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ABSTRACT During the production process of steel, there are often some defects on the surface of the
product. Therefore, detecting defects is the key to produce high-quality products. At the same time, the
defects of the steel have caused huge losses to the high-tech industry. A steel surface defect detection
algorithm based on improved YOLO-V7 is proposed to address the problems of low detection speed and
low detection accuracy of traditional steel surface defect detection methods. First, we use the de-weighted
BiFPN structure to make full use of the feature information to strengthen feature fusion, reduce the loss
of feature information during the convolution process, and improve the detection accuracy. Secondly, the
ECA attention mechanism is combined in the backbone part to strengthen the important feature channels.
Finally, the original bounding box loss function is replaced by the SIoU loss function, where the penalty
term is redefined by taking the vector angle between the required regressions into account. The experimental
results show that the improved model proposed in this paper has higher performance compared with other
comparison models. Based on our experiments, the proposed method yields 80.2% mAP and 81.9% on the
GC10-DET dataset and NEU-DET dataset with high speed, which is better than other existing models.

INDEX TERMS Machine vision, object detection, deep learning, feature extraction.

I. INTRODUCTION
As an important industrial product, steel is an indispens-
able raw material in daily life, machinery manufacturing and
defense industries. With the continuous development of the
industrial level, great progress has been made in steel produc-
tion technology. The market also attaches great importance
to the appearance and quality of products. In the production
process of steel, for some reasons such as the quality of raw
materials, manufacturing equipment and production condi-
tions, different types of defects will exist on the surface of
the product. As shown in Figure 1, different types of defects
have different sizes and characteristics. These defects will
reduce the strength, performance and wear resistance of steel,
affect normal use, and may even cause serious consequences.
Therefore, aiming to guarantee the quality of steel, it is
required to inspect the surface of steel for defects. Detection
of steel surface defects of steel in production line is of the
utmost importance. [1].
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Traditional steel surface defect detection methods include
manual detection method and stroboscopic flash detection
method, both of which require labor. Inspectors need to per-
form a lot of repetitive work, which is prone to visual fatigue,
resulting in missed or false detections [2]. Machine vision
method has beenwidely used to detect defects [3]. TheYOLO
series are a target detection algorithm based on deep learning
and convolutional neural network. Its advantages include fast
speed, high detection accuracy and real-time monitoring [4].
YOLO-V7 exhibits excellent performance in defect detec-
tion [5]. Based on the task of steel defect detection, this paper
proposes an improved YOLO-V7 algorithm, which aims to
improve the accuracy and speed of the steel surface defects
detection. The performance of the algorithm is verified on
the public datasets GC10-DET and NEU-DET.

The main contributions of this study are:
(1) A de-weighted bidirectional feature pyramid network

(BiFPN) is combined into the original model, which strength-
ens the feature fusion between different parts, reduces the
loss of feature information during the convolution process
and improves the detection accuracy of the algorithm.

133936
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-9107-6646
https://orcid.org/0000-0003-1236-6141
https://orcid.org/0000-0003-0621-9647


Y. Wang et al.: Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7

FIGURE 1. Some common steel defects images. (a) scratches, (b) crazing,
(c) inclusion, (d) rolled-in scale, (e) pitted surface, (f) patches.

(2) Aiming to improve the feature extraction ability of the
YOLO-V7 model in steel surface defects detection, the ECA
attention mechanism was combined. Through experimental
exploration, the ECA attention mechanism was embedded
into the backbone of YOLO-V7, which improves the algo-
rithm’s feature learning ability and makes the algorithm pay
more attention to useful information.

(3) In this paper, SIoU loss function is adopted to replace
the original YOLO-V7 bounding box loss function and rede-
fine the penalty term.

II. RELATED WORK
Machine vision technology has developed rapidly and has
been widely used in the fields of image classification, face
recognition, industrial manufacturing, and object detection in
recent years [6]. Machine vision technology has the advan-
tages of stability and efficiency [7]. Some scholars apply this
technology to defect detection, which improves the detection
efficiency [8]. L.Qiu et al. proposed an effective algorithm for
pixel surface defect based on deep learning [9]. JEON et al.
proposed a filtering scheme combined with illumination
method for steel surface defect detection [10]. SON et al.
proposed a method to determine the surface corrosion area
of steel bridges [11]. HE et al. proposed classification pri-
ority network (CPN) and multi-group convolutional neural
network (MG-CNN), which can make the detection accu-
racy of hot-rolled surface defects more than 94%, and the
classification rate exceeds 96% [12]. Zhao et al. proposed a
spherical multi-output Gaussian process (S-MOGP) method
to model and monitor 3D surfaces [13]. XU et al. used a
machine vision method to detect metal surface defects, which
can detect cracks, dents and even other defects under uneven
lighting conditions [14].

In defect detection based on deep learning, the accuracy
and speed of existing detection methods are expected to
be improved. The detection of large targets is gradually
improving, but there is still a lot of work to be done for the
detection of small targets [15]. From an optimization point,
we offer a solution to detect metal surface defect [16], the
improved YOLO-V7 shows better performance than other
existing methods.

FIGURE 2. General detection pipline.

III. METHODS
A. YOLO-V7 MODEL
YOLO-V7 refers to the concept of YOLO series and its speed
and accuracy exceed all known object detectors between
5 FPS to 160 FPS. YOLO-V7 balances speed and accu-
racy perfectly which makes itself favored by the industry.
As shown in Figure 2, its general detection pipeline con-
sists three parts: backbone, encoder, and decoder [17]. The
structure of YOLO-V7mainly consists three parts: input part,
backbone feature extraction network part, strengthen feature
extraction network and predictions part.

B. IMPROVED NETWORK STRUCTURE BASED ON
YOLO-V7 MODEL
This method takes YOLO-V7 as the baseline, and pro-
poses a new steel strip surface defect detection algorithm.
The structure of YOLO-V7 is shown in Figure 3. On the
whole, YOLO-V7 first resizes the input image to 640*640,
then inputs it to the backbone network, and then outputs
three layers of feature maps of different sizes through the
head network, and then outputs the prediction result through
RepConv [18]. The backbone part of YOLO-V7 mainly uses
ELAN, MP structures, and Silu activation function. The
ELAN structure can learn and converge efficiently by con-
trolling gradient paths, deeper networks. ELAN-W is also
similar. The network structure of ELAN and ELAN-W are
shown in Figure 4. The MP structure is used for down-
sampling. The MP structure is shown in Figure 5. At the
bottom of the backbone, we added the ECA attention mech-
anism [19]. The structure of ECA is shown in Figure 6. This
module follows part of the SE attention mechanism [20].
The main improvement over SE attention mechanism is that
the size of the one-dimensional convolution kernel is adap-
tively selected, and the dimension is maintained during local
cross-channel interaction, reducing network complexity and
improving model performance [21]. In ECA, the original
feature image is input first, and all channels of the original
image are globally averaged and pooled, and then a fast
one-dimensional convolution with a size of Q is used to
generate channel weights, and the corresponding probabili-
ties of different channels are calculated and then compared
with the original image. The input features are multiplied
together as the input to the next layer. This method deter-
mines the Q value through function adaptation, and its value
is proportional to the channel dimension C, as shown in
formula (1) (2):

C = φ (Q) = 2(λQ−b) (1)

Q = ψ (C) = |
log2 (C)

λ
+
b
λ
|odd (2)
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FIGURE 3. Architecture of YOLO-V7.

where λ=2, b=1, Q takes the nearest odd number. ECA has a
flexible and lightweight structure, which can adaptively select
one-dimensional convolution kernels, avoid dimensionality
reduction and directly conduct cross-channel communica-
tion, enhance useful semantic information in feature maps,
propose redundant and invalid information, and improve the
effective extraction of steel surface defect features. ECA
improves the efficiency of YOLO-V7 and is suitable for the
datasets in this article. The backbone part after adding the
ECA attention mechanism is shown in Figure 7.
The head part of YOLO-V7 integrates the neck part and

the head part of YOLO-V4 [22] and YOLO-V5, and is a
FPN+ PAN structure [5]. FPN [23] can transfer the stronger
semantic information possessed by the deep feature layer to
the deep feature layer [24]. FPN is combined with PAN to
perform parameter aggregation for different detection layers
from different backbone layers. Although this combination

effectively improves the feature fusion ability of the network,
it will also lead to a problem, that is, the input of the PAN
structure is all the feature information processed by the FPN
structure, and a part of the original feature information of the
backbone feature extraction network part is missing. Lack
of original information to participate in learning can easily
lead to deviations in training learning and affect detection
accuracy. Aiming to solve this problem, we used an improved
bidirectional feature pyramid network [25] to improve the
original YOLO-V7 head part. The original BiFPN network
constructs a bidirectional channel, proposes a cross-scale
connection method, adds an extra edge, and fuses the features
in the feature extraction network directly with the relative size
features in the bottom-up path. Therefore, the network retains
more shallow semantic information without losing too much
deep semantic information. The original BiFPN sets differ-
ent weights according to the importance of different input
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FIGURE 4. Architecture of ELAN and ELAN-W.

FIGURE 5. Architecture of MP.

features, and meanwhile, this structure is used repeatedly to
strengthen feature fusion. However, we found that the result
after the introduction of weighted BiFPN in YOLO-V7 is
not ideal. We thought the reason is that weighting the input
feature layer is very similar to the mechanism of adding
an attention mechanism. Therefore, we removed the weight
part of BiFPN and introduced a de-weighted BiFPN. Our
de-weighted BiFPN structure is shown in Figure 8.

C. LOSS FUNCTION
The loss function of YOLO-V7 consists three parts: the
bounding box loss function, the objectness loss function
and the class loss function. The bounding box loss function
is used to measure the error of the prediction box for the
coordinate positioning error. The objectness loss function
reflects the confidence error of the prediction box. The class
loss function reflects the error caused by the prediction error
of the prediction box for the target category. The object-
ness loss function and class loss function of YOLO-V7 are
BCEWithLogitsLoss. The objectness loss function is CIoU
loss. CIoU considers the distance between the ground truth
box and the prediction box, the overlap rate, the box scale and
the penalty term, which makes the bounding box regression
more stable, as shown in the Figure 9. CIoU loss is defined
by Equation (3).

LossCIoU = 1− IoU+
ρ2
(
b, bgt

)
c2

+ αν (3)

where ρ2
(
b, bgt

)
represents the Euclidean distance between

the center point of the prediction box and the center point
of the ground truth box and it is denoted by d in Figure 9.
Where c represents the diagonal distance of the minimum
closure rectangle containing both the ground truth box and
the prediction box. α is defined by Equation (4). ν is defined
by Equation (5).

α =
ν

1− IoU+ ν
(4)

ν =
4
π2

(
arctan

wgt

hgt
− arctan

w
h

)2

(5)

where wgt represents the width of the ground truth
box. Where hgt represents the height of the ground truth box.
Where w represents the width of the prediction box. Where
h represents the height of the prediction box. Regarding the
bounding box loss function, such as CIoU, the direction
between the ground truth box and the prediction box is not
considered, causing a slow convergence speed. For this, SIoU
introduces the vector angle between the ground truth box
and the prediction box to redefine the correlation [26]. As a
result, we replaced the CIoU loss function with the SIoU
loss function. The SIoU loss function contains four parts: the
angle loss, the distance loss, the shape loss, and the IoU loss.

1) ANGLE COST
The angle cost is defined by Equation (6). Its diagram is
shown in Figure 10.

Λ = 1− 2× sin2
(
arcsin

(ch
σ

)
−
π

4

)
= cos

(
2×

(
arcsin

(ch
σ

)
−
π

4

))
(6)

where ch is the height distance between the center point of
the ground truth box and the prediction box. Where σ is the
distance of the center point between the ground truth box and
the prediction box.

ch = max
(
bgtcy , bcy

)
−min

(
bgtcy , bcy

)
(7)

σ =

√(
bgtcx − bcx

)2
+

(
bgtcy − bcy

)2
(8)

where
(
bgtcx , b

gt
cy

)
is the barycentric coordinate of the ground

truth box. Where
(
bcx , bcy

)
is the center coordinate of the

prediction box.

2) DISTANCE COST
The distance cost is defined by Equation (9). Its diagram is
shown in Figure 11.

∆ = Σ
t=x,y

(
1− e−γρt

)
= 2− e−γρx − e−γρy (9)

ρx =

(
bgtcx − bcx

cw

)2

, ρy =

(
bgtcy − bcy

ch

)2

(10)

γ = 2−Λ (11)

where (cw, ch) is the width and height of the minimum cir-
cumscribed matrix of the ground truth box and the prediction
box.

3) SHAPE COST
The shape cost is defined by Equation (12).

Ω = Σ
t=w,h

(
1−e−wt

)θ
=
(
1− e−ww

)θ
+
(
1−e−wh

)θ (12)

ww =
|w− wgt |

max (w,wgt)
, wh =

|h− hgt |
max (h, hgt)

(13)

where (w,h) is the width and height of the prediction box.
Where

(
wgt , hgt

)
is the width and height of the ground truth
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FIGURE 6. Architecture of ECA-Net.

FIGURE 7. YOLO-V7 incorporating ECA Modules.

box. Where θ controls how much attention is paid to shape
loss.

4) IoU COST
The IoU cost is defined by Equation (14).

IoU =
A
B

(14)

where A represents the intersection of the ground truth box
and the prediction box. Where B represents the union of the
ground truth box and the prediction box.

5) SIoU LOSS
In conclusion, the SIoU loss is defined by Equation (15).

LossSIoU = 1− IoU+
∆+Ω

2
(15)

IV. EXPERIMENTS
To complete the experiment, we used the PyTorch frame-
work [27]. The experimental condition is : Ubuntu 16.04 LTS
operating system, Python 3.8, Pytorch 1.9.0 and Nvidia
GTX2080Ti GPU with 11GB memory.

A. DATASETS
In our experiment, we used two popular public datasets
to verify the practicality of the proposed method, namely,
GC10-DET and NEU-DET (see Figure 12).

1) GC10-DET
The GC10-DET dataset contains the detection images of steel
surface defects in actual industrial production, with a total
of 2257 images. It contains 10 types of defects including Pu
(punching), Wl (weld line), Cg (crescent gap), Ws (water
spot), Os (oil spot), Ss (silk spot), In (inclusion), Rp (rolled
pit), Cr (crease), Wf (waist folding). The resolution of image
is 4096*1000. The training set, validation set and test set were
divided into 6:1:3 ratio.

2) NEU-DET
The NEU-DET dataset was produced by the team at
Northeastern University [28]. It contains six types of
defects: Rs (rolled-in scale), Pa (patches), Cr (crazing),
Ps (pitted surface), In (inclusion) and Sc (scratches). There
are 1800 images in the dataset in total. The resolution
of image is 200*200. All images are at grayscale. The
training set, validation set and test set were divided into
6:1:3 ratio.
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FIGURE 8. Feature network design (a) FPN (b) PAN (c) BiFPN.

FIGURE 9. CIoU.

FIGURE 10. Angle cost.

B. PERFORMANCE EVALUATION
In industrial production, the accuracy and speed of defect
detection are the two most concerned indicators. If the
inspection result of the type or the location of the defect is
wrong, it may cause the machine to misjudge. If the inspec-
tion speed is too slow, it will greatly reduce the efficiency
of defect detection, and may even lead to accidents. So as
to solve the above problems, three measurements: AP, mAP,
and FPS are used to evaluate the strip defect detection model.
AP represents the average precision of each defect, mAP
represents the mean average precision of all classes, and FPS
represents the frames per second.We use the above indicators
to determine whether the model can meet the requirements of
real-time monitoring.

C. EXPERIMENTS
The total parameters of the improved YOLO-V7 model are
38,665,321. The proposed method performs defect detection

FIGURE 11. Distance cost.

at a fast speed and high accuracy. Figure 13 shows part of
the steel strip defect detection results. Various defects are of
different types and sizes.

1) ABLATION STUDY
Our experiments are performed on the GC10-DET dataset
and the NEU-DET dataset. We demonstrate the effectiveness
of each part through ablation study. This can demonstrate the
improved accuracy of our proposed surface defect detection
method. To verify the effectiveness of each improvement
part on the YOLO-V7 networkmodel, combined experiments
are performed on each improvement strategy to control the
variables. The results of GC10-DET dataset and NEU-DET
dataset for ablation experiments are listed in Table 1 and
Table 2.
We can learn from Table 1 and 2 that after using

de-weighted BiFPN, ECA attention mechanism, and SIoU
loss in the YOLO-V7 network, the mAP of the proposed
method on GC10-DET is 2.8% higher than the original one,
and the mAP on NEU-DET is 4.6% higher than the origi-
nal one. From the data in the table, it can be learned that
the model proposed in this study has a great improvement
over the original model. The feature pyramid is improved
for multi-scale fusion, more original features are fused. The
attention mechanism enables the network to automatically
learn the importance of each feature channel and assign more
weights to more useful features. The improved loss func-
tion is also beneficial for small-scale defects. As a result,
the detection ability of the proposed method for small-scale
defects such as Pu, Ss, In, Cr, Rs, Sc is significantly
improved.
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FIGURE 12. Two datasets with different resolutions.

TABLE 1. Ablation experiments on GC10-DET.

TABLE 2. Ablation experiments on NEU-DET.

2) COMPARATIVE EXPERIMENT
In order to verify the effectiveness of the proposed method,
this paper studies the currently widely used object detec-
tion network. SSD [29] and Faster-RCNN [30] represent the
classic one-stage and two-stage object detection networks,
respectively. SSD and Faster-RCNN represent the network
uses ResNet50. YOLO-V5 is the same detection network of
YOLO series as YOLO-V7.

Table 3 and Table 4 present a comparison of AP, mAP and
FPS for the defects on the GC10-DET dataset and NEU-DET

dataset. On the GC10-DET dataset, the detection method
based on YOLO-V7 is much higher than other models in
detection accuracy and detection speed. Among them, the
improved YOLO-V7 model has the highest AP in the seven
types of defects including Pu, Cg, Ws, Os, Ss, In, and
Cr. In addition, the detection speed is significantly faster
than other models, although slightly lower than the original
YOLO-V7 model, but it can be ignored at high speeds of
FPS > 100. But on defects with lighter color such as Wf, the
YOLO-V7 model performs very poorly. To further verify the
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FIGURE 13. Part of steel strip defect detection results.

TABLE 3. AP results of different models on GC10-DET.

robustness of the method, comparative experiments are con-
ducted on the NEU-DET dataset. On the NEU-DET dataset,
the improved YOLO-V7 model has the highest recognition
rates for Cr, Rs, and Sc defects. In terms of detection speed,
it is also slightly lower than the original YOLO-V7model and
significantly faster than other models. From the experimental
results, it can be learned that the model proposed in this study
is superior to other models in accuracy and speed in steel
surface defect detection.

TABLE 4. AP results of different models on NEU-DET.

V. CONCLUSION
This research improves the feature pyramid based on the
YOLO-V7 network, integrates more features without increas-
ing the cost, adds the ECA attention mechanism to help the
algorithm make better use of the feature information, which
is helpful for small target detection. The target detection loss
function relies on the aggregation problem of bounding box
regression metrics and SIoU bounding box loss function is
adopted. The proposed method is evaluated by two steel strip
defect datasets with different resolutions. The experimental
results prove that the proposed method has high detection
accuracy and speed, which meets the requirements of market.
However, its detection effect on defects with lighter colors
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such as Wf in the GC10-DET dataset is not ideal. It is
our future research direction to try to improve the detection
accuracy of the model on such defects.
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