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ABSTRACT In this paper, the finite-time H∞ control problem for a class of hybrid singular Markovian
jump systems with time delay and actuator saturation is studied. Considering the discontinuities caused by
Markovian jump switching behavior, a hidden mode based controller is designed to ensure the mean-square
locally finite-time H∞ stability of the considered system. Secondly, the parameter solving method of the
designed controller is derived based on LMI method. Finally, a numerical example is given to verify the
correctness of the method.

INDEX TERMS Finite-time H∞ control, actuator saturation, time delay, stochastic singular systems.

I. INTRODUCTION
During the past decades, Markov jumpmode has been widely
used in many practical fields, such as economic system,
chemical system and aerospace system. As a research hotspot
in the field of control theory, many innovative results have
been derived on Markov jump systems [1], [2], [3]. Markov
jump systems have brand applications such as T-S fuzzy
control problem [4], [5], filtering design problem [6], [7], net-
work control problem [8], [9]. Meanwhile, compared with the
above results, when the considered system is singularMarkov
jump system, the range of application of the results obtained
will be wider [10], [14]. For instance, the resilient filter was
designed for a class of singular Markov jump systems to
deal with deception attacks in [15]. Furthermore, considering
dual deception attacks, a dissipative asynchronous controller
was designed for a class of T-S fuzzy singular Markov jump
systems in [16]. It is worth noting that, the inconsistency
between controller mode and real system mode may occur
due to the physical limitation or network transmission [17],
[18]. In [19], a hiddenMarkovmode based filter was designed
to deal with this problem caused by network transmission
and the physical limitation. When the modes of the original
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system cannot be obtained directly, the hidden Markov mode
is used to detect the modal information, and the asynchronous
fuzzy integral sliding mode control problem based on dissi-
pation is studied in [20]. In [21], the H∞ tracking controller
was designed when the controller cannot accurately obtain
the mode information of the system. Up to now, the hidden
Markovmodel has beenwidely studied andmany results have
been obtained.

Moreover, due to the wide application of stochastic sys-
tems in science and engineering, scholars are increasingly
interested in the research of stochastic systems and lots of
results have been obtained in [22], [23], [24], [25], and
[26]. To mention a few, by proposing a hybrid model that
combines the advantages of KDJ and grey Markov chain,
it provides a useful decision support tool for investors par-
ticipating in the digital currency market in [27]. In [28],
an extended stochastic gradient Markov chain Monte Carlo
algorithm was proposed to complete the controller design.
In [29], a hybrid-triggered controller was presented for class
of hybrid-triggered fuzzy Markov jump system subject to
input saturation.

On the other hand, in some practical engineering sys-
tems, such as aerospace system, robot control system and
other short-time working systems, finite time control has a
very important application, Therefore, the finite-time control
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problem has become a research hotspot in the field of control,
and many important results have been presented in [30], [31],
[32], [33], [34], and [35]. It is worth mentioning that, the dis-
continuities occurring at the moment of switching may lead
to system instability or other failures. However, according to
the literature review there are only a few results considered
about such discontinuities in [36], [37], and [38]. The H∞
finite-time control problem of the singular hybrid Markov
jump delay system has not been fully investigated till now.

Based on the above discussions, the finite-timeH∞ control
issue has been investigated for a class of singular Markov
jump systems with time delay, input saturation and discon-
tinuity. In this paper, LMI method is used to design the
controller parameters, when the above nonlinear factors are
combined. The main work of this paper is to obtain strict
LMI by applying mathematical technique and reduce the
conservatism of the obtained results. There are two main
contributions in this work.

1) Compared with [3], various practical factors such as
the discontinuities and input saturation are considered in this
paper and the proposed method is more general;

2) Compared with [3], by design appropriate Lyapunov-
Krasovskii function, the delay-depended result is derived to
reduce conservatism in this paper.

II. MODEL DESCRIPTIONS AND PRELIMINARIES
Consider the following singular hybrid Markov jump
systems (6):

dE(r(t))x(t) = (A(r(t))x(t)+ A1(r(t))x(t − h)

+A2(r(t))
∫ t

t−τ
x(s)ds+ B(r(t))sat(u(t))

+D(r(t))D(t))dt+(W (r(t)x(t)

+W1(r(t))x(t − h)

+W2(r(t))
∫ t

t−τ
x(s)ds

+B1(r(t))sat(u(t)))dw(t) (1)

Z (t) = Z (r(t))x(t)+ Z1(r(t))x(t − h)

+Z2(r(t))
∫ t

t−τ
x(s)ds+ B2(r(t))sat(u(t))

(2)

x(t) = η(t), t ∈ [−max(τ, h), 0], rt = r0, (3)

where x (t) ∈ Rn is the state of system, Z (t) ∈ Rq represents
the controlled output of system, the input u (t) ∈ Rm. D(t)
represents the disturbances, the Brownian motion w(t) ∈ Rm,
η(t) is the function initial state. The positive constants τ >
0 and h > 0 which represent time-delays. {r (t)} denotes a
Markovian process and the values are taken in a finite set S =
{1, 2, . . . ,N } with the following transition probabilities:

Pr {r (t +1t) = j |r (t) = i } =


λij1t + o (1t)

i 6= j,
1+ λii1t + o (1t)

i = j,

For j 6= i, the transition rate λij ≥ 0, and

λii = −
∑

j∈S,j6=i

λij. (4)

This paper considers the partly known transition rates as the
follows:

Pr =


λ11 ? λ13 · · · λ1n
λ21 ? λ23 · · · ?
...

... ?
. . .

...

λn1 ? λn3 . . . ?


where ‘‘?’’ represents the unknown transition rates. For ∀i ∈
S, the set S i denotes:

S i = S ik
⋃

S iuk

where S ik and S iuk represent the set of unknown parts and
known parts of transition rates respectively.

The inputs u(t) are bounded as follows:

−u0(i) ≤ u(i) ≤ u0(i), u0(i) > 0, i = 1, · · · , m. (5)

For ∀i ∈ S, this paper denotes Ai = A(r(t)), A1i = A1(r(t))
for the system (6). This paper assumes that the controller
can not exactly received the value of system mode r(t) in
the hidden Markov model. The hidden markov mode based
controller is designed as the follows:

u(t) = k1σ (t)x(t)+ k2σ (t)

∫ t

t−τ
x(s)ds, (6)

where k1σ (t) ∈ Rm×n and k2σ (t) ∈ Rm×n. The probability is
estimated as the follows:

P(σ (t) = p|r(t) = i) = πip,
M∑
p=1

πip = 1. (7)

If σ (t) = p, r(t) = i, taking Eq.(6) to Eq.(1) and defining
ψ(u(t)) = sat(u(t))− u(t), one can derive

dEix(t)= ((Ai + BiK1p)x(t)+ A1ix(t − h)

+ (A2i+BiK2p)
∫ t

t−τ
x(s)ds+Biψ(u(t))+DiD(t))dt

+ ((Wi+B1iK1p)x(t)+W1ix(t − h)

+ (W2i+B1iK2p)
∫ t

t−τ
x(s)ds+B1iψ(u(t)))dw(t)

(8)

For the SJMS (6), some definitions and lemmas are given as
the follow:
Assumption 1 [11]: The external disturbanceD(t) is vary-

ing and satisfies the following constraint condition:∫ T

0
D(t)TD(t)dt ≤ d, d ≥ 0. (9)

Definition 1 [13]: Regular and impulse-free.
(i) System (1)-(3) with D(t) = 0 is said to be regular,

if det(sEi − Ai) 6= 0 for all t ∈ [0, T ].
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(ii) System (1)-(3) with D(t) = 0 is said to be impulse-free,
if deg(det(sEi − Ai)) = rank(Ei) for all t ∈ [0, T ].
Lemma 1 [36]: For∀i ∈ N , if and only if there exist

invertible matrices M̃i and Ñi such that

M̃iAiÑi =
[
Âi 0
0 0

]
, M̃iEiÑi =

[
I 0
0 0

]
, (10)

the pair (Ei, Ai) is said to be regular and impulse-free.
On the otherhand, there exist matricesMi and Ni such that

Ē = MiEiNi =
[
I 0
0 0

]
,

Āi = MiAiNi =
[
Ā1i Ā2i
Ā3i Ā4i

]
. (11)

then the pair (Ei, Ai) is impulse-free and regular if and only
if Ā4i is nonsingular and the above decomposition is satisfied.
Make x̄(t) = N−1i x(t), the system (8) can be rewritten as the
follows:

dĒx̄(t) = f (t)dt + g(t)dw(t),

f (t) = (Āi + B̄iK̃1p)x̄(t)+ Ā1ix̄(t − h)

+ (Ā2i + B̄iK̃2p)
∫ t

t−τ
x̄(s)ds

+ B̄iψ(u(t))+ D̄iD(t),

g(t) = (W̄i + B̄1iK̃1p)x̄(t)+ W̄1ix̄(t − h)

+ (W̄2i + B̄1iK̃2p)
∫ t

t−τ
x̄(s)ds+ B̄1iψ(u(t)),

(12)

where

Ā1i = MiA1iNi, Ā2i = MiA2iNi, B̄i = MiBi,

and

B̄1i = MiB1i, W̄i = MiWiNi, W̄1i = MiW1iNi,

W̄2i = MiW2iNi, K̃1p = K1pNi, K̃2p = K2pNi,

and

Āi = Āi + B̄iK̃p =

[
Ā1ip Ā2ip
Ā3ip Ā4ip

]
.

This paper assumes that the system state before and after the
switching moment may not be consistent which is caused
by the switching behavior and the mode-dependent singular
matrix Ei. Denote x̄(tjq)− and x̄(tjq)+ as the state immediately
before and after the switching moment tjq, respectively. If the
considered system is impulse-free and regular, then we have

x̄(tjq)+ = 0
q
ijx̄(tjq)

−, with

0
q
ij =

[
I 0

−(Ā4jq)
−1Ā3jq 0

]
N−1j Ni. (13)

Before giving the main results of this paper, some definitions
and lemmas should be given as the follows.

Lemma 2 [29]: For the controller gain K̃1p, the given
appropriate matrix Li ∈ Rm×n, if x̄(t) is in the setD(uo) which
is defined as follows:

D(uo) = {x̄(t) ∈ Rn
; −u0(k) ≤ (K̃1p(k) + Li(k))x̄(t)

≤ u0(k), u0(k) > 0, k = 1, . . . ,m},

then there exist any diagonal matrix Ti > 0, such that:

ψ(u(t))TTi(ψ(u(t))− Lix̄(t)) ≤ 0.

Lemma 3 [29]: For the following symmetric matrix F ∈
R(n+m)×(n+m)

F =

[
F11 F12

FT12 F22

]
,

where F11 ∈ Rn×n, F12 ∈ Rn×m, F22 ∈ Rm×m, the following
conditions are equivalent:

1) F < 0.

2) F11 < 0, F22 − FT12F
−1
11 F12 < 0.

3) F22 < 0, F11 − F12F
−1
22 F

T
12 < 0.

Definition 2 [33]: For the given scalars c1 > 0, c2 > 0,
with c1 < c2, the constant time T > 0, and mode-dependent
matrix R̂i > 0, if there exist state feedback controller in form
(6) such that

E{x̄T (t1)ET R̂iEx̄(t1)} ≤ c1
⇒ E{x̄T (t2)ET R̂iEx̄(t2)} < c2,

t1 ∈ [−τ 0], t2 ∈ [0 T ], (14)

then the systems (12) with d(t) 6= 0 is said to be stochastically
finite-time bounded stable with respect to (c1, c2, T , R̂i, d).
Definition 3 [18]: Make V (x(t), rt , σt ) be an IT ǒ process

with the stochastic differential given by

dV (x(t), rt , σt ) = (Vt (x(t), rt , σt )

+Vx(x(t), rt , σt )f (t)

+
1
2
trace g(t)TVxx(x(t), rt , σt )g(t))dt

+Vx(x(t), rt , σt )g(t)dwt. (15)

III. MAIN RESULTS
In this section, some sufficient conditions will be firstly
proposed to ensure the finite-time H∞ stability of the
systems (12).
Theorem 1: For some given scalars, τ > 0, h > 0,

0 < υ < 0.5, ῡ > 0 and given matrices
L1i, L2i, Ui1, Ui2, if there exists some positive scalars
α, λ0, λ1, λ2, λ3, λ4, λ̄0, λ̄1, λ̄2, λ̄3 and mode-
dependent matrix �̄ip, symmetric positive-define matrices
Q̄1, Q̄2, Q̄3, Q̄4 and diagonal positive definite matrices
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�̂ip, Gi, such that

8̄ h5̄T
1i

√
1
2
5̄T

2i 5̄T
2i 5̄T

3i 8ip

∗ − Q̄3 0 0 0 0

∗ ∗ − 4̃ip 0 0 0

∗ ∗ ∗ −
1
h
Q̄4 0 0

∗ ∗ ∗ ∗ − Q̄4 0
∗ ∗ ∗ ∗ ∗ −2i


< 0, (16)

[
z11 z12

]
< 0, (17)[

z21 z22
]
≥ 0, (18)[

z31 z32
]
< 0, (19)[

z41 z42
]
< 0, (20)

�̂ip > υ(ĒT �̄ip + �̄
T
ipĒ)+ ῡ Ǐ (21)

eαT (65
i=1V̄i(0)+ αdλS (1− e

−αT ))

λp
≤ C2 (22)

z11 =



8̄ h5̄T
1i

√
1
2
5̄T

2i

∗ − Q̄3 0

∗ ∗ − 4̃ip

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗


,

z12 =



5̄T
2i 5̄T

3i 8ip
0 0 0
0 0 0

−
1
h
Q̄4 0 0

∗ − Q̄4 0
∗ ∗ −2i

 ,

z21 =

 �̄T
ipĒ

T

0

K̄1p + Ui1�̄ip


z22 =

 ∗ ∗

�̄T
ipĒ

T
∗

K̄2p + Ui1�̄ip u0(k)2



z31 =



−λ0Ri 0 0
0 − λ1Ri 0
0 0 − λ2Ri
0 0 0
0 0 0
∗ ∗ ∗



z32 =



0 0 ÃTi
0 0 ĀT1i
0 0 ÃT2i
−λ3Ri 0 B̄Ti

0 − λ4Ri D̄Ti
∗ ∗ − Q̄3



z41 =



−λ̄0Ri 0 0

0 − λ̄1Ri 0

0 0 − λ̄2Ri
0 0 0
∗ ∗ ∗



z42 =



0 W̃ T
i

0 W̄ T
1i

0 W̃ T
2i

−λ̄3Ri B̄T1i
∗ − Q̄4


Ãi = Āi�̄ip + B̄iK̄1p,

Ã2i = Ā2i�̄ip + B̄iK̄2p

W̃i = W̄i�̄ip + B̄1iK̄1p,

W̃2i = W̄2i�̄ip + B̄1iK̄2p

J̄i = Sym(Āi�̄ip + B̄iK̄1p + L1i�̄ip)

+ (λii − α)�̄T
ipĒ + Q̄1 + τ

2Q̄2,

8ijp = (
√
λijπj1�̄

T
ipϒ

T
ij Ē

T ,
√
λijπj2�̄

T
ipϒ

T
ij Ē

T ,

· · · ,
√
λijπjM �̄

T
ipϒ

T
ij Ē

T ),

4̃jq = υ(ĒT �̄jq + �̄
T
jqĒ)+ ῡ Ǐ

4j = diag(4̃j1, 4̃j2, · · · 4̃jM )

8ip = (8i1p, 8i2p, · · · 8iNp)

�̃ip = λii�̄
T
ipĒ

T , 2i = diag(41, 42, · · · , 4N )

with

5̄1i
T
=



K̄T
1pB̄

T
i + �̄

T
ipĀ

T
i

�̄T
ipĀ

T
1i

K̄T
2pB̄

T
i + �̄

T
ipĀ

T
2i

0

B̄Ti Gi

D̄Ti


,

5̄2i
T
=



K̄T
1pB̄

T
1i + �̄

T
ipW̄

T
i

�̄T
ipW̄

T
1i

K̄T
2pB̄

T
1i + �̄

T
ipW̄

T
2i

0

B̄T1iGi
0


,

5̄3i
T
=



L1iQ̄4

L2iQ̄4

0
0
0
0


,

8̄ = [8̄1 8̄2 8̄3]
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8̄1
=



J̄i Ā1i�̄ip + L1i�̄ip − �̄
T
ipL

T
2i

∗ − Q̄1 − Sym(L1i�̄ip)

∗ ∗

∗ ∗

∗ ∗

∗ ∗


,

8̄2
=



Ā2i�̄ip + B̄iK̄2p − L1iQ̄3

0 − L2iQ̄3

−Q̄2 0

∗ − Q̄3

∗ ∗

∗ ∗


,

8̄3
=



B̄iGi + �̄T
ipU

T
i1 �̄T

ipD̄i
0 0
0 0

Q̄3UT
i2 0

−2Gi 0
∗ − αS


,

Ī =
[
0 I

]
, Ĩ =

[
I
0

]
,

3 =

[
0 0
I 0

]
, Ǐ =

[
0 0
0 I

]
,

�̂ip = �̄ip − Ī�̄ipĨ3, Q̄1 = �̄
T
ipQ1�̄ip,

Q̄2 = �̄
T
ipQ2�̄ip

Q̄3 = Q−13 , Q̄4 = Q−14 , �̄ip =

[
�̄1
ip 0

�̄2
ip �̄3

ip

]
,

V̄1(0) = λPC1, V̄2(0) = λQ1hσ1C1,

V̄3(0) = λQ2τ
2σ2C1,

V̄4(0) = h2(λ0C1 + λ1σ1C1 + λ2σ2C1

+ λ3σ3C1 + λ4σ4C1),

V̄5(0) = h(λ̄0C1 + λ̄1σ1C1 + λ̄2σ2C1 + λ̄3σ3C1).

and λP = maxi∈Sσmax(P̄i), λp = mini∈Sσmin(P̄i),
λQi = σmax(Q̂i), λS = σmax(S), Q̂i = R−1/2i QiR

−1/2
i ,

P̄i = R−1/2i PiR
−1/2
i , the systems(12) with initial con-

ditions belonging to ε(ĒT�ip, 1) is said to be locally
stochastically finite-time bounded stabilizable with respect
to (C1, C2, T , Ri, α, d) with controller gain K1p =

K̄1p�̄
−1
ip N

−1
i , K2p = K̄2p�̄

−1
ip N

−1
i .

Proof: For ∀ r (t) = i ∈ S of system (12), define the
following Lyapuonv-Krasovkii functional:

V (x̄(t), r(t), σ (t)) = x̄(t)T ĒTPr(t)σ (t)Ē x̄(t)

+

∫ t

t−h
x̄T (s)Q1x̄(s)ds,

+ τ

∫ 0

−τ

∫ t

t+θ
x̄T (s)Q2x̄(s)dsdθ

+ h
∫ 0

−h

∫ t

t+θ
f T (s)Q3f (s)dsdθ

+

∫ 0

−h

∫ t

t+θ
gT (s)Q4g(s)dsdθ

set r(t) = i, σ (t) = p, and denote �ip = PipĒ + SW , with
ĒT S = 0. Using the well-known Taylor expansion formula,
we get one part of V (x̄(t), t)− V (x̄(0), 0) as the follows:

k−1∑
i=0

Vx(x̄(ti), ti)1x̄i

= 2
k−1∑
i=0

(x̄T (ti)�T
ipĒ)1x̄i

= 2
k−1∑
i=0

(x̄T (ti)�T
ip)1Ē x̄i

→ 2
∫ t

0
x̄T (s)�T

ipf (s)ds+ 2
∫ t

0
x̄T (s)�T

ipg(s)dws

and we can also rewrite another part of V (x̄(t), t)−V (x̄(0), 0)
as the follows

1
2

k−1∑
i=0

Vxx(x̄(ti), ti)(1x̄i)2

=
1
2

k−1∑
i=0

(ĒTPipĒ)(1x̄i)2 =
1
2

k−1∑
i=0

(ĒTPipĒ)(1Ē x̄i)2

=
1
2

k−1∑
i=0

(ĒT�ip)(1x̄i)2 =
1
2

k−1∑
i=0

(ĒT�ip)g2i (1w̄i)
2

→
1
2

∫ t

0
(ĒT�ip)g(s)ds

Then we achieve

dV (x̄t , i, p, t) = LV (x̄t , i, p, t)dt + 2x̄T (t)�T
ipg(t)dw(t)

Then we have

LV (x̄t , i, p, t)

= 2x̄T (t)�T
ipf (t)

+
1
2
gT (t)ĒT�ipg(t)+ λiix̄T (t)ĒT�ipx̄(t)

+6N
j=1, j6=i6

M
q=1λijπjqx̄

T (t)(0qij)
T ĒT�ipĒ0

q
ijx̄(t)

+ x̄T (t)Q1x̄(t)+ x̄T (t − h)Q1x̄(t − h)

+ τ 2x̄T (t)Q2x̄(t)− τ
∫ t

0
x̄T (s)Q2x̄(s)ds

+ h2f T (t)Q3f (t)− h
∫ t

t−h
f T (s)Q3f (s)ds

+ hgT (t)Q4g(t)−
∫ t

t−h
gT (s)Q4g(s)ds. (23)

then we have

−τ

∫ t

0
x̄T (s)Q2x̄(s)ds
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≤ −(
∫ t

t−τ
x̄(s)ds)TQ2(

∫ t

t−τ
x̄(s)ds), (24)

− h
∫ t

t−h
f T (s)Q3f (s)ds

≤ −(
∫ t

t−h
f (s)ds)TQ2(

∫ t

t−h
f (s)ds). (25)

From system (12), one can obtained:

2[x̄T (t)�T
ipL1i + x̄

T (t − h)�T
ipL2i]

× [x̄T (t)− x̄T (t − h)−
∫ t

t−h
f (s)ds

−

∫ t

t−h
g(s)dw(s)] = 0, (26)

where L1i, L2i are matrices with appropriate dimensions and
for each i ∈ S, we have

−2(x̄T (t)�T
ipL1i + x̄

T (t − h)�T
ipL2i)

∫ t

t−h
g(s)dw(s)

≤ (x̄T (t)�T
ipL1i + x̄

T (t − h)�T
ipL2i)

TQ−14 (x̄T (t)�T
ipL1i

+ (
∫ t

t−h
g(s)dw(s))TQ4(

∫ t

t−h
g(s)dw(s))

+ x̄T (t − h)�T
ipL2i). (27)

By employing Ito formula, we derive

ε[(
∫ t

t−h
g(s)dw(s))TQ4(

∫ t

t−h
g(s)dw(s))]

= ε[
∫ t

t−h
gT (s)Q4g(s)ds]. (28)

Note that u(t) = k̃1px̄(t) + k̃2p
∫ t
t−τ x̄(s)ds, make Li =

[Ui1 Ui2], from Lemma 2 we have

2ψT (u)Ti[ψ(u)− Ui1x̄(t)− Ui2

∫ t

t−τ
x(s)ds] ≤ 0. (29)

Denoting

ϒij =

[
I 0
0 0

]
N−1j Ni,

we have ĒT0qij = ĒTϒij. From �T
ipĒ = ĒT�ip, one have

�̄T
ipĒ = ĒT �̄ip, thus the matrix �̄T

ipĒ is symmetric, then we
can rewrite condition (18) as the follows

�̂jq > υ(ĒT �̄jq + �̄
T
jqĒ)+ ῡ Ǐ ,

(υ(ĒT �̄jq + �̄
T
jqĒ)+ ῡ Ǐ )

−1 > ĒT �̂−1jq = ĒT�jq

(30)

From (22)-(29), one has ξ [LV (x̄t , i, p, t)−αV (x̄t , i, p, t)]−
αDT (t)SD(t) ≤ ξ (t)8iξ

T (t), where

ξ (t) = [x̄T (t) x̄T (t − h)
∫ t

t−τ
x̄T (s)ds

×

∫ t

t−h
f T (s)ds ψT (u) DT (t)]

8i = 8+ h25T
1iQ351i +5

T
2i(hQ4

+ ĒT�ip)52i +5
T
3iQ
−1
4 53i

8 =
[
81 82 83

]
,

where

81
=



Ji �T
ipĀ1i +�

T
ipL1i − L

T
2i�ip

∗ − Q1 − Sym(�T
ipL1i)

∗ ∗

∗ ∗

∗ ∗

∗ ∗


,

82
=



�T
ipĀ2i +�

T
ipB̄iK̃2p −�

T
ipL1i

0 −�T
ipL2i

−Q2 0
∗ − Q3

∗ ∗

∗ ∗


,

83
=



�T
ipB̄i + U

T
i1Ti D̄i

0 0
0 0

UT
i2Ti 0

−2Ti 0

∗ − αS


,

Ji = Sym(�T
ipĀi +�

T
ipB̄iK̃1p +�

T
ipL1i)

+ (λii − α)ĒT�ip + Q1 + τ
2Q2

+

N∑
j=1, j6=i

M∑
q=1

λijπjqx̄T (t)(ϒij)T ĒT�ipĒϒijx̄(t),

51i
T
=



K̃T
1pB̄

T
i + Ā

T
i

ĀT1i
K̃T
2pB̄

T
i + Ā

T
2i

0

B̄Ti
D̄Ti


,

52i
T
=



K̃T
1pB̄

T
1i + W̄

T
i

W̄ T
1i

K̃T
2pB̄

T
1i + W̄

T
2i

0

B̄T1i
0


,

53i
T
=



�T
ipL1i

�T
ipL2i
0
0
0
0


.
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Then pre- and post multiplying matrix inequality (16) with
⋂

and
⋂T , where⋂

= [�T
ip �

T
ip �

T
ip Q3 Ti I I I Q4 I ]

Then we have

LV (x̄(t), i, p) < αD(t)T SD(t)+ αV (x̄(t), i, p).

Multiplying the above inequality by e−αt , we get

L[e−αtV (x̄(t), i, p)] < αe−αtD(t)T SD(t).

By integrating the above inequality between 0 and t , it follows
that

e−αtV (x̄(t), i, p)− V (x̄(0), r0, σ0)

< α

∫ t

0
e−αsD(s)T SD(s)ds.

Then, we have the follows

E{x̄(t)T ĒT P̄iĒ x̄(t)}

≤ V (x̄(t), i, p)

< eαtV (x̄(0), r0, σ0)+ αdσSeαt
∫ t

0
e−αsds

< eαt [αdσS (1− eαt )+ V (x̄(0), r0, σ0)]

E{x̄(t)T ĒTRiĒ x̄(t)}

≤
eαt [αdσS (1− eαt )+ V (x̄(0), r0, σ0)]

λp

Since that E{x̄T (0)ĒTRiĒ x̄(0)} ≤ c1 and denote∫ t
t−h x̄

T (s)Rix̄(s)ds < σ1c1,
∫ t
t−τ x̄

T (s)Rix̄(s)ds < σ2c1,

satT (u(t))Risat(u(t) < σ3c1, DT (t)RiD(t) < σ4c1 with
t = 0. Consider conditions (20)-(21), and based on Schur
lemma, one can derived E{x̄T (t)ĒTRiĒ x̄(t)} ≤ c2 from
condition (19).

Pre- and post- multiplying matrix inequality (17) with
[�T

ip �
T
ip I ] and [�T

ip �
T
ip I ]

T , one can derive ĒT�T
ip ∗ ∗

0 ĒT�T
ip ∗

K̃1p + Ui1 K̃2p + Ui1 u0(k)2

≥0, k=1, · · · , m,

which implies that ε(ĒTPiĒ, 1) ∈ D(u(0)). Denote

�ip =

[
�1 �2

�3 �4

]
.

From condition (16), we have

λ�̄T
ipĒ

T
+ �̄T

ipĀip
T
+ Āip

T
�̄ip < 0. (31)

Consider that ĒT�ip = �
T
ipĒ , which implies �2

= 0, from
(30) one can derive[

ι1 ι2

ι3 (�4
ip)

T (Āip
4)+ (Āip

4)T�4
ip

]
< 0.

we derive (�4
ip)

T (Āip
4) + (Āip

4)T�4
ip < 0, and then further

get Āip
4
< 0. which ensures that the considered system (12)

is impulse-free and regular.
Theorem 2: For the considered system (12) with initial

conditions belonging to ε(ĒT�ip, 1) and the same parameter
description as theorem 1, if there exists a constant γ > 0,
such that conditions (17)-(18) and (20)-(21) hold and[

(16) 0

∗ −I

]
< 0, (32)

eαT (65
i=1V̄i(0)+ γ

2dλS (1− e−αT ))

λp
≤ C2. (33)

with

8̄ =
[
8̄1 8̄2 8̄3

]
,

0T = [Z̄i�̄ip + B2iK̄1p Z̄1i�̄ip

Z̄2i�̄ip + B2iK̄2p B2i 0]

and

8̄1
=



J̄i Ā1i�̄ip + L1i�̄ip − �̄
T
ipL

T
2i

∗ −Q̄1 − Sym(L1i�̄ip)
∗ ∗

∗ ∗

∗ ∗

∗ ∗

 ,

8̄2
=


Ā2i�̄ip + B̄iK̄2p −L1iQ̄3

0 −L2iQ̄3
−Q̄2 0
∗ −Q̄3
∗ ∗

∗ ∗

 ,

8̄3
=



B̄iGi + �̄T
ipU

T
i1 �̄

T
ipD̄i

0 0
0 0

−Q̄3UT
i2 0

−2Gi 0
∗ −γ 2I

 ,

where Z̄i = ZiNi, Z̄1i = Z1iNi, Z̄2i = Z2iNi, the
systems(12) is said to be locally stochastically H∞ finite-
time bounded stabilizable via state feedback with respect to
(C1, C2, T , Ri, γ, d).

Proof. Select the similar Lyapuonv-Krasovkii functional of
theorem 1, one can easily derive based on theorem 2:

LV (x̄(t), i, p) < γ 2D(t)TD(t)− z(t)T z(t)

+ αV (x̄((t), i, p).

Since that −z(t)T z(t) < 0, we derive

LV (x̄(t), i, p) < γ 2D(t)TD(t)+ αV (x̄((t), i, p).

Then conditions (32) can be obtained by following the similar
proof of Theorem 1. On the other hand, we derive the follows
under the assumed zero initial condition

e−αtV (x̄(t), i, p) <
∫ T

0
(γ 2D(t)TD(t)− z(t)T z(t))dt.
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Further, the follows can be obtained∫ T

0
z(t)T z(t)dt ≤

∫ T

0
γ 2D(t)TD(t)dt

≤ γ 2
∫ T

0
D(t)TD(t)dt

Then follow the similar proof of theorem 1.
Theorem 3: For the system (12) with initial conditions

belonging to ε(ĒT�ip, 1) and the same parameter description
as theorem 2, if there exists mode-dependent positive matrix
H̄i > 0, such that conditions (17)-(18) and (20)-(21) hold and

Q̄1 + �̄
T
ipE

T
− H̄i ≥ 0, i = j ∈ Suk , (34)

(31)+
[
Q̄1 0
∗ 0

]
< 0, i 6= j ∈ Sk , i = j ∈ Suk ,

(35)[
−H̄i 8ijp
∗ −4j

]
< 0, i 6= j ∈ Suk , (36)

(31) < 0, i 6= j ∈ Sk , i = j ∈ Sk , (37)

the systems(12) is said to be locally stochastically H∞ finite-
time bounded stabilizable via state feedback with respect to
(C1, C2, T , Ri, γ, d).

Proof: Select the similar Lyapuonv-Krasovkii functional
of theorem 1, note that 6N

j=1λij = 0.

LV (x̄t , i, p, t) = H + λiix̄T (t)ĒT�ipx̄(t)

+x̄T (t)Q1x̄(t)+6N
j=1λijx̄

T (t)(−Hi)x̄(t)

+6N
j=1, j6=i6

M
q=1λijπjqx̄

T (t)(0qij)
T ĒT�ipĒ0

q
ijx̄(t)

where Hi > 0 and

H = 2x̄T (t)�T
ipf (t)+

1
2
gT (t)ĒT�ipg(t)

+ x̄T (t − h)Q1x̄(t − h)+ τ 2x̄T (t)Q2x̄(t)

− τ

∫ t

0
x̄T (s)Q2x̄(s)ds

+ h2f T (t)Q3f (t)− h
∫ t

t−h
f T (s)Q3f (s)ds

+ hgT (t)Q4g(t)−
∫ t

t−h
gT (s)Q4g(s)ds.

Then we have

LV (x̄t , i, p, t)

= H + x̄T (t)(λii(ĒT�ip − Hi)x̄(t)

+ x̄T (t)Q1x̄(t)+ [6N
j=1,i6=jλijx̄

T (t)(−Hi)x̄(t)

+6N
j=1, j6=i6

M
q=1λijπjqx̄

T (t)(0qij)
T ĒT�ipĒ0

q
ijx̄(t)]j∈Sk

+ [6N
j=1,i6=jλijx̄

T (t)(−Hi)x̄(t)

+6N
j=1, j6=i6

M
q=1λijπjqx̄

T (t)(0qij)
T ĒT�ipĒ0

q
ijx̄(t)]j∈Suk

(38)

If λii is unknown, denote −λii < 1, now we rewrite the first
part of (37) as the follows:

H + x̄T (t)(λii(ĒT�ip − Hi + Q1)x̄(t)

+ x̄T (t)(1− λii)Q1x̄(t)

< H + x̄T (t)(λii(ĒT�ip − Hi + Q1)x̄(t)

+ x̄T (t)2Q1x̄(t) (39)

Then one can easily derive based on theorem 3:

LV (x̄(t), i, p) < γ 2D(t)TD(t)− z(t)T z(t)

+αV (x̄((t), i, p).

Then follow the proof of theorems 1 and 2. Proof is
completed.

IV. SIMULATION EXAMPLE
In this section, a numerical example is provided to demon-
strate the effectiveness of the proposed method.
Example 1: Consider the system (1)-(3) with the following

modes:
Subsystem 1

A1 =
[
8 2
3 −2

]
, A11 =

[
−1 2
−1 2

]
,

B1 =
[

3
−1

]
, A21 =

[
1 0
1 1

]
,

E1 =
[
1 1
0 0

]
, W1 =

[
0.6 0.5
0.3 −0.3

]
,

W11 =

[
−0.2 0.2
−0.1 0.2

]
, B11 =

[
−0.1
0.1

]
,

W21 =

[
0.1 0
0.5 0.8

]
.

Subsystem 2

A2 =
[
7 −3
2 −1

]
, A12 =

[
2 1
−1 4

]
,

B2 =
[
1
1

]
, A22 =

[
0 1
1 1

]
,

E2 =
[
1 0
0 0

]
, W2 =

[
0.5 0.6
0.4 −0.4

]
,

W12 =

[
−0.3 0.2
−0.2 0.1

]
, B12 =

[
−0.1
0.1

]
,

W22 =

[
0.2 0
0.6 0.8

]
.

Subsystem 3

A3 =
[
6 −2
1 −1

]
, A13 =

[
2 −1
−1 0

]
,

B3 =
[
1
1

]
, A23 =

[
1 1
1 0

]
,

E3 =
[
1 0
0 0

]
, W3 =

[
0.6 −0.2
0.4 −0.3

]
,

W13 =

[
−0.3 0.2
−0.1 0.1

]
, B13 =

[
−0.1
0.1

]
,

W23 =

[
0.2 0
0.5 0.7

]
.
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Subsystem 4

A4 =
[
9 −2
3 −1

]
, A14 =

[
6 1
−1 3

]
,

B4 =
[
1
1

]
, A24 =

[
1 0
1 1

]
,

E4 =
[
1 0
0 0

]
, W4 =

[
0.6 0.5
0.33 −0.3

]
,

W14 =

[
−0.2 0.2
−0.1 0.2

]
, B14 =

[
−0.1
0.1

]
,

W24 =

[
0.1 0
0.5 0.8

]
.

Choose

Mi =

[
1 0
0 1

]
i=1, 2, 3, 4

,

N1 =

[
1 −1
0 1

]
, Ni =

[
1 0
1 −1

]
i=2, 3, 4

.

Then one can obtained

Ē = MiEiNi =
[
1 0
0 0

]
i=1, 2, 3, 4

In this example, we give the following initial parameters: h =
0.5, τ = 0.2, c1 = 0.5, c2 = 0.8, γ = 0.8, T = 10, Ri =
I2, D(t) ≤ d = 1, ν̄ = 0.2, υ = 0.25, the input is bounded as
|ut | ≤ 0.5. The initial state function is defined as the follows,

η(t) =
[
0.2t + 0.8
0.2t − 0.7

]
, t ∈ [−max(h, τ ), 0].

The follows are the transition rate matrix of system and
controller mode:

λij =


−0.5 ? 0.1 ?
0.2 ? ? 0.3
? ? −0.6 0.3
0.2 ? ? −0.2

 ,

πij =


0.2 0.3 0.2 0.3
0.3 0.3 0.2 0.2
0.1 0.2 0.4 0.3
0.3 0.2 0.3 0.2

 .
Based on theorem 3, the controller parameters can be derived

K21 =
[
−7.3921 −1.0976

]
,

K22 =
[
−8.4726 0.8531

]
,

K23 =
[
−13.1476 −1.0561

]
,

K24 =
[
−11.1721 0.9768

]
,

K21 =
[
−7.3921 −1.0976

]
,

K22 =
[
−8.4726 0.8531

]
,

K23 =
[
−13.1476 −1.0561

]
,

K24 =
[
−11.1721 0.9768

]
.

Remark: Figs. 1 − 2 are system and controller mode,
Fig. 3 are state response of Example 1. From the provided
figures, the designed controllers ensure that the considered

FIGURE 1. Controller mode.

FIGURE 2. System mode.

FIGURE 3. The state response of the closed-loop system (12).

system (12) is mean-square locally finite-time bounded sta-
ble, and the H∞ performance γ = 0.8 is less than the results
of literature [3].

V. CONCLUSION
This paper designs the hidden Markov model based memory
feedback controller to ensure the finite-time H∞ stability of
the considered singular stochastic Markovian jump systems.
Some sufficient conditions to the solution for this problem
are given in terms of linear matrix inequalities which con-
sidering the discontinues caused by singular system matrix
and Markovian jump behavior. Considering that using LMI
method to deal with saturation and partially known transition
rates will increase conservatism, more advanced theoretical
methods will be used to reduce conservatism in the future
work.
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