IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 November 2022, accepted 16 December 2022, date of publication 20 December 2022,
date of current version 27 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3230935

==l RESEARCH ARTICLE

Initializing FWSA K-Means With Feature
Level Constraints

ZHENFENG HE

College of Computer and Data Science, Fuzhou University, Fuzhou 350108, China
e-mail: hezhenfeng @fzu.edu.cn

This work was supported in part by the National Natural Science Foundation of China under Grant 61976055, and in part by the Natural
Science Foundation of Fujian Province under Grant 2022J01574.

ABSTRACT Weighted K-Means (WKM) algorithms are increasingly important with the increase of data
dimension. WKM faces an initialization problem that is more complicated than K-Means’ because in addition
to picking initial cluster centers, it should also provide feature weights. Moreover, the one-dimensional
solution to WKM’s widely used objective function is unacceptable in most cases. Yet, the initialization of
WKM, especially the initialization of feature weight, has been largely ignored. This paper studies the problem
by analyzing Feature weight self-adjustment K-Means(FWSA K-Means), a popular WKM proposed to avoid
the one-dimensional solution. Experimental results suggest that the algorithm is actually easy to cluster
mainly based on a single feature information when it is not well initialized. Moreover, the paper argues that
initial feature weights and cluster centers are equally important in determining the final partition. Therefore
it suggests using feature level constraints to improve the initialization and proposes a semi-supervised
algorithm Constrained FWSA K-Means (CFWSA K-Means). The algorithm uses constraints in evaluating
feature weights and clusters to guide their evolution at the stage of initialization. Experimental results suggest
that it is effective and robust in utilizing constraints. In addition, if its initialization process is started by the
cluster centers provided by BRIk, an initialization approach for K-Means, the performance can be further
improved.

INDEX TERMS Weighted K-Means, initialization, feature level constraint, semi-supervised clustering.

I. INTRODUCTION better [5]. On the other hand, the addition of the feature

With the improvement of data acquisition, processing, and
storage capacity, datasets contain more and more features.
As different features often differ greatly in terms of their use-
fulness to a specified clustering task, they may not be treated
equally. Clustering with feature selection and clustering with
feature weighting have become hot research topics in the past
20 years [1], [2], [3], [4]. Allowing features closely related
to the current clustering task to have a major influence, they
often achieve an improvement in partitions.

Weighted K-Means (WKM), an important method of clus-
tering with feature weighting, introduces feature weights, and
evolves them in the clustering process to get high quality
clusters, which are not necessarily spherical and fit the data

The associate editor coordinating the review of this manuscript and

approving it for publication was Christos Anagnostopoulos

132976

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

weight makes both the decision model and the training pro-
cess of WKM more complicated than K-Means’. As a result,
it may be harder for ordinary users to get expected partitions.

The difficulty of WKM stems from K-Means. Being sim-
ple and useful, K-Means is recognized as one of the most
popular clustering methods. Starting from some initial cluster
centers, K-Means iteratively labels instances and updates
cluster centers until the partition does not change. Yet,
users are sometimes confused about the changeable partitions
returned by the algorithm, because the final partition closely
relates to the initial state, and some initial states may lead to
unacceptable partitions [6]. This is the initialization problem
of K-Means. WKM is an extension of K-Means, so it is
expected that the choice of initial cluster centers will affect
final partitions. However, the influence of the additional fea-
ture weight to the initialization is rarely addressed.

VOLUME 10, 2022

https://orcid.org/0000-0002-1714-0507
https://orcid.org/0000-0003-1517-6757

Z. He: Initializing FWSA K-Means With Feature Level Constraints

IEEE Access

Deciding K, the cluster number, is sometimes considered
as K-Means’ initialization problem too. This paper considers
only the problem whose K is fixed, so adaptively deciding K
is not studied here.

A. MOTIVATION

WKM is gaining more and more attention, many novel WKM
algorithms have been being proposed and applied in various
research or engineering areas over the past 10 years. As an
extension of K-Means, WKM is expected to have an ini-
tialization problem. Yet, compared with a large number of
studies on the initialization problem of K-Means, it is strange
that there are few studies dedicated to WKM’s initialization.
One possible explanation for this phenomenon is: most peo-
ple believe WKM and K-Means have similar initialization
problems, and the methods for them are also similar. In other
words, most people believe that initial cluster centers, not
initial feature weights, have a decisive influence on WKM’s
final partition. However, this does not conform to the facts.
Initial feature weights clearly affect final partition, so many
researchers advice to initialize all features with an equal
weight [3], [7].

Who has more influence on the final partition, initial fea-
ture weight or cluster center? How can we initialize wisely
to decrease the possibility of getting the one-dimensional
solution? We would study WKM’s initialization by focusing
on FWSA K-Means, and present an approach to improving
the algorithm.

B. CONTRIBUTIONS
The main contributions of this paper are as follows:

(1) It suggests that feature weights and cluster centers are
equally important in the initialization. The argument is proved
through a simple example (section III B) and experiments on
a synthetic dataset (section V B).

(2) It suggests introducing feature level constraints
into the initialization of FWSA K-Means, and presents a
semi-supervised algorithm (section IV). The algorithm’s per-
formance is shown through the experiments on a synthetic
dataset and 12 UCI datasets (section V).

(3) It suggests a feature level constraint-based cluster qual-
ity evaluation approach to picking the worst cluster even in
case of small clusters (section IV B).

(4) It suggests FWSA K-Means, an algorithm proposed for
avoiding the one-dimensional solution, may cluster mainly
using one feature information when it is not carefully ini-
tialized. The argument is proved through experiments on a
synthetic dataset (section V B).

IIl. RELATED WORKS

There is a widespread concern over K-Means’ initialization
problem. Some users start K-Means randomly by setting
initial cluster centers as arbitrarily selected instances, or the
centers of randomly constructed clusters [8]. Such methods
are simple, but often lead to bad results. Thus K-Means is
often repeated several times to obtain multiple partitions,

VOLUME 10, 2022

of which the best one is picked [8], [9]. To further improve the
initialization, various data distribution information is useful.
Maximin method chooses the first cluster center randomly,
then repeatedly selects the instance that is the farthest from
the nearest selected centers to be the following cluster center
[8], [10], [11]. On the other hand, the remaining K — 1 centers
may be selected in a probabilistic way instead. For exam-
ple, K-Means++ selects the i-th instance with a probability
di/(Z:‘l:1 d;) as cluster center [12]. Here d; is the distance
between the i-th instance and its closest selected center; and
n is the size of the dataset. Subspace information may also
be utilized. For example, Onoda calculates K independent
components (ICs) and then chooses the instances that are the
closest to these ICs [13]. In addition, some methods pick
initial cluster centers using cluster-level information. They
often include a brief clustering process, which is independent
from or combined into the following clustering process. PCA-
Part starts by putting all instances in one cluster; then it
iteratively splits the cluster with the greatest sum-squared-
error in the direction of the cluster’s largest eigenvector [14].
BRIk clusters bootstrap replicas to get a large set of cluster
centers, from which it picks the deepest ones [15]. Ran-
dom swap and deterministic swap, which moderately change
the partition by resetting a cluster center, enable continuous
improvement of the initial state of K-Means [16]. Getting
two partitions at first, COTCLUS improves initialization by
simultaneously replacing two cluster centers, which are bor-
rowed from another partition [17]. The latter two methods
run an independent K-Means process after each round of
randomly adjusting centers, so their initialization processes
become the integral part of the evolution of partitions. Such
continuous way is effective, which is also proved by Evolu-
tionary K-Means approaches [18], [19].

Compared with K-Means, an additional weight vector is
introduced by Weighted K-Means(WKM), yet how to ini-
tialize it is rarely addressed. For example, early works on
WKM suggest starting with an equal feature weight without
further analysis [3], [7]. After a few years, researchers find
the one-dimensional solution. That is, when the exponent of
feature weight is 1, there is an unacceptable solution: one
feature’s weight is 1 and the other features’ weights are 0 [20].
As the equal-weight initial state is far from the solution, later
works keep the same practice [21], [22], [23]. On the other
hand, some WKM algorithms just start with arbitrary clusters
without considering initialization [24]. As far as we know,
there is no other research on the initialization of WKM’s
feature weight vector. To what extent can the selection of
initial feature weights affect the final partition? This is still
an open problem.

Background information can be helpful to the initialization
of K-Means type algorithms. A few labelled instances can
improve the quality of initial cluster centers (seeds) [25],
[26], [27]. Instance-level constraints can be used to con-
struct neighbourhoods of instances that are connected by
constraints, then initial cluster centers are selected from these
neighbourhoods [28].

132977

IEEE Access

Z. He: Initializing FWSA K-Means With Feature Level Constraints

There are numerous works on the initialization of K-Means
type algorithms. Only the most related ones are introduced
here. Interested readers can look for the introduction and
comparison of more methods in [8], [9], and [29].

lll. THE INITIALIZATION PROBLEM OF FWSA K-MEANS
A. FWSA K-MEANS ALGORITHM

Suppose there is a set of p-dimensional instances D =
{x1,x2, ..., xny}. Instance x; is presented as (x;1, Xi2, . . . , Xip).
Now we want to group them into K non-overlapping clus-
ters C = {Cy,C,,...,Ck}, whose centers are U =
{ur,uz, ..., ug} respectively. An N x K partition matrix
L = (lj) details the partition information: /;; = 1 when
x; € Cj, otherwise [;; = 0. As each instance x; is assigned
to one cluster, we have Zszl l;j = 1. In addition, there is a
feature weight vector w = (w1, wa, ..., wp). All weights are
non-negative; and Y% w; = 1.

In the clustering process, the objective function to be mini-
mized is W in (1), the sum of the weighted distances between
each instance and its corresponding cluster center. Here we
only consider a simple case that all clusters share a subspace.
Practically, cluster-wise feature weights are also often used,
interested readers may refer to [5] and [30].

K N
W= ir x distxi, ur)) M

r=1 i=1

p
dis(xi, ur) =y _(wj x (xj — tt)°))
j=1
N . .
i = Zi:]%lr X Xij) 3)
Zi:] Lir

Theoretically there is a solution of the feature weight to
the minimization of (1): 1 for one element of w, and O for the
other elements [20]. We may rewrite the objective function
as (4).

p

W= 0w x @) @)
j=1
K N

aj = D (i x (x5 = ug)) ®)

r=1 i=1
Because both w; and a; are non-negative, we have:

P
W > () wj) X ming; = ming; 6)
; j e S

Therefore, given a partition, W is minimized if wy = 1 and
wj = 0, # j', where ay < a;. This argument is the second
part of Theorem 1 in [20], where interested readers may look
for detailed analysis.

Such partition is clearly unacceptable in most cases,
so there are various approaches to this problem. An exponent
o (¢ < Oor o > 1) could be added to feature weight
[20]. However, choosing a suitable and explainable « is not

132978

easy. Another method is adding an item to (1). For example,
the entropy of feature weights or cluster sizes can be added
[31], [32]. These methods actually complicate the model.
In addition, how to balance the influence of original objective
function and the added item is an open problem. Compara-
tively, finding a local solution without changing the model is
simpler.

FWSA K-Means is a popular method that evolves the
solution of W in an iterative way [21]. The algorithm sets
initial feature weight vector as (1/p, 1/p, ..., 1/p). At each
iteration, it adjusts feature weights using (7), where Aw; is
the adjustment margin of the jth feature.

new 1 0

W = SO+ Aw) @)

b;/a;
Aw: = — 1 8
K YO (bifa) ®)

K N
bj =Y (O lir) x (= g)) ©)

r=1 i=I

N
g = ZL (10)

where a;, computed by (5), is the sum of the squared dif-
ferences between each instance and its corresponding cluster
center according to the jth feature; and b;, computed by (9),
is the weighted sum (here the weight is cluster size) of
the squared differences between each cluster center and the
global center according to the jth feature. A comparatively
larger b;/a; suggests clusters are well separated according to
the jth feature, so its weight should be larger.

FWSA K-Means is based upon the iterative weight updat-
ing process (Algorithm 1).

Algorithm 1 FWSA K-Means Algorithm [21]
Input:
a set of instances D;
cluster number K;
Output:
a set of cluster centers U
feature weight vector w;
initialize cluster centers U
initialize feature weight vectorw = (1/p, 1/p, ..
while termination condition unsatisfied do
based upon U and w, compute partition matrix L
based upon L, update cluster center U
based upon U and L, compute weight change Aw, then
update w
7: end while

- 1/p)

AN

The first 2 steps of Algorithm 1 initialize cluster cen-
ters and feature weights. After that, the algorithm itera-
tively updates the partition and the feature weight vector.
Step 4 and 5 are similar to that of K-Means. At step 4,
distances between every instance and every cluster center
are computed using (2); then each instance is assigned to its

VOLUME 10, 2022

Z. He: Initializing FWSA K-Means With Feature Level Constraints

IEEE Access

closest cluster. At step 5, the center of each cluster is updated
to the mean of the instances from the cluster using (3).
At step 6, a feature weight change is calculated using (8),
and then the feature weight is updated using (7). As the
value of the objective function in (1) strictly decreases in the
process, FWSA K-Means converges after several iterations
[21]. A commonly used termination condition at step 3 is
that L does not change and w’s change is marginal in the last
iteration.

B. INFLUENCE OF FWSA K-MEANS' INITIAL FEATURE
WEIGHTS

FWSA K-Means has an initialization problem. In fact,
this argument is intuitively easy to get: when we set
the initial state with final partition and the corresponding
one-dimensional feature weight solution, the algorithm stops
at the point because the algorithm strictly decreases W in each
iteration.

We will further analyse FWSA K-Means’ initialization
problem experimentally with a toy example in figure 1. The
dataset has two different 2-cluster partitions, which are shown
in the two sub-figures.

Partition A is shown in the left sub-figure. One cluster
is at the top-left, and the other one is at the bottom-right.
The top-left cluster consists of 135 red points, distributed
in three lines. The leftmost line has 39 points: (—2, —0.95),
(-2, —0.9), (-2, —0.85), ..., (—2, 0.95). The rightmost line
has 39 points too, but their x values are changed to 2. The
middle line has 57 points: (0, —1.4), (0, —1.35), (0, —1.3), ...,
(0, 1.4). Then we move the three lines right by 2 and down
by 3. As aresult, we get 135 black points distributed in 3 lines.
Two cluster centers are shown with green solid dots.

The right sub-figure presents another possible partition—
partition B: one cluster on the left, and the other on the right.
Cluster centers are also shown in green solid dots.

As there are totally 2 features and the sum of their weights
is fixed at 1, we need only give the weight of the first feature.
Here and hereafter in this subsection: when we consider fea-
ture weight, only the weight of the first feature is presented.

Firstly we test the influence of initial feature weight to final
partitions based on the evolution of first feature weight. The
results are shown in figure 2. Left sub-figure presents the
evolution starting from partition A, that is, the initial cluster
centers are: (0, 0) and (2, —3). And the right sub-figure shows
the evolution starting from partition B.

We test 11 initial feature weights, which are 0, 0.1,
0.2,...,1. After several iterations, FWSA K-Means con-
verges. Yet, the feature weight converges at two different
points, which are shown as dashed red lines. The bottom line,
which is about 0.085 at the first feature weight, corresponds
to partition A, whereas the top line, about 0.945 instead,
corresponds to partition B. So the left sub-figure suggests that
an initial feature weight not less than 0.7 changes the partition
from A to B. And the right sub-figure tells a similar story:
when the initial first feature weight is not bigger than 0.4, the
partition changes from B to A. In other words, when initial

VOLUME 10, 2022

Partition A Partition B
o - o
T T
> >
o | o
I I
o _| o _|
| |
< | < |
| |
T T T T T T I T T T T T T I
-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4
X X

FIGURE 1. Two possible 2-cluster partitions of a dataset.

cluster centers are fixed, we may change initial feature weight
to get an expected partition.

Start from partition A Start from partition B

1.0
1.0

0.8
|
>
0.8
|
>
*\

0.6
0.6

first feature weight
0.4
|
*/} E
first feature weight
*
04

0.2

&

-‘—0—:- U E P oo - -

iterations iterations

FIGURE 2. Evolution of the weight of the first feature.

Secondly we evaluate the joint influence of the initial
cluster center and the initial feature weight to final partition
from the possibility of converging to partition A in the case
of a given initial feature weight value.

We test totally 101 different initial feature weights, which
are 0,0.01,0.02, ..., 1. For each weight, a black point and
a red point from partition A are selected as initial cluster
centers. We constantly use a black point as one initial cluster

132979

IEEE Access

Z. He: Initializing FWSA K-Means With Feature Level Constraints

center, but choose the other initial center from the 135 red
points. In this way, for each weight, we test 135 different sets
of initial cluster centers. As a result, each point of the curve
in figure 3 is the possibility of converging at partition A in the
135 experiments.

The constantly selected initial center is located at the end
area of a black line segment of partition A. In other words,
we have tried 6 different constant initial cluster centers, which
are (0, —-2),(0,—4),(2,—-1.6), (2, —4.4), (4, -2), 4, —4).
Therefore, there are six curves in figure 3. For example,
when initial feature weight is 0.4. We always get parti-
tion A when the constantly selected initial cluster center is
0, —4), (2, —4.4) or (4, —4). The possibility decreases to
about 0.9 when the center is (2, —1.6) or (0, —2). And the
possibility further decreases to about 0.8 when the center is
4, -2).

The situation of an empty cluster hardly ever happens in the
experiments, so its influence to final possibility is marginal.
When there is a null cluster, we randomly select a point as the
cluster’s center and continue iterations.

1.0

0.8
|

0.6
|

possibility of partition A
0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

first feature weight

FIGURE 3. Possibility of converging at partition A under different initial
feature weights and initial cluster centers.

From figure 3, it is clear that both initial cluster centers
and feature weights significantly influence the final parti-
tion. Firstly, when the initial first feature weight is between
0.2 and 1, different initial cluster centers may lead to different
final partitions. Secondly, the increase in initial first feature
weight clearly decreases the possibility of having partition A
as the final partition.

We all know that initial cluster centers are important for
K-Means type algorithms, but the experiments in this sub-
section show that initial feature weight is also important:

(1) Initial feature weight significantly influences final par-
tition. In both figure 2 and figure 3, FWSA K-Means may
change its output when feature weight changes. Even when

132980

initial cluster centers are true cluster centers, some initial
feature weights change the final partition (figure 2).

(2) Initial feature weight closely relates to the final weight.
In other words, a small initial weight often leads to a not big
final weight, whereas a big weight usually causes a not small
final weight. This is obvious in figure 2. On the other hand,
figure 3 suggests a small initial feature weight often leads to
partition A. As partition A corresponds to the case that the
first feature weight is 0.085, which is far less than partition
B’s 0.945, figure 3 actually gives the same judgement.

IV. FWSA K-MEANS WITH FEATURE LEVEL
CONSTRAINTS

A. CLUSTERING WITH FEATURE LEVEL CONSTRAINTS
Though clustering is generally considered to be unsupervised,
it often needs some background knowledge to get an accept-
able partition. Given a dataset, usually there are multiple
plausible partitions, each of which may be expected by some
users. How to find a segmentation expected by current users is
a challenging problem. For subspace clustering, the problem
becomes more difficult and deserves even more attention
because the variability of subspace greatly increases the num-
ber of plausible partitions. For example, the earth, the moon,
Jupiter, and Saturn are celestial bodies in solar system. How
should we cluster them, astronomers and astronauts may give
different answers:

(1) Astronomers tend to cluster the earth, Saturn and
Jupiter into a group because they all move around the sun,
whereas the moon moves around the earth.

(2) Astronauts would group the moon, Jupiter and Saturn
together, as they are possible destinations of space flight
missions, whereas the earth is the place of departure.

For such a simple clustering task, different people have
different expectations because they pay attention to different
features. Astronomers pay more attention to the motion mode
of celestial bodies, while astronauts only care about whether
the celestial bodies are a suitable destination for an interstellar
travel. Clearly, it is important for subspace clustering algo-
rithms to know which features are more interesting to current
users.

Moreover, the experiments in the last subsection suggest
initial feature weight closely relates to the final weight. If we
want a feature to have a big weight, we may initialize it with
a big weight.

Feature level constraint, also named as feature order con-
straint or attribute level constraint, provides constraints on the
feature weight vector w by directly describing the relative
importance on some feature-pairs. The constraint set is a
group of 3-tuples Z = {z1, 22, . . ., Z¢}, €ach of which defines
the minimum difference between two elements of w [33],
[34]. For example, z; = (i1, i2, §;) suggests that users expect
Wi, — Wi, = 6;. Here i1, iy € {1, 2,3,... ,p}, i 75 ir, and
8; € [0, 1).

Given a set of feature level constraints Z, we use (11) to
evaluate a feature weight vector w. The algorithm thinks w*

VOLUME 10, 2022

Z. He: Initializing FWSA K-Means With Feature Level Constraints

IEEE Access

is better than w? if and only if f(W%) > f(wb).

fowy =Y " min(w;, —wi, — 8, 0) (11

Zi€Z

Recently another feature level constraint is proposed. It uses
a preference vector, which is the expected feature weight.
Besides, a confidence level is introduced to enable users to
express their confidence to the vector [35]. As it is hard for
users to give the whole vector, in this paper, we would use the
3-tuple based constraints.

B. PARTIAL WEIGHT CHANGE BASED CLUSTER
SELECTION

K-Means type algorithms can be improved by adjusting
the center of the worst cluster. For example, Evolutionary
K-Means algorithms usually evolve partitions by splitting
or removing the worst cluster [18], [19]. To improve the
initialization of FWSA K-Means, we would adjust the center
of the worst cluster.

To pick the worst cluster, we use cluster-wise feature
weight to evaluate each cluster’s contribution separately. Both
aj and b; can be regarded as the cumulative result of clusters.
We can see this more clearly by changing (5) to (12), and
replacing (9) with (14).

K

aj = Zarj (12)
r=1
N

arj = Z(lir X (xjj — ”Vj)z) (13)
i=1
K

b= by (14)
r=1

by = (Y lir) x (uj —)’ (15)

i=1
Based upon a,; and b,;, we may use (16) to compute
cluster-wise feature weight, or cluster-wise feature weight
change. The two cluster-wise indices were actually proposed
for a WKM approach, which computed a cluster-wise feature
weight change using (17) [30].

b . .

Advy = 8% (16)
i=1 (bri/ari)
byi/(ay + 8

Awy = — 2@+ (17)

5'7:1 [bri/(ari + 8)]

Here & is a small positive constant added to prevent the
denominator from being extremely small, which is very likely
to happen in case of small clusters. However, it is hard to
choose a suitable 6. When it is small, small clusters may have
an unacceptable influence on feature weight. Yet, a big 6 may
make the feature weight insensitive to the change in small
clusters.

In order to avoid using § and make the approach robust to
small clusters, in stead of picking the worst cluster directly,

VOLUME 10, 2022

we choose the cluster whose removement leads to the best
feature weight. Given a K-cluster partition, after removing
cluster r, the weight change computed on the remaining
instances is shown as (18). As Afv;r) calculates weight change
on K — 1 clusters, we call it partial weight change. When
AW}” is the best according to given feature level constraints
(using (11)), the rth cluster is considered as the worst cluster,

which should be changed significantly. Thus we randomly
select an instance as the cluster’s new center.

2(r) /~(r)
b:’/a;
s = = as
iz1(b; Ja;)
Zl](r) =a; — ay (19)
i;](.’) = bj— by (20)

C. CONSTRAINED FWSA K-MEANS

Initializing feature weight and cluster centers based upon
give constraints, Constrained FWSA K-Means algorithm is
as follows.

CFWSA K-Means incorporates constraints in the initial-
ization process (step 1 to 19).

From step 1 to 5 of Algorithm 2, feature weight vector
is initialized. At step 3, new feature weight is generated
by adding Gaussian noise in (21) and normalizing in (22).
It replaces the current feature weight when it is better (step 5).
In our experiments, we set ¢ = «/p, where p is the number of
features and o = 0.1. In the algorithm, function f evaluates
feature weight using (11).

w; = max(0, wj + N(0, 0)) 2

~ W

W= =5 — (22)
i=1 Wi

From step 6 to 20, the algorithm iteratively evolves ini-
tial cluster centres. Firstly partition and feature weight are
adjusted using one step FWSA K-Means (step 8 to 10).
Then partial weight changes AW, AW? ... AWK are
computed (Step 12). At step 13, the cluster that leads to
the best partial weight change is selected. If the change is
better than current weight change, it becomes current weight
change(step 15), and the center of the cluster will be replaced
by a randomly selected instance(step 16).

To make the partial weight change estimation robust to
noise, too big cluster is ignored. Sometimes there is a big
cluster, which is so big that removing it means ignoring
most instances and the remaining instances can not make a
robust evaluation of the partial weight change. Such cluster
isignored (step 11 to 12). Here C; is the i-th cluster; and |C;|
is the size of the cluster.

At step 6, the initialization of cluster centers is started ran-
domly. Yet, we may use initialization methods for K-Means
to get better cluster centers.

V. EXPERIMENTS
The algorithms are compared on a synthetic dataset
and 12 UCI datasets.

132981

IEEE Access

Z. He: Initializing FWSA K-Means With Feature Level Constraints

Algorithm 2 Constrained FWSA K-Means(CFWSA
K-Means) Algorithm
Input:

a set of data instances D;

cluster number K;

a set of constraints Z,;

rounds of adjusting initial feature weight N,,;

rounds of adjusting initial cluster centers N;
Output:

cluster centers U

feature weight vector w;
1: set initial feature weight vector w = (1/p, 1/p, ... 1/p)
2: fori=1to N, do
3: randomly generate w by adding Gaussian noise to w
4 iff(w) > f(w) thensetw = w
5: end for
6
7
8
9

: randomly set initial cluster centers U
. for iter=1 to N. do
: based upon U and w, compute partition matrix L
: based upon L, update cluster center U
10: based upon U and L, compute weight change Aw
11: for(i=1toK)if (|C;i| < |D|/2)thenaddito S
12 for (rin S) compute AW using (18)
13 set r = argmax,cs f(AW")
14: if f(AW)) > f(Aw) then

15: set Aw = AW

16: sample an instance as the center for cluster »
17: end if

18: update w using (7)

19: end for

20: while termination condition unsatisfied do

21: based upon U and w, compute partition matrix L

22: based upon L, update cluster center U

23: basedupon U and L, compute weight change Aw, then
update w

24: end while

A. GENERATION OF FEATURE LEVEL CONSTRAINTS

Awj, computed with (8), is the expected weight of the
Jj-th feature, so we use it as the “true” feature weight for
constraint generation.

We generate constraints using the method adopted by [33].
Firstly features are sorted according to their weights. To gen-
erate a feature level constraint z = (x,y, §), we randomly
select a feature x from the top 50% features, and a feature
y from the bottom 50% features respectively. Then set § =
wy — Wy, here wy and wy are the weights of feature x and y.

Each constraint is generated independently. That is, new
constraints are generated without considering the constraints
generated, so they are generally not independent of each
other, and may even be repeated. All constraints are applied
to evaluate constraints using (11).

In the second rounds of experiments on UCI datasets,
noisy constraints are applied. Firstly, we get the true order

132982

of features according to their weights. Then p uniformly
distributed positive random numbers are generated, sorted
and assigned to corresponding feature according to the order
(p is the data dimension). At last, the feature weights are
normalized so their sum is 1. In this way, features keep the
true order. That is, if feature A’s true weight is bigger than
feature B’s. Then A’s noisy weight will not be less than B’s
noisy weight.

B. EVALUATION ON SYNTHETIC DATASETS

1) DATASET

We test algorithms on a synthetic dataset. It has 4 clusters,
each containing 300 instances. The dataset has 4 features,
but only the first 2 features are informative. Expected cluster
centers are (—1, —1, 0, 0), (-1, 1, 0, 0), (1, —1, 0, 0) and
(1, 1, 0, 0). Zero-mean Gaussian noise with a standard devia-
tion o = 0.5, is added to the centres to generate instances.
The data distribution of the first 2 dimensions is show in
figure 4.

FIGURE 4. First two dimensions of the synthetic dataset.

2) EXPERIMENT ON THE QUALITY OF RETURNED FEATURE
WEIGHT
Firstly, we would compare the algorithms’ performance of
finding true feature weight. Using different seeds to initialize
random number generator, we get 1000 replicas of the dataset.
Then two initial feature weight vectors and two sets of initial
cluster centers are tested.
The feature weights are:
we = (0.5, 0.5, 0, 0) and wp, = (0.25, 0.25, 0.25, 0.25).
Clearly w, can be recognized as the true feature weight.
The initial cluster center sets are:
ugq: {(—1,-1,0,0),(-1,1,0,0),(1,—1,0,0),(1,1,0,0)}
up: {(0, 1,0,0), (0, —-1,0,0),(1,0,0,0), (—-1,0,0,0)}
Clearly u, can be recognized as the true cluster centers.

VOLUME 10, 2022

Z. He: Initializing FWSA K-Means With Feature Level Constraints

IEEE Access

For FWSA K-Means, the initial state is a combination of a
feature weight vector and a set of cluster centers, so there are
2 % 2 = 4 possible initial states. In addition, the initial state
suggested by [21] is also tested.

We also test CFWSA K-Means on the replicas. Two con-
straints are incorporated: (1, 3, §), (2, 4, §), here two different
s have been tried.

Thus 7 different methods are compared:

State A (FWSA K-Means): using w, as initial feature
weight vector, and u,, as initial cluster centres.

State B (FWSA K-Means): using w, as initial feature
weight vector, but u, as initial cluster centres.

State C (FWSA K-Means): using wj, as initial feature
weight vector, and u,, as initial cluster centres.

State D (FWSA K-Means): using wp, as initial feature
weight vector, and uy, as initial cluster centres.

State E (FWSA K-Means): using wj as initial feature
weight vector, and 4 randomly selected instances as initial
centres.

State F (CFWSA K-Means): § = 0.4, that is, constraints
(1, 3,0.4) and (2, 4, 0.4) are applied.

State G (CFWSA K-Means): 6 = 0.2, that is, constraints
(1,3,0.2) and (2, 4, 0.2) are applied.

The cumulative distributions of the maximum feature
weight are shown in figure 5. When the maximum feature
weight is close to 1, the data is clustered mostly based on
one feature. Yet, there are 2 informative features, so the curve
should not rise significantly at the right end.

The cumulative distributions of the weight of the first
feature are presented in figure 6. The true weight should be
close to 0.5. Thus the expected curve is staying at zero when
feature weight is much smaller than 0.5; increasing sharply
near 0.5; and staying at 1 when it is much bigger than 0.5.
In other words, the curse should have a sharp increase in the
middle, and be smooth otherwise.

The figures suggest, in terms of final feature weights,
different initial states lead to a huge gap in the quality of
partitions:

(1) Initial state has a significant impact on the final parti-
tion, and good initial cluster center seems to be more impor-
tant than good feature weight. State A assigns both the true
feature weight and the true cluster centres, so it completely
avoids the single dimensional solution (Figure 5). State C
provides the true cluster centres only, yet it avoids the solution
too. In addition, both states make the first feature weight close
to 0.5 (Figure 6).

(2) Adding feature level constraints into the initialization
process improves the clustering result. The feature weight
returned by CFWSA K-Means (State F and G) is better than
the cases when bad or random cluster centres are provided
(State B, D and E).

(3) Strict constraints make a difference. Constraint with
a bigger § is a stricter constraint because it is harder to be
satisfied. In figure 6, when § = 0.4 (State F), the returned
first feature weight has a nearly 80% chance of approaching
0.5, whereas the chance decreases to about 70% when § = (0.2

VOLUME 10, 2022

2 - - - FWSA(W.+U,) oo '
- - FWSA(W,+Up) ! !
FWSA(Wp+Uy) ! :
FWSA(W,+Up) ' H
© - - FWSA [__n
S CFWSA(8=0.4) | 1 T
> - - CFWSA(3=02) | ! , :
£ by |
g == === e e e e e o - - -
© Iy 1
'8 o 7] [e I e
= 1y
o W
(] 1
= y
A |
S < d
[
S !
o]
N [}
2 !
[
|
k]
o I
p= 0

T T T T

0.4 0.6 0.8 1.0

maximum feature weight

FIGURE 5. Cumulative distributions of the maximum feature weight using
different initialization approaches.

2 - - - FWSA(W,+u,) —]
- - FWSA(W,+up) 1 i
FWSA(Wy+U,) ! _J
FWSA(W+Uy) L. S
o | -~ FWSA pm TS -
> p
S CFWSA(5=0.4) Mo ZIZITIIZIZZZZIC
. - - CFWSA(3=0.2)]
= 4
= t
8 |
o |
8 ° {
3 i
I
2 :
B 3 |
=] h
= h
1 h
o ’{l
1
P M
Lo/ o e~ a0
] ’ 1
-7 !
" 1
g -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

weight of the first feature

FIGURE 6. Cumulative distributions of the weight of the first feature
using different initialization approaches.

(State G). Moreover, the CFWS A has 90% chance of avoiding
the one-dimensional solution when § = 0.4, whereas the
chance becomes 80% when 6 = 0.2 (Figure 5).

This experiment suggests that initial cluster centers are
more important than initial feature weight. This is contrary
to the judgement in III B, which tells that they are equally
important. There are two reasons. Firstly, the dataset used
in IIT B has two stable partitions whose difference is not
big, whereas the dataset used here has only one clear sta-
ble partition. Therefore, it is harder to change the partition
when true cluster centers are presented. Secondly, and more

132983

lEEEACC@SS Z. He: Initializing FWSA K-Means With Feature Level Constraints

importantly, only equal feature weight has been tried here, o . FwsAweru) e .
so more different feature weights should be tested. FWSA(we+u,) ' !
- - FWSA(wg+u,)) :
FWSA(We+U,) '
)
3) EXPERIMENT ON THE RELATION BETWEEN INITIAL @ b |
CLUSTER CENTERS AND INITIAL FEATURE WEIGHTS > X :
The result of the last experiment suggests initial cluster cen- T_c‘é | i
ters may be more important. This experiment tests whether S S | i
we are to get good result when true initial cluster centers are S | i
provided. Here we run FWSA K-Means, and initial cluster 2 | i
. . . T T 1
center set is u,. Three additional feature weights are tested: 5 ° ' i
we = (0.5,0,0.5,0), wg = (0,0,0.5,0.5) and w, = E | i
(0.03, 0.05, 0.45, 0.45). ° | :
The cumulative distributions of the weight of the first ° | o
feature are presented in figure 7. And the cumulative distri- | JP% el -
butions of the maximum feature weight are shown in figure 8. e W
The curve of last experiments’ State A (the blue line) is kept e ‘ ‘ ‘ ;
for comparison. Clearly, 3 different initial feature weights 0.4 06 08 1.0
lead to significantly different results. Both w, and wy very maximum feature weight
likely lead the algorithm to the, one-dimensional solution. FIGURE 8. Cumulative distributions of the maximum feature weight using
On the other hand, though w, is also far away from the different feature weights.
true weight, it often leads to the true feature weight and
completely avoids the one-dimensional solution.
FWSA(W¢+U,)
o + FWSA(Wg+Uy)
o _| e ~ 7 FWSA(we+uy)
=7 ’
1 1
! ! o _|
1 U o
@ 1 1
R - - FWSAW.+U) !
Z ! FWSAWey) | | o |
5 1 - - FWSA(wg+u,) 1 IS
© o | [FWSA(We+U,) : +
-8 e : ! > < + +
o 1 1 S -
o ! !
= ! !
I ! 5
> | 1 (=)
E 1 |
3 1 1
(&) | 1
o ' 3
o 1 1
1 1
] |
| [o
|] < T T T T
= § 0.0 05 10 15
T T T T T I
0.0 02 0.4 0.6 08 1.0 X

FIGURE 9. Distributions of the cluster center which is the closest to point

weight of the first feature oM
(1,1) after first iteration.

FIGURE 7. Cumulative distributions of the weight of the first feature
using different initial feature weights.
the other one significantly. As a result, WKM approaches

We further check the cluster centers after first round of
should initialize both of them carefully.

iteration. When feature weight is w, or wy, the cluster centers
change a lot in the first two dimensions, whereas w, leads
only a minor change to cluster centers. In figure 9, we show
the distribution of the closest cluster center according to point
(1,1) in the first 2 dimensions. When feature weight is w,
or wy, the cluster center goes to the boundary areas between
clusters. With such cluster centers, even traditional K-Means
will return unpredictable partitions [6].

From the last 2 experiments we can see that both ini-
tial cluster centers and initial feature weights are important,
because each of them can exert enough influence to change Table 2, 3 and 4).

C. EVALUATION ON REAL DATASETS

1) DATASETS AND ALGORITHMS

We test CFWSA K-Means on 12 UCI datasets, which have
also been used for evaluating MAP K-Means [35], [36]. All
data are preprocessed with z-score normalization. A brief
introduction of the datasets is in Table 1. Ionosphere’s 2nd
feature has been removed. The abbreviation of a dataset is
presented in the parentheses after the dataset’s name (for

132984 VOLUME 10, 2022

Z. He: Initializing FWSA K-Means With Feature Level Constraints

IEEE Access

TABLE 1. Descriptions of the data sets.

Dataset Size feature Class
Iris 150 4 3
Wine 178 13 3
Abalone(Aba) 4177 8 3
WDBC 569 30 2
Glass 214 9 6
Tonosphere(Ionos) 351 33 2
Optdigits(Optd) 5620 62 10
Pendigits(Pend) 10992 16 10
Pgblocks(Pgb) 5473 10 5
Pima 768 8 2
Vowel 990 10 11
Waveform(Wave) 5000 21 3

In addition to FWSA K-Means and CFWSA K-Means,
2 feature level constrains based WKM algorithms, which
are CFP and MAP K-Means, are compared for evaluating
the effectiveness of constraints. Moreover, two initialization
approaches for K-Means, which are K-Means++ and BRIk,
are compared for evaluating the effectiveness of initialization.
In addition, we also combined BRIk into CFWSA K-Means,
using it to start the initialization of cluster centers. So totally
7 approaches are compared:

(1) FWSA K-Means (abbreviated as FKM in Table 2, 3 and
4): Algorithm 1 (introduced in section IIT A).

(2) Constrained FWSA K-Means (abbreviated as CFK
in Table 2, 3 and 4): Algorithm 2 (proposed in
section IV C).

(3) CFP: proposed in [33], default parameter values are
used.

(4) MAP K-Means (abbreviated as MKM in Table 2 and 3):
proposed in [35], default parameter values are used.

(5) FWSA K-Means + BRIk (abbreviated as FKB in
Table 2 and 3): Algorithm 1, but using BRIk to initialize
cluster centers at step 1 (BRIk is proposed in [15]).

(6) FWSA K-Means + K-Means++ (abbreviated as FK+
in Table 2 and 3): Algorithm 1, but using K-Means++ to
initialize cluster centers at step 1 (K-Means++- is proposed
in [12]).

(7) Constrained FWSA K-Means + BRIk (abbreviated as
CFB in Table 2, 3 and 4): Algorithms 2, but using BRIk to
start cluster centers at step 6.

Some algorithms’ codes are kindly contributed by others:

(1) Both CFP and MAP K-Means codes are updated from
https://github.com/adnan-el-moussawi/MAPK-Means [35].

(2) The K-Means++ codes are from https://github.com/
jacquesattack/kmeanspp.

(3) Algorithm BRIk is provided by function brik from an
R package briKmeans [15].

2) QUALITY MEASURE

Two quality criteria, which are rand index and normalized
mutual information(NMI) are used to evaluate partitions. Ten
times of 10-fold cross validation are performed.

VOLUME 10, 2022

3) CLUSTERING WITH SUFFICIENT CONSTRAINTS

Firstly, p randomly generated constraints are added into
the clustering process of CFP, Constrained FWSA K-Means
(CFK), Constrained FWSA K-Means started with BRIk
(CFB). Here p is the number of data dimension. On the
other hand, true feature weight is provided to MAP
K-Means(MKM) as the preference vector.

TABLE 2. Comparison of the rand index averages of the partitions
obtained using different approaches.

Dataset FKM CFK CFP MKM FKB FK+ CFB

Iris 89.32 94.03 90.94 84.66 93.62 90.77 95.02
Wine 8648 89.09 89.83 92.84 90.13 86.47 90.59
Aba 61.08 61.11 61.03 59.45 61.11 61.06 61.13
WDBC 8221 8344 8253 86.65 82.61 82.01 83.44
Glass 66.73 6693 68.17 5791 6498 65.66 66.93
Tonos 59.2 59.24 5395 5893 5848 59.04 58.69
Optd 88.71 89.5 8521 7474 8291 86.63 84.64
Pend 91.23 91.27 86.18 90.76 91.83 9133 91.78
Pgb 4498 4687 5356 7909 6466 5726 66.97
Pima 54.64 5627 5502 6246 5408 5428 57.17
Vowel 8577 8636 8532 86.44 8557 8572 862
Wave 66.73 66.73 6457 66.74 66.74 66.74 66.74
CFK win 11 — 9 6 7 9 3
CFB win 10 7 10 5 10 9 —

TABLE 3. Comparison of the NMI averages of the partitions obtained
using different approaches.

Dataset FKM CFK CFP MKM FKB FK+ CFB

Iris 8386 894 8533 7546 8846 8435 90.81
Wine 76.18 79.74 81.71 87.22 8128 7549 82.23
Aba 16.3 16.4 1647 1747 1639 1631 1641
WDBC 59.6 61.87 5776 6635 6038 59.23 61.44
Glass 46.32 47.66 49.83 4688 4831 4583 4934
Tonos 16.84 1693 7.25 16 1498 1626 15.49
Optd 59.48 62.15 39.57 482 4798 5575 52.59
Pend 68.08 68.5 4373 69.29 6893 68.32 68.85
Pgb 1264 13.19 1532 7.88 1391 10.67 15.15
Pima 5.23 7.81 7.54 16.38 8.79 474 8.79
Vowel 47.65 50.03 43.1 50.61 47.74 4757 49.58
Wave 36.2 36.23 25.66 36.63 363 36.23 36.28
CFK win 12 — 8 5 6 11 4
CFB win 10 7 9 4 9 10 —

The performance of the 7 algorithms are compared in
table 2 and 3.

(1) Feature level constraints clearly improves FWSA
K-Means. When we compare the third column (CFK, Con-
strained FWSA K-Means) with the second column (FKM,
FWSA K-Means), it wins 11 times in the 12 experi-
ments according to rand index, and wins all according to
NMI. In addition, Constrained FWSA K-Means also wins
two unsupervised initialization approach, which are FWSA
K-Means with K-Means++(FK+) and FWSA K-Means
with BRIk (FKB). Moreover, Constrained FWSA K-Means
wins CFP, a feature level based WKM. And it is only a little
inferior to MAP K-Means, which is provided with the whole
true feature weight vector. This also suggests initialization is
very important for WKM.

132985

IEEE Access

Z. He: Initializing FWSA K-Means With Feature Level Constraints

(2) We may improve Constrained FWSA K-Means by
using initialization methods for K-Means to start the initial-
ization of cluster centers. We have tried to incorporate BRIk
(at step 6 of Algorithm 2), sometimes there is a significant
improvement (dataset PageBlocks).

4) CLUSTERING WITH LIMITED AND NOISY CONSTRAINTS
Then we test algorithms using only p/2 noisy constraints,
As MAP K-Means requires the whole feature weight vector,
it is not included. In addition, most unsupervised algorithms
are not included. We keep only FWSA K-Means (FKM) for
comparison. The comparison of the NMI averages is shown
in table 4. The result of rand index is similar, so we do not
present them here.

TABLE 4. Comparison of the NMI averages of the partitions obtained
using different approaches with limited and noisy constraints.

Dataset FKM CFK CFP CFB

Iris 83.86 84.07 7473 90.22
Wine 76.18 80.49 76.66 82.22
Aba 16.3 1633 1621 16.41
WDBC 59.6 60.33 52.38 60.48
Glass 46.32 47.14 46.14 47.93
Ionos 16.84 17.56 8.25 15.87
Optd 5948 60.27 3739 51.86
Pend 68.08 6852 41.46 69.15
Pgb 1264 1291 1515 1481
Pima 523 5.18 7.71 6.17
Vowel 47.65 49.54 4344 48.62
Wave 36.2 36.2 25.38 36.24
CFKwin 10 — 10 3
CFB win 10 9 10 -

Compared with table 3, we can find using limited and noisy
constraints instead of enough and precise ones causes only
a minor decrease in the performance of Constrained FWSA
K-Means (CFK) and Constraint FWSA K-Means started with
BRIk (CFB), whereas it leads a significant decrease for
CFP. This is because we use constraints only at the stage
of initialization. As the noisy constraints are not against the
order of the true feature weights, they are helpful in getting a
good initial state. The following clustering process does not
consider the constraints, so the final partition is more robust
to the noise in constraints.

5) CHOICE OF THE PARAMETERS

Constrained FWSA K-Means uses two parameters: rounds of
adjusting initial feature weight N,,, and rounds of adjusting
initial cluster centers N,.. In our experiments, we set N,, =
20 and N, = 10. Based upon Iris and Wine dataset, we test the
impact of changing parameters in two scenarios: which are p
precise constraints, and p/2 noisy constraints. The results are
shown in figure 10 and 11.

Figure 10 suggests that the clustering quality improves
with the increase of N, when N, is less than 10. After that,
the changes are no longer significant. So we set N, = 10 in
all experiments.

132986

Nw=20

o

S —e— iris

- -« iris(noisy constraint)
wine
wine(noisy constraint)

NMI
0.85
|

Nc

FIGURE 10. Influence of the rounds of adjusting initial cluster centers Nc.

Nc=10
o
S —e— iris
--+- iris(noisy constraint)
wine
© wine(noisy constraint)
o -
<]
o
o -
@ r///*h"v///*\\\‘///*ﬂﬂﬂ'-—-44——4*
Pl G .
. N R
S g] - e :
Z o AR

.
o
o
o
e}
N
=]
o
N
S

T T T T T T

0 10 20 30 40 50

Nw

FIGURE 11. Influence of the rounds of adjusting initial feature weight Ny, .

Figure 11 suggests that parameter N,,’s influence is not as
significant as N, does. This is because the feature weight con-
tinues its evolution in the following stage with the evolution
of clustering centers. As N,, = 0 often causes a relative worse
result, we may set it as a positive number which is not too
small. As the computation cost for adjusting initial feature
weight is marginal, we set N,, = 20 in all experiments.

VIi. CONCLUSION
As a K-Means type algorithm, WKM often requires initial
cluster centers. In addition, it uses an initial feature weight

VOLUME 10, 2022

Z. He: Initializing FWSA K-Means With Feature Level Constraints

IEEE Access

vector. As a result, WKM’s initialization problem is more
complicated than that of K-Means. Yet, the problem is rarely
addressed. This paper analyzes experimentally the initial-
ization of FWSA K-Means, a popular WKM method pro-
posed to avoid the one-dimensional solution. It suggests that
FWSA K-Means must initialize carefully to sidestep the solu-
tion. Then it proposes a novel semi-supervised initialization
approach, which utilizes feature level constraints to guide the
evolution of feature weights and cluster centers. Experimental
results prove the effectiveness of feature level constraints to
the initialization.

This paper analyses the initialization of WKM experimen-
tally. We do not intend to analyse the problem theoretically
here. This is our future work. On the other hand, as initializa-
tion is the focus of this research, feature level constraints have
not been applied to improve the iterative process of FWSA
K-Means. This is also our future research direction.

REFERENCES

[1] E. Hancer, B. Xue, and M. Zhang, “A survey on feature selection
approaches for clustering,” Artif. Intell. Rev., vol. 53, no. 6, pp. 4519-4545,
Aug. 2020.

[2] D.S. Modha and W. S. Spangler, ““Feature weighting in K -means cluster-
ing,” Mach. Learn., vol. 52, no. 3, pp. 217-237, Sep. 2003.

[3] E.Y. Chan, W. K. Ching, M. K. Ng, and J. Z. Huang, ““An optimization
algorithm for clustering using weighted dissimilarity measures,” Pattern
Recognit., vol. 37, no. 5, pp. 943-952, May 2004.

[4] Z. Deng, K. Choi, Y. Jiang, J. Wang, and S. Wang, “A survey on soft
subspace clustering,” Inf. Sci., vol. 348, pp. 84—106, Jun. 2016.

[5] R. C. de Amorim, “A survey on feature weighting based K-means algo-
rithms,” J. Classification, vol. 33, no. 2, pp. 210-242, Jul. 2016.

[6] S.Bubeck, M. Meild, and U. von Luxburg, ‘““‘How the initialization affects
the stability of the k-means algorithm,” ESAIM Probab. Statist., vol. 16,
pp. 436452, Sep. 2012.

[71 H. Frigui and O. Nasraoui, “Unsupervised learning of prototypes and
attribute weights,” Pattern Recognit., vol. 37, no. 3, pp.567-581,
Mar. 2004.

[8] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study
of efficient initialization methods for the k-means clustering algorithm,”
Expert Syst. Appl., vol. 40, no. 1, pp. 200-210, Jan. 2013.

[9] P. Frinti and S. Sieranoja, “How much can k-means be improved by using
better initialization and repeats?”’ Pattern Recognit., vol. 93, pp. 95-112,
Sep. 2019.

[10] T. FE. Gonzalez, “Clustering to minimize the maximum intercluster dis-
tance,” Theor. Comput. Sci., vol. 38, pp. 293-306, Jan. 1985.

[11] I. Katsavounidis, C.-C. J. Kuo, and Z. Zhang, “A new initialization tech-
nique for generalized Lloyd iteration,” IEEE Signal Process. Lett., vol. 1,
no. 10, pp. 144-146, Oct. 1994.

[12] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proc. Annu. ACM-SIAM Symp. Discrete Algorithms (SODA),
2007, pp. 1027-1035.

[13] T. Onoda, M. Sakai, and S. Yamada, “Careful seeding method based
on independent components analysis for k-means clustering,” J. Emerg.
Technol. Web Intell., vol. 4, no. 1, pp. 51-59, Feb. 2012.

[14] T. Su and J. G. Dy, “In search of deterministic methods for initializing
K-means and Gaussian mixture clustering,” Intell. Data Anal., vol. 11,
no. 4, pp. 319-338, Jul. 2007.

[15] A. Torrente and J. Romo, “Initializing k-means clustering by bootstrap and
data depth,” J. Classification, vol. 38, pp. 232-256, Jul. 2021.

[16] P.Frinti and J. Kivijédrvi, “‘Randomised local search algorithm for the clus-
tering problem,” Pattern Anal. Appl., vol. 3, no. 4, pp. 358-369, Dec. 2000.

[17] M. Rezaei, “Improving a centroid-based clustering by using suitable cen-
troids from another clustering,” J. Classification, vol. 37, pp. 352-365,
Jul. 2020.

[18] M. C. Naldi, R. J. G. B. Campello, E. R. Hruschka, and
A.C.P.L.F Carvalho, “Efficiency issues of evolutionary k-means,”
Appl. Soft Comput., vol. 11, no. 2, pp. 1938-1952, Mar. 2011.

VOLUME 10, 2022

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

Z.He and C. Yu, “Clustering stability-based evolutionary K -means,” Soft
Comput., vol. 23, no. 1, pp. 305-321, Jan. 2019.

J.Z.Huang, M. K. Ng, H. Rong, and Z. Li, “Automated variable weighting
in k-means type clustering,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 5, pp. 657-668, May 2005.

C.-Y. Tsai and C.-C. Chiu, “Developing a feature weight self-adjustment
mechanism for a K-means clustering algorithm,” Comput. Statist. Data
Anal., vol. 52, no. 10, pp. 46584672, Jun. 2008.

R. C. De Amorim and B. Mirkin, ‘““Minkowski metric, feature weighting
and anomalous cluster initializing in K -means clustering,” Pattern Recog-
nit., vol. 45, no. 3, pp. 1061-1075, Mar. 2012.

R. C. de Amorim and P. Komisarczuk, “On initializations for the
Minkowski weighted k-means,” in Proc. 11th Int. Conf. Adv. Intell. Data
Anal., 2012, pp. 45-55.

R. Deepana, “On sample weighted clustering algorithm using Euclidean
and Mahalanobis distances,” Int. J. Statist. Syst., vol. 12, no. 3,
pp. 421-430, Jul. 2017.

S. Basu, A. Banerjee, and R. J. Mooney, ““Semi-supervised clustering by
seeding,” in Proc. 19th Int. Conf. Mach. Learn. (ICML), 2002, pp. 27-34.
V.-V. Vu, N. Labroche, and B. Bouchon-Meunier, “Active learning for
semi-supervised K -means clustering,” in Proc. 22nd IEEE Int. Conf. Tools
Artif. Intell. (ICTAI), Oct. 2010, pp. 12-15.

J. Yoder and C. E. Priebe, “Semi-supervised k-means++,” J. Stat. Com-
put. Simul., vol. 87, no. 13, pp. 2597-2608, Jun. 2017.

M. Bilenko, S. Basu, and R. J. Mooney, “Integrating constraints and metric
learning in semi-supervised clustering,” in Proc. 21st Int. Conf. Mach.
Learn. (ICML), 2004, pp. 81-88.

A. Vouros, S. Langdell, M. Croucher, and E. Vasilaki, “An empirical
comparison between stochastic and deterministic centroid initialisation
for K-means variations,” Mach. Learn., vol. 110, no. 8, pp. 1975-2003,
Aug. 2021.

G. Guo, S. Chen, and L. Chen, ““Soft subspace clustering with an improved
feature weight self-adjustment mechanism,” Int. J. Mach. Learn. Cybern.,
vol. 3, no. 1, pp. 3949, Mar. 2012.

L. Jing, M. K. Ng, and J. Z. Huang, “An entropy weighting k-means
algorithm for subspace clustering of high-dimensional sparse data,” IEEE
Trans. Knowl. Data Eng., vol. 19, no. 8, pp. 1026-1041, Aug. 2007.

P. Zhou, J. Chen, M. Fan, L. Du, Y.-D. Shen, and X. Li, “Unsupervised
feature selection for balanced clustering,” Knowl.-Based Syst., vol. 193,
Apr. 2020, Art. no. 105417.

J. Sun, W. Zhao, J. Xue, Z. Shen, and Y. Shen, “Clustering with feature
order preferences,” in Proc. 10th Pacific Rim Int. Conf. Artif. Intell. (PRI-
CAI), 2008, pp. 382-393.

J. Wang, S. Wu, and G. Li, “Clustering with instance and attribute level
side information,” Int. J. Comput. Intell. Syst., vol. 3, no. 6, pp. 770-785,
Dec. 2010.

A. El Moussawi, A. Giacometti, N. Labroche, and A. Soulet, “MAPK-
means: A clustering algorithm with quantitative preferences on attributes,”
Intell. Data Anal., vol. 24, no. 2, pp. 459-489, Mar. 2020.

D. Dua and C. Graff, UCI Machine Learning Repository. Irvine, CA, USA:
Univ. of California, 2019. [Online]. Available: http://archive.ics.uci.edu/ml

ZHENFENG HE received the Ph.D. degree in
control engineering from the University of Sci-
ence and Technology of China, in 2004. He is
currently an Associate Professor with the College
of Computer and Data Science, Fuzhou University,
China. His research papers have been published
in soft computing, knowledge-based systems, and
other professional journals. His research interests
include machine learning, data mining, and their
applications in agriculture.

132987

