
Received 30 November 2022, accepted 16 December 2022, date of publication 21 December 2022,
date of current version 27 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3231191

A Study on the Aging and Fault Tolerance of
Microservices in Kubernetes
JOSÉ FLORA , (Graduate Student Member, IEEE), PAULO GONÇALVES , MIGUEL TEIXEIRA ,
AND NUNO ANTUNES , (Member, IEEE)
Centre for Informatics and Systems of the University of Coimbra (CISUC), Department of Informatics Engineering, University of Coimbra,
3030-790 Coimbra, Portugal

Corresponding author: José Flora (jeflora@dei.uc.pt)

This work was supported in part by the Portuguese Foundation for Science and Technology (FCT) through the Ph.D. Grant under
Grant 2020.05145.BD; in part by the Project Adaptive, Intelligent and Distributed Assurance Platform (AIDA), under Grant
POCI-01-0247-FEDER-045907; in part by the European Regional Development Fund (ERDF) through the Operational Program
for Competitiveness and Internationalisation (COMPETE2020); in part by the Portuguese FCT under Carnegie Mellon University (CMU)
Portugal; and in part by the FCT - Foundation for Science and Technology, I.P./MCTES through national funds (PIDDAC), within the
scope of CISUC R&D Unit - UIDB/00326/2020 or project code UIDP/00326/2020.

ABSTRACT Microservice-based applications are increasingly being adopted along with cloud service
models, and nowadays servemillions of customers daily. They are supported by container-based architectures
which aremanaged by orchestration platforms, such as Kubernetes, that monitor, manage, and automatemost
of the tasks. Although these tools provide failover capabilities, it is not yet studied how effective they are in
dealing with diverse types of faults. Fault injection is an effective methodology for validating components
that are supposed to detect the malfunctions and report/correct them. This paper studies the effectiveness
of Kubernetes in dealing with faults and aging in microservices, and on the possibility of using faults to
accelerate aging effects for testing purposes. For this, we conducted an analysis of the implementation and
tuning of Kubernetes probes, followed by experiments with varying load and fault injection into two distinct
and representative microservice testbeds to analyze the capacity of probes in detecting issues in applications.
The goal is to improve the knowledge of researchers and developers on whether Kubernetes can detect
different faults and aging issues. Also, even though some services tend to accumulate aging effects, with
increasing resource consumption, Kubernetes does not detect them nor acts on them, indicating that probes
may be insufficient for aging scenarios. Results also showed that fault injection is useful to accelerate aging
effects for the testing and evaluation purposes.

INDEX TERMS Fault injection, fault tolerance, Kubernetes, microservices, software aging.

I. INTRODUCTION
The on-demand utilization of resources in cloud com-
puting infrastructures is driving companies to adopt a
microservice-based approach to devise and deploy appli-
cations [1], [2]. Lightweight software containers provide
easy and fast instantiation contributing to efficient opera-
tions and adaptation to demand modifications. However, with
large and complex applications, the number of microser-
vices tends to becomemanually unmanageable. Orchestrators
help with some of these tasks, by introducing automated
monitoring and management to configure the deployment

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

configurations. Orchestrators reduce costs and allow to put
in place mechanisms that contribute to the resilience of the
application, providing adaptiveness to different operation
environments and even fault tolerance mechanisms. There
are several orchestrators available for developers to use,
such as Apache Mesos (mesos.apache.org), Docker Swarm
(docs.docker.com/engine/swarm), or Kubernetes [3].

Kubernetes (K8s) is nowadays the de facto standard for
microservices orchestration, adopted bymany companies [4].
In terms of resilience, K8s provides three main features:
automated horizontal scaling; restart of failing containers;
and the ability to define probes to continuously assess the
operation of containers [3]. Three types of K8s probes can
be used to increase the resilience of microservice-based

132786 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-0809-4665
https://orcid.org/0000-0002-5715-5711
https://orcid.org/0000-0002-1282-5363
https://orcid.org/0000-0002-6044-4012
https://orcid.org/0000-0001-9987-5584


J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

systems [5]. The startup probe assures the application inside
the container has started; the readiness probe indicates
whether the container is ready to respond to requests; and
the liveness probe indicates whether the container is running
as expected. Still, the study of these resilience features has
received limited attention.

It is not clear nowadays how effective are these features
in detecting faults, namely faults related to software aging.
In fact, aging is hard to detect, particularly in microservices,
which have fewer resources available when compared to
monoliths. For these systems, aging detection mechanisms
require more effective and sensitive manners to swiftly detect
and report the occurrence of aging. This would allow mit-
igation measures to act on the problem before the affected
service becomes a bottleneck for the system. Also, the exper-
iments conducted before deploying the services cannot be
extended during large periods as in traditional systems, where
their duration could take days or even months.

Previous work has shown that K8s probes are insufficient
in the detection of microservices aging even though the
resource usage of certain microservices grows extensively
over the experimental period [6]. It focused on microser-
vice aging, with experiments on a single e-commerce appli-
cation demonstrating that aging should also be a concern
in this domain. However, more software faults can affect
microservice systems and can impair the normal operation of
a microservice-based system.

This paper presents a study on the ability of Kubernetes
in dealing with aging and faults in microservices and on the
use of faults to accelerate aging testing. For this, we con-
duct a large experimental campaign in which K8s probes
and two diverse widely used microservice architectures are
analyzed in the presence and in the absence of faults. In a
first experiment focused in aging faults, we study both
architectures while under a regular operation profile, then
while under a stressing load, and finallywe inject faults aimed
at emulating the accelerated effect of aging issues. The goal
is to understand whether K8s can detect the aging issues and
also to understand if injecting those issues can be useful for
accelerating the validation of failure detection mechanisms.
In a second experiment, both applications where exposed
to several types of representative faults, to understand which
types of faults the probes are able to detect. The injected faults
were extracted from an industrial survey [7] and adapted to
the applications under study.

To understand how to carefully create the K8s probes
for microservices, we systematized the guidelines for their
design and development, which are useful for developers to
devise and leverage the checks performed during the oper-
ation of applications. This analysis reveals the necessity of
considering the nature of the monitored service but also
assuring that the probe is maintained, decoupled and concise.
Then, the probes are used during experimentation. For each
microservice application we followed a different approach.
For TeaStore [8], we made use of the registry service,
where every service of the application is registered when

online, to perform the health checks. For Sockshop [9],
we used the probes that were already configured, that use spe-
cific endpoints, in the deployment configurations available at
the time on the public repository.

During the experiments, aging effects were observed in
microservices that are highly requested, with the continu-
ous increase of resource consumption, especially memory.
However, K8s probes could not detect any of the aging-
related failure. The results also show that the injected faults
can be an effective way to test aging detecting mechanisms,
as it allows to accelerate the effects of aging, resulting in
less time required for aging experiments in the context of
microservice-based systems. The experiments with a wider
kind of faults also showed that K8s probes were not effective
in detecting faults that affect microservices (no failure was
detected, although several were observed) and thus, there is
potential and need for work that improves these mechanisms.
These findings are key for the decision-making process of
developers and system administrators during the selection of
the orchestrator for their applications, and also on how much
to trust the probes they use.

The main contributions of this work are as follows:
– An experimental study on microservices aging, analyz-

ing the ability that K8s probes have on detecting aging
issues. The experiments included two diverse andwidely
used microservices applications, built using different
technologies and architectures. The key insight is that
K8s probes were not effective in detecting the observed
aging failures. This is particularly significant consid-
ering the used probes followed two diverse and well
established development strategies.

– An experimental evaluation that used fault injection
to assess how K8s resilience features deal with fail-
ures in microservices. The study was conducted in
two representative microservice applications, and the
faults injected were obtained from an industrial sur-
vey on microservice faults, for representativeness. The
key insight is that K8s probes fail to detect the occur-
rence of failures. This shows that probes require a
deep understanding of the monitored services, and it
still might not be enough to detect many types of
failures.

– The illustration of the applicability of fault injection in
facilitating the testing of aging detection and mitigation
mechanisms for microservices, as it allows to accelerate
aging effects, enabling a faster and simpler evaluation of
these mechanisms in microservice environments.

The rest of the paper is structured as follows. Section II
presents related work and details microservices dependabil-
ity, with characteristics and challenges. Section III details
the basics for the experimental studies. Section IV presents
probes development best practices. Section V presents the
aging results and Section VI presents results for the probe
effectiveness for different kinds of faults. Section VII dis-
cusses the results and SectionVIII provides threats to validity.
Finally Section IX concludes.

VOLUME 10, 2022 132787



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

II. BACKGROUND AND RELATED WORK
The resilience characteristics for microservices is a cru-
cial mechanism to assure the management and orchestration
of extremely complex systems that can have thousands of
microservices. Dealing with different types of faults is a cru-
cial topic on this context given the diversity of technologies
that can be used to develop the microservices. It is very
probable to have faults in large codebases, owing to time
or budget constraints, thus it is utterly important to take
them into consideration when building or deploying critical
systems, using, for example, mechanisms that are able to
tolerate faults.

A. SOFTWARE AGING
Software aging can be defined as the accumulation of
resource utilization owing to faults present in the software
released to production [10]. These faults, which are hard to
detect during testing, have an effect on the system over time,
tackling the performance and resulting in higher response
times. As stated, faults are unavoidable, therefore, aging is
likely to occur from the accumulation of faults’ effects. Reju-
venation is the process of aging mitigation, or effect reduc-
tion, and, for instance, can be performed through restarting
an application with the intent of returning the software to a
clean state.

Software aging has been researched and several works are
available, being applied to some real case scenarios [11].
Web servers were studied with different models used to
monitor the system [12]. This work was then extended, focus-
ing on Apache, concluding that when subjected to over-
whelming workloads there are traces of aging but also minor
rejuvenation [13].

However, aging in micoservices has not received signifi-
cant attention. Previous work performs a preliminary study on
the subject, applying known principles of aging to microser-
vices and observing the results [14]. To detect aging, a deep
learning model was applied and proved to be effective. Still,
it does not elaborate on the topic, only proving that it is a rel-
evant subject that needs more attention. Some past work has
used the injection of faults to accelerate aging effects on sev-
eral types of systems for testing and evaluation purposes [15],
[16], but without focusing on microservices. Other works
have focused on container engines [17] and containerized
applications [18] revealing that aging is a concerning issue.

B. DEPENDABILITY AND MICROSERVICES
Fault tolerance has been studied on various subjects, espe-
cially on cloud computing, where three different surveys have
been done [19], [20], [21]. Considering the most recent study,
various different approaches are being used: system model,
which is related to the network topology being used; proactive
approaches, where the system acts preemptively to changes
that may cause failures; reactive approaches, very similar to
proactive, with the difference of reacting to the failures that
already happened; and finally, we have some miscellaneous

approaches that use machine learning and other techniques.
In the end the authors suggest the study of deep learning
or blockchain driven fault tolerance techniques, but also the
challenge of having fault tolerance within systems that are
using data deduplication and also an emphasis on perfor-
mance issues [19]. Fault tolerance on microservices has also
received considerable attention lately, with various studies on
the subject [22], [23].

When it comes to Kubernetes, it has been a topic of
research owing to increased use in industry, still mainly
focusing on scalability. Several features are provided to
address software problems in an autonomous manner, as for
instance, the Horizontal Pod Autoscaler (HPA) that allows
the autoscaling of services according to demand. Previous
to scale up, it is common for the service to be under stress
load for a short period of time, to better use the resources
available and not frequently perform scaling up or down. HPA
has been extensively researched and improvements have been
proposed allowing developers for better results, with higher
flexibility and effectiveness [24]. probes are an example of
other approaches to monitor services and identify malfunc-
tion, which perform periodical health checks on the corre-
sponding services [5].

Kubernetes has also received attention regarding fault tol-
erance, where, for example, it was proposed a multi-master
platform tolerant to Byzantine and non-Byzantine faults [25].
Robustness in general is an known given by Kubernetes, due
to many of its features being fault tolerance and assuring high
availability [26]. Probes however, have not received much
attention, although being used on many real life scenarios,
therefore being one of the targets of our work [27].

Microservice-based systems are gaining ground in appli-
cation design, development, and deployment, owing to their
modularity [1]. Coupled with orchestrator management, they
can leverage flexible and easy to use deployment. Kubernetes
(K8s) is the most popular orchestrator on the market sup-
porting diverse systems, even reaching business-critical sys-
tems [4]. Following, we detail some aspects of microservices
and challenges raised in their environments.

Microservice architectures intend to overcome limitations
of monolithic applications, composed of multiple tightly
coupled components resulting in low modularity [1], [28].
Monoliths’ advantage are the easy distribution and deploy-
ment, and inter-component communication. Problems arise
as the monolith ages, since maintainability and dependency
management become very hard [28]. Resource usage is not
optimized, becoming cumbersome to effectively satisfy all
deployment configuration requirements, leading to scalabil-
ity limitations [28]. The idea of microservices is to decom-
pose the different parts of the system into indivisible units
of software that provide a well-defined function [1], [28].
A microservice can also be updated without a full application
reboot, as required in a monolithic approach. As microser-
vices are small, they are easier and faster to instantiate or
remove. Thus, potentiating scalability and elasticity of the
services and use resources as they are needed.

132788 VOLUME 10, 2022



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

C. MICROSERVICES CHALLENGES
The use of microservices in production systems does not
solve all known problems and, in some cases, it may even
exacerbate them, creating difficulties in assuring satisfac-
tory resilience levels for the applications [28]. For instance,
the components that used to communicate through internal
mechanisms are now decoupled and are required to expose
an API to exchange information [28]. The network becomes
more complex, with more data being exchanged, services
need to assume trust in other components, that commonly use
different technologies, and rely on them to achieve their goal.
Also, the possibility of access from external sources or even
from third parties deployed in the same infrastructure, poten-
tially with different vendors, owing to cloud deployments and
multi-tenancy environments cause the attack surface area to
be greater than ever before [29]. Cloud environments used
tend share physical resources with applications frommultiple
vendors, where some can obtain resources with malicious
intentions [29], [30].

Microservices are easy to develop and test individually, but
microservice-based systems is a different story. The interac-
tions among services are complex and hard to cover com-
pletely. Some techniques, as chaos engineering emerged to
test the systems in production [31]. Besides good develop-
ment practices and use of reliability design patterns, orches-
trators provide mechanisms to increase systems’ resilience.
K8s provides probes with the main goal of detecting failures
in services and apply mitigation measures, such as service
restart. Still, there is reduced work on the evaluation of
how effective this mechanism is. It is important to under-
stand which failures, and the nature of the responsible faults,
K8s probes can detect in a microservice environment.

As reason for failures, the aging of software systems has
been researched in the past along with its impacts on system
performance [10], [11], [13]. Methods of rejuvenating the
affected system, without significant impact availability, have
been proposed [14]. However, most works have focused on
the non-microservice approach [10], [12], [13]. Our previous
work has addressed this issue and is now extended to consider
other types of faults.

Even from a security perspective, missing a fault can poten-
tially be maliciously leveraged to compromise the infras-
tructure [32]. Hence, this work also serves as a basis for
deciding whether K8s features can be combined with security
measures, such as intrusion detection mechanisms. The asso-
ciation of different mechanisms can significantly improve the
resilience and security level of an application that is managed
using K8s. Even if the probes cannot settle the issue entirely,
this work can still contribute with a clarification about which
set of faults aremore prone to be detected resulting in possible
scenarios where this mechanism can be applied.

III. EXPERIMENTAL CONTEXT
Based on the aging study conducted, we extend the work
to evaluate the effectiveness of probes to detect and actuate
upon failures resulting from different types of faults. Also, to

summarize best practices for probe design and assess the
careful tuning of the parameters available. The practi-
cal experiments conducted in this work intend to study
the Kubernetes’ ability to increase the resilience of
microservices.

In this section, we describe the context that is common to
the experiments described in Section V and Section VI. These
experiments were performed on two different representative
microservice applications, with different workloads, while
collecting metrics with multiple tools.

A. REPRESENTATIVE MICROSERVICE APPLICATIONS
In this work, we selected two different and repre-
sentative microservice applications, TeaStore [8] and
Sockshop [9]. Both applications were developed with the
intent to be used in practical experimentation with microser-
vices. Fig. 1 and Fig. 2 depict the architecture of TeaStore
and SockShop, respectively, that are detailed next.

FIGURE 1. TeaStore architecture (from [8]).

TeaStore is composed of5 java-based services designed
to discover themselves through a Registry compo-
nent. Each running service instance announces itself to
the Registry as a way for the application to operate
regardless of the active service replicas and their distribution.
The WebUI service takes advantage of the Recommender
service to provide recommendations to users. The system is
also composed of a database that stores all the relevant data

FIGURE 2. SockShop architecture (from [9]).

VOLUME 10, 2022 132789



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

and is only accessed through the Persistence service. All
services communicate via REST, as this is established as the
de-facto standard in the micro-service domain [8].
SockShop simulates a user-facing e-commerce website

that sells socks that are intended to aid in the testing and
analysis of microservices and cloud-native technologies [9].
The application is composed of 8 services, developed in
different programming languages, such as NodeJS, Java, and
Go, and four databases. Similar to TeaStore, SockShop also
uses REST for the communication between services.

To deploy the applications, we followed the guide-
lines available at the applications’ GitHub repositories and
deployed each into a Kubernetes cluster. We performed pre-
liminary experiments to tune the workloads intensity and the
applicability of the user behavior profiles. These tests had
the main objective of assuring the services were not stressed
outside the stress scenario and faulty systems were operating
effectively. During the final experiments, we consider two
replicas for the WebUI and Persistence services as dur-
ing preliminary testing these were subjected to most issues
related to scalability concerns.

B. WORKLOAD
To exercise the microservice testbeds, we utilized the Locust
(locust.io) load testing framework. Locust is an easy-to-use,
scalable tool that allows defining the behavior of users that
interact with the target application.

For TeaStore, we created the clients’ behavior profiles
based on the request profiles available at the public GitHub
repository; there are two types of interactions: browse, that
emulates users browsing the store, selecting items and adding
them to the shopping cart as if they would purchase them,
but no orders are submitted; buy, emulates users browsing
the store and conducting purchases of selected items. The
buy profile was used during the experiments, as it is a more
complex and representative workload.

For the SockShop application, the interaction profile
publicly available was already ready to be used with Locust.
In this profile each transaction includes the user connecting
to the application, listing the items available, and complete
purchases.

C. MEASUREMENTS
To understand the performance and behavior of each system
multiple tools were used for different purposes. Information
about the transactions executed using Locust, Kubernetes
Metrics (github.com/kubernetes-sigs/metrics-server) to col-
lect CPU and memory usage per service, and Kubernetes
Events to extract information about the status of the pods. The
measures for CPU and memory are the ones typically used in
Kubernetes. For CPU, we use the millicpu that corresponds to
one-thousandth of a CPU unit. One CPU unit is equivalent to
one physical CPU core, or one virtual core [33]. The memory
is measured in bytes.

The transactions performed allow us to keep track of the
system’s ability to respond and the impacts that fault, or more

specifically, aging, have on the system. The use of Kubernetes
Metrics is required to observe the effects of load changes and
faults impact in the resource usage of the system, allowing
to verify whether the impacts are noticeable. Events are a
resource type in Kubernetes that are created when compo-
nents have errors, changes in state, or other messages, and
are useful to debug malfunctions in the system [34]. Because
containers have a status that can be modified, we can use
Kubernetes Events to log information regarding whether a
probe check detected an erroneous state in its operation. If so,
the container is unhealthy, otherwise it is healthy. Using the
typical commands of kubectl to get information on the active
pods and resources, the logs of each service and pod, and the
detailed information from the describe command was enough
to understand the state of the container.

D. EXPERIMENTAL SETUP
The experimental setup consists of three machines. The
Kubernetes master machine has a processor with 2 cores
and 16GB of RAM, while the worker node machine runs
with 4 cores and 16GB of RAM. The Test Driver runs on
a separate machine to generate the workload using 2 cores
and 16GB of RAM. All three machines are running Ubuntu
and operate as depicted in Fig. 3, with the Kubernetes cluster
being composed by a master and a worker.

FIGURE 3. Experimental setup: microservice application deployed in
Kubernetes, with a fault injected in a microservice.

The Test Driver controls the execution of the exper-
iments, emulating the clients that are using the system,
and for the activation of the faults. It includes the work-
load generator based on Locust that executes the workloads
described previously. The Kubernetes Cluster deployed for
each testbed, following the recommendations available, used
the two machines available and monitored the resource usage
of each active service and continuous probe operation on the
lookout for possible malfunctions.

IV. KUBERNETES PROBES
As a part of its adaptive capabilities, Kubernetes (K8s) pro-
vides three different probes whose objective is to assure that
applications are delivering the expected service and ready to
respond to incoming requests [5]. These mechanisms have
the potential to be utilized in a wide range of critical applica-
tions, that are nowadays deployed in Kubernetes. There is an
urge to understand probes and analyze their advantages and
drawbacks.

Our goal is to analyze and understand the relevant fea-
tures in the design and implementation of K8s probes for

132790 VOLUME 10, 2022



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

microservice applications. Comprehending the design deci-
sions made for the monitoring of the service probed and
the results obtained so these mechanisms are indeed con-
tributing to system-wide fault tolerance. This knowledge can
contribute to more informed decisions during the design
procedure.

Of the probes in Kubernetes, the most relevant are [5]:

• Readiness probe: assesses whether a container is ready
to take requests. In the event of failure, the endpoint
controller removes the IP of the pod containing the
failing container from all the endpoints that match it.
A pod is considered ready when all its containers are
ready. Otherwise, it is removed from the service load
balancers.

• Liveness probe: consistently conducts the probing of
the container to assess its running state. If a failure is
detected the container is killed, and the restart policy
controls the next operation performed.When a container
is killed, a new one is created.

A probe can be defined using three different approaches:
an HTTP request (e.g. a GET request); a TCP connection,
where a connection is established to a specified port; and a
user-defined command (e.g. check if a file exists).

After the container starts, the startup probe validates the
correct initialization of the container. Then, the readiness and
liveness probes kick in. The readiness probe checks if the con-
tainer can receive and process requests. The liveness probe
continuously performs checks and restarts the container when
it detects a failing state.

A. BEST PRACTICES FOR PROBE DESIGN
The design and implementation of probes is a delicate pro-
cedure that will have an impact on detection effectiveness.
It can also impact the performance of a specific service and
have repercussions on the whole system. The definition of
the readiness and liveness probes needs to take thoughtful
consideration to maximize the outcome from its utilization.
So, they provide the system with effective resilience and self-
adaptiveness levels.

Based upon prior knowledge and analysis from experi-
ence [5], [35], a set of best practices emerge. They are pre-
sented so that K8s probes are more effectively designed and
implemented:

BP1 Independent application handlers: create specific
handlers in the application for processing the requests
from each probe. This allows each probe to have a
specific endpoint to call on and remain an integral part
of the application, which is important due to K8s’s addi-
tional monitoring mechanisms. Abiding by these rec-
ommendations allows developers to have an assurance
that probes will not cause complications in the normal
operation of the application.

BP2 Focused goals: the handlers designed for each probe
should conduct only verifications and nothing else. For
the readiness probe, the required components for the

successful operation of the service should be checked.
For the liveness probe, the status of operation should
be verified and returned as a simple code (e.g. OK or
NOT_OK).

BP3 Report without correcting: probes must not attempt to
correct any errors that may be identified. The only objec-
tive is to understand whether the system is operational.
Correcting the problems identified is the responsibility
of other mechanisms.

BP4 Parameters tuning: Besides the correct definition of
the probes, tuning the parameters is important. Careful
tuning of the parameters’ configuration should be done
so that it does not become an obstacle to the service’s
operation.

The most relevant parameters are the periodSeconds:
which specifies how often to execute the probe; the
initialDelaySeconds: which specifies how long to
wait to initiate the probe after the container starts; and the
timeoutSeconds: which specifies the number of seconds
after which the probe is considered failed [5].

A small value for the periodSeconds parameter could
force the probe to execute too many checks. In con-
trast, a large value could leave the container in a bro-
ken state longer than desired. When the value of the
initialDelaySeconds parameter is too small, the
probemight start the diagnosis before the application is ready,
and it will force a wrong restart of the container or the pod to
not accept traffic. This requires the programmer to leave time
to start the application inside the container. Regarding the
timeoutSeconds parameter, a short timeout may lead to
false alarms because the application did not have enough time
to process the action, whereas a large timeout might leave a
broken container running longer than expected.

B. ANALYSIS OF PROBE DESIGN AND IMPLEMENTATION
In this paper, we use two different approaches for K8s
probes implementation. For TeaStore, we made use of the
registry service, where every service of the application
is registered when online, to perform the health checks. For
SockShop, we used the probes that were already config-
ured in the deployment configurations available at the public
repository. EachSockShop service exposes an endpoint that
returns the health status of the service. These endpoints are
used by HTTP liveness and readiness probes.

We then conducted a qualitative analysis of the implemen-
tation of probes for TeaStore and the difficulties that may
emerge. In our experiments, we aimed at providing each of
the five services with a liveness probe. Hence, we studied
the configurations and actuation mode of the microservices
in the application to understand which were the important
points where the probes should focus. Primarily, the commu-
nication between services is performed using REST. More-
over, the registry previously mentioned congregates the list
and corresponding information of each active service. The
infrastructure utilizes a heartbeat mechanism that assures the

VOLUME 10, 2022 132791



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

correct and continuous availability of each service since when
the heartbeat check fails, the service is removed from the list
of active components.

Regarding the implementation, we started with an analysis
of the system to understand it. We used a request to the
status page of the WebUI service to understand if it was
operating correctly (see Listing 1). However, this would cause
significant overhead to the service and this method satisfied
only two of the four best practices proposed, BP2 and BP3.

Listing 1. Initial (naïve) liveness probe for the WebUI service.

Further versions of the probes leveraged the heartbeat
checks of theregistry service. So, the probewasmodified
to be focused (satisfying BP2 and BP3) and use an indepen-
dent handler, which satisfies BP1 (see Listing 2).

Listing 2. Endpoint created for probes.

So, to satisfy BP4 the period of the checks was decreased
from 10 to 5 seconds and the remaining parameters tuned,
see Listing 3.

Listing 3. Liveness probe created.

The configuration changes were demonstrated to have an
impact on probe operation. As there are multiple probing
moments, the requests should be lightweight and direct to the
goal. Clearly, this was not the case in the first implementation
attempt, as the probe received a complete HTML page where
a simple status code was enough. A more thoughtful method
was devised and allowed the probe to become faster and
reduce the overhead caused in the service. These insights
allow developers to have a better understanding of the condi-
tions and steps required to devise and implement K8s probes
for microservice applications. It can be useful when deciding

whether probes should be implemented. It also helps to guide
their implementation, focusing on some aspects that require
special attention.

Regarding the probes already implemented in SockShop,
these are specific endpoints for each service that report the
ability of the service to operate without correcting any prob-
lem found with it. Hence, the probes already present in Sock-
Shop satisfie the best practices referred previously.

V. MICROSERVICES AGING EXPERIMENTS
Kubernetes (K8s) supports diverse microservice applications,
as business-critical systems, that require different levels of
resilience and performance. K8s provides different features,
such as probes, that allow increasing the resilience of systems.
Still, there is little information regarding their effectiveness,
specifically in the identification of service failures when
aging affects the microservice. In this paper, we present an
extension of the work previously published [6], to a different
testbed so that results are more consolidated.

The objective of this experimental study is two-fold:
i) evaluate the detection effectiveness of Kubernetes probes of
aging effects in microservices; and ii) study the acceleration
of aging effects in microservices through the utilization of
software faults.

For this, we devised an experimental campaign based
on representative microservice-based systems and applied
three different scenarios. These scenarios consist of a nor-
mal operation, a stress operation, and the utilization of an
aging-related fault in a stress environment. The information
obtained from this study contributes to a clearer picture of the
protection granted by K8s probes. Further, it also provides
the possibility of understanding whether aging can be accel-
erated to usable timeframes within the typical constraints
of the development and deployment of microservice-based
systems.

A. EXPERIMENTAL DETAILS
Building upon the experimental context described in
Section III, we defined the following specific details for the
aging experiments. During this workwe devise different oper-
ation environment scenarios (detailed below) and analyze the
behavior of the services in each one. The main goal is to look
for aging effects and understand how K8s probes react to
them. Based on the results obatained over the experiments
with the stress load, we injected faults in the WebUI ser-
vice of TeaStore and the orders service of SockShop
beacuse these were the services most affected by the stress
scenario. For the experiments we only injected amemory leak
fault that is active throughout the duration of the experiments
and tends to accumulate memory resources. The fault used
meets the requirements of a typical fault injection procedure
for the purpose of causing aging in the software components
it affects [10], [13], [14].

To analyze the aspects of microservice aging, we devised
three experimental scenarios for the operating environment
of the system. The simple scenario consisted of a normal

132792 VOLUME 10, 2022



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

operation of the system over 48h exercised with the normal
workload depicted in Fig. 4, having 9 active users over time.
The stress scenario executed over a period of 48h with the
use of a stress load that is represented in Fig. 4, therefore over-
loading the system to provoke aging behavior under stressful
conditions. The faulty scenario is a merge of the stress sce-
nario with the presence of a fault in the WebUI and orders
services of the applications. This scenario runs for a shorter
period, only 24h, as it is enough to demonstrate the intended
use of accelerating the effects of aging in microservices.

FIGURE 4. The load intensities used for the two workloads.

Each scenario intended to accomplish the following goals,
respectively: i) have the baseline behavior for the system;
ii) obtain the effects of aging for the system under stressful
conditions and iii) understand whether faults can be used to
accelerate aging effects in microservices.

B. RESULTS FOR AGING EXPERIMENTS
The results obtained during the experimental campaigns with
the TeaStore and SockShop applications are presented
in Fig. 5.

For TeaStore, services Recommender and Auth
and DB were suppressed as their behavior was simi-
lar to Registry and Image services, respectively, thus
not adding much and allowing the visualization to be
clearer. For similar reasons, we also suppressed informa-
tion about some services of the SockShop application.
Namely: catalogue, session-db, shipping, user,
and user-db services are not depicted.
In both figures, the first row contain information related to

CPU usage, the second row presents data from memory con-
sumption, and the third row presents data about the transac-
tions executed by the system. The experimental scenarios are
presented from left to right: simple scenario, stress scenario,
and faulty scenario.

Across all scenarios, the systems are exercised with the
corresponding workloads, as described in Section III. It is
possible to observe the consumption of resources that denotes
unsteadiness at the beginning and the end of the experiments,
consistent with the warm-up and cool-down phases. These
phases are not considered in result analysis, focusing only on
the system’s steady phase. During this period, microservices
are warmed-up and functioning as normally would in a real
environment.

1) CPU USAGE ANALYSIS
For TeaStore the CPU utilization is very stable for each
scenario analyzed, although some spikes are observed. For
SockShop, there is a similar behavior with the exception
that during the faulty scenario, the orders service shows
two spikes in usage relative to crashes experienced by the
service. However, among the three scenarios there are clear
differences in the usage of CPU for both testbeds.

For TeaStore, the simple scenario shows a quite stable
CPU consumption for all services, with an upper bound
around 200 millicpu. For SockShop, there is a stable con-
sumption across every service during the stable scenario.
The general CPU utilization remains at low levels, without
crossing the 200 millicpu line for any service. This shows
that, when the load is manageable, the services have very
steady and low usage of CPU.

In the stress scenario, the spikes in some TeaStore
services (mainly Persistence and WebUI) are constantly
increasing, crossing 400 millicpu by the 16th hour of the
experiment and 600 millicpu by the 30th. For SockShop,
there is a noticeable oscillation in CPU consumption for every
service. This indicates that resources are used according to
the level of user demand. There is a set of four crashes for the
front-end service around the 26th hour of the experiment,
which corresponds to a identifiable spike in CPU usage in
the Figure.

On the faulty scenario, there are a few oscillations in
TeaStore, similar to the simple scenario, with the CPU
consumption hardly crossing the 400 millicpu value. Still,
in the second half, there is a slight increase of oscillations to
higher levels, as in the stress scenario. For SockShop, the
behavior of the services remains quite similar to the observed
during the stress scenario. However, there are two moments
in the experiments where the CPU usage of the orders ser-
vice spikes, reaching around 900 and 1300 millicpu. These
moments correspond to crashes that orders experienced
during the faulty scenario, around the 9th and 18th hours. The
patterns of CPU usage for both cases is quite similar, with the
second crash’s spike being slightly more elevated.

Overall, the CPU consumption is affected by the stress
load that is directed to the system, while it remains relatively
stable and with lower spikes over the simple scenario in both
testbeds. However, SockShop orders service experiences
two crashes during the experiment period.

2) MEMORY USAGE ANALYSIS
The observations of memory usage depict more dissimilarity
between services in TeaStore than in SockShop. Some
TeaStore services, such as WebUI and Persistence,
suffer from the accumulation of memory over the period
of the experimental campaign. Yet, the services have dif-
ferent degrees of accumulation, as WebUI grows faster
than Persistence. SockShop services carts-db and
orders-db demonstrate a pattern of continuous increase of
memory use.

VOLUME 10, 2022 132793



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

FIGURE 5. TeaStore and Sockshop results with the memory, CPU consumption, and transactions for each scenario. Top corresponds to CPU, middle to
memory and bottom to successful and failed transactions. From the left to the right, we have: simple scenario; stress scenario; and faulty scenario.

The analysis of the simple scenario shows very con-
sistent memory usage across all the services. TeaStore
Registry and Image services remain very stable, only
showing slight increases over the experimentation period.
On the other hand, WebUI and Persistence have a trend
to accumulate memory. This indicates that these services
are more prone to suffer from memory accumulation and
aging effects. For SockShop, all but the carts-db and
orders-db services remain constant with their consump-
tion of memory. These database services are based on Mon-
goDB and can be having issues managing the connections
established.

During the stress scenario, we observe similar behav-
ior for all TeaStore services except for WebUI and
Persistence. When subjected to stress, WebUI service
instances grow their memory consumption from around
300% (from 600 to close to 2500 MebiBytes). This is a
concerning factor when dealing with microservices that tend

to be under stress for a while before scaling events take
place. Persistence has a smaller increase. SockShop
orders-db and carts-db have increasing memory con-
sumption. This may indicate that stressed services could
suffer from aging if their workload varies frequently. For
these reasons we decided to instrument the fault in the
TeaStore WebUI and SockShop orders (which inter-
acts with orders-db) services.

The faulty scenario has a shorter experimentation period.
Still, we successfully achieve more intense aging effects
on microservices. The fault injected in the WebUI ser-
vice increases the memory usage by more than 600%
(from 600 to close to 4300 MebiBytes) in each replica.
This is accomplished in just under 10h of experimenta-
tion. For SockShop, the orders service cannot con-
tinue to process requests as it becomes too caught
up the fault injected in the service and crashes two
times.

132794 VOLUME 10, 2022



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

TABLE 1. Faultload used in the experiments: faults based on the results presented in [7] and classified according to [36], with the services where each
fault was injected on both testbeds.

Therefore, the use of faults can significantly reduce the
time required to achieve higher levels of aging effects demon-
stration, which in turn makes the evaluation of mechanisms
and tools that should detect aging on microservices more
practical.

3) TRANSACTIONS ANALYSIS AND K8s PROBES DETECTION
TeaStore successfully responds to most of the transactions
it receives over the three scenarios under study. On average,
it fails to respond to 0% during the simple scenario; it has
a 6% failure rate during the stress scenario, and 5% during
the faulty scenario. Although, the failed transactions rate is
smaller during the faulty scenario, the experiment only runs
for 24h and demonstrates an increasing pattern. The suc-
cessful transactions vary according to the workload intensity
used and it is possible to see the system tending to respond to
fewer transactions successfully over time. This observation
is a consequence of resource accumulation. In SockShop
there is a clear increase of transactions satisfiedwith the stress
scenario. This is also true in the faulty scenario. For the simple
scenario, SockShop has a 13% failed transactions rate while
during the stress and faulty scenarios it increases to 17%.

Although there is several service restarts for SockShop,
none is because of probes. The K8s default mechanism
restarts the front-end service four times, all around 23th hour,
during the stress scenario; and it restarts the orders service
two times, around the 9th and 18th hours of experimentation
of the faulty scenario. The K8s probes mechanism for aging
effects detection onmicroservices fell short, not detecting any
problem with the services.

Overall, the main observations are that aging also affects
microservices and that Kubernetes probes are not able to
detect aging issues and thus do not act effectively on their
correction through service rejuvenation. The experiments
demonstrate that a stress load can cause resource accumula-
tion which can be accelerated through fault injection so that
it is possible to have faster effects.

VI. KUBERNETES FAULT TOLERANCE EVALUATION
Following the aging experiments conducted, it was clear
that Kubernetes (K8s) probes were unable to detect aging

in microservices. So, we widened the study to understand
whether this is also valid for different types of faults that also
affect microservices.

The goal of this experiment is focused on evaluating the
effectiveness of the probes in terms of failure detection
rate capabilities, and understanding which type of faults are
more prone to result in probe actuation. This information is
greatly valued by developers whose responsibility is to assure
the system’s maximum availability and continuous operation.
For this, we devised a complete fault injection procedure
executed through an experimental campaign that is further
detailed to bridge this gap and provide empirical knowledge.
The experimental campaign is based on two representatives
testbeds where faults were injected in different services and
activated during the monitoring of the system.

For TeaStore, the required probes were designed
and implemented following the best practices elicited in
Section IV; for the case of SockShop, the services already
had probes implemented. Further, we present experimental
details and the results obtained during the experiments.

A. EXPERIMENTAL DETAILS
The experimental campaign followed a three-step methodol-
ogy. Initially, we set up the infrastructure, deploying the cor-
responding application into K8s, starting the load generator
after a waiting period for the initialization of the application.
At the midpoint of the experimental slot (15min after start-
ing), the fault is injected, and the slot remains operating for
other 15min, resulting in a 30min slot period. At last, the
information is collected from the K8s features and analyzed
the output to identify whether the probes can detect the mal-
functioning of the system. To serve as a baseline of the service
behavior, we also execute a series of golden runs, which are
executions without the injection of a fault.

Fig. 6 presents an overview of the experiments’ method-
ology with the slots performed. Each fault was injected in
three different slots for each workload used. For each repe-
tition, the seed feeding the random generator for the selec-
tion of requests issued was modified accordingly so that we
assure the independence between executions. For the exper-
imental runs, we devised and implemented an intensity load

VOLUME 10, 2022 132795



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

profile characterized by an oscillating pattern of active clients
between 4 and 35 with a period of 10min between peaks.

FIGURE 6. Overview of the fault injection methodology.

B. FAULTLOAD
The faults presented in this work are based on an industrial
survey that condenses the typical faults observed in microser-
vice systems and the difficulties developers face [7]. The
work then replicates the identified faults into a representative
microservice benchmark and analyze the current debugging
practices and study possible improvements. Based on the set
of faults identified in the work, we selected the ones that
are representative of different categories and most applicable
to the context under analysis in this paper, these faults are
generalizable, and they can be found in any application that
follows this architectural design. Parts of the deployment and
the source code of the applications were modified to include
the faults presented in Table 1. These faults are now part
of the testbeds used in this work and can be activated as
needed during runtime through a dedicated endpoint. The
faults elicited have the potential to cause different failure
modes in the microservices they affect. Based on the CRASH
scale [37] the different faults elicited, can cause every one of
the states on the microservices they affect. However, probes
are only expected to identify cases where either the catas-
trophic, restart, or abort failure modes are observed. These
are the ones where the system has delivery problems that can
cause the service to fail the health check performed by the
probe system.

As we can see in Table 1, we have six faults covering
different defects in a microservice application. We represent
periodic failures with internal server errors (fault F3); Server
response delays through fault F4; fault F5 at times returns
exceptions to user requests; fault F7 covers a business logic
error in the application; and, F15 and F15t represent a
failure of the database, a required core part of any system.
All the faults are focused on the operation of the service
that they affect and do not consider specific characteristics of
each service as the transactions or requests processed, as this
would decrease the representativeness of the fault. In this part
of the work, we do not analyze aging-related bugs as that was
the focus of Section V and was extensively analyzed in there.
As we can see on the right of Table 1, TeaStore

faults were injected in Recommender, WebUI services, and
the database. On Sockshop the injection happened in the
front-end and the orders services, and the databases
for the orders and the catalogue services.

Most of the faults are transient, however, there is one fault
(F15) that is persistent. As all faults are software faults,
we classified them according to the reproducibility of the bug:

as Mandelbugs when there is difficulty in its reproduction
and detection (F3 and F4); and Bohrbugs for deterministic
failures that are easier to spot (F5, F7, F15, and F15t).
All the faults occur during the operational phase and are
perceived by the user when there is a failure.

In microservices environments, faults are complex and can
propagate across services. For instance, the fault where the
database is down for a while can cause failures to manifest in
other services although not being its root cause.

Some characteristics are inherent to the nature of the
faults injected. Namely, the influence caused in the system
where they occur. Functional faults cause malfunctions of the
system, as error manifestation or unexpected outputs. Non-
functional faults degrade the quality of service, as perfor-
mance penalties or increase the probability of the system
becoming unavailable [7].

From the root cause perspective, the faults presented have
two causes: environment, where the typical cause of the
malfunctions lies on runtime execution environment configu-
rations; and interaction, resulting from the interactions among
the multiple services and customers [7].

The frequency of a fault provides information related to the
number of times it is injected over the experimental period,
which represents its real-world frequency. These faults can be
of low, medium, or high frequency.

C. RESULTS
After the experimental campaign, we collected the data gen-
erated. This data allows us to understand the capacity of the
probes in detecting failures that originated from the faults.
As described, the experiments executed are composed of six
different faults that affect different services in the applica-
tions. All services are instrumented with probes to detect
malfunctions that, when detected, would lead to the applica-
tion of the restart of the component. The results obtained are
presented in Table 2. The numbers presented are the results of
the average of several experiments slots, as we repeated each
execution three times. Following we analyze the results pro-
duced in connection with the different characterization of the
faults activated. We start with a general analysis disregarding
the specific categories or nature of the faults and then perform
a more focused discussion.

All the faults injected were correctly activated, resulting
in errors and then in failures [36]. Still, none of the failures
is detected by the probes monitoring the services. In either
case,TeaStore orSockShop, the failures result in theK8s
probes raising any alarm or performing any restarting of the
service.

Regardless of the bug reproducibility inherent to the occur-
ring fault, Mandelbug or Bohrbug, the probes were unable to
pick up failures in the services of both systems. The boundary
definition was not also sufficient to cause probes to react to
failures. It was expected that internal failures were detected
with more ease, however, both external and internal faults
were not picked up. Similar behavior was verified for the root
cause and influence of the faults.

132796 VOLUME 10, 2022



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

TABLE 2. Kubernetes probes failure detection effectiveness.

The probes did not detect any of the faults in the database
(F15 and F15t). These faults cause a failure in a service
that had not a probe configured. Nevertheless, the failure
propagated to the operation of the service that interacts with
the database. It causes the service to be unable to process
and respond to requests. As a result, the failure should be
noticed by the probe monitoring the database API service
(e.g., Persistence). This indicates that probes are check-
ing the liveness/readiness of the services but are not capable
to perceive failures in a dependent service. Also, these faults
diverge in their persistence, with F15 being persistent, and
(F15t transient, which indicates that higher frequency may
also be insufficient to assure detection of failures.

Despite no detection from probes, K8s restarts the pod
of the database service when it is affected by fault F15t.
The orchestrator can detect that the container is having
issues owing to the intermittent failures it is experiencing
and restarts the pod as a manner to attempt at solving the
malfunction. There is no attempt at restarting the pod for
the case of fault F15. In both TeaStore and SockShop
the behavior of K8s is the same. This mechanism takes place
because of the restart policy defined for the service and
K8s detects that the container is in a failing state.

VII. DISCUSSION
Aging effects can be observed in microservices as in tra-
ditional monolithic applications, (cf., Fig 5). Monolithic
applications have their complexity exaggerated when com-
pared to microservices, however, these services tend to be
stressed a reasonably higher number of times due to the
application of auto-scaling mechanisms employed. Although
this provides good quality attributes regarding scalability and
elasticity, the use of replication mechanisms also leads to
more fault accumulation resulting from the stress periods.
The longer the auto-scaling mechanisms need to actuate, the
worst aging effects will be experienced by the microservice,
as stress is not reduced in time, which can impair their normal
operation.

The utilization of faults in microservices can reduce the
time required to observe the aging effects. Considering the
scenario described with aging fault injection, even though
it was executed for 24h, the effects seen are more dam-
aging than the ones experienced during the stress scenario,

(cf., Fig 5). Therefore, faults can accelerate testing processes
before deployment, resulting in a reduced risk of affecting
the performance, and even security, of the complete system.
Research being conducted on the aging of microservices can
also take advantage of this to make faster experiences. The
fault used can be configured to further accelerate or even
decelerate the aging process, allowing the adjustment of the
microservice resource consumption. It is worth noting that a
single slow microservice can deem the whole system dead,
by disabling it from performing any requests or transactions,
if the system is affected by the slowness is critical and the
bottleneck to the whole system. Aging faults can be used
to identify bottlenecks of the system, or even to evaluate
microservice aging detection techniques, methods, or mech-
anisms, all promptly.

Kubernetes mechanisms were unable to detect both
the aging and the faults of the microservices affected.
In our experiments, K8s probes did not detect any fail-
ure in any of the microservice applications, (cf., Table 2).
The failures perceived were not significant for the sensibil-
ity of the mechanism. It seems to only detect significant
faults that cause the service to completely stop respond-
ing or have a noticeable hanged state. However, the use of
probes in K8s clusters remains advisable. Still, developers
should be aware of the limitations of the technique even
when the best practices are applied correctly. The use of
an approach, such as the one presented here, has flaws and
constraints in detecting faults across diverse types and fre-
quencies, although being able to contribute with some assur-
ances. The criticality level of the system must be weighed
in when deciding which self-healing mechanism should be
applied.

VIII. THREATS TO VALIDITY
The experiments performed allowed us to perform a compre-
hensive analysis on the resilience of Kubernetes, evaluating
its ability to detect both aging and faults with the use of
probes. It provides both developers and researchers various
findings that can be useful when dealing with these probes,
allowing them to better understand their limitations and their
use. However, it is still worth noting some threats that may
rise and create doubts towards the validity of the work
performed.

VOLUME 10, 2022 132797



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

Regarding internal validity no real threats can be raised,
since every experiment was done independently and various
metrics were used. As for external validity, population
validity may be considered a problem due to sampling bias,
which, in our case, is also related to content validity, as in:

Only one configuration of the probes was used. Probes
can be configured in order to adjust reaction times, being also
directly correlated to their sensitivity. If the probes are too
sensitive, it may say trigger a pod to restart even if it was just
experiencing a momentary bottleneck, however the reaction
will be really fast. We decided to only use one configura-
tion in order to simplify the problem and the experiments.
Nevertheless, we followed probes best practices, which are
representative of a real case implementation.

For the experiments regarding fault tolerance, only
6 different faults were used. Faults have many classifica-
tions according to different characteristics. The faults we
choose, although few, are representative of various categories.
Therefore it can be argued that they are representative of a
reasonable variability of scenarios, being enough to evaluate
probes’ robustness accurately.

It can also be a threat, when considering the experimenter
effect:

Aging experiments were executed only once, therefore
random factors may have affected the experiments, and
consequently, the results. Given the nature of the experi-
ments, randomness is prone to happen due to network latency
and even task scheduling, however, we feel like these dif-
ferences are negligible when considering the whole runs,
with these being extended periods of time (24h and 48h).
Therefore, even if we had done more repetitions, we believe
that the results would not varymuch, and the research insights
found would stay the same.

In the end, we think that these are not enough to nullify the
findings made, which are important research progresses that
should be taken advantage of.

IX. CONCLUSION
The aging experiments show that it can affect microservices
and exacerbate their resource consumption. Also, Kubernetes
probes do not show the ability to detect aging-related prob-
lems in the services monitored. This factor indicates that
work in more effective approaches for early detection of
microservices aging is needed. Besides, injecting faults to
accelerate aging results in shorter periods required to eval-
uate the effectiveness of such mechanisms and allow time-
lier conclusions. The experimental campaign conducted with
multiple faults allows observing the practical application of
Kubernetes probes. Probes demonstrate significant shortcom-
ings in detecting faults in the service probed, without any
detection in the six faults injected.

Future work may explore more effective approaches to
improving the probingmechanism or devising amethodology
that can leverage other data sources, such as service data,
to proactively identify aging or other kinds of faults present
in the system.

REFERENCES
[1] Martin Fowler and James Lewis. (2014). Microservices. [Online]. Avail-

able: https://Martinfowler.com/articles/microservices.html
[2] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’ Com-

put. Secur. Division, Inf. Technol. Lab., Nat., NIST, Gaithersburg, MD,
USA, Tech. Rep. SP 800-145, 2011.

[3] Kubernetes. (2021). What is Kubernetes. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

[4] S. J. Vaughan-Nichols. (2020). Kubernetes Jumps in Popularity.
[Online]. Available: https://www.zdnet.com/article/kubernetes-jumps-in-
popularity/

[5] Kubernetes. (2020). Configure Liveness, Readiness and Startup Probes.
[Online]. Available: https://kubernetes.io/docs/tasks/configure-pod-
container/configure-liveness-readiness-startup-probes/

[6] J. Flora, P. Goncalves, M. Teixeira, and N. Antunes, ‘‘My services got old!
Can Kubernetes handle the aging of microservices?’’ in Proc. IEEE Int.
Symp. Softw. Rel. Eng. Workshops (ISSREW), Oct. 2021, pp. 40–47.

[7] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, ‘‘Fault analysis
and debugging of microservice systems: Industrial survey, benchmark
system, and empirical study,’’ IEEE Trans. Softw. Eng., vol. 47, no. 2,
pp. 243–260, Feb. 2021.

[8] J. Von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann, and
S. Kounev, ‘‘TeaStore: A micro-service reference application for bench-
marking, modeling and resource management research,’’ in Proc. IEEE
26th Int. Symp. Model., Anal., Simul. Comput. Telecommun. Syst. (MAS-
COTS, Sep. 2018, pp. 223–236.

[9] Weaveworks. (2017). Sock Shop : A Microservice Demo
Application. [Online]. Available: https://github.com/microservices-
demo/microservices-demo

[10] D. L. Parnas, ‘‘Software aging,’’ in Proc. 16th Int. Conf. Softw. Eng., 1994,
pp. 279–287.

[11] M. Grottke, R. Matias, and K. S. Trivedi, ‘‘The fundamentals of software
aging,’’ in Proc. IEEE Int. Conf. Softw. Rel. Eng. Workshops (ISSREWksp),
Nov. 2008, pp. 1–6.

[12] L. Li, K. Vaidyanathan, and K. S. Trivedi, ‘‘An approach for estimation of
software aging in a web server,’’ in Proc. Int. Symp. Empirical Softw. Eng.,
2002, pp. 91–100.

[13] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, ‘‘Analysis of soft-
ware aging in a web server,’’ IEEE Trans. Rel., vol. 55, no. 3, pp. 411–420,
Sep. 2006.

[14] J. Yue, X.Wu, andY.Xue, ‘‘Microservice aging and rejuvenation,’’ inProc.
World Conf. Comput. Commun. Technol. (WCCCT), May 2020, pp. 1–5.

[15] F. Langner and A. Andrzejak, ‘‘Detection and root cause analysis of
memory-related software aging defects by automated tests,’’ in Proc.
IEEE 21st Int. Symp. Model., Anal. Simul. Comput. Telecommun. Syst.,
Aug. 2013, pp. 365–369.

[16] J. Alonso, L. Belanche, and D. R. Avresky, ‘‘Predicting software anomalies
using machine learning techniques,’’ in Proc. IEEE 10th Int. Symp. Netw.
Comput. Appl., Aug. 2011, pp. 163–170.

[17] L. Vinícius, L. Rodrigues, M. Torquato, and F. A. Silva, ‘‘Docker platform
aging: A systematic performance evaluation and prediction of resource
consumption,’’ J. Supercomput., vol. 78, no. 10, pp. 12898–12928,
Jul. 2022.

[18] B. Tola, Y. Jiang, and B. E. Helvik, ‘‘Model-driven availability assessment
of the NFV-MANO with software rejuvenation,’’ IEEE Trans. Netw. Ser-
vice Manag., vol. 18, no. 3, pp. 2460–2477, Sep. 2021.

[19] P. Kumari and P. Kaur, ‘‘A survey of fault tolerance in cloud computing,’’
J. King Saud Univ.-Comput. Inf. Sci., vol. 33, no. 10, pp. 1159–1176, 2021.

[20] M. Hasan and M. S. Goraya, ‘‘Fault tolerance in cloud computing envi-
ronment: A systematic survey,’’ Comput. Ind., vol. 99, pp. 156–172,
Aug. 2018.

[21] M. N. Cheraghlou, A. Khadem-Zadeh, and M. Haghparast, ‘‘A survey of
fault tolerance architecture in cloud computing,’’ J. Netw. Comput. Appl.,
vol. 61, pp. 81–92, Feb. 2016.

[22] A. Power and G. Kotonya, ‘‘A microservices architecture for reactive and
proactive fault tolerance in IoT systems,’’ in Proc. IEEE 19th Int. Symp.,
World Wireless, Mobile Multimedia Networks (WoWMoM), Jun. 2018,
pp. 588–599.

[23] A. Huff, M. Hiltunen, and E. P. Duarte, ‘‘RFT: Scalable and fault-tolerant
microservices for the O-RAN control plane,’’ in Proc. IFIP/IEEE Int.
Symp. Integr. Netw. Manag. (IM), May 2021, pp. 402–409.

[24] A. A. Khaleq and I. Ra, ‘‘Agnostic approach for microservices autoscaling
in cloud applications,’’ in Proc. Int. Conf. Comput. Sci. Comput. Intell.
(CSCI), Dec. 2019, pp. 1411–1415.

132798 VOLUME 10, 2022



J. Flora et al.: Study on the Aging and Fault Tolerance of Microservices in Kubernetes

[25] G. M. Diouf, H. Elbiaze, and W. Jaafar, ‘‘On Byzantine fault tolerance in
multi-master Kubernetes clusters,’’ Future Gener. Comput. Syst., vol. 109,
pp. 407–419, Aug. 2020.

[26] A. Javed, K. Heljanko, A. Buda, and K. Framling, ‘‘CEFIoT: A fault-
tolerant IoT architecture for edge and cloud,’’ in Proc. IEEE 4th World
Forum Internet Things (WF-IoT), Feb. 2018, pp. 813–818.

[27] L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, and M. Kihl, ‘‘Impact
of ETCD deployment on Kubernetes, istio, and application performance,’’
Softw., Pract. Exper., vol. 50, no. 10, pp. 1986–2007, Oct. 2020.

[28] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, ‘‘Microservices: Yesterday, Today, and Tomor-
row,’’ in Present and Ulterior Software Engineering. Cham, Switzerland:
Springer, 2017, pp. 195–216.

[29] J. Flora and N. Antunes, ‘‘Studying the applicability of intrusion detection
to multi-tenant container environments,’’ in Proc. 15th Eur. Dependable
Comput. Conf. (EDCC), Sep. 2019, pp. 133–136.

[30] A. Nehme, V. Jesus, K. Mahbub, and A. Abdallah, ‘‘Securing microser-
vices,’’ IT Prof., vol. 21, no. 1, pp. 42–49, Jan. 2019.

[31] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, ‘‘Chaos engineering,’’ IEEE Softw., vol. 33,
no. 3, pp. 35–41, May/Jun. 2016.

[32] S. Sultan, I. Ahmad, and T. Dimitriou, ‘‘Container security: Issues, chal-
lenges, and the road ahead,’’ IEEE Access, vol. 7, pp. 52976–52996, 2019.

[33] Kubernetes. (2020). Resource Management for Pods and Containers.
[Online]. Available: https://kubernetes.io/docs/concepts/configuration/
manage-resources-containers/

[34] K. Jackson. (2020). Types of Kubernetes Events. [Online]. Available:
https://www.bluematador.com/blog/kubernetes-events-explained

[35] B. M. Timofte. (2018). Kubernetes Readiness & Liveliness Probes-
Best Practices. [Online]. Available: https://medium.com/metrosystemsro/
kubernetes-readiness-liveliness-probes-best-practices-86c3cd9f0b4a

[36] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic concepts
and taxonomy of dependable and secure computing,’’ IEEE Trans. Depend.
Sec. Comput., vol. 1, no. 1, pp. 11–33, Jan./Mar. 2004.

[37] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T.Marz, ‘‘Comparing
operating systems using robustness benchmarks,’’ in Proc. 16th IEEE
Symp. Reliable Distrib. Syst., Oct. 1997, pp. 72–79.

JOSÉ FLORA (Graduate Student Member, IEEE)
received the M.Sc. degree in information security
from the University of Coimbra, Portugal, in 2019,
where he is currently pursuing the Ph.D. degree
in informatics engineering. His research interests
include information and software security, partic-
ularly software containers and microservices secu-
rity, intrusion detection and intrusion tolerance,
and security services for cloud computing.

PAULO GONÇALVES received the bachelor’s
degree from the University of Coimbra, Portugal,
in 2020, where he is currently pursuing the M.Sc.
degree in informatics engineering. His research
interests include intrusion detection and tolerance,
reverse engineering, and genetic algorithms.

MIGUEL TEIXEIRA received the bachelor’s
degree from the University of Coimbra, in 2020,
where he is currently pursuing the M.Sc. degree
in informatics engineering with specialization
in software engineering. His research interests
include development and automation of microser-
vices related systems.

NUNO ANTUNES (Member, IEEE) received the
Ph.D. degree in information science and technol-
ogy from the University of Coimbra, in 2014.
He has been with the Centre for Informatics and
Systems of the University of Coimbra (CISUC),
since 2008. He is an Assistant Professor with
the University of Coimbra. His research interests
include testing, fault injection, vulnerability injec-
tion and benchmarking, which are applied to the
assessment of the dependability and security of

intelligent systems, virtualized environments, intrusion detection systems,
web services, web and mobile applications, and data management systems.
He is a member of the IEEE Computer Society.

VOLUME 10, 2022 132799


