the healthcare field is investigated
in [33], which introduces a framework for the predictions
of heart anomalies through the analysis of electrocardiogram
models. Three phases characterize the data collection process
for monitoring the medical conditions of patients and for the
early detection of anomalies: (1) processing and prediction,
(2) monitoring and correction, and (3) comparison. Given
the sensitivity of the data collected, the digital-twin-related
problems highlighted by the authors mainly concern trust,
security, and privacy, since the devices used to create and
update the virtual replica can be vulnerable to attacks by
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TABLE 4. loMT-related classifications in the literature.

‘ ‘ Paper Differentiation Criterion

Classification ‘ ‘

[21] Type of executed remote monitoring

Remote monitoring system for heart-related diseases

Remote monitoring system for brain and neurological diseases
Remote monitoring system for diabetic patients

Remote monitoring of fall detection of elderly people

Ingestible sensors

[22] Positioning of the sensors

Wearable sensors
Implanted sensors

Embedded sensors

Purpose and function of smart healthcare systems

Health monitoring

Medical automation

[23] Place of use of devices

On-Body
In-Home
Community
In-Clinic

In-Hospital

Operating principle of sensors

Physical sensors
Electrochemical sensors
Optical sensors

Magnetic sensors

Medical application of sensors

Monitoring

Targeted Drug delivery
Detection

Point of care diagnostic
Surgery

Treatment

Therapy

Medical Images

Sleep diagnosis and treatment

Obstetrics

malicious actors. Despite the great potential, in [92], besides
the problems related to data security, the novelty of technol-
ogy, time and cost, lack of standards and regulations, and
life-cycle mismatching are outlined as challenges to the dig-
ital twin implementation. Another aspect that emerges from
[92] concerns the numerous definitions that in the literature
refer to the same concept of the ““digital twin’’, among which
the “virtual object” lacks.

In fact, a noteworthy observation we want to bring out
matters the correlation between the digital twin and virtual
object concepts, whose distinction seems a bit fuzzy. An in-
depth analysis of the virtualization of objects in the IoT world
is provided in [34], where the virtual object is defined as
the digital counterpart of any real entity in the IoT. The
same authors dwell on the definitions and characteristics of
the virtual object, pointing out that there is confusion about
the use of the term ““virtual”, given the disproportionate use
that has been made of it since the 70s. They claim that the
functionalities obtainable through virtualization can change
according to the considered architecture, except for some
common ones and for the goals of the virtual object, which
must offer benefits to improve consumers’ quality of life.
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We believe this makes the distinction between the virtual
object and digital twin unclear and opens the way for further
study on the topic.

4) ROBOTICS

The potential of applying robotics to the healthcare sector
has emerged especially following the outbreak of COVID-19.
The authors of [35] collect and describe some compelling
robot applications developed during the height of the
pandemic emergency to help ensure the health system’s
resilience. In detail, robotics can be leveraged in favor of:
(i) diagnostics, both by facilitating the automation of some
equipment and by interacting with patients to measure vital
parameters; (ii) interventions, since robots can be used to
perform surgery procedures instead-of or together-with doc-
tors; (iii) rehabilitation, which has shown promising results
for some years now and could enable telerehabilitation,
allowing patients to receive therapy from home; (iv) assis-
tance to patients and healthcare professionals, to improve the
well-being of the former and reduce the workload on the lat-
ter. It is worth underlining that some of the systems mentioned
above are not yet mature enough to be adopted. However, they
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represent outstanding solutions that could be implemented
thanks to technological progress and the evolution of mobile
networks towards 6G. Also, in [32], the role of robotics in the
healthcare sector, particularly during public health emergen-
cies, is handled. In addition to the previous functionalities,
the authors cite disease prevention, for example, through the
robotic ultraviolet (UV) disinfection of surfaces performed
during COVID-19, and the use of drones and Unmanned
Aerial Vehicles (UAVs), to reach patients in remote areas.

5) NON-TERRESTRIAL NETWORKS (NTNs)

Thanks to the implementation of eHealth services, the
in-person meeting between patient and doctor can be avoided
in all cases in which the latter deems it appropriate. People
living in areas away from hospitals or clinics can prevent long
travels if the requirements are in place to provide them with
access to all the medical care they need. Space communi-
cations and the Internet of Space Things (IoST) can ensure
the ubiquity of eHealth services by offering their availability
anywhere and anytime [36]. NTN is considered one of the
key technologies of 6G wireless systems since global connec-
tivity can be achieved owing to the satellite’s large footprint
(i.e., coverage area) and/or thanks to the implementation of
constellations of Low-Earth Orbit (LEO) satellites [37], [38],
which can also provide eHealth services with low latency due
to their low altitude. To sum up, reaching places unserved or
under-served by the terrestrial network is feasible through the
exploitation of NTN systems, which represent an excellent
wireless component to access 6G eHealth services by meeting
ubiquity and low latency requirements.

6) RTA EVALUATION

A MEDIUM RTA value is assigned to the IoE in Table 3
because, although IoMT is already widely used (e.g., for
remote monitoring of patient’s health conditions), IoE can not
be considered highly ready to be adopted since it represents
something more complex and broad in comparison to [oMT.
5G was supposed to be the enabler of the IoE; however,
its actual application is currently far. 6G will represent the
means to overcome the challenges related to the activation of
heterogeneous IoE services since it will be designed to fulfill
the performance requirements of IoE applications. Consider-
ing that the IoE has already been cited in the literature as a
revolutionary 5G technology but that it needs 6G (expected
to be released approximately in 2030) to be enabled [19],
we believe that its RTA value is MEDIUM. Once imple-
mented, the IoE will highly impact eHealth services, fostering
personalized care, and continuity of care for chronic patients,
improving their quality of life.

D2D technology was introduced in Release 12 of the
3rd Generation Partnership Project (3GPP), but it could
have a notable impact on the efficiency of communications
between future medical devices. One of the main challenges
of using D2D in eHealth concerns communications security.
As already discussed, many works in the literature propose
possible solutions that, if applied, could allow the success of
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D2D technology in eHealth services. This justifies the HIGH
RTA value we have attributed to the D2D in Table 3.

NASA provided the first definition of the digital twin
around the 1960s to indicate a kind of living model in the
Apollo missions. Nonetheless, the idea of the digital twin
began to seem successful in several fields only with the
growing importance gained by the virtualization trend [93].
As highlighted in [92], the digital twin is an emerging
paradigm that could bring significant benefits to the health-
care industry but whose evolution is blocked by the current
absence of technologies sufficiently advanced to support it;
this is why it was assigned a LOW RTA value in Table 3.

Although the use of robotics to support medicine is not yet
feasible for some specific applications, due to the technology
immaturity, a HIGH RTA value can be assigned to its general
employment in eHealth since several services already imple-
ment it [35].

Finally, NTNs could bring numerous benefits to eHealth
services, especially in terms of connectivity extension. How-
ever, their application in this field is far away and is expected
to be achieved only when 6G technologies will be widely
used. Therefore, the RTA level of NTNs in eHealth is assessed
as LOW.

B. ARTIFICIAL INTELLIGENCE FOR eHealth DATA

Al improves healthcare professionals’ ability to catch better
the day-to-day patterns and needs of the people they care
for to optimize available resources and provide a higher
quality of service and care to stay healthy. According to the
authors of [4], [94], Al tools have revolutionized diagnostic
methods in the healthcare system. Al algorithms employ
mathematical-computational techniques to learn information
directly from data, without mathematical models and prede-
termined equations [95]. In eHealth, a typical advantage of
these algorithms is their flexibility to learn complex patterns
that are often impossible to model with standard mathe-
matical approaches (e.g., in identifying biomarkers in time
series such as electroencephalograms or magnetic resonance
images). Despite Al algorithms having gained impressive
progress and far outstripped traditional approaches, biolog-
ical data elaboration still represents an open challenge.

In this section, we investigate how Al, in particular DL,
can play a key role in eHealth to meet the rigorous require-
ments and future demands of services. We explore the
knowledge-learning methodology to train models from data.
Comparative investigations of these tools from qualitative
and quantitative perspectives are also provided. Finally, open
research challenges in using DL for biological data min-
ing are outlined and some possible future perspectives are
proposed.

1) LEARNING PARADIGMS

Al techniques can be generally divided based on how a sys-
tem learns from the data, namely supervised, unsupervised,
and reinforcement approaches. The three learning paradigms
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FIGURE 2. Use of the major 6G technologies in eHealth.

are the basis for training algorithms able to extract knowledge
from data, exploitable for resilient eHealth solutions.

Supervised learning systems use pre-labeled data as a
source of knowledge. The name recalls the idea of a ‘super-
visor’ who instructs the learning system on the labels to
be assigned to training instances [96]. Class labels are the
possible classification outputs (i.e., diseases or specific asso-
ciated conditions). Thanks to previous diagnoses made by
doctors, it is possible to create well-structured datasets that
are very useful for training new models. According to [4],
this approach is the most widely used and will provide
increasing help in eHealth. Many methods related to super-
vised learning have been proposed in recent years, including
Atrtificial Neural Network [97], Convolutional Neural Net-
works [98], Recurrent Neural Network [99], Support Vector
Machines [100], k-Nearest Neighbours [101], and Decision
Trees [102].

Unsupervised learning is increasingly becoming a key
paradigm for analyzing large amounts of biological data as
it overcomes the complexity of annotating health datasets
during or after collection, being laborious, time-consuming,
and expensive [103]. It determines patterns among the enti-
ties in a dataset with unknown annotations or characteristics
and applies the acquired knowledge to classify the leftover
data [5]. In unsupervised learning, we only have input data
without any expected output. The objective is to classify
and organize a set of inputs that the computer system will
reclassify based on common characteristics to make reason-
ing and predictions about the subsequent inputs. Therefore,
unsupervised learning could be employed to overcome lim-
itations and improve the efficiency of eHealth. The most
popular unsupervised methods include: Autoencoders [104],
Self-Organizing Maps [105], k-Means [106], and Density-
based Clustering [107]. Several of these techniques have been
employed to analyze data from numerous biological sources
with great results.
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Reinforcement learning systems can automatically dis-
cover interesting and useful patterns in data. It aims to find
a solution to a problem by attempting and checking whether
it produces the desired effect. If this occurs, the attempt
constitutes a solution to the problem. Otherwise, a different
attempt has to be done [108]. It is widely used in robotics;
therefore, it could be used for telemedicine applications for
remote surgery or home care assistance [109].

2) DEEP NETWORK ARCHITECTURES

Architectures that support biological data processing, includ-
ing for potential eHealth applications, are now being inves-
tigated, especially those that can fully automate data-driven
processes by learning directly from raw data.

According to [4], which offers an in-depth survey of the
most important algorithms for different data, biological data
can be classified into images, signals, and sequences; this
classification can be graphically learned in Figure 3. Standard
algorithms, such as support vector machines (SVMs), Linear
classifiers, or random forests have achieved interesting results
over the years; the authors of [110], [111], and [112] explore
the literature on these algorithms. They can still be used, but
we do not explore them in depth because they require manual
extraction of characteristics, which is time-consuming and
needs domain-specific know-how. As a result, we discuss the
most widely used deep algorithms that solve the aforemen-
tioned problems.

o Artificial neural networks (ANNs) have a strong
impact in the domain of eHealth. They consist of layers
of nodes that include an input layer, one or more hidden
layers, and an output layer. Hence, every node or artifi-
cial neuron links to another and has an associated weight
and threshold. If the output of a node is higher than the
specified threshold value, this node is activated, sending
data to the next layer in the network. Otherwise, no data
is transmitted to the next network layer [113]. There
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are many clinical applications where ANNSs are helpful,
such as assisting physicians in medical image inter-
pretation [39], [40], [41], [42], detection of Epilepsy
[114], breast cancer [115], lung cancer [116], coro-
nary artery disease [117], Alzheimer’s disease [118],
etc. The authors of [119] analyze how decisive ANNs
have been in the exponential growth of data processing
capabilities for present and future health applications.
Several studies have been carried out in the literature
with highly accurate results [120], [121], [122], [123].
Their remarkable flexibility in modeling complex prob-
lems gives more them advantages as compared to stan-
dard algorithms. The structures are directly based on
studies of existing complex biological neural networks
[124], [125], [126].

o Convolutional neural networks (CNNs) are the
most widely used architectures with the greatest
potential for automated Image-based diagnosis. The
complexity of learnable patterns has increased sig-
nificantly the fields of application providing excel-
lent learning capabilities and enabling classification
of challenging healthcare disorders, such as neuro-
logical disease [127],[128], [129], cardiac diseases
[130], [131], [132], cancer [133], [134], [135], genetic
diseases [136], [137], etc. Their architecture can be
described as a series of feed-forward layers with con-
volutional filters that are intermixed with convolutional
layers, pooling layers, and fully-connected layers. The
first two levels provide an automated feature extrac-
tion. The third block is analogous to normal ANNS.
The combination of these layers carries an unheard-of
flexibility in the input. This is precisely why it is the
most extensively used architecture for bio-signal anal-
ysis, as described above, of the huge variety in structure
and complexity.

« Recurrent neural networks (RNNs) use training data
to learn (supervised learning) and are distinguished
by their ‘memory’ that take information from previ-
ous inputs to influence current input and output [138].
The output of RNNs depends on previous elements
within the sequence, unlike feedforward neural networks
(i.e., ANNs, CNNs) that assume input and output are
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independent of each other. RNNs can analyze time series
data, as ordinal or temporal problems such as language
translation, natural language processing (NLP), speech
recognition, and image subtitling. They can be used
in eHealth to analyze medical texts such as anamne-
sis, and they can be of great help, e.g., in scanning
thousands of text documents and finding similarities to
support a physician in diagnosing a disease. In general,
RNNSs can be used in clinical applications requiring time
correlation, such as recognition of abnormalities in the
electrocardiogram (ECG), electroencephalogram (EEG)
monitoring, etc., [139], [140].

3) EXPLAINABILITY Al

Al, specifically DL, offers extraordinary opportunities in
eHealth. However, its systematic application is hampered by
the lack of trust in the decisions made due to the low inter-
pretability of deep architectures, which represents a severe
problem in the clinical field. The validation of models with
explainable Al (xAl) tools helps quantify the generated out-
put’s resilience and improve security and confidence over
black-box models. XAI helps users understand and trust
machine learning models by describing how certain features
used in the model contribute to its prediction. Furthermore,
xAl can be used to validate extracted features, confirm heuris-
tics, identify patient subgroups, and discover new biomark-
ers [141]. By identifying avenues for model performance
improvement, XAl can support research conclusions and
guide research advancement. For example, if a network model
predicts a heart disease patient’s health risk, a clinician would
want to understand how strongly the patient’s heart rate
data influences that prediction [142]. To solve this problem,
xAI has been developed to make models transparent. XAl
describes the behavior of the neural network and the decision-
making process. It involves two approaches:

« Globally, which aims at a general explanation of the
behavior of the model. It identifies how data features col-
lectively influence the result and provides an overview
of the model.

o Locally, which identifies how features individually
influence the result and independently evaluates each
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instance and feature of the data (e.g., specific image
pixels) [143].

Although this approach is very recent and has been a hot
topic only in recent years, researchers have populated the
literature to solve this decisive challenge that will transform
the future of eHealth [144], [145], [146], [147].

4) RTA EVALUATION

Several Al technologies have been analyzed in detail so far,
and their relevance in eHealth has been shown by citing the
existing literature. In the following, an evaluation of the RTA
of clinical applications exploiting some of these technologies
is conducted to provide insight into the adoption rate of
Al implementations in the medical field. The RTA values
assigned to each application are summarized in Table 3. It is
worth mentioning that some limitations to the implementa-
tion of the applications are not due to technological con-
straints but to regulatory limits or an incomplete integration
of the technological platforms.

Automated Image-based diagnosis is the most success-
ful and high-impact area of Al applications in the medical
field [39], [40], [41], [42]. Indeed, image-based diagnoses
are used in many medical specialties, including radiology,
neurology, dermatology, and oncology; therefore, we believe
that the RTA value of automated medical image diagnosis
is HIGH. CNNs are the most successful architectures in
automated Image-based diagnosis.

Genome interpretation allows scientists to understand
how DNA changes between people and whether or not
genetic variations play a role in the development of disease.
According to [43], [44], and [45], high-performance algo-
rithms, such as CNNs and RNNs, are decisive in analyz-
ing high-throughput sequencing methods since they generate
terabytes of complex raw data. In addition, this application
enables accurate clinical interpretation of biological data,
which is essential for recognizing the individual differences
underlying precision medicine. We thus assigned a HIGH
RTA value as it represents a mature technology already in use.

Biomarkers discovery is the building block of precision
medicine. It is an emerging area of research and ANNS,
CNNs, RNNs, according to [46], [47], [48], [49], and [50],
are improving and expanding its diagnostic capabilities. Fur-
thermore, clinicians can benefit from xAl by gaining insight
into how the AI models reach solutions from clinical data.
We assigned HIGH RTA value in Table 3 because the inno-
vative Al tools of bio-informatics allow the interpretation
of large amounts of data, moving the global scientific trend
from assumption to data-driven approaches. This adds signif-
icant value in different medical fields, gaining insights into
molecular pathological mechanisms of disease, identifying
new drug targets, or designing emerging economic assays to
improve diagnosis, prognosis, or response prediction, readily
available for clinical application.

Patient monitoring and clinical care prediction are
allowed by the exploitation of electronic health records
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that provide large amounts of data to predict the most
efficient treatments (such as the classification of cancer
patients with different responses to chemotherapy [148]) and
post-operative prognosis [149] or mortality [150]. RNNs can
provide much help to monitor the treatment or progress of
medical history because they take information from previ-
ous inputs to influence current input and output. RNNs can
detect clinically relevant predictors with good accuracy and
lead physicians in finding an optimized treatment strategy
[51], [52], [53], [54]. After an analysis of the existing adop-
tion rate we have assigned a MEDIUM RTA value in Table 3.

Health assessment using wearable devices and Al

algorithms has been the subject of numerous studies

[55], [56], [57]. The accessibility of smartphones and wear-
able sensor technology is causing a rapid accumulation of
human subject data. Machine learning and DL, in particu-
lar with CNNs, are emerging as techniques to map those
data into medical predictions. Clinical decision-making may
be directly impacted by such applications that could boost
patient care quality while lowering costs. Although wearable
devices record a plethora of biomedical signals, including
heart rate, voice, tremor, limb movement, and saturation, in an
extended recording time, they still lack medical certification
or accurate performance. Despite wide margins for develop-
ment we have assigned a MEDIUM RTA value in Table 3 for
the above-mentioned reasons.

Autonomous robotic surgery promises improved safety,
efficacy, and access to surgical procedures. Reinforcement
learning in this field covers a key role as as an up-and-
coming approach for simulating an autonomous agent. The
ability to mimic human learning behaviors to maximize the
long-term reward enables a robot to learn on its own and
partially replicate the work of experts. The trial-and-error
learning approach can use complex input data, such as text,
image, and temporal data, in the decision-making process and
recommends specific actions at predetermined intervals. Due
to technological limitations, such as a lack of intelligent algo-
rithms and vision systems that can recognize and track the
target tissues in dynamic surgical environments to carry out
complex surgical tasks, surgeries have not been completely
performed autonomously [58], [59], [60], [61], [62]. Thanks
to future developments in Al, robots could one day run the
operating room, with surgeons supervising their movements
but, to date, the development and adoption of autonomous
robots in medical interventions have been remarkably slow.
Therefore, a LOW RTA value has been assigned in Table 3.

C. PROPERTIES, TECHNIQUES, AND APPROACHES FOR
DATA SECURITY

The quantity and variety of patients’ health and wellness
data reflect how, where, why, and by whom they are col-
lected [151], [152]. The healthcare data domain involves
diversified information related to the patient’s life and their
links with healthcare facilities and entities. The authors
of [153] show how several kinds of data, such as demo-
graphic, clinical, wellness, and administrative attributes,
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concur to create every patient’s medical profile and the cor-
responding electronic health record (EHR). The collection,
storage, processing, and sharing of EHRs are key perfor-
mance indicators for developing and maintaining an efficient
healthcare system. However, the attributes of the EHRs may
reveal extremely sensitive information; this is the reason why
dedicated security measures must be applied for the protec-
tion of data and users [154]. Furthermore, the GDPR [155]
plays a crucial role in healthcare environments, indicating
six principles that must be guaranteed on the data: i) law-
fulness, fairness, and transparencys; i) purpose limitation; iif)
data minimization; iv) accuracy; v) storage limitations; vi)
integrity and confidentiality.

In this section, we focus on the security properties and mea-
sures investigated to protect data in the healthcare domain.

1) SECURITY PROPERTIES

In the following, the main security properties are presented as
the starting point in individuating, developing, and maintain-
ing a secure eHealth solution. These properties are shown in
Figure 4.

o Anonymity. The concept of anonymity is not absolute
but depends on the domain. A well-consolidated defini-
tion, coming from the field of anonymous communica-
tions is provided in [156], which claims that anonymity
for a subject is the state of being not identifiable within
a set of subjects. In the healthcare domain, we par-
ticularly refer to the anonymity of users’ data. In this
context, a typical example is provided by the concept
of k-anonymity [157]. Suppose we assume that we have
a dataset containing clinical data on users. In that case,
we can say that this dataset satisfies the k-anonymity
property if the information associated with a user can not
be distinguished from the information associated with
other k — 1 users.

o Accountability. This property refers to the possibility
of identifying and attributing responsibility to an entity
for a given action. For example, when a doctor draws
up a medical report on a patient, this action should be
notarized so that anyone can verify who the report’s
author is (even without knowing its content). An effec-
tive way to achieve accountability is the blockchain
technology [158], [159].

« Authentication. Authentication proves that a given user
owns the digital identity they claim. For example, before
accessing medical reports, interested users must per-
form an authentication procedure proving their identi-
ties. This can be done using a well-consolidated frame-
work such as electronic IDentification Authentication
and Signature (eIDAS) [160].

« Confidentiality. It concerns that data must not be dis-
closed to not-authorized parties. Again, it is very impor-
tant that a medical report containing sensitive data about
a user can not be accessible by other users. Effective
ways to achieve confidentiality are encryption [161],
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access control mechanisms [162], or a combination of
both [163].

« Integrity. This property means that unauthorized par-
ties must not alter the data. Indeed, if a user man-
ages to alter another user’s medical report, even
if confidentiality is preserved, this can dramati-
cally impact the victim. Like confidentiality, integrity
can be achieved through encryption. However, more
lightweight approaches exist, such as Message Authen-
tication Code (MAC) [164]. The concept of Integrity
is strictly related to that of Immutability, which is a
stronger property. By guaranteeing integrity, we mean
that even though the data can be altered, there is a
public way to check this alteration. On the other hand,
immutability requires just the impossibility to alter the
data. This can be obtained, for example, by storing them
on the blockchain.

« Non Repudiation. It is related to the accountability
property and refers to the fact that an entity can not deny
having performed a certain action. For example, when a
doctor writes a medical report, everyone can verify this
(accountability), but at the same time, the doctor can not
repudiate the report. Again, blockchain represents the
most effective way to achieve this property.

« Revocability. This property consists of the possibility to
revoke some privileges or capabilities to some entities.
For example, access to the clinical data of patients must
be revoked for a doctor who is fired from a hospital upon
dismissal. Achieving revocability can be a hard task that
depends on the privilege to invalidate. Some specific
solutions have been proposed in the literature when
dealing with advanced access control methods [165].

2) SECURITY TECHNIQUES
The aforementioned properties should be guaranteed in any
solution offering eHealth services to citizens and doctors.
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However, in practice, it is challenging to offer all of them
simultaneously.

Therefore, according to the specific eHealth service to pro-
vide and the needs of the involved actors, only a subset of the
above properties usually is guaranteed. For example, a trade-
off can exist between anonymity and accountability [166].

When dealing with EHR, achieving at least confidentiality
is a necessary condition. Several solutions in the literature
pursue this goal [12]. In the following, we briefly discuss
the evolution of cryptographic approaches to obtain confi-
dentiality by highlighting their limitations that lead to the
introduction of new solutions.

Traditional approaches to ensure confidentiality are based
on symmetric encryption or public-key encryption [167].

The main problem of the symmetric encryption schemes is
that a key has to be preliminary exchanged between the two
communicating actors. This makes these schemes impractical
in eHealth environments, considering that a doctor can have
many patients and should exchange a key with everyone; fur-
thermore, other keys should be used to communicate between
doctors.

Public-key encryption can solve this problem. Indeed, each
actor owns a public and a private key, and anyone can encrypt
the data by relying on the public key; only those who own
the associated private key can decrypt the message. However,
also public-key encryption is not conclusive. The public key
is a sequence of bytes not associated with the identity of a
user. If we assume that a patient wants to share their EHR with
a particular doctor (whose identity is known), how can the
patient be sure that a given public key belongs to the intended
doctor?

Identity-based encryption (IBE) [168] can help in this
situation since, in IBE, the public key is represented by some
unique information associated with the user’s identity (e.g.,
the e-mail address). This way, the patient can encrypt a mes-
sage without requiring the public key to any external party,
such as a Public Key Infrastructure (PKI) [169]. A price to pay
for these benefits is represented by introducing a third-trusted
party, called Private Key Generator (PKG), which manages
and distributes to the users the private keys associated with
the identities. Even though is possible to reduce the trust in
the PKG by splitting its competence among multiple PKGs

[170], the complete removal of the PKG is an open problem.
More advanced IBE schemes allow obtaining confidentiality
and anonymity by hiding the identity of the recipient [171],
[172]. The advantages of the introduction of IBE in the
healthcare domain are witnessed by several proposals in the
literature [71], [72], [73], [74].

An IBE extension that can guarantee confidentiality and
access control is based on attribute-based encryption (ABE),
introduced for the first time in [173]. In ABE, the ciphertext
and the key are associated with some attributes and a pol-
icy. If the attributes satisfy the policy, the decryption of the
ciphertext is allowed.

In particular, in the Key-Policy attribute-based encryption
(KP-ABE) [174], the policy is associated with the key, and the
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attributes are associated with the ciphertext. A user owning a
given key can decrypt only those ciphertexts whose attributes
match the policy associated with their key.

In Cipher-Policy attribute-based encryption (CP-ABE)
[175], [176], the policy is associated with the ciphertext, and
the attributes are associated with the key. In this case, which
is also the most applied in the healthcare sector, a user has to
own the right attributes to decrypt the ciphertext. IBE can be
viewed as a particular case of ABE by treating the identity as
an attribute.

CP-ABE can introduce several benefits in eHealth applica-
tions. Indeed, patients can encrypt their EHRs with a particu-
lar policy so that only authorized doctors can access them. For
example, data about mental illness can be encrypted under a
policy requiring that only Psychiatrists or Psychologists of a
given hospital can decrypt them. Another benefit is that the
patient does not need to know in advance the specific Psy-
chiatrists and Psychologists (and then their public keys) who
have access to the data. Similarly to IBE, a drawback of ABE
is represented by the introduction of a PKG that manages
and distributes to the users the private keys associated with
the attributes or policies. In practical terms, the PKG releases
the keys through the collaboration of some attribute providers
certifying the ownership of the involved attributes.

An enhancement of CP-ABE is represented by Cipher-
Policy attribute-based proxy re-encryption (CP-ABPRE)
[177], [178]. In CP-ABPRE, an honest-but-curious proxy is
introduced to reduce the computational workload on a user
who wants to change the policy associated with a ciphertext.
In particular, the proxy receives a re-encryption key from the
user to replace the policy associated with a ciphertext with
a new one. The advantage of this approach is that the proxy
performs this transformation of the ciphertext without learn-
ing anything about the plaintext. To understand the benefits
of CP-ABPRE in eHealth, we refer to the example reported
in [68]. Suppose a user encrypts an EHR under a given policy
P, satisfied by some doctors of a clinic Cy. Furthermore,
suppose that the clinic C; needs the collaboration of other
clinics with additional competencies to make a diagnosis.
To do this, C; would decrypt the EHR and re-encrypt it
with a new policy P, requiring further attributes. If sev-
eral EHRs have to be translated from the policy Py to P,
the computational effort required to C; may be high (many
decryptions and encryptions). Then, it can take advantage of
CP-ABPRE, delegating a proxy on the cloud, with high com-
putational power, to re-encrypt all the ciphertexts encrypted
under P into new ciphertexts encrypted under P;. This can be
done by providing the proxy with a single re-encryption key
from P to P>. It is worth underlining that the proxy can not
access the content of the medical records. As a final remark
about ABE, we want to observe that, in the eHealth setting,
a revocation mechanism should be implemented in case of
users lose ownership of some attributes. It is not a trivial task
but ad-hoc solutions are available in the literature [69], [70].

As previously stated, the presented encryption techniques
(e.g., IBE and ABE) are well-known for protecting EHRs in
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the medical cloud or servers at a data storage phase. In addi-
tion, during the data processing phase, privacy-preserving
data publishing (PPDP) approaches are highly required to
conceal or obfuscate any sensitive data on the patients to limit
their re-identification [63]. Each EHR typically is made of a
number of distinct attributes classified as: i) explicit identifier,
namely a set of attributes that uniquely identifies a patient
(e.g., national ID, name and surname, mobile number); ii)
quasi-identifier, which potentially can identify the patient
with some additional information (e.g., gender, address, date
of birth); iii) sensitive attribute, consisting of personal infor-
mation that can reveal a particular state iv) non-sensitive
attribute, which can not violate patient privacy if disclosed
and that are not categorized in the previous groups [64].

In the literature, some privacy protection models have
been proposed to handle the challenge of guaranteeing a
certain level of anonymity. The technique called k-anonymity
aims to make the tuple distinguishable from one another by
assuring that each value in a given dataset is indistinct from
a minimum of k& — 1 records [179]. However, due to its
simplicity, k-anonymity is vulnerable to several attacks such
as Homogeneity attacks and Background knowledge-based
attacks [63]. A different approach to reaching anonymity is /-
diversity, which is an extension to k-anonymity given that it is
based on the concept that attributes belonging to each relevant
group, called equivalence classes, must be well-represented.
Instead, the 7-closeness introduces the concept of a threshold.
Indeed, it is obtained when the sensitive attribute distance in
an equivalence class is not greater than this threshold. These
techniques have also been investigated in the healthcare sec-
tor to assure the privacy of patients’ data by providing a
suitable patient anonymity level. The authors of [65] analyze
some security frameworks able to face the existing challenges
of the healthcare industry. In [66] and [67], a clustering-
based anonymization approach has been proposed for cloud
healthcare users, while in [180], an anonymity-based solution
is developed to generate anonymous tuples for both the client
and server side.

3) EXISTING APPROACHES

The protection of EHRs is quite tricky since it needs a balance
between privacy and utility: data need to be used and analyzed
by several entities, but, at the same time, sensitive information
must be kept away from unauthorized actors [181]. We have
analyzed the most popular cryptography techniques in an
eHealth scenario. Besides, some higher-level deployment
approaches have been explored in the literature to manage
and organize EHRs.

In [181], authors explore the cloud deployment models and
divide the approaches into three categories: i) public cloud
model, where the infrastructure is accessible to public users
and participating entities (e.g., hospitals, pharmacies, labo-
ratories); ii) private cloud model, an infrastructure adminis-
tered by one healthcare organization; iii) hybrid cloud model,
which is a unification of the previous models since the health
organization exploits outsourced resources but controls the

134636

data. Each of these models needs to achieve privacy and
secure the confidentiality of EHRs data.

Recently, the potentiality of blockchain technology has
been harnessed to meet the urgent and strict security require-
ments in the eHealth environment. Thanks to its immutabil-
ity, transparency, data integrity, and decentralized nature,
blockchain technology can represent an effective approach
to managing EHRs [75], [76], [77], [78], [79]. For exam-
ple, in [80], the authors propose a blockchain-based system
in which only authenticated participants can outsource data
on the cloud. This way, their integrity is guaranteed also
when the medical institution and the cloud collude. Here,
Ethereum [81] has been selected as a public blockchain.

Other solutions that rely on consortium and/or private
blockchain are available in the literature, like [82], [83],
and [84]. Among these, [84] is a very recent proposal
designed to exchange health information between different
providers. It offers secure storage, rapid access and update
of medical records. The system was implemented on Hyper-
ledger Fabric [85].

When dealing with blockchain technology, the interplane-
tary file system (IPFS) [182] represents a reference solution
to store data in a decentralized way. IPFS is a distributed
file system in which data are stored and retrieved by content
(instead of by location). Currently, a lot of healthcare solu-
tions adopt blockchain in combination with IPFS [86], [87],
[88], [89], [90]. Even though several differences (in scope and
implementations) exist between these solutions, a common
element is the reduction of the cost of storing data. Indeed,
in traditional approaches, medical data are stored directly on
the blockchain in an immutable way. Often, this results in
prohibitive costs. On the other hand, IPFS does not introduce
costs to store data and allows the owner to “‘unpin” them so
that a garbage collector can remove them from the network.
However, no guarantee is provided about removing data, for
example, if a node previously hosting a file decides to re-host
it. Currently, data removal from IPFS is an open issue. Then,
data should be encrypted before being stored on IPFS.

4) RTA EVALUATION

To evaluate the applicability of the security approaches above
mentioned, we group them into three categories as reported in
Table 3. Before entering into the details, we want to highlight
that the limitation of the adoption of these solutions is not
necessarily due to technological lack. Indeed, often, security
solutions may require an effort to be used that a user or
operator is not available to spend. Therefore, to speed up their
adoption, these solutions should be developed as transpar-
ently as possible for the users.

Concerning blockchain-based approaches, we classify
their RTA as HIGH since this represents a mature technology
already employed in real-life scenarios. For example, the
Guardtime KSI Blockchain [183] adopted in Estonia stores
the eHealth records of patients by guaranteeing integrity and
privacy. Another interesting project with similar objectives is
Medicalchain [184].
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Concerning ABE/IBE-based solutions, we rate their RTA
as MEDIUM. Indeed, even though their practical adoption
in eHealth scenarios is limited (apart from research demon-
strators [185]), a lot of cryptographic schemes are already
available and ready to be adopted in real-life contexts. This is
also witnessed by some ETSI standards (TS 103 458 and TS
103 532). Probably, a small gap to overcome is the presence
of a fully trusted party, i.e., the PKG, that potentially may
access data by colluding with other entities. The benefits
introduced by these approaches have already been discussed
in the previous section and concern mainly confidentiality
and access control.

Finally, as regards the implementation of privacy-
preserving methods in the healthcare domain, several chal-
lenges and pressing question marks are still unsolved, which
made our choice of a LOW RTA. First, researchers and
industries strive to find the proper trade-off between utility
and privacy in their necessarily GDPR-compliant solutions
[186]. The prominent drawback relates to the difficulty of
applying these models to medical datasets [187]. Then,
again, a downside and a possible research challenge is the
absence of a clear standardization of policy compliance plan
where the privacy models and protection level are indicated
for the healthcare dataset [64].

To conclude, we would like to point out that even if
the introduction of these security solutions does not have
a direct impact in terms of data usability, it might have
an indirect impact. Indeed, the ability to manage data in
a privacy-preserving way may incentivize users to increase
the amount of data shared (which can be used, for example,
to develop Al algorithms).

IIl. INNOVATIVE ELECTROMAGNETIC SYSTEMS FOR
HEALTHCARE AND ASSISTED LIVING SERVICES

The data processing paradigm illustrated in Section II can
be applied to different eHealth scenarios and, therefore,
to different data types. An example is described in this
section, which concerns the application of the data collec-
tion/elaboration/security paradigm to monitor indoor patient
status. One of the key points in chronic and old-age dis-
eases is remote and safe monitoring of patient status and
physiological parameters (e.g., temperature, heartbeat, and
breath), without affecting their everyday life. In this respect,
localization and tracking are of high interest, and several
innovative electromagnetic systems and techniques have been
proposed in literature [188], [189], [190].

Among the very many available localization techniques,
active systems imply that the targets are equipped with a
transmitting/receiving tag, and they actively contribute to
the localization process [191]. However, active systems have
some drawbacks related to cost issues. For this reason,
passive systems have also been proposed, wherein the tar-
gets are device-free, and the localization techniques exploit
their interaction with the transmitted signal. Several pas-
sive systems and approaches have been recently proposed,
exploiting electromagnetic waves from optical frequencies
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to radiofrequency and sound waves [192]. Among them,
radiofrequency detection techniques are usually based on the
analysis of features such as the time of arrival, the direction of
arrival, and the received signal’s strength or the channel state
information [193]. On the other hand, new non-cooperative
device-free techniques for target tracking and localization in
the radiofrequency regime exist, which take advantage of
the peculiar feature of the electromagnetic waves to pen-
etrate non-metallic objects and exploit inverse scattering
approaches [194]. For instance, the main idea of [195] is to
image the investigated area by measuring the scattered field
generated by the interaction of the electromagnetic waves
with the targets and by retrieving the electromagnetic proper-
ties by solving an inverse scattering problem [196].

As far as patient cardio-respiratory activities are con-
cerned, the continuous monitoring of breathing and inhala-
tion volumes is essential for diagnosing many respiratory
systems, both during hospital confinement and in-home care.
Microwave systems demonstrated their potentialities for non-
invasive monitoring of vital signs such as heartbeat and
breathing. In particular, these systems are usually based on
continuous-wave doppler radar and can correctly identify
the heartbeat and breathing rate with a reasonable degree of
accuracy [197], [198], [199], [200]. For instance, in [201] a
simple microwave interferometer capable of measuring dis-
placements of wavelength fractions has also been proposed
with an accuracy measurement of chest wall displacement
less than 2mm. On the other hand, ultra-wide band radars have
also been proposed to quickly detect small movements of the
chest wall while breathing [202], [203], [204], [205]. They
are based on detecting ultra-wide band pulses reflected by
the human body in the time domain. First, the radar transmits
short impulses and are reflected by the human body. Then,
amplitude variations as well as the time of arrival of the
reflected pulse are used to evaluate the thorax and heart
movements. These systems radars have some advantages
with respect to continuous-wave radars, such as ability to
work with low signal-to-noise ratio thus offering high perfor-
mances in noisy environments, low transmission power, high
performance in multipath channels, and simple transceiver
architectures enabling low production costs [206].

IV. AN IN-DEPTH ANALYSIS ON THE REGULATIONS

Starting with the communication COM (2008) 689 of 4
November 2008 ““Telemedicine for the benefit of patients,
health systems and society” [207], European Commission
has encouraged the Member States to increase their efforts
in the field of eHealth, highlighting how telemedicine can be
able to significantly improve healthcare efficiency as well as
the quality of patient care. Definitely, the pandemic caused
by COVID-19 has shown the potential of digital health,
for the development of which a unitary regulatory frame-
work is required, capable of harmonizing digital applications,
in order to ensure the interoperability of the systems. Above
all, the unitary regulatory framework must ensure a robust and
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safe infrastructure to preserve the assets of patients’ health
data [208].

A. DATA SECURITY IN THE HEALTH SECTOR:
CONSIDERATIONS ON ART. 9 GDPR

Pursuant art. 4 GDPR [209], the “‘relative data health” are
personal data related to a natural person’s physical or mental
health, including the provision of healthcare services that
reveal information regarding their state of health. The fol-
lowing art. 9 GDPR includes these data among the particular
categories of personal data whose processing is prohibited,
according to any limitations that the Member States may even
implement [210].

Legislative Decree 10 August 2018, n. 101, issued for
the adaptation of Italian legislation to the provisions of the
GDPR, has inserted in the legislative decree 30 June 2003 n.
196 (Privacy Code), the art. 2-septies, titled ““Guarantee mea-
sures for the processing of genetic, biometric and related to
health”. According to co. 1 and 2 of this article, health-related
data can be subject to treatment in accordance with the guar-
antee measures arranged by the Guarantor for the protection
of personal data, to be adopted taking into account not only
the indications provided by the European Data Protection
Board and Best Practice on the processing of personal data
but also those pertaining to the scientific development and
technology in the sector covered by the measures.

Pursuant the guarantee measures of paragraph 4 of art.
9 GDPR, they concern the precautions to be taken with
respect to organizational and management profiles in the
health sector and the communication methods directed to the
person receiving the medical diagnosis. Pursuant the follow-
ing paragraph 5 of art. 9 GDPR, it identifies the security mea-
sures, also from the technical point of view, the minimization
measures, and the specific methods for the selective access
to the data. There is a strong correlation between training
safety and security of the conservation and circulation of
health data [211]. Art. 9, par. 2, GDPR lists the cases in which
the prohibition of treatment of health data does not apply,
including that in which the interested party has given explicit
consent to the processing pursuant lett. a) of the same article.

B. SECURITY IN THE FORMATION OF HEALTH DATA: AN
ANALYSIS OF ART. 22 GDPR

The importance of informed consent in the health context is
connected to the issues arising from the rules contained in
art. 22 GDPR. Pursuant this article, the interested party has
the right not to be subjected to a decision solely based on
the automated processing, including profiling, that produces
legal effects concerning them or that significantly affects
them in a similar way on their person.

An exception to this rule consists in the fact that the
decision “‘is based on the explicit consent of the interested
party” (paragraph 2, letter a)). In this case ‘“‘the owner of
the processing implements appropriate measures to protect
freedoms and legitimate rights of the interested party, at least
the right to obtain human intervention by the data controller,
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to express their opinion and to contest the outcome” . There-
fore, deciding to produce legal effects based on such treat-
ment is crucial. Moreover, this places the discipline in a more
advanced security perspective [212]. These regulations con-
cern a problematic issue that currently animates the debate
among administrative law scholars, and that refers to the
limits where it is possible to delegate the decision-making,
in particular of nature, to a procedural or administrative
algorithm. In this regard, there is a path traced by some
recent rulings by the administrative judge of the first and
second instance. However, not all Member States of the Euro-
pean Union (EU) have yet absorbed this path; for example,
the Italian Digital Administration Code, despite its repeated
changes and the spread of the phenomenon, has not yet
done so. The Italian administrative jurisprudence [213] has
highlighted the indispensability of the search for the technical
rule that governs each algorithm, with a motivation focused
on EU law and art. 22 GDPR. Since it is always possible
to find a sort of Anthropomorphic principle, administrative
discretion can not be delegated to the software, manifesting
its persistent relevance when the technical rule is concretely
elaborated and applied. There is no radical incompatibility
between computerization and administrative discretion, since
new technologies determine the redefinition and reallocation
of discretion, not its disappearance. The decision entrusted to
technology is a human decision: its innovation and creativity
depend on human’s ability to understand.

An analysis follows in which this concept is examined in
detail by taking as a concrete example the application of Al
to support the diagnosis. The starting question is: what is the
concrete possibility of guaranteeing the transparency of the
operation of Al systems? For example, it could be ensured
by introducing suitable certification and control procedures
with respect to their reliability. It is worth highlighting that
Al is never mentioned in the GDPR, though many of the
data processed by the Al-connected decision-making mecha-
nisms are classifiable as personal and, therefore, attributable
to the protection of the European regulations. Furthermore,
as part of the European strategy for Al, the EU published
on 21 April 2021, the proposal for a Regulation on the
European approach, which resulted in the first European legal
framework on Al This proposal, in addition to prohibiting
possible uses of some Al systems, such as those using sublim-
inal techniques or exploiting an age-related vulnerability or
a specific disability to distort a person’s behaviour, provides
for a specific regulation on “high” risk for Al systems used
as security components of products are subject to evaluation
by compliance according to European regulation, such as
medical devices. The introduced rules include, in particular,
the obligation to create and keep active a risk management
system, the obligation to ensure that the Al systems can be
supervised on the part of natural persons, the obligation to
ensure the reliability, accuracy and safety of the same and
specific transparency obligations towards users on the func-
tioning of Al systems [214]. The progressive pervasiveness
of algorithms is of great interest in the healthcare context.
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In fact, it is connected to the increasing reduction of the role of
the human in making decisions with significant consequences
for the patient’s health. In terms of data security [215], this
question pertains not only to the circulation and conservation
of health data but to its formation. It is about generating the
formation of a relevant and safe decision for the patient’s
health. In the analysis focused on art. 22 GDPR, it is essential
to clarify the meaning of the sentence ‘‘decision solely based
on processing automated”, since the term “‘solely” acts as a
distinction between decisions eligible and not. The reasoning
carried out in the light of the aforementioned administrative
jurisprudence has led to assume that the human component
can not be replaced by one presumed objectivity of the algo-
rithms. Therefore, there is a reaffirmation of the centrality of
the role that the human dimension retains even in the era of
smart technologies. However, the majority doctrine assumes
that in the case considered by art. 22 GDPR, there must be
human intervention to review the results generated by the
automated process. Therefore, the art. 22 GDPR could be
interpreted in the sense of configuring the right for patients
to be recipients of decisions also obtained thanks to the
participation of the human component. There will be a dif-
ference between the visit carried out by a doctor opposed to
confirming a decision made by an algorithm, compared to that
performed by a doctor prepared to select the most suitable
option to support the choices of the machine due to the lack
of availability of information inherent to the huge amount
of data that constituted the prerequisite for the decision of
the machine. The authoritative doctrine has found that “the
automatic system tends, over time, to capture the decision
itself” [212]. This generates two consequences: first of all,
the demonstration that an injurious decision is based only on
an automated process represents a ‘“‘Probatio diabolica’; in
addition, the excessive reliance that the doctor places on the
results produced by intelligent machines leads to the so-called
phenomenon of “Professional deskilling”, i.e., the progres-
sive reduction of the skills of health professionals, who can
become so unfamiliar with analytics evaluation to be no
longer able to detect errors more or less serious. Finally, the
presence of explicit consent by the interested party introduces
an exception to the rule established in art. 22, par. 1, GDPR.
The key point consists in identifying the characteristics that
the human intervention must have in terms of technical prepa-
ration, given that the data controller has to guarantee human
intervention anyway. This will be even more relevant in the
transition towards cutting-edge technologies, whose complex
logic requires a technical evaluation, which is by its nature
questionable.

V. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

The outbreak of the COVID-19 pandemic has given rise to
new needs related to the digitalization of various sectors glob-
ally. Although digital medicine seems a fairly widespread
reality, several shortcomings have emerged in recent years,
and the total absence of services remotely provided has
weighed heavily on some countries, bringing attention to
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the Digital Divide issue. As our work shows, the challenges
associated with the implementation of eHealth services are
many and depend on plenty of factors.

Concerning the telecommunications sector, the technolo-
gies are not sufficiently mature for the fulfillment of the
requirements of many eHealth services, in particular those
relating to latency, connectivity availability, and transmission
management of huge amounts of data. 6G is expected as the
solution to the problem as it could guarantee the fulfillment
of the most stringent requirements of eHealth services, also
by leveraging the technologies mentioned in Section II-A.
To provide some examples, in the next generation of eHealth,
wearable devices are expected as useful means in the remote
care of patients. The digital twin can help improve med-
ical care, organizational systems, precision medicine, and
advanced modeling of the human body. By exploiting NTNs,
connectivity can be guaranteed even in the most remote and
disadvantaged areas. Surgical and diagnostic robots can be
used to support the human interventions of specialized doc-
tors. These are just a few examples of what telecommunica-
tions can do to improve the way medicine will be used not
only to ensure the survival of patients but also to improve their
quality of life.

In the AI field, developments in algorithm processing
capabilities can not keep pace with the evolution of eHealth
services. Cloud systems generally lack sufficient processing
capabilities for efficient data management, and the meth-
ods of storing significant amounts of health data often do
not allow their adequate analysis by automated algorithms.
In the next generation of eHealth, Al algorithms will provide
advanced diagnoses in real time. The training of complex
neural networks will be granted via cloud systems capable of
handling large amounts of data and xAl techniques to ensure
the reliability of results, both through the improvement of the
models and the verification of the output.

Regarding security and privacy aspects, even though sev-
eral technologies are already ready to be used, their adoption
is struggling to take hold. This can be explained by two
reasons. First, security and privacy risks are misperceived
(and underestimated) by the users and eHealth operators.
Second, often security comes at a price in terms of usability
and/or efficiency. Therefore, two main challenges that we can
identify are: (1) increasing the awareness about security risks
through the education of users and eHealth operators and
(2) developing new security solutions as much transparent as
possible.

VI. CONCLUSION

In the next decade, innovative information and communi-
cation technologies will benefit various fields, such as the
healthcare sector. In particular, eHealth could revolutionize
the conventional methods to offer medical services to patients
owing to the remote monitoring of diseases and provision of
medical assistance, thus guaranteeing continuity and avail-
ability of care in every situation, including emergency times.
This paper has investigated the literature related to different
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approaches aimed at collecting, transmitting, elaborating, and
protecting health data, being these operations functional to
the innovation process towards eHealth. In particular, we sur-
vey the research proposals on the following aspects: the 6G
technologies that can be leveraged to gather and transmit
health data; the Al algorithms and applications useful for the
elaboration of biological data; the approaches and techniques
for the assurance of the security properties of such sensitive
medical data; the application of innovative electromagnetic
systems for healthcare and assisted living services; the Euro-
pean Commission’s regulations for secure data treatment.
The RTA metric for estimating the readiness to be adopted
of the technologies and techniques analyzed in this survey
has been introduced to highlight their application utility in
eHealth. The multidisciplinary facet that characterizes this
work has been developed thanks to the collaborations acti-
vated within the iCare project, which aims to the empow-
erment of research infrastructures and the improvement of
health services management. By writing this paper, we want
to convey that the success of telemedicine and the diffusion
of eHealth paradigms could be achieved if heterogeneous-
by-competence working groups collaborate to define the
hallmarks of the future technologies and approaches. Most
currently usable paradigms can not adequately support the
digital transformation of healthcare. Furthermore, the knowl-
edge of the current regulations can not be neglected since the
diffusion and use of technologies in the daily life of citizens
inevitably depend on it. This should also make the legislators
think, as their decisions can promote or, on the contrary,
thwart the digitalization of the health sector.
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