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ABSTRACT Internet Engineering Task Force (IETF) issued Secure Zero Touch Provisioning (SZTP)
as a provisioning technique for networking devices without human intervention. SZTP standardizes the
provisioning workflow from device enrollment to bootstrapping process. Unfortunately, implementing a
single trust model of public key infrastructure scheme in zero-touch device provisioning is vulnerable to
impersonation attacks using bogus certificates. This paper proposes a robust protocol for the bootstrapping
process of edge devices by integrating the Attack Resilient Public Key Infrastructure (ARPKI) scheme with
SZTP. As a transparent and accountable public key infrastructure, ARPKI can prevent the miss-issuance
of a certificate. ARPKI offers strong security as certificate management for SZTP. We adopt the security
properties of ARPKI to construct an accountable bootstrapping scheme of a zero-touch provisioned edge
device against threats, e.g., impersonation, incurred by insiders compromised by adversaries. The edge
device and bootstrap server can confidently build mutual authentication using the TLS 1.3 full handshake
protocol together with the ARPKI-based certificates built upon a trusted public certificate log, which
provides the accountability of the certificate. We analyze our scheme’s security properties by performing
formal and informal analyses. We show that the combination of ARPKI and SZTP can detect malicious
entities and mitigate misbehaving activities. Our provisioning scheme provides accountable bootstrapping
for edge devices in a zero-touch fashion with integrity and confidentiality of bootstrapping data.

INDEX TERMS Autonomous bootstrapping, secure onboarding, attack resilient, certificate management,
accountable protocol, device provisioning.

I. INTRODUCTION
The Public Key Infrastructure (PKI) scheme in zero-touch
provisioning of edge-device plays an essential role in
securing the online bootstrapping process. Securely operating
the bootstrap is not simple, mainly because the device
bootstrapping occurs automatically without human inter-
vention [1]. Unlike manual bootstrapping, which occurs
physically, a factory-default state device must connect to a
bootstrap server through the internet to perform automated
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bootstrapping. The automated bootstrapping process is a
vulnerable step wherein an edge device lacks network-based
protection in this step, mainly if the device is in an insecure
public network. Therefore, the first step in bootstrapping is
that the device can authenticate a proper bootstrap server.
On the other hand, as a part of the Service Provider
(Provider), the bootstrap server must also ensure that it
provides bootstrap data to an appropriate device. Thus, it is
necessary to establish mutual authentication between the
device and the bootstrap server. In addition, the integrity
and confidentiality of information also need to be ensured.
Especially on edge devices that bootstrap with a zero-touch
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method, themutual authentication development process is not
trivial because the entire mutual authentication process starts
automatically with activating the device. In this situation,
all entities belonging to the bootstrapping system should
perform the protocol without any deviation.

An ability to identify misbehaving parties, who deviate
from the protocol and cause a security violation, is defined
as accountability [2]. In an accountable system, every single
entity must behave according to the protocol and prove the
ownership of the correct and valid certificate to other parties.
Therefore, the system requires transparent and accountable
certificate management to ensure no miss-issuance of certifi-
cates during operation. On the other hand, a system cannot
rely on a single trust Root Certificate Authority (RCA) to
achieve accountability in a decentralized device network.
Even though it has several advantages in ease of maintenance,
once the trusted entity is compromised, the system becomes
vulnerable to impersonation attacks. An adversary can
intentionally control the compromised Certificate Authority
(CA) to issue fraudulent certificates [3]. Moreover, the
Internet of Things (IoT) network is a potential spot for
cyber-criminal [4], [5]. We understand that every certificate
management step, from registration to authentication, must
be carried out transparently to uncover misbehaving activities
immediately. Therefore, distributed device network requires
a transparent PKI system instead of a single trust CA.

ARPKI is a transparent PKI system that is solid in main-
taining accountability of certificate management [6]. This
system regulates certification procedures from registration to
revocation. ARPKI offers strong security guarantees against
impersonation, although it has a delay due to the involvement
of all designated entities in all processes [7].

Meanwhile, IETF’s SZTP scheme offers a remote boot-
strapping strategy without any technical operator intervention
in a secure fashion [8]. Several frameworks and companies
have practically implemented device provisioning with a
zero-touch approach. However, no work proposes PKI-based
accountability preservation in the SZTP framework. On the
other hand, the robustness of the SZTP scheme by IETF
relies on the correct certificates. From this perspective,
providing powerful certificate management is a critical
point. A transparent and accountable PKI architecture can
protect the provisioning scheme from malicious parties and
misbehavior activities.

Certifying zero-touch provisioned devices’ public keys
and identities is a typical mechanism to secure the devices
and the system. By owning a valid certificate, a device
can confidently communicate with servers or other devices
through an insecure network. Unlike manual bootstrapping,
in which an administrator usually installs certificates into
the device after bootstrapping, in automated bootstrapping,
the device certificate installation can occur before, during,
or after bootstrapping. In this paper, we follow the Request
for Comments (RFC) 8572 document of SZTP to install
the device certificate before bootstrapping occurs remotely
through the internet [8]. By possessing a certificate, the

device can obtain the bootstrapping data securely from
a bootstrap server. Certificate-based mutual authentication
between the device and bootstrap server can immediately start
by verifying each certificate without wasting time retrieving
the certificate from CA. Moreover, installing a certificate
into a device during its manufacturing, i.e., at the beginning
of its lifecycle, can reduce the consumer’s burden and
simplify its management. Several existing protocol designs
also put the certificate installation before bootstrapping.
Höglund et al. [9] develop a light automated certificate
enrollment protocol for resource-constrained devices, which
occurs before bootstrapping process. Maksuti et al. [10]
put the certificate installation before automated and secure
bootstrapping in a System of Systems framework. Other
approaches [11], [12], [13], [14], [15] also propose certificate
installation for IoT devices before bootstrapping, although
not all of them are related to automated bootstrapping.
On the other hand, Boire et al. [16] design automated
certificate provisioning during the bootstrapping process by
simplifying the multiple layers operations into one process
after connecting to the Wi-Fi network. Another approach,
Sousa et al. [17] propose a semi-autonomous certificate
provisioning for IoT devices after bootstrapping in the setup
process.

Some research proposed various secure schemes for device
bootstrapping. Still, to the author’s best knowledge, there
is no proposed scheme utilizing certificate transparency of
PKI to provide accountability for the bootstrapping process.
Moreover, very few researchers determine the accountability
properties of their system, though accountability is essential
to ensure bootstrapping performs safely. We present the inte-
gration approach of ARPKI and SZTP for the bootstrapping
process to provide the integrity and confidentiality of boot-
strapping data so as to achieve accountable bootstrapping.

This paper contributes four essential objectives:
• First, we integrate ARPKI certificate management into
the emerging SZTP framework to establish mutual
authentication between the edge device and bootstrap-
ping server using TLS 1.3 full handshake (presented
in the PROPOSED INTEGRATION OF ARPKI AND
SZTP section).

• Second, a straightforward combination of ARPKI and
SZTP is not enough to achieve accountable bootstrap-
ping. We apply Keyed-Hashing for Message Authen-
tication Code (HMAC) as message authentication in
the Credential Exchanges process between Provider and
Manufacturer to verify that communicating entities are
behaving honestly (presented in the CREDENTIAL
EXCHANGES subsection).

• Third, we provide a formal analysis using extendedBAN
logic to demonstrate the integrity and confidentiality
of bootstrapping data, of which no similar study has
been conducted in the SZTP framework (presented in
the FORMAL ANALYSIS subsection).

• Forth, we provide an informal analysis of the boot-
strapping process to confirm accountability, a security
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property that has never been previously discussed in
automated device onboarding frameworks, including
SZTP (presented in the SECURITY ASSESSMENT
subsection).

The rest of this paper is organized as follows: Section II
explains related work addressing the secure edge device boot-
strapping scheme. Section III presents the key to background
perceptions and assumptions. Section IV gives our proposed
ARPKI-SZTP scheme. Section V proves the security proper-
ties in formal and informal analyses. Section VI outlines our
findings and future works.

II. RELATED WORK
Several related works address automated device bootstrap-
ping schemes in a secure style. In [10], the authors present
an automated and secure onboarding procedure for System of
System. This procedure solves the costly and time-consuming
manual process. It offers security preservation of onboarding
by establishing a chain of trust between a new hardware
device and its provided services. This work also introduces
three onboarding mechanisms based on credentials for
authentication: preloaded Arrowhead certificate, manufac-
turer certificate, and shared secret. However, the author does
not discuss accountability properties. The work is toward
deploying public-key cryptography and delivering software
updates through the internet for those constrained-resource
devices.

Enabling public key management for the IoT ecosystem is
a big challenge. Authors in [9] develop Public Key Infras-
tructure for the Internet of Things (PKI4IoT), a lightweight
and automated certificate enrollment protocol for IoT devices
to provide end-to-end security to answer this challenge.
The authors also design a compressed-overhead profile
of the X.509 certificate. However, the proposed protocol
lacks protection against denial-of-service and physical access
attacks. Also, key provisioning and key revocation are not
available in this proposal.

Belattaf et al. [13] offer a reliable and adaptive decentral-
ized public-key management infrastructure for IoT to provide
end-to-end security service. The proposed infrastructure
solves the costly and nut scalable solutions of symmetric-
key management. Key Distribution Center (KDC) distributes
the group keys to handle devices’ periodic attachment and
release. This work results in better performance than PKI4IoT
in cost and delay. However, this work inherits the security
issue of PKI4IoT and does not employ automated device
provisioning.

Intel established Intel Secure Device Onboarding (SDO)
as an industrial-based solution in 2017 and announced it as
open-source in 2020 [14]. Intel SDO employs a late-binding
approach to configure devices at the installation point instead
of pre-customizing each customer system. This method
provides a zero-touch onboarding method with fast and
enhanced security service. To provide integrity, they utilize a
unique root of trust key based on Enhanced Privacy ID (EPID)
or (Elliptic Curve Digital Signature Algorithm) ECDSA

for each device. However, Intel SDO plays as a trusted
manufacturer, service provider, and certificate authority at the
same time. This single trust model can become vulnerable
when the trusted entities are compromised.

In [15], the authors propose a Zero Touch Provisioning
(ZTP) solution involving four big companies to provide
a well-secured automated identity chain. Considering Zero
Trust Network (ZTN) in their device deployment method,
embedding hardware root-of-trust, and pairing the network
with march-plural root CAs-based PKI service allows the
system only to be available for the trusted device. They
also consider implementing a Trusted Platform Module
(TPM) [18]. However, Moghimi et al. [19] discover the
vulnerabilities of TPM devices by employing side-channel
key recovery attacks. Moreover, using multiple root CA
certificates is a less efficient solution.

In this paper, we consider engaging log-based PKI to
provide certificates. Several related works proposed robust
certificate management protocols featuring transparency and
public verifiability. Certificate Transparency [3] is the first
proposal triggering the idea of the public, verifiable, and
append-only log. Kim et al. [20] introduce the utilization
of several CAs and Integrity Log Server (ILS) as multiple
signing parties as roots of trust. However, this proposal
lacks certificate miss-issuance prevention if two out of
three signing entities are malicious. Szalachowski et al. [21]
propose Policert to secure domain certificates by allowing
domain owners to create their policies for the certificates and
control the operation over the certificate lifecycle. Inspired by
PoliCert, Khan et al. [22] propose Transport Layer Security
(TLS) PKI, namely Accountable and Transparent TLS
Certificate Management (ATCM), to prevent a Man-In-the-
Middle (MITM) attack, though only one party out of multiple
entities is trusted. These last two proposals are unsuitable for
implementation in the SZTP framework since the certificate
domain is an unattended device. Attack-Resilient TLS
Certificate Transparency (ARCT) [7] offers robust prevention
against adversaries by managing intermediate CA trans-
parently. This proposal resolved the malformed certificate
issuance. However, when some entities, including Exclusive
Log Server (ELS), are compromised, the adversaries can
create a bogus certificate by leveraging the privilege since the
Root CA (RCA) sends certificate approval via ELS. Another
approach that provides transparent certificate management is
Blockchain-based PKI. This approach also offers account-
ability without certificate logs, nor the necessity of external
auditing [23], [24], [25]. However, the Blockchain-based PKI
scheme has typical major problems in scalability issues [26]
and cost [27].

III. BACKGROUND
The increasing number of edge devices requires a speedy and
costless provisioning method while maintaining security and
privacy. In this section, we introduce various essential prop-
erties needed to establish accountability of the provisioning
method.
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FIGURE 1. RFC 8572-based SZTP architecture with a single Root CA.

A. SECURE ZERO TOUCH PROVISIONING
SZTP is a bootstrap method that empowers devices to
securely retrieve bootstrapping data without any technical
action beyond physical arrangement and connecting to the
network and power station. This method includes updating
the boot image, committing an initial configuration, and
executing arbitrary scripts to address auxiliary needs [8].
The RFC 8572 document standardizes the procurement of
physical equipment, where the device’s initial state setting
occurs during the device’s manufacturing process.

RFC 8572 document covers two use cases of device
provisioning scenarios. The first use case assumes the device
gets support from a locally administered network andmay use
a local service to perform bootstrap. Our proposed scheme
adopts the second use case, whereby the edge device connects
to a network managed by Internet Service Provider (ISP) as
an access gateway.

IETF introduces two correlating roles to edge device
provisioning: Manufacturer and Owner. Figure 1 depicts
the basic architecture of SZTP. After receiving device
enrollment from a Prospective Owner, the Manufacturer
produces an edge device, equips it with the necessary
credentials, and ships it to a Customer’s designated location.
The Prospective Owner initiates the enrollment process,
including one of two following bootstrapping options. The
first option is the Prospective Owner tends to bootstrap
their device from the Owner’s deployment-specific bootstrap
server. Therefore, the Manufacturer should provide the trust
anchors of the IDevID (Initial Device Identifier) certificate
to the Prospective Owner. These trust anchor certificates
must be available on the Prospective Owner’s Network
Management System (NMS) to authenticate the device.
The second option is the Manufacturer hosts a well-known
bootstrap server (manufacturer-hosted bootstrap server) for
the devices. In our proposed scheme, we assume the Owner
prepares the deployment-specific Bootstrap Server (BS) since
the Provider, as the Owner, will maintain the machine during
operation. Consequently, the Manufacturer should provide
the Provider with the trust anchor certificates to authenticate
the IDevID certificate.

Once the edge device arrives at the designated place,
it immediately builds a connection to the listed BS via

FIGURE 2. Certificate registration process of ARPKI.

the internet to request the bootstrapping data. The BS
authenticates the device by verifying the IDevID certificate
issued by the RootCA. Based on RFC 8572, IETF allows any
CA to sign the Owner Certificate and entities’ certificates of
the architecture. The role of the CA is significant, and CA
should be a trusted entity that ensures the integrity of entities
in the architecture. However, this document does not specify
the required number of CA and CA’s architecture for SZTP.

In this paper, we adopt a trusted BS instead of an untrusted
one and a secure channel instead of an insecure one to achieve
higher security construction. Consequently, we only need to
install four out of seven components defined in the RFC
8572 document: a TLS-level client certificate, trust anchor
certificates, a list of trusted BSs, and the device’s private key,
into the device. Note that even though we adopt the higher
security construction of legacy SZTP, it cannot satisfy the
accountability to deal with the utilization of a single trust
Root CA as mentioned in the Introduction.

B. ATTACK RESILIENT PUBLIC KEY INFRASTRUCTURE
ARPKI offers strong security using at least three entities
out of n entities consisting of CAs and ILSes for certificate
management: twoCAs and one Integrity Log Server (ILS) [6].
In contrast to Accountable Key Infrastructure (AKI), which
cannot avoid a certificate miss-issuance, ARPKI applies an
attack resilience mechanism to prevent the adversary gets a
bogus certificate even though two out of three signing entities
are compromised. AKI requires validators to monitor ILS
operations and detect misbehavior [20]. In ARPKI, validators
are optional entities that can, time after time, validate the
certificate log stored in ILS to confirm accountability. ARPKI
requires another CA to take the validator’s role. Thus,
in ARPKI, CA1 is a validator of CA2 to check whether
correctly monitors ILS1.

Figure 2 presents the certificate registration process of
ARPKI. Steps 1 and 2 are the certificate registration request
flows. Besides the certificate statement, the registration
request also contains a list of trusted CAs to sign the
certificate. The domain interacts only with CA1, which is
responsible for checking the correctness of the other two
entities’ operations. The ILS1 performs ILS synchronization
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with a quorum of all existing ILSes to ensure that
only the requested certificate exists for the domain
(Steps 3 - 6). The ILS1 synchronizes the new certificate
request to a group of ILSes. ARPKI protocol requires more
than 50% of all ILSes’ synchronization messages before
the ILS1 issues a new certificate. After verifying the new
certificate, ILS1 manages the certificate log requested by
CA1 and releases the certificate (Step 7). All three entities in
ARPKI (CA1, CA2, and ILS1) sign the domain’s certificate
while ensuring that they belong to the CA_LIST (list of
trusted CAs to sign the certificate) or ILS_LIST (list of
trusted ILSes to register the certificate) and are different from
each other (Step 8). After getting the certificate (Step 9),
the Domain can establish a TLS connection with the Clients
(Steps 10 and 11).

C. TLS 1.3
A secure channel based on TLS 1.3 provides authentication,
confidentiality, and integrity properties. The TLS 1.3 version
improves the previous version in someminor differences. The
most noticeable difference is the addition of zero round-trip
time (0-RTT) mode that saves a round trip at connection
setup. All handshake messages after the Server Hello are
encrypted. This encrypted mode leads to a safer channel
setup, but it has consequences in the computational cost.
Dowling et al. [28] analyze the handshake protocol of
TLS 1.3. The authors prove that TLS 1.3 handshake pro-
tocol establishes session keys under standard cryptographic
assumptions.

Several studies discuss the security performance of TLS
1.3 against theMITMattack. In [29], Arfaoui et al. investigate
privacy preservation in TLS 1.3. The full TLS 1.3 handshake
has a drawback in the privacy game against MITM attacks
since the handshake-secret computation occurs before the
authentication step. However, this drawback has no risk
related to the security of the keys due to the Elliptic
Curve Diffie Hellman Exchange (ECDHE) utilization in TLS
1.3 [30]. Moreover, Lee et al. [31] demonstrate the protection
in TLS 1.3 against MITM-based downgrade attacks. Hence,
we assume that establishing the TLS 1.3 handshaking
guarantees security against MITM attacks, and entities in our
scheme reject requests to downgrade to an older version of
TLS.

This paper employs TLS 1.3-based authentication for
all communications except within the trust boundaries. All
entities must perform TLS 1.3 Full Handshaking before
starting the first session of communication and Resumption
Handshaking for later sessions. Appendix A shows the
TLS 1.3 full handshaking process between any two parties
(e.g., A and B). A, as a client, requests to establish
TLS 1.3 full handshaking before sending a message to B, as a
server. From the full handshake process, both entities possess
four session key data, e.g., server application key, server
application Initialization Vector (IV), client application key,
and client application IV, to encrypt and decrypt messages
to each other. To simplify the discussion, we replace these

four session key data with one session key notation, i.e.,
we express session key data between Manufacturer and
CA1 with KMCA1.

D. ADVERSARY MODEL
In this work, we assume the adversary can compromise enti-
ties by obtaining long-term private keys. Note that we refer
to an adversary as an external party of our proposed scheme.
The adversary can take over the network by eavesdropping,
modifying, and inserting fraudulent messages. An adversary
may compromise internal entities and make them deviate
from the protocol. The adversary aims to impersonate the
zero-touch provisioned device and obtain the bootstrapping
data from a legitimate bootstrap server. We assume that
no internal entity is a fully trusted party. Some internal
entities are dishonest, and such dishonest entities misbehave
as compromised entities do. In our discussion, we categorize
attacks by compromised or dishonest entities as insider
threats.

The adversary is presumed unable to compromise all
entities simultaneously. As a result, we use the attack model
that the adversary can compromise the long-term private key
of some, but not all, entities. We use the adversary model in
our analyses, except in the formal analysis, because we follow
the assumption of the BAN logic where all entities operate
honestly.

IV. PROPOSED INTEGRATION OF ARPKI AND SZTP
We combine the transparent and accountable ARPKI as
certificate management and the secure automated bootstrap-
ping scheme SZTP. ARPKI, with n entities consisting of
CAs and ILSes, guarantees the accountability of certificate
issuance to prevent bogus certificates for a Device (D).
To simplify discussions, we examine our proposed integration
using ARPKI with two CAs and one ILS (n = 3). Figure 3
illustrates the combined architecture of ARPKI and SZTP.
This architecture covers IDevID Certificate Registration
(Figure 3a Steps 1-9), Certificate Update and Revocation
(Figure 3a Steps 1-4, 7-9), Certificate Log Validation
(Figure 3b Steps 1-5), Credential Exchanges (Figure 3a Steps
11-17), and Bootstrapping (Figure 3c Steps 1-3) processes.

In our architecture, a Customer acts as a Provider’s
subscriber, who reserves a zero-touch provisioned edge
device through the Provider’s web page to deploy it in
a designated place. The Provider requires the Customer’s
identity, device specification requested by the Customer, and
shipping address designated by the Customer. The Provider
sends the shipping address in the DevOrder message to
the Manufacturer once D is ready. Then, the Manufacturer
ships the ordered D to the designated place according to the
shipping address.

A. IDevID CERTIFICATE REGISTRATION
Figure 4 shows the IDevID Certificate Registration message
flow. Principally the Manufacturer has the policy to register
an IDevID certificate at any time. For device provisioning
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FIGURE 3. Architecture of ARPKI-SZTP.

using the late-bindingmethod, theManufacturer and Provider
can organize an agreement on the combination of device
identifier IDD and specification SD in advance.

TABLE 1. Symbols used in this paper.

After obtaining the SD and IDD, the Manufacturer can
register the IDevID certificate. The Manufacturer sends
RegReq, a registration request message of the new IDevID
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FIGURE 4. IDevID certificate registration message flow.

certificate containing the certificate statement CD, to CA1
(Step 1). CA1 receives the registration request from the
Manufacturer, thenCA1 verifies theManufacturer’s signature
and forwards the request to ILS1 (Step 2). ILS1 checks the log
of certificates to see whether the requested new certificate
has already existed. If no certificate is identical with the
new intended certificate, ILS1 performs synchronization
among ILSes. ILS1 sends the signed synchronization request
message to ILSn to ensure that there is only one unique
registered certificate for a single domain. The active ILSes,
which belong to ILSn, respond to ILS1’s request by verifying
the signature and sending signed synchronization response

messages containing the hash value of the CARegReq
message. ILS1 sends SynCommit messages in response
to the ILSn’s SynResps. After confirming the correctness
of the new certificate registration, the ILSn send SynAck
messages to ILS1. These synchronization steps prevent any
possible impersonation attacks. After collecting SynAcks
from a quorum of ILSn, ILS1 issues the signed certificate
of the newly registered certificate (Steps 3-6). ILS1 sends
the registration response to CA2 (Step 7). After verifying
the signature of ILS1 and ensuring that ILS1, CA1, and
CA2 are different entities, CA2 sends a signed registration
confirmation message to CA1 (Step 8). Lastly, CA1 signs the
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final certificate and sends the RegResp message containing
the certificate to the Manufacturer (Step 9).

B. CERTIFICATE UPDATE AND REVOCATION
For certain reasons approved by the Provider and the
Manufacturer, a valid certificate may become invalid and
changed to a new certificate with an updated certificate state-
ment. ARPKI provides the certificate update and revocation
procedure. Figure 5 describes a mechanism for updating
and canceling a valid certificate. The Manufacturer initiates
sending the UpdateReq message containing a new certificate
statement to CA1 (Step 1). Then, CA1 forwards the request
to ILS1 after verifying the Manufacturer’s signature (Step
2). ILS1 performs the ILS synchronization to validate the
new update request (Steps 3-4). After collecting SynResps
from ILSn, ILS1 sends the signed ACCD, CAUpdateReq, and
List(SynResp) toCA2 (Step 7).CA2 signs theCAUpdateConf
and sends it to CA1 (Step 8). The CA1 finalizes the update
by signing the message and sending it to the Manufacturer
(Step 9).

C. CERTIFICATE LOG VALIDATION
A device D should gather ILS’s proof Prf before the
timeout of an ILS1’s registration response (RegResp) or after
the ILS1 updates the certificate tree. Figure 6 illustrates
the Certificate Log Validation message flow. Firstly, D
sends the confirmation request to CA1 (Step 1). Then,
CA1 forwards the request to ILS1 (Step 2). The ILS1 responds
to the request by sending the proof Prf and signed root SRt
to CA2 (Step 3). The CA2 signs the message and delivers it to
CA1 (Step 4). Then,CA1 finalizes it by signing it and sending
it to D (Step 5).

D. CREDENTIAL EXCHANGES
Figure 7 shows the Credential Exchanges message flow.
This flow (Steps 10-17) consists of Enrollment and Ordering
Devices (Steps 10-15) and the Owner Stages the Network
for Bootstrap (Steps 16-17) workflows of RFC 8572.
The Customer Registration and Authentication via the
Provider’s website initiate the Provider to enroll an edge
device to the Manufacturer (Step 10). The prospective
Customer is requested to input Customer information,
including identity, specification of the desired device, and
shipping address. We assume the Customer inputs the
data in secure action due to HTTPS-based web service
through TLS 1.3 full handshake authentication. Then the
Provider generates the device identifier IDD, specification
SD, and shipping address ShD correlating to the Customer’s
information.

In our proposed scheme, we define additional device
identifiers, i.e., device identifier IDD and device specifica-
tion SD, representing the Customer’s identity and service
requested by the Customer, respectively. We designate these
identifiers for convenience in service handling. Two other
device identifiers defined in RFC 8572 are IDevID and
manufacturer-generated device identifiers. IDevID indicates

the device certificate used for the TLS-level client certificate
and the device identity certificate used by the Owner
to encrypt bootstrapping data. The manufacturer-generated
device identifier indicates the device serial number (in this
paper, this identifier is denoted by SND).
To perform device enrollment, the Provider sends a

DevEnroll message to the Manufacturer. On the other hand,
theManufacturer sends the SND and IDevID certificate’s trust
anchor to the Provider to be inserted into NMS and BS so
that they can recognize the device during the bootstrapping
process. Each entity must receive correct and valid identifiers
in this Credential Exchange process. Otherwise, an adversary
can forge the identifiers to create fake devices.

To reduce the security weaknesses in terms of integrity
property, we also define additional variables HDevEnroll and
HDevOrder generated by the Provider using Message Authen-
tication Code (MAC) based on HMAC in RFC 2104 [32].
According to RFC 2104, we can define HMAC over data text
with secret keyKey asHMAC(Key, text) = H ((Key′⊕opad)‖
H ((Key′⊕ ipad)‖ text)), whereKey′ isH (Key) ifKey length is
longer than block size B, otherwise Key′ = ZeroPadB(Key)=
{Key‖(B−Key length)bytes of zeros}.We employ past session
short-term key KMP(t−1) of TLS 1.3 full handshake as the
Key in our HMAC formula. Since the longest key length of
cipher suites available in TLS 1.3 is 32 bytes and the smallest
hash function block size available for HMAC is 64 bytes,
we use the Key appended with zero padding. In this paper,
we define HDevEnroll(t) and HDevOrder(t) of current time t as
follows.

HDevEnroll(t) = HMAC(KMP(t−1), {IDD, SD}K−1Prov
) (1)

HDevOrder(t) = HMAC(KMP(t−1),

{IDD,ListBS ,ListTABS , ShD}K−1Prov
) (2)

The Provider sends a device enrollment message
DevEnroll containing the IDD, SD, and HDevEnroll to the
Manufacturer (Step 11). The Manufacturer inserts IDD and
SD in the IDevID certificate, which the Manufacturer sends
its trust anchor certificates list (ListTAD) to the Provider
as an enrollment response EnrollResp message (Step 12).
The Provider sends the device order DevOrder message
containing a list of BS’s address ListBS , a list of the BS’s
trust anchors ListTABS , ShD, and the IDD identifier to the
Manufacturer (Step 13). The Manufacturer follows the order
up by inserting IDevID certificate, ListBS , ListTABS , and the
device’s private key K−1D to finalize D (Step 14). Then,
the Manufacturer ships D to the designated address and
informs the Provider about the device serial number SND
and shipping tracking notification ShTD (Step 15). This step
ends the Credential Exchanges between the Provider and the
Manufacturer. Then, the Provider prepares the bootstrapping
by generating Conveyed Information for D (CID), inserting
some device’s credentials (IDD, SND, and CID) to NMS, and
installing the bootstrapping-related information (SND, CID,
ListTAD) to BS through NMS (Steps 16-17).
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FIGURE 5. Certificate update and revocation message flow.

E. BOOTSTRAPPING
Abootstrapping process sequence immediately runs afterD is
active and gets an internet connection. Figure 8 describes the
message flow betweenD and BS after TLS 1.3 full handshake
finished. Both D and BS get KDBS from TLS 1.3 full hand-
shake procedure (Appendix A). D generates the message’s
header Hdr and tags Tag according to HTTPS protocol.
It fetches the hardware model HWD, operating system (OS)
name OSD, OS version VD, and nonce value ND to construct
the bootstrapping request message AReq (Step 1). After
receiving the request message, BS generates New Session
Ticket NST , then sends it to D (Steps 2). After verifying the
request message, BS generates TLS 1.3 related Hdr and Tag,
timestamp tCI and reporting level RLvl. After fetching CID,
BS sends an AResp message (Step 3). Finally, D obtains the
bootstrapping data from BS and executes it.

V. SECURITY ANALYSIS
We present a security analysis of the ARPKI-SZTP scheme
in terms of the integrity and confidentiality of bootstrapping
data and the accountability of bootstrapping process. This
section consists of three subsections: Formal Analysis,
Security Assessment, and Computational Overhead.

The Formal Analysis subsection aims to analyze the
integrity and confidentiality of bootstrapping data based on
secure mutual authentication of the proposed scheme. First,
we analyze the IDevID Certificate Registration to show
that the Manufacturer can verify the integrity of the new
IDevID certificate based on the signatures of CA1, CA2,
and ILS1. Second, we analyze the Credential Exchanges to
show that the Manufacturer and Provider can confirm the
confidentiality and the integrity of the bootstrapping-related
information exchanged between them. Third, we analyze
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FIGURE 6. Certificate log validation message flow.

Bootstrapping to show that D and BS can authenticate each
other by verifying the ARPKI’s certificates, and D can
securely obtain bootstrapping data from BS.
In the Security Assessment subsection, we employ the

Microsoft STRIDE Threat Modeling Tool to identify poten-
tial insider threats against accountability. We conduct an
informal analysis of the investigation and mitigation of
insider threats based on the attack-resilient capability in our
proposed scheme. Lastly, in the Computational Overhead
subsection, we compare the computational overhead of
the proposed ARPKI-SZTP scheme and the Single Trust
RCA-SZTP scheme and discuss the computational overhead
in correlation with accountability.

A. FORMAL ANALYSIS
We perform formal analysis by using BAN logic [33].
This logic allows us to show step-by-step verification of
messages received by each entity regarding the message’s
signature and encryption. The signature and the encryption
are two important components to provide the integrity and
confidentiality of information. We use an extended form of
BAN Logic to cover modern PKI-based protocols, which
use asymmetric authentication, i.e., the extension form by
Gaarder and Snekkenes [34], and the improvement by
Sufatrio and Yap [35]. However, this logic cannot uncover
all possible attacks in cryptographic protocol [36]. The
BAN logic and its derivatives assume that all entities in

the protocols operate honestly without colluding with other
parties. In our formal analysis, we follow the BAN logic
and assume that no adversary compromises any entity. The
notations and rules we use are listed in Appendix B, and
since BAN logic has no notation for HMAC operation [37],
we express HMAC(Key, text) as 〈text〉Key [38]. To carry out
the formal analysis, we define goals, idealized messages,
and assumptions, then perform the verification processes
shown in Appendix B, C, D, and E. An idealized message
represents a message equipped with a formula that states
the ‘‘meaning’’ of the message exchanged. For example,
amessage {Htext }K−1A

fromA toB can be idealized asA→ B:
{Htext : 〈text〉Key}K−1A

since Htext denotes HMAC(Key, text).
Another purpose of the idealized message is to omit contents
(e.g., ‘‘POST ’’ message payload from D to BS in Figure 8
and Figure 14) that do not contribute to the recipient’s belief .
Prior to the verification of the authentication protocol

using log-based PKI, we extend the certificate validation rule
to adopt the log-based verification. In TLS authentication
steps, both entities D and BS send the ILS’s proof Prf
and signed root {{SRt}K−1CA2

}K−1CA1
to each other together with

their certificates. Note that we express an idealized form
of SRtQ as σ (R((2(tQ1 , t

Q
2 ),RootQ), all),K

−1
ILS1,K

−1
CA2,K

−1
C1 ).

In this idealized form, (2(tQ1 , t
Q
2 ),RootQ) denotes that ‘‘the

Merkle Root Head RootQ holds in the time interval (t1, t2)’’.
The correspondentPrfQ = σ (R((2(tQ1 , t

Q
2 ),List(HashValQ))

, all),K−1ILS1) is idealized form of List(HashValQ) signed by
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FIGURE 7. Credential exchanges message flow.

FIGURE 8. Bootstrapping message flow with the simplified version of session key.
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ILS1 as an issuer who claims that the List(HashValQ) is good
in the time interval of tQ1 and tQ2 .
In the first analysis, we conduct the verification of

messages between CA1 and Manufacturer in the IDevID
Certificate Registration messages flow (Appendix C). This
analysis aims to show that CA1 believes a new certificate
statement CD that the Manufacturer requests, and the
Manufacturer believes that the IDevID certificate received
from CA1 (CertD) is valid. The verification achieves all two
goals. Goal 1 (CA1 |≡ CD) shows that the CA1 can verify the
Manufacturer as the issuer of CD due to the Manufacturer’s
signature (St2). Based on this believes, CA1 together with
CA2 and ILSes process the registration of the new certificate
registration CD. After finishing the registration, CA1 sends
the signed certificate CertD to the Manufacturer. In Goal 2
(Man |≡ CertD), we show that the Manufacturer believes the
validity of the CertD. To achieve this goal, the Manufacturer
verifies the signatures of CA1 (St9), CA2 (St10), and ILS1
(St11), and also checks whether the CertD is within an active
period (St12).

We achieve all four goals in the second analysis of
the Credential Exchanges message flow (Appendix D)
between the Manufacturer and the Provider in terms
of bootstrapping-related information exchanges. Goal 1
(Man |≡ {IDD, SD}) indicates that the Manufacturer
believes that theDevEnroll message containing valid device’s
identifier IDD and specification SD. To support this statement,
we show that after receiving the message, the Manufacturer
verifies the encryption (St1) and the Provider’s signature
(St3). Based on the fact that the Manufacturer can verify
the validity of the message’s signature under the Provider’s
private key K−1Prov, and the correctness of the HDevEnroll(t), the
Manufacturer believes that the IDD and SD is issued by the
honest Provider (St7). Then, after ensuring the fresh value of
IDD and SD (St8), which only the Provider can generate, the
Manufacturer believes that the IDD and SD are valid.
Using the same logic as verification of Goal 1,

we achieve Goal 2 (Prov |≡ ListTAD), Goal 3 (Man |≡
{ListBS ,ListTABS , ShD}), and Goal 4 (Prov |≡ {SND, ShTD}).
Goal 2 indicates that the Provider believes that the list of
IDevID’s trust anchor certificates is valid. This list is used by
the bootstrap server BS to verify the signatures of the IDevID
certificate. Goal 3 shows that the Manufacturer believes that
ListBS , ListTABS , and ShD are valid and certainly issued by
the honest Provider. Lastly, Goal 4 shows that the Provider
receives a valid device’s serial number SND and shipping
tracking notification ShTD from the Manufacturer.

Lastly, based on verification in Appendix E, we achieve
all six goals of Bootstrapping as mentioned in Steps St24
(D |≡ CBS ), St29 (D |≡ BS |≡ CVBS ), St53 (BS |≡ CD), St58
(BS |≡ D |≡ CVD), St63 (BS |≡ {HWD,OSD,VD,ND}), and
St68 (D |≡ CID). Goal 1 (St24) shows that D can authenticate
the BS’s certificate statement CBS by verifying the signatures
(St5–St7), confirming the validity of RootBS (St11–St17) and
List(HashValBS ) (St19–St21), and ensuring that the CBS is
valid under the active certificate log (St22). After validating

the BS’s certificate, D also confirms that the corresponding
BS has a good private key K−1BS in Goal 2 (St26–St29).
On the other hand, Goal 3 (St53) shows that BS can also

authenticate the D’s certificate by verifying the signatures
(St34–St36), confirming the validity of RootD (St40–St46)
and List(HashValD) (St48–St50), and ensuring that the CD
is valid under the active certificate log (St51). BS can
also verify that D has a good private key K−1D as stated
in Goal 4 (St55–St58). Finally, Goal 5 (St63) expresses
BS believes that the bootstrapping request RPCget which
contains {HWD,OSD,VD,ND} from D is correct due to
encryption under {IVAPD, KAPD} (St59), and Goal 6 (St68)
shows D believes the encrypted bootstrapping data CID
from BS is correct due to the encryption under {IVAPBS ,
KAPBS} (St64). In addition, BS sends the encrypted conveyed
information {CID}KD (St65) to ensure that only the appropriate
D can see the content.

B. SECURITY ASSESSMENT
This subsection provides an informal analysis by conducting
a security assessment using Microsoft STRIDE Threat
Modeling Tool to identify possible threats against our
system. We get a list of possible threats for our pro-
posed scheme through threat identification using Microsoft
STRIDE. We examine the potential vulnerabilities and
confirm the mitigations based on the list. We demonstrate
the attack-resilient capability of accountable ARPKI and
the accountability of certificates for mitigating the threats
against our proposed scheme. As assumed in Section III, the
adversary can compromise the long-term private key of some,
but not all, entities.

We use Microsoft STRIDE Threat Modeling Tool GA
release 7.3.20120.2 to identify threats from internal (insider
threats) and external (outsider threats). In Microsoft STRIDE
terminology, threats are categorized into six categories, each
of which is sub-categorized into several threat types. This
tool provides a template of threat categories with several
threat types: Spoofing Category (7 threat types), Tampering
Category (14 threat types), Repudiation Category (8 threat
types), Information Disclosure Category (7 threat types),
Denial of Service Category (5 threat types), and Elevation of
Privilege Category (6 threat types). Based on these 47 threat
types, this tool tests the security of our scheme diagram
representing our system architecture for each data flow.
This tool provides the potential threat type descriptions for
adequate analysis and mitigation.

We make diagrams and identify threats using Microsoft
STRIDE. Each diagram covers the minimum required sten-
cils: one or more processes; the directional data flow between
external interactors and processes or among the processes
themselves; important data stores; an external interactor (e.g.,
external user); and a trust boundary. Microsoft STRIDE
provides two types of boundaries: Arc Boundary (dotted line)
and Border Boundary (dotted line rectangle). In our diagrams,
we use the Arc Boundary to represent the Internet Boundary
and the Border Boundary to represent the Manufacturer and
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Provider Trust Boundaries. Data flow crossing the boundary
line indicates passes through an insecure channel, while
data flow within the rectangle line means the connection
occurs through a secure channel.We build the diagrams based
on our proposed scheme consisting of IDevID Certificate
Registration, Credential Exchanges, and Bootstrapping. Each
diagram contains data flows that cross the Internet Boundary,
i.e., through a public network.

The IDevID Certificate Registration diagram shown in
Figure 9 consists of five Generic Process stencils expressing
Manufacturer, CA1, CA2, ILS1, and ILSn. All data flows are
two-way HTTPS types crossing the Internet Boundaries.

In the Credential Exchanges diagram (Figure 10), we apply
Generic Process stencil for Provider, NMS, andManufacturer
entities; Browser Client and Customer stencils; Data Store
stencils representing Edge Device and Bootstrap Server. The
Manufacturer Trust Boundary binds the Manufacturer and
Edge Device. The Manufacturer connects to the Provider
through the Internet Boundary. The Provider, NMS, and
Bootstrap Server belong to the Provider Trust Boundary,
to which the Customer can reserve an edge device via web
access. The trust boundaries (Manufacturer and Provider
Trust Boundaries) preserve the integrity and confidentiality
of entities and data flow inside the boundaries. However,
once an adversary can compromise the Manufacturer or the
Provider, other entities in the same trust boundary will also
be compromised. Furthermore, the Reservation, Enroll and
Order, and Enrol and Order Resp data flows, which cross the
Internet Boundary, become the threat spot for the adversary
to attack our system.

Figure 11 illustrates the Bootstrapping diagram consisting
of twoGeneric Process stencils of Edge Device and Bootstrap
Server. The mutually authenticated HTTPS data flows
connect both entities over the Internet Boundary.

Table 2 shows the number of threats found in all diagrams
by the Property, Threat Category, and Diagram, obtained
from the Threat List window of Microsoft STRIDE. The
Microsoft STRIDE identifies 86 threats and splits them
into 49, 23, and 14 threats for IDevID Certificate Registra-
tion, Credential Exchanges, and Bootstrapping, respectively.
Based on the table, we can also show that no possible threat
belongs to the Spoofing category due to the utilization of
HTTPS communication through internet boundaries. More-
over, Tampering and Information Disclosure threats do not
exist in IDevID Certificate Registration and Bootstrapping
diagrams. This information supports the Formal Analysis in
the previous subsection that our scheme achieves the integrity
and confidentiality of each message flow due to mutual
authentication among entities using TLS 1.3-based HTTPS.

We examine all threats and categorize them into 10
(Appendix F) out of 47 threat types from the Microsoft
STRIDE threat template. We judge three out of the 10 identi-
fied threat types as insider threats:
• Insider threat-1: Destination claims that it did not receive
data from a source outside the trust boundary. This threat
belongs to the Repudiation Category.

• Insider threat-2: Source may be able to remotely execute
code for Destination. This threat belongs to the Elevation
Of Privilege Category.

• Insider threat-3: Destination may be able to impersonate
the context of Source in order to gain additional
privilege. This threat belongs to the Elevation Of
Privilege Category.

This paper assumes that every attack by outsider parties
(adversaries) aims to compromise entities by obtaining
long-term private keys. The adversary can perform activities
that deviate from the proposed protocol by compromising
entities. As mentioned in the Adversary Model subsection,
we categorize the attacks by compromised entities as insider
attacks. Hereafter, we focus on investigating the three insider
threats related to the accountability properties.

1) ANALYSIS OF INSIDER THREAT-1
The first possible insider threat is destination repudiation,
where the destination claims it does not receive data from a
source outside the trust boundary. A destination may claim
no receipt of data from a source mainly in the following
two cases: messages do not reach the destination due to
Denial of Service (DoS) attacks, or the destination becomes
dishonest or compromised. Regarding the first case, the
DoS attack against the compromised destination results in
the inactive destination and does not harm other entities,
even if compromised. We do not categorize that case as
an insider threat. In case of the DoS attack against the
honest destination, it is necessary to apply the mitigation
technique to detect and block illegitimate traffic and analyze
the network bandwidth. The second case, where the dishonest
or compromised destination claims no receipt of data,
is related to accountability problems and belongs to the
destination repudiation threat. In the following paragraphs,
we investigate the second case in all processes of our
proposed scheme.

a: INSIDER THREAT-1 IN IDevID CERTIFICATE
REGISTRATION
Based on Table 2 and Figure 9, seven Repudiation threats
identified in IDevID Certificate Registration means destina-
tion repudiation threats occur on all data flows in the IDevID
Certificate Registration Diagram (Figure 9). Three threats
occur in data flows among CA1, CA2, and ILS1, two threats
occur between ILS1 and ILSn, and the last two threats occur
between Manufacturer and CA1.
An attack-resilient mechanism monitors each other and

ensures other entities work honestly among CA1, CA2,
and ILS1, as described in [39]. In case ILS1 becomes
compromised or dishonest and claims no message is received
fromCA1.CA2, which takes the validator’s role inmonitoring
ILS1, can detect the misbehaving activity, then mitigate the
failure immediately. If two out of three entities (e.g., ILS1 and
CA2) are compromised, ILS1 may not respond to CARegReq
message from CA1, and no misbehavior report from CA2.
Due to no response from ILS1 and CA2, CA1 monitors

134098 VOLUME 10, 2022



D. D. Sanjoyo, M. Mambo: Accountable Bootstrapping Based on ARPKI and SZTP

FIGURE 9. IDevID certificate registration diagram.

TABLE 2. The evaluation result of threat identifications.

CA2 and detects the misbehavior of CA2, then resolves
the problem. Subsequently, CA2 can mitigate the ILS1’s
violation.

Regarding the threat of destination repudiation between
ILS1 and ILSn, the number of ILSes that respond to
synchronization requests SynReq from ILS1 affects the
quorum in reaching consensus. In particular, this consensus
requires more than 50% of existing ILSes to ensure that
only one certificate is registered for a specific domain.
Some ILSes performing destination repudiation attacks may
ignore SynReqmessages from ILS1, and the number of ILSes
involved in the quorum will be reduced. However, ARPKI
requires at least one non-compromised ILS to participate in
the quorum. Hence, if ILSn claims no receipt of SynReq
messages, it does not interrupt the synchronization steps.

On the other hand, ILS1 may repudiate the SynResp from
ILSn after sending the SynReq due to being compromised
by an adversary. This condition also does not affect the
number of quorums to reach a consensus. However, the ILSn

cannot detect any misbehavior of ILS1 due to no authority to
validate ILS1’s activity. The role of monitoring and ensuring
the misbehaving activities belongs to the corresponding
CA2. CA2 can determine that ILS1 becomes dishonest or
compromised when there is a protocol deviation of ILS1’s
activities.

The destination repudiation threat also exists between the
Manufacturer and the CA1. Misbehaving CA1 may claim it
does not receive certificate registration request RegReq from
the Manufacturer. However, as described earlier, CA2 and
ILS1 can determine and mitigate the misbehaving CA1.
On the other hand, misbehaving Manufacturer may claim it
does not receive the RegResp message containing the signed
certificate from CA1. Note that the communication line
between the Manufacturer and CA1 properly works because
the Manufacturer successfully sent the RegReq message
to CA1. In this case, CA1 can check the Manufacturer’s
certificate and whether or not any certificate update request
from the Manufacturer during the certificate registration.
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FIGURE 10. Credential exchanges diagram.

FIGURE 11. Bootstrapping diagram.

If no certificate update request exists, CA1 can determine
whether the Manufacturer has become dishonest. On the
other hand, if there is a certificate update request from the
Manufacturer, then there is a possibility that an adversary has
compromised the Manufacturer.

b: INSIDER THREAT-1 IN CREDENTIAL EXCHANGES
Based on Table 2 and Figure 10, three Repudiation threats
of Credential Exchanges in Table 2 indicate destination
repudiation threats are identified in all data flows of the
Credential Exchanges Diagram (Figure 10). Two out of three

occur between the Provider and the Manufacturer, and the
other between the Browser Client and the Provider.

The destination repudiation threat may occur in data flow
between the Provider as a source and the Manufacturer
as a destination. Before establishing mutual authentication
between them, each of them obtains ILS’s proof Prf and
signed root {{SRt}K−1CA2

}K−1CA1
by performing Certificate Log

Validation. During TLS 1.3 handshaking (Appendix A),
the source and the destination send each other certificates
along with the proof and the signed root. Based on these
credentials, the source and destination can check whether
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their respective certificates are correct or not. Since the
ARPKI is accountable and the certificate log maintained by
ILS1 is publicly verifiable, the source can trust the destination
and vice versa, based on the validated certificate.

A Customer accesses the Provider’s web page via Browser
Client through TLS 1.3-based one-way authentication. The
Browser Client can check the validity of the Provider’s
certificate through the proof and the signed root. Therefore,
in this case, the Customer can fully trust the Provider if
the Provider’s certificate is legitimately contained in the
certificate log.

c: INSIDER THREAT-1 IN BOOTSTRAPPING
Based on Table 2 and Figure 11, two Repudiation threats of
Bootstrapping mean destination repudiation threats occur in
all data flows of the Bootstrapping Diagram (Figure 11).
During the Bootstrapping process, the Edge Device and

Bootstrap Server authenticate each other by relying on the
proof and the signed root. The trust is established after
verifying that the proof and the signed root validate the asso-
ciated certificate. Prior to establishing mutual authentication
between the two, the entities must have a valid certificate
with a valid proof Prf and a signed root {{SRt}K−1CA2

}K−1CA1
. The

Edge Device and the Bootstrap Server reach a conclusion that
the other entity is trustworthy using the formal verification
of Goal 1 (D |≡ CBS ) and Goal 3 (BS |≡ CD) of the
Bootstrapping process (Appendix E). In Goal 1 verification,
statement St22: D |≡ ILS1 |≡ 8(CBS ) can be derived after
verifying h(h(CBS ) ‖ List(HashValBS )) = RootBS . As well
as in Goal 3 verification, statement St50: BS |≡ ILS1 |≡
8(CD) can occur after h(h(CD)‖List(HashValD)) = RootD is
achieved. This result gives an evidence that the accountability
of certificates is guaranteed in our proposed scheme.

2) ANALYSIS OF INSIDER THREAT-2
The second possible insider threat describes that a compro-
mised source can remotely execute code for a destination
that belongs to the Remote Code Execution (RCE) threat.
This malicious activity can cause malware execution to the
source gaining full access and control over the destination.
An adversary usually performs RCE by an automated tool
and rarely by manual attempt. The adversary must embed
arbitrary code into the Host (in this case, compromised
source) and send the code to the Target (destination) for
the execution in the Target’s machine. An honest Target
can easily detect a protocol violation based on a suspicious
message from the Host.

On the other hand, to launch the RCE attack successfully,
the Host must hide its activities from Target. The adversary
intends to insert a malicious program or code into Target’s
machine using permissible access without being detected
by Target. As an external party, the Host requires full trust
from Target to use the access to penetrate Target’s resources.
Basically, Target does not trust any other entities and does not
become trust adversaries. Therefore, the adversary is almost

impossible to launch a successful RCE attack in our proposed
system.

In addition to being aware of the RCE threat, establishing
trust among entities is a must for both the message’s
source and destination. Based on the discussion in the
Analysis of insider threat-1 subsubsection, the accountability
of certificates is guaranteed in our proposed scheme. Hence,
each entity in our system can trust the message’s source
by relying on the ARPKI’s attack resilience and the
accountable certificate, which can also prevent the dishonest
or compromised source.

3) ANALYSIS OF INSIDER THREAT-3
The third possible insider threat is an authorization problem
where the dishonest or compromised destination of the
data flow may be able to impersonate the context of the
message source to gain additional privilege. To impersonate
the context of the message source, an adversary typically
requires the legitimate source’s private key. We assume the
adversary can compromise an entity’s long-term private key
but cannot reveal other honest entities’ long-term private
keys. Rather than stealing the private keys, the adversarymust
obtain a bogus but valid certificate to impersonate the entity
successfully. Regarding theARPKI-based certificate registra-
tion, an adversary cannot get a certificate by compromising
even n − 1 trusted entities. Obtaining a fake certificate is
possible only by compromising all n entities of the ARPKI
core system. However, this action is difficult to achieve,
and ARPKI validators can immediately detect the protocol
violation by verifying the transparent certificate log.

In the following discussion, we demonstrate the scenario
of impersonation without a bogus but valid message source’s
certificate. In each scenario, we assume an adversary
compromises the message destination’s long-term private
key and then tries to impersonate the context of the
message source towards another entity. The first scenario of
impersonation is an adversary compromising a Manufacturer
as the message destination of Enrol and Order data flow
and then impersonating the context of the Provider towards
CA1. Such a compromised Manufacturer is denoted byMan.
The Man must establish a TLS 1.3-based secure channel
to conduct communication with other entities. However,
TLS 1.3 provides a Perfect Forward Secrecy (PFS) feature
that prevents an adversary from decrypting the previous
or future sessions, even though the adversary compromises
the long-term private key. This feature requires unique
session keys that are generated frequently to protect each
conversation.

IfMan intends to perform session resumption, a short-term
new session ticket (NST ) from the last session is required
in the Client Hello Message. However, the adversary cannot
get the previous NST due to its inability to decrypt the last
session. The Man can try to initiate a new session with CA1.
However,CA1 will still require the session ticket from the last
session. Hence,Man cannot build TLS 1.3 session with CA1.
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If the adversary can establish a new session without any
session ticket, the adversary intuitively updates the Man’s
certificate. Based on the Certificate Update and Revocation
protocol, the Man sends an UpdateReq containing a CMan

′

to CA1. CMan
′ consists of the current active certificate

statement CMan and a new certificate statement CMan. For an
appropriate update, the Manufacturer owner must satisfy the
trust requirements of CMan that were previously defined and
registered in ILS1. Regarding these requirements, ILS1 tends
to confirm the update request to the legitimate Manufacturer
owner. If the owner declines the update request and reports
the unrecognized request, ILS1 then cancels the UpdateReq
and detects the misbehavior ofMan.

Instead of updating the certificate, it is enough for the
adversary to conduct Certificate Log Validation to get the
proof Prf and the signed root {{SRt}K−1CA2

}K−1CA1
associated with

CertMan. The adversary can directly use the Manufacturer’s
private key K−1Man to sign the message. Until this step, if the
adversary can win all challenges,Man can establish commu-
nication to CA1 to request a new certificate registration.

Prior to generating a fake request of new certificate
registration RegReq, the Man generates KD, K

−1
D , SND, and

fake values IDD, SD, and CD = {SND ‖ IDD ‖ SD ‖
KD}. The Man then sends RegReq = {{CD,CA1, ILS1,
CA2}K−1Man

}KMCA1 to CA1. The ARPKI system processes the
request as long as it has not issued the same certificate.
CA1 cannot authenticate the correctness of SND, IDD, and SD,
thus CA1 assumes that the contents of the CD are valid. Until
this step, no one detects the misbehaving activity of Man.
Man can get a bogus but valid certificate CertD, then installs
it together with the previous ListBS and ListTABS into a fake
device D.

On the other hand, Provider does not possess SND, IDD,
and SD, neither does NMS and Bootstrap Server. Hence, even
using a bogus certificate, CertD cannot get the bootstrapping
data. Moreover, Bootstrap Server can detect the misbehaving
activity of D that tries to get bootstrapping data using fake
identifiers. Henceforth, the Bootstrap Server may report the
activity to the Provider to further investigate theManufacturer
that provides the bogus certificate to D.

If Man tries to impose Provider to register the SND,
IDD, and SD to Bootstrap Server, Man sends EnrollResp =
{{IDD,ListTAD}K−1

Man
,HEnrollResp}KMP to Provider. However,

Provider cannot authenticate EnrollResp due to incorrect
HEnrollResp. Moreover, the Provider can detect the misbehav-
ing activity of Man. Based on this analysis, Man cannot
impersonate the Provider to produce fake devices with bogus
certificates and obtain bootstrapping data.

The second impersonation scenario is when CA1 becomes
compromised (CA1) and generates a fakeCARegReq contain-
ing RegReq = {CD,CA1, ILS1,CA2}KMan−1

, then sends it to
ILS1. ILS1 can easily detect and block the fake request due
to an invalid Manufacturer’s signature using a fake private
key KMan

−1
. The same situation will occur if the bogus

request is initiated by other ARPKI entities (CA2, ILS1,

or ILSn). Thus, every single entity in the ARPKI system is
unlikely to perform an impersonation attack in the case of the
IDevID Certificate Registration process because of an invalid
signature that is detected.

The third impersonation scenario may occur between the
Provider and the Manufacturer in the Credential Exchange
process. In this case, the possible scenario is the Provider
as an adversary impersonating the Customer towards the
Manufacturer. Similarly, after compromising the long-term
private key of the Provider (Prov), the adversary tries to
break the PFS of TLS 1.3 and performs a Certificate
Log Validation for long-term keypair (KProv,K

−1
Prov). Prov

generates random IDD, SD, ShD for an arbitrary Customer,
and HDevEnroll(t) = HMAC(KMP(t−1), {IDD, SD}K−1Prov

). Prov

uses a fake key KMP(t−1) because the adversary cannot
obtain the short-term last-session key of the Provider.
Then, Prov sends a fake device enrollment DevEnroll =
{{IDD, SD}K−1

Prov
,HDevEnroll(t)}KMP to the Manufacturer. Due

to the valid signature of the Provider, the Manufacturer
can successfully verify the DevEnroll message. However,
after checking the message’s contents, the honest Man-
ufacturer cannot authenticate the HDevEnroll(t) due to the
fake last-session key usage. Therefore, the Manufacturer
terminates the Credential Exchanges process and detects the
misbehavior of Prov.

In very limited opportunities, the adversary can attempt to
register a bogus certificate by compromising all the ILSes and
several CAs while maintaining two separate certificate logs
(the correct and the bogus logs) under a set of honest CAs.
The adversary can forge a legitimate certificate via a group
of compromised CAs. At the same time, a manufacturer can
still register a certificate for a device using the honest CAs.
An improvement by applying gossiping protocol is required
to overcome this split-view attack [39]. This protocol enables
all entities, including domains, to arbitrarily exchange their
knowledge about the certificate log. Hence, they possess a
similar view of the certificate log with the expense of the
raise of the computational overhead of all entities due to the
continuous gossip.

Our scheme achieves a secure bootstrapping process
through the certificate issued by the attack-resilient mech-
anism, mutual authentication using TLS 1.3 full hand-
shake, and consistency checks in the proposed processes.
As mentioned in [6], ARPKI’s attack resilience capability
can provide accountability in the certificate management.
The accountability of bootstrapping process is improved by
integrating the ARPKI certificate management together with
TLS 1.3 mutual authentication into the SZTP framework.
We demonstrated this property through the discussion in this
subsection.

C. COMPUTATIONAL OVERHEAD
Table 3 compares the computational overhead between
the proposed ARPKI-SZTP and Single RCA-based SZTP.
We measure the computational overhead, which is associated
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with the Decryption (D), Encryption (E), and Hashing
(H) operations. We consider the correlations between the
number of devices (d), the number of Manufacturers
(m), and the number of certificate domains (x) with the
measurement. ARPKI application incurs additional costs in
the IDevID Certificate Registration, Certificate Update and
Revocation, and Certificate Log Validation processes.We can
observe that the delay caused by computational overhead
impacts certification-related processes, not the Bootstrapping
processes.

Regarding the IDevID Certificate Registration, Certificate
Update and Revocation, and Certificate Log Validation
processes, our scheme requires up to five times larger
computational overhead than Single RCA-based SZTP.
An additional 16mH of overhead occurs in the Credential
Exchange process. Our proposed scheme does not cause
extra delay for the Bootstrapping processes due to certificate
pre-installation construction. Regarding the frequency of
process occurrence, Certificate Log Validation, Credential
Exchanges, and Bootstrapping occur most often. Among
these processes, the Certificate Log Validation process
costs more than the other two. In terms of accountability,
the application of ARPKI, i.e., Certificate Log Validation,
guarantees accountable Bootstrapping while increasing the
computational overhead of Certificate Log Validation.

VI. CONCLUSION AND FUTURE WORK
This work presents the integration scheme of ARPKI and
SZTP to provide accountable bootstrapping for edge devices
in a zero-touch fashion with the integrity and confidentiality
of bootstrapping data. The edge device can securely boot-
strap data from an online trusted bootstrap server due to
the ARPKI’s certificate-based mutual authentication using
TLS 1.3 full handshake. The ARPKI provides trustworthy
certificate management in preventing misbehaving activities.
The BAN Logic-based analysis proves that our scheme
satisfies the integrity and confidentiality of bootstrapping
data based on mutual authentication using ARPKI’s certifi-
cates through the TLS 1.3-based communication channel.
ARPKI’s validation mechanism can maintain PKI’s account-
ability to provide correct certificates for SZTP’s bootstrap-
ping process. In our informal analysis, we discuss various
insider threats, including several impersonation attacks which
can be prevented by ID management. Our protocol design
achieves ID management with the use of HMAC. We also
confirm the accountability by using Microsoft STRIDE to
identify ten out of 47 possible threat types and conducting an
investigation of three insider threats out of the ten potential
threats.

We provide the computational overhead calculation as
the cost spent to reach a certain level of security. Due to
computational overhead, the extra delay occurs in certificate
management-related processes. The proposed scheme can
maintain accountability despite a slight increase in compu-
tational overhead.

We will implement the proposed scheme as a prototype of
zero-touch device provisioningwith a network-based security
improvement for future work. We plan to extend the flexibil-
ity, scalability, and lightweight performance properties. And
we are considering developing a secure zero-touch solution
to support virtual machine orchestration.

APPENDIX A
TLS 1.3 FULL HANDSHAKE
Figure 12 presents a TLS 1.3 Full Handshake process
between entities (A) and (B). This process occurs at the
beginning of every communication between two parties in our
scheme.

APPENDIX B
EXTENDED NOTATION AND RULES OF BAN LOGIC
FOR PKI-BASED PROTOCOL
We provide some notations of BAN Logic and the extension
for PKI-based protocol.
• P |≡ X : P believes X , or the principal P believe the
annoucement X .

• P G X :P sees X stated when someone has sent a message
containing X to principal P.

• P |∼ X : P once said X . The principal P at some time sent
a message including the statement X .

• P⇒ X : P has jurisdiction over X . The principal P is an
authority on X and should be trusted on this matter.

• #(X ): The formula X is fresh; that is, X has not been
sent in a message at any time before the current run of
the protocol.

• P
K
←→ Q: P and Q may use the shared key K to

communicate.
•

K
7→P: P has K as a public key. The matching private key
(denoted K−1) will never be discovered by any principal
except P or a principal trusted by P.

• P
X
�Q: The formula X is a secret known only to P and

Q, and possibly to principals trusted by them.
• {X}K : X encrypted under the key K . WhenK is a private
key K−1, this notation represents a signature of X .

• 〈X〉Y : X combined with the formula Y .
• ℘κ (P,KP): P has associated a good public key KP
• 5

(
K−1P

)
: P has a good private key K−1P

• σ
(
X ,K−1P

)
: X is signed by P’s private key K−1P

•

(
2

(
tP1 , t

P
2

)
,CP

)
: certificate statement CP holds in the

time interval
(
tP1 , t

P
2

)
• CP: certificate statement (℘κ (P,KP) ,5

(
K−1P

)
) about

P
• 8(CP): certificate statement CP remains valid
Based on the logical postulates of the BAN Logic of

authentication, we provide the rules we use in formal analysis.
Rule 1:Message-meaning rule for shared secret key:

P|≡Q
K
←→P,PG{X}K
P|≡Q|∼X (3)
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FIGURE 12. TLS 1.3 full handshake.
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TABLE 3. Computational overhead.

P is said to believes Q, if P believes that K is shared with Q
and P sees X is encrypted under K .
Rule 2:Message-meaning rule for shared secret formula:

P|≡Q
Y
�P,PG〈X〉Y
P|≡Q|∼X (4)

Rule 3: Message-meaning rule for signed message under
private key:

P|≡℘κ(Q,KQ),P|≡5
(
K−1Q

)
,PGσ

(
R(X ,P),K−1Q

)
P|≡Q|∼X (5)

P G σ (R(X ,P),K−1Q ) means P sees message X sent to P and
signed by principal Q using the private key K−1Q .
Rule 4: Message-meaning rule for encryption message

under public key:

P|≡℘κ(P,KP),P|≡5(K−1P ),PG{S(X ,Q)}KP
P|≡Q|∼X (6)

The third premise construction introduces the notion of the
‘‘stated sender’’ of a message. S(X ,Q) means ‘‘message X
together with Q as the stated sender of the message’’.
Rule 5: Session-key rule:

P|≡#(X ),P|≡Q|≡X

P|≡Q
K
←→P

(7)

If P and Q is said to believe X and value X is fresh, then P
believes the session key K with Q.
Rule 6: Nonce-verification rule:

P|≡#(X ),P|≡Q|∼X
P|≡Q|≡X (8)

If P believes that X is expressed recently (freshness) and P
believes that Q once said X , P believes that Q believes X .
Rule 7: Jurisdiction rule:

P|≡Q⇒X ,P|≡Q|≡X
P|≡X (9)

If P believes that Q has jurisdiction over X , and P believes
that Q believes a message X , P also believes X.

Rule 8: See-rule:

PG(X ,Y )
PGX (10)

PG〈X〉Y
PGX (11)

P|≡Q
K
←→P,PG{X}K
PGX (12)

P|≡
K
7→P,PG{X}K
PGX (13)

P|≡
K
7→Q,PG{X}K−1

PGX (14)

Rule 9: All recipient see-rule:

PGσ
(
R(X ,all),K−1Q

)
PGσ

(
R(X ,P),K−1Q

) (15)

Rule 10: Freshness:

P|≡#(X )
P|≡#(X ,Y ) (16)

If one part is known to be fresh, the entire formula must be
fresh.
Rule 11: Certificate definition:

CertP = σ (R((2(tP1 , t
P
2 ), ℘κ(P,KP),5(K−1P )), all),K−1I )

(17)

Certificate of P (CertP) contains information for all recipients
that the P’s public key KP holds in the time interval (tP1 , t

P
2 ),

and within that time, P owns the corresponding private key
K−1P secretly. Within the time interval (tP1 , t

P
2 ), the signature

of a principal I , as the certificate issuer, is also valid.
Rule 12: Certificate validation:

P|≡I |∼
(
2

(
tQ1 ,t

Q
2

)
,CQ

)
,P|≡I |≡1

(
tQ1 ,t

Q
2

)
,P|≡I |≡8(CQ)

P|≡I |≡CQ
(18)

This Certificate validation rule derives a belief on a certificate
CertR.1(tQ1 , t

Q
2 ) denotes ‘‘good interval time’’ (tQ1 ) and (t

Q
2 ).
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P |≡ I |≡ 8(CQ) expresses that P believes that I still believes
that the uttered certificate statement CQ remains valid.

APPENDIX C
VERIFICATION OF IDevID CERTIFICATE REGISTRATION
We conduct a verification of IDevID certificate registration
message flow (Figure 4) between Manufacturer (Man) and
CA1. We do not include all messages related to certificate
registration with the assumption that all entities operate the
protocol honestly, explained in the FORMAL ANALYSIS
subsection. By verifying the initial and final messages
between Man and CA1, we can achieve the goal of the logical
analysis as follows.

Goal 1. CA1 |≡ CD
Goal 2. Man |≡ CertD
Then, we idealized the communication messages of our

proposed protocol betweenMan and CA1 as follows.

M1: Man→ CA1: {{CD}K−1Man
}KMCA1

M2: CA1→ Man: {CertD}KMCA1
In the original message flow in Figure 4, RegReq contains

not only certificate statement CD but also the destination
nodes of the ARPKI core system. In the idealized messages,
we remove the content of destination nodes because it does
not contribute to the CA1’s belief . Then, we define the
verification assumptions as follows.

A1: CA1 |≡ Man
KMCA1
←−−→ CA1

A2: Man |≡ CA1
KMCA1
←−−→ Man

A3: CA1 |≡ CMan
A4: Man |≡ CILS1
A5: Man |≡

KCA1
7−→CA1

A6: Man |≡
KCA2
7−→CA2

A7: CA1 |≡ #(CD)
A8: CA1 |≡ Man⇒ CD
A9: Man |≡ ILS1 |≡ 1(tD1 , t

D
2 )

A10: Man |≡ ILS1 |≡ 8(CD)
Lastly, we construct the verification states as follows.
From M1 we get

St1: CA1 G {{CD}K−1Man
}KMCA1

By combining St1 and A1, then applying statement (12) of
Rule 8, we can get
St2: CA1 G {CD}K−1Man

We can construct idealized form of St2 as
CA1 G σ (R(CD,CA1),K

−1
Man)

By combining St2 and A3, then applying Rule 3, we can get
St3: CA1 |≡ Man |∼ CD

By combining St3 and A7, then applying Rule 6, we can get
St4: CA1 |≡ Man |≡ CD

By combining St4 and A8, then applying Rule 7, we can get
St5: CA1 |≡ CD (Goal 1)

From M2 we get
St6: Man G {CertD}KMCA1

By combining St6 and A2, then applying statement (12) of
Rule 8, we can get
St7: Man G CertD

By applying Rule 11 on St7, we get
St8: Man G σ (R((2(tD1 , t

D
2 ), ℘κ(D,KD),5(K−1D )), all),

K−1ILS1,K
−1
CA2,K

−1
CA1)

Since CD denotes as ℘κ(D,KD), 5(K−1D )), we can construct
St8 as
Man G σ (R((2(tD1 , t

D
2 ),CD), all),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By applying Rule 9 on St8, we can get
St9: Man G σ (R((2(tD1 , t

D
2 ),CD),Man),K

−1
ILS1,K

−1
CA2,

K−1CA1)
By combining St9 and A5, then applying statement (14) of
Rule 8, we can get
St10: Man G σ (R((2(tD1 , t

D
2 ),CD),Man),K

−1
ILS1,K

−1
CA2)

By combining St10 and A6, then applying statement (14) of
Rule 8, we can get
St11: Man G σ (R((2(tD1 , t

D
2 ),CD),Man),K

−1
ILS1)

By combining St11 and A4, then applying Rule 3, we can get
St12: Man |≡ ILS1 |∼ (2(tD1 , t

D
2 ),CD)

By combining St12, A9, and A10, then applying Rule 12,
we can get
St13: Man |≡ ILS1 |≡ CD

Statement St13 derives
St14: Man |≡ CertD (Goal 2)

APPENDIX D
VERIFICATION OF CREDENTIAL EXCHANGES
We conduct a verification of credential exchanges message
flow (Figure 7) between Manufacturer (Man) and Provider
(Prov). First, we state the analysis goals as follows.

Goal 1. Man |≡ {IDD, SD}
Goal 2. Prov |≡ ListTAD
Goal 3. Man |≡ {ListBS ,ListTABS , ShD}
Goal 4. Prov |≡ {SND, ShTD}
We idealized the communicationmessages of our proposed

protocol to ease the analysis between Man and Prov as
mentioned in Figure 13. Then, we define the verification
assumptions as follows.

A1: Man |≡ Prov
KMP
←−→ Man

A2: Prov |≡ Man
KMP
←−→ Prov

A3: Man |≡
KProv
7−→Prov

A4: Prov |≡
KMan
7−→Man

A5: Man |≡ Prov
KMP(t−1)
� Man

A6: Prov |≡ Man
KMP(t−1)
� Prov

A7: Man |≡ #(IDD, SND)
A8: Prov |≡ #(IDD, SND)
A9: Man |≡ Prov⇒ {IDD, SD, ShD}
A10: Prov |≡ Man⇒ {SND,ListTAD}
Finally, we construct the verification states as follows.
From M1 we get
St1: Man G {{IDD, SD}K−1Prov

,HDevEnroll(t)}KMP
By combining St1 and A1, then applying statement (12) of
Rule 8, we can get
St2: Man G {{IDD, SD}K−1Prov

,HDevEnroll(t)}
By applying statement (10) of Rule 8 on St2, we can get
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FIGURE 13. Idealized message flow of credential exchanges.

St3: Man G {IDD, SD}K−1Prov
and

St4: Man G HDevEnroll(t)
By combining St3 and A3, then applying statement (14) of
Rule 8, we can get
St5: Man G {IDD, SD}

Since HDevEnroll(t) = HMAC(KMP(t−1), {IDD, SD}), we can
construct St4 as
St6: Man G 〈{IDD, SD}〉KMP(t−1)

By combining A5 and St6, then applying Rule 2, we can get
St7: Man |≡ Prov |∼ {IDD, SD}

By applying Rule 10 on A7, we get
St8: Man |≡ #(IDD, SD)

By combining St7 and St8, then applying Rule 6, we can get
St9: Man |≡ Prov |≡ {IDD, SD}

By combining St9 and A9, then applying Rule 7, we can get
St10: Man |≡ {IDD, SD} (Goal 1)

From M2 we get
St11: Prov G {{IDD,ListTAD}K−1Man

,

HEnrollResp(t)}KMP
By combining St11 and A2, then applying statement (12) of
Rule 8, we can get
St12: Prov G {{IDD,ListTAD}K−1Man

,HEnrollResp(t)}
By applying statement (10) of Rule 8 on St12, we can get
St13: Prov G {IDD,ListTAD}K−1Man

, and
St14: Prov G HEnrollResp(t)

By combining St13 and A4, then applying statement (14) of
Rule 8, we can get
St15: Prov G {IDD,ListTAD}

Since HEnrollResp(t) = HMAC(KMP(t−1), {IDD, ListTAD}),
we can construct St14 as
St16: Prov G 〈{IDD,ListTAD}〉KMP(t−1)

By combining A6 and St16, then applying Rule 2, we can get
St17: Prov |≡ Man |∼ {IDD,ListTAD}

By applying Rule 10 on A8, we get
St18: Prov |≡ #(IDD,ListTAD)

By combining St17 and St18, then applyingRule 6, we can get
St19: Prov |≡ Man |≡ {IDD,ListTAD}

By combining St19 and A10, then applyingRule 7, we can get
St20: Prov |≡ {IDD,ListTAD}

By breaking conjunction of St20, we can get
St21: Prov |≡ ListTAD (Goal 2)

From M3 we get
St22: Man G {{IDD,ListBS ,ListTABS , ShD}K−1Prov

,

HDevOrder(t)}KMP
By combining St22 and A1, then applying statement (12) of
Rule 8, we can get

St23: Man G {{IDD,ListBS ,ListTABS , ShD}K−1Prov
,

HDevOrder(t)}
By applying statement (10) of Rule 8 on St23, we can get
St24: Man G {IDD,ListBS ,ListTABS , ShD}K−1Prov

and
St25: Man G HDevOrder(t)

By combining St24 and A3, then applying statement (14) of
Rule 8, we can get
St26: Man G {IDD,ListBS ,ListTABS , ShD}

Since HDevOrder(t) = HMAC(KMP(t−1), {IDD,ListBS ,
ListTABS , ShD}), we can construct St25 as
St27: Man G 〈{IDD,ListBS ,ListTABS , ShD}〉KMP(t−1)

By combining A5 and St27, then applying Rule 2, we can get
St28: Man |≡ Prov |∼ {IDD,ListBS ,ListTABS , ShD}

By applying Rule 10 on A7, we get
St29: Man |≡ #(IDD,ListBS ,ListTABS , ShD)

By combining St28 and St29, then applyingRule 6, we can get
St30: Man |≡ Prov |≡ {IDD,ListBS ,ListTABS , ShD}

By combining St30 and A9, then applying Rule 7, we can get
St31: Man |≡ {IDD,ListBS ,ListTABS , ShD}

By breaking conjunction of St31, we can get
St32: Prov |≡ {ListBS ,ListTABS , ShD} (Goal 3)

FromM4 we get
St33: Prov G {{IDD, SND, ShTD}K−1Man

,

HOrderResp(t)}KMP
By combining St33 and A2, then applying statement (12) of
Rule 8, we can get
St34: Prov G {{IDD, SND, ShTD}K−1Man

,HOrderResp(t)}
By applying statement (10) of Rule 8 on St34, we can get
St35: Prov G {IDD, SND, ShTD}K−1Man

and
St36: Prov G HOrderResp(t)

By combining St35 and A4, then applying statement (14) of
Rule 8, we can get
St37: Prov G {IDD, SND, ShTD}

Since HOrderResp(t) = HMAC(KMP(t−1), {IDD, SND, ShTD}),
we can construct St36 as
St38: Prov G 〈{IDD, SND, ShTD}〉KMP(t−1)

By combining A6 and St38, then applying Rule 2, we can get
St39: Prov |≡ Man |∼ {IDD, SND, ShTD}

By applying Rule 10 on A8, we get
St40: Prov |≡ #(IDD, SND, ShTD)

By combining St39 and St40, then applyingRule 6, we can get
St41: Prov |≡ Man |≡ {IDD, SND, ShTD}

By combining St41 and A10, then applyingRule 7, we can get
St42: Prov |≡ {IDD, SND, ShTD}

By breaking conjunction of St42, we can get
St43: Prov |≡ {SND, ShTD} (Goal 4)
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APPENDIX E
VERIFICATION OF BOOSTRAPPING
We conduct a verification of message flow (Figure 14)
between device D and bootstrap server BS. First, we state the
analysis goals as follows.

Goal 1. D |≡ CBS
Goal 2. D |≡ BS |≡ CVBS
Goal 3. BS |≡ CD
Goal 4. BS |≡ D |≡ CVD
Goal 5. BS |≡ {HWD,OSD,VD,ND}
Goal 6. D |≡ CID
Then, we idealized the communication messages of our

proposed protocol to ease the analysis between D and
BS as mentioned in Figure 15. Note that we include the
certificate record messages and certificate verify record
messages of TLS 1.3 full handshake (as M1—M4). In this
verification, we concentrate on showing the authentication
of certificates and bootstrapping data, so we remove other
message payloads. We define the verification assumptions as
follows.

Assumption

A1: D |≡ BS
IVHSBS ,KHSBS
←−−−−−−−→ D

A2: BS |≡ D
IVHSD,KHSD
←−−−−−−→ BS

A3: D |≡ BS
IVAPBS ,KAPBS
←−−−−−−−→ D

A4: BS |≡ D
IVAPD,KAPD
←−−−−−−→ BS

A5: D |≡
KCA1
7−→CA1

A6: BS |≡
KCA1
7−→CA1

A7: D |≡
KCA2
7−→CA2

A8: BS |≡
KCA2
7−→CA2

A9: D |≡ CILS1
A10: BS |≡ CILS1
A11: D |≡ #(tBS1 , tBS2 )
A12: BS |≡ #(tD1 , t

D
2 )

A13: D |≡ ILS1 |≡ 8(RootBS ,List(HashValBS ))
A14: BS |≡ ILS1 |≡ 8(RootD,List(HashValD))
A15: D |≡ ILS1⇒ CBS
A16: BS |≡ ILS1⇒ CD
A17: D |≡ CD
A18: D |≡ #(CID)
A19: D |≡ BS ⇒ CID
A20: BS |≡ #(HWD,OSD,VD,ND)
A21: BS |≡ D⇒ {HWD,OSD,VD,ND}

Finally, we construct the verification states as follows.
From M1 we get

St1: D G {CertBS , {{SRtBS}K−1CA2
}K−1CA1

,

PrfBS}IVHSBS ,KHSBS
By combining St1 and A1, then applying statement (12) of
Rule 8, we can get
St2: D G {CertBS , {{SRtBS}K−1CA2

}K−1CA1
,PrfBS}

By applying statement (10) of Rule 8 on St2, we can get
St3: D G CertBS

By applying Rule 11 on St3, we get

St4: D G σ (R((2(tBS1 , tBS2 ), ℘κ(BS,KBS ),5(K−1BS )), all),
K−1ILS1,K

−1
CA2,K

−1
CA1)

Since CBS denotes as ℘κ(BS,KBS ),5(K−1BS ), we can formu-
late St4 as
D G σ (R((2(tBS1 , tBS2 ),CBS ), all),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By applying Rule 9 on St4, we can get
St5: D G σ (R((2(tBS1 , tBS2 ),CBS ),D),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By combining St5 and A5, then applying statement (14) of
Rule 8, we can get
St6: D G σ (R((2(tBS1 , tBS2 ),CBS ),D),K

−1
ILS1,K

−1
CA2)

By combiningSt6 and A7, then applying statement (14) of
Rule 8, we can get
St7: D G σ (R((2(tBS1 , tBS2 ),CBS ),D),K

−1
ILS1)

By combining St7 and A9, then applying Rule 3, we can get
St8: D |≡ ILS1 |∼ (2(tBS1 , tBS2 ),CBS )

By breaking the conjunctions of St8, we get
St9: D |≡ ILS1 |∼ CBS (Sub-Goal 1.1)

By applying statement (10) of Rule 8 on St2, we can get
St10: D G {{SRtBS}K−1CA2

}K−1CA1
Since SRtBS = {RootBS}K−1ILS1

and it is a signed message,
we can construct St10 as
D G σ (R((2(tBS1 , tBS2 ),RootBS ), all),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By applying Rule 9 on St10, we can get
St11: D G σ (R((2(tBS1 , tBS2 ),RootBS ),D),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By combining St11 and A5, then applying statement (14) of
Rule 8, we can get
St12: D G σ (R((2(tBS1 , tBS2 ),RootBS ),D),K

−1
ILS1,K

−1
CA2)

By combining St12 and A7, then applying statement (14) of
Rule 8, we can get
St13: D G σ (R((2(tBS1 , tBS2 ),RootBS ),D),K

−1
ILS1)

By combining St13 and A9, then applying Rule 3, we can get
St14: D |≡ ILS1 |∼ (2(tBS1 , tBS2 ),RootBS )

By breaking conjunctions on St14, we can get
St15: D |≡ ILS1 |∼ 1(tBS1 , tBS2 )

By combining St15 and A11, then applyingRule 6, we can get
St16: D |≡ ILS1 |≡ 1(tBS1 , tBS2 )

By combining St14, St16, and A13, then applying Rule 12,
we can get
St17: D |≡ ILS1 |≡ RootBS (Sub-Goal 1.2)

By applying statement (10) of Rule 8 on St2, we can get
St18: D G PrfBS

Since PrfBS is a signed message of {List(HashValBS )}K−1ILS1
,

we can formulate St18 as
D G σ (R((2(tBS1 , tBS2 ),List(HashValBS )), all),K

−1
ILS1)

By applying Rule 9 on St18, we can get
St19: D G σ (R((2(tBS1 , tBS2 ),List(HashValBS )),D),K

−1
ILS1)

By combining St19 and A9, then applying Rule 3, we can get
St20: D |≡ ILS1 |∼ (2(tBS1 , tBS2 ),List(HashValBS ))

By combining St16, St20, and A13, then applying Rule 12,
we can get
St21: D |≡ ILS1 |≡ List(HashValBS ) (Sub-Goal 1.3)

By considering St9, St17, and St21, if and only if
h(h(CBS ) ‖ List(HashValBS )) = RootBS holds, we can

construct
St22: D |≡ ILS1 |≡ 8(CBS )

By combining St8, St15, and St22, then applying Rule 12,
we can get
St23: D |≡ ILS1 |≡ CBS By combining St23 and A15, then
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FIGURE 14. Bootstrapping message flow with the original version of session key.

FIGURE 15. Idealized message flow of Bootstrapping.

applying Rule 7, we can get
St24: D |≡ CBS (Goal 1)

By defining CBS as ℘κ (BS,KBS) ,5
(
K−1BS

)
, we can formu-

late St24 as
D |≡ ℘κ (BS,KBS) and D |≡ 5

(
K−1BS

)
Then, fromM2 we get
St25: D G {{CVBS}K−1BS

}IVHSBS ,KHSBS

By combining St25 and A1, then applying statement (12) of
Rule 8, we can get
St26: D G {CVBS}K−1BS

We can construct idealized form of St26 as
D G σ (R(CVBS ,D),K

−1
BS )

By combining St24 and St26, then applyingRule 3, we can get
St27: D |≡ BS |∼ CVBS

Note that each D and BS construct the message context
CVBS from previous message flow of TLS 1.3 full handshake
process. By comparing the CVBS from BS and its own
CVBS , D cannot authenticate BS if the value is not identical.
Otherwise,
St28: D |≡ #(CVBS )

By combining St27 and St28, then applyingRule 6, we can get
St29: D |≡ BS |≡ CVBS (Goal 2)

Then, fromM3 we get

St30: BS G {CertD, {{SRtD}K−1CA2
}K−1CA1

,

PrfD}IVHSD,KHSD
By combining St30 and A2, then applying statement (12) of
Rule 8, we can get
St31: BS G {CertD, {{SRtD}K−1CA2

}K−1CA1
,PrfD}

By applying statement (10) of Rule 8 on St31, we can get
St32: BS G CertD

By applying Rule 11 on St32, we get
St33: BS G σ (R((2(tD1 , t

D
2 ), ℘κ(D,KD),5(K−1D )), all),

K−1ILS1,K
−1
CA2,K

−1
CA1)

Since CD denotes as ℘κ(D,KD),5(K−1D ), we can formulate
St33 as
BS G σ (R((2(tD1 , t

D
2 ),CD), all),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By applying Rule 9 on St33, we can get
St34: BS G σ (R((2(tD1 , t

D
2 ),CD),BS),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By combining St34 and A6, then applying statement (14) of
Rule 8, we can get
St35: BS G σ (R((2(tD1 , t

D
2 ),CD),BS),K

−1
ILS1,K

−1
CA2)

By combining St35 and A8, then applying statement (14) of
Rule 8, we can get
St36: BS G σ (R((2(tD1 , t

D
2 ),CD),BS),K

−1
ILS1)

By combining St36 and A10, then applyingRule 3, we can get
St37: BS |≡ ILS1 |∼ (2(tD1 , t

D
2 ),CD)

By breaking the conjunctions of St37, we get
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TABLE 4. Identified possible threat types.

St38: BS |≡ ILS1 |∼ CD (Sub-Goal 3.1)
By applying statement (10) of Rule 8 on St31, we can get
St39: BS G {{SRtD}K−1CA2

}K−1CA1
Since SRtD = {RootD}K−1ILS1

and it is a signed message, we can
formulate St39 as
BS G σ (R((2(tD1 , t

D
2 ),RootD), all),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By applying Rule 9 on St39, we can get
St40: BS G σ (R((2(tD1 , t

D
2 ),RootD),BS),K

−1
ILS1,K

−1
CA2,K

−1
CA1)

By combining St40 and A6, then applying statement (14) of
Rule 8, we can get
St41: BS G σ (R((2(tD1 , t

D
2 ),RootD),BS),K

−1
ILS1,K

−1
CA2)

By combining St41 and A8, then applying statement (14) of
Rule 8, we can get
St42: BS G σ (R((2(tD1 , t

D
2 ),RootD),BS),K

−1
ILS1)

By combining St42 and A10, then applyingRule 3, we can get
St43: BS |≡ ILS1 |∼ (2(tD1 , t

D
2 ),RootD)

By breaking conjunctions on St43, we can get
St44: BS |≡ ILS1 |∼ 1(tD1 , t

D
2 )

By combining St44 and A12, then applyingRule 6, we can get
St45: BS |≡ ILS1 |≡ 1(tD1 , t

D
2 )

By combining St43, St45, and A14, then applying Rule 12,
we can get

St46: BS |≡ ILS1 |≡ RootD (Sub-Goal 3.2)
By applying statement (10) of Rule 8 on St31, we can get
St47: BS G PrfD

Since PrfD is a signed message of {List(HashValD)}K−1ILS1
,

we can formulate St47 as
BS G σ (R((2(tD1 , t

D
2 ),List(HashValD)), all),K

−1
ILS1)

By applying Rule 9 on St47, we can get
St48: BS G σ (R((2(tD1 , t

D
2 ),List(HashValD)),BS),K

−1
ILS1)

By combining St48 and A10, then applyingRule 3, we can get
St49: BS |≡ ILS1 |∼ (2(tD1 , t

D
2 ),List(HashValD))

By combining St47, St49, and A14, then applying Rule 12,
we can get
St50: BS |≡ ILS1 |≡ List(HashValD) (Sub-Goal 3.3)

By considering St38, St46, and St50, if and only if h(h(CD) ‖
List(HashValD)) = RootD holds, we can construct
St51: BS |≡ ILS1 |≡ 8(CD)

By combining St37, St45, and St51, then applying Rule 12,
we can get
St52: BS |≡ ILS1 |≡ CD

By combining St52 and A16, then applyingRule 7, we can get
St53: BS |≡ CD (Goal 3)

By defining CD as ℘κ (D,KD) ,5
(
K−1D

)
, we can formu-

late St53 as
BS |≡ ℘κ (D,KD) and BS |≡ 5

(
K−1D

)
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Then, fromM4 we get
St54: BS G {{CVD}K−1D

}IVHSD,KHSD
By combining St54 and A2, then applying statement (12) of
Rule 8, we can get
St55: BS G {CVD}K−1D

We can construct idealized form of St55 as
BS G σ (R(CVD,BS),K

−1
D )

By combining St53 and St55, then applying Rule 3, we get
St56: BS |≡ D |∼ CVD

Note that each D and BS construct the message context
CVD from previous message flow of TLS 1.3 full handshake
process. By comparing the CVD fromD and its own CVD, BS
cannot authenticate D if the value is not identical. Otherwise,
St57: BS |≡ #(CVD)

By combining St56 and St57, then applyingRule 6, we can get
St58: BS |≡ D |≡ CVD (Goal 4)

Then, fromM5 we get
St59: BS G {{HWD,OSD,VD,ND}KBS }IVAPD,KAPD

By combining St59 and A4, then applying statement (12) of
Rule 8, we can get
St60: BS G {HWD,OSD,VD,ND}KBS

Since {HWD,OSD,VD,ND}KBS is a message encrypted by D
using public key KBS , we can formulate St60 as
BS G {S({HWD,OSD,VD,ND},D)}KBS

By applying Rule 4 on St60, we can get
St61: BS |≡ D |∼ {HWD,OSD,VD,ND}

By combining St61 and A20, then applyingRule 6, we can get
St62: BS |≡ D |≡ RPCget

By combining St62 and A21, then applyingRule 7, we can get
St63: BS |≡ {HWD,OSD,VD,ND} (Goal 5)

Then, fromM6 we get
St64: D G {{CID}KD}IVAPBS ,KAPBS

By combining St64 and A3, then applying statement (12) of
Rule 8, we can get
St65: D G {CID}KD

Since {CID}KD is a message encrypted by BS using public key
KD, we can formulate St65 as
D G {S(CID,BS)}KD

By combining St65 and A17, then applyingRule 4, we can get
St66: D |≡ BS |∼ CID

By combining St66 and A18, then applyingRule 6, we can get
St67: D |≡ BS |≡ CID

By combining St67 and A19, then applyingRule 7, we can get
St68: D |≡ CID (Goal 6)

APPENDIX F
IDENTIFIED THREAT TYPES OF PROPOSED SCHEME
Table 4 contains the description of threat types that potentially
harm our proposed scheme based on the Microsoft STRIDE
Threat Modeling Tool.
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