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ABSTRACT This paper presents a comprehensive nonlinear stability analysis and active compensation
method for a utility-scale single-stage grid-connected photovoltaic (PV) system. First, a describing
function (DF)-based stability analysis is conducted considering the nonlinear dynamics of the incremental
conductance (INC)-based maximum power point tracking (MPPT) algorithm and the effects of the PV
generator operating point changes. Next, the analysis characterizes the impact of the MPPT sampling time
and perturbation step size on oscillation magnitude and frequency. The study showed that a shorter sampling
time and larger step size result in a faster response. However, an increase in the step size increases the
oscillation magnitude; the latter does not change with the step size. Then, considering the INC-based MPPT
nonlinear dynamics, the overall system’s damping and oscillatory modes are characterized under different
photovoltaic generator operating conditions and system parameters using the DF method. The study showed
that the system stability is reduced when the photovoltaic generator operating point moves to the left of
the maximum power point and with the reduction of the dc-link capacitance and ac-side filter inductance.
Therefore, an active compensationmethod is proposed to reduce the oscillations and improve the stability and
dynamic performance at different operating conditions and in the presence of theMPPT nonlinear dynamics.
Finally, detailed nonlinear time-domain simulation results are presented to validate the analytical results and
the effectiveness of the proposed compensation method under various operating conditions.

INDEX TERMS Active compensation, incremental conductance, limit cycle, MPPT parameters, nonlinear
analysis, photovoltaic systems, voltage-source converter.

I. INTRODUCTION
In recent years, to lower the typical fossil fuel-based energy
sources utilization, photovoltaic generators (PVGs) have
been considered promising renewable energy sources [1].
Two-stage PV systems linked to a grid adopt a dc-dc
converter, where the maximum power point tracking (MPPT)
algorithm is implemented, and a dc-ac converter for power
conditioning. The two-stage system offers advantages, such
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as flexible control, but suffers from lower reliability, higher
cost, and lower efficiency [2]. In comparison, a single-stage
PV system adopts a single-power stage, offering a compact
and cost-effective design. Therefore, single-stage PV systems
are commonly preferred in utility-scale applications [3].

There are two components in the PVG dynamics: the con-
tinuous part, which includes the PV dynamics, and the dis-
crete part, which includes the MPPT algorithm [4]. The
linearized small-signal model can be used for the continuous
part; however, it cannot be applied for the discontinuous
one, making the PV interconnected system’s stability and
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performance analysis challenging. The MPPT algorithm
generates the reference dc-link voltage for a single-stage
system [5], where the MPPT dynamics and rapid actions can
challenge the dc-link voltage control. The capacitance of the
dc-link capacitor plays a vital role in determining the stability
margins of the overall PV system and in meeting the steady-
state performance requirements [6], [7].

Due to uniformity and simple application, perturb and
observe (P&O)-based MPPT algorithms are commonly
used [8]. However, it has two main drawbacks: the operating
point oscillates around the MPP, and the effectiveness
is reduced when irradiance changes rapidly. The fixed
perturbation step size can reduce the oscillations, but it
takes more time to arrive at an MPP [9]. In contrast, in the
incremental conductance (INC)-based MPPT algorithm, the
perturbation stops when the MPP is reached. It is also often
stated that the INC-based MPPT can track fast-changing
irradiance better than the P&O [10], [11].

In [12] and [13], the PV model was linearized for
small-signal analysis ignoring the discontinuous MPPT part.
Additionally, the discrete part cannot be analyzed using linear
methods such as Bode, Nyquist, and root locus analysis.
Dynamic analysis and stabilization of PV-based multiple
microgrids were performed in [14] without considering the
MPPT dynamics. In [15], a linearized small-signal model
was developed for the INC-based MPPT in the continuous-
time domain. However, practical MPPT algorithms are
implemented digitally. The effects of the step size of the
P&O and INC-based MPPT algorithms were addressed
in [16], [17], and [18], where a small-signal linearization
technique was used. The studies mentioned above, however,
neither developed a mathematical model for the INC-based
MPPT controller nor analyzed its nonlinear effects on the
system’s oscillatory behavior.

In the literature, stability analysis of grid-connected PV
systems has been carried out [12], [13], [19]. A state-
space model of a two-stage PV system was used in [12]
to study the effect of the front-end converter, dc-link
capacitance, and control loop parameters on the voltage-
source converter (VSC) performance. However, the nonlinear
MPPT dynamics were not analyzed. In [21], a feedback
linearization scheme was used to design the voltage and
current controllers. It is reported that zero dynamics are
stable for a three-phase single-stage PV system. However,
the MPPT controller was ignored. The effect of the grid
impedance on the stability of a grid-connected VSC was
addressed, where grid strength, operating point variation,
and control loop parameters effects were studied [20], [22].
However, these studies did not consider the PVG dynamics
and MPPT nonlinearities. Additionally, in existing liter-
ature, the stability analysis is conducted considering the
time-domain approximation, which cannot predict a limit
cycle behavior of a critically stable system. Moreover,
the dynamic performance enhancement considering the
MPPT nonlinearity under various operating conditions is not
reported.

The well-known small-signal analysis is applied to lin-
earize continuous nonlinear dynamics in the time domain.
The grid-connected PV system contains both continuous and
discontinuous elements. Therefore, linear studies based on
the Bode diagram, Nyquist plot, and root locus analysis are
not applicable anymore. In linear systems, the requirement for
a linear, critically stable system is rigorous, where the point
(−1, j0) in the s-plane must be crossed by the Nyquist curve.
On the contrary, in nonlinear systems, the oscillation criterion
is difficult to find using linear analysis tools, restricting
some quantitative analyses [23]. In contrast, a describing
function (DF) is a frequency-domain approximation that
can characterize the nonlinear behavior of a critically stable
system.

A few stability analysis studies have been conducted using
the DF method [4], [24], [25]. In [24], the stability of a
PV connected to a weak grid system was conducted using
the DF. Considering the modified P&O method, a reference
power generation loop was proposed; however, the power
injected into the grid is constant and lower than the MPP
power. In [24], no mathematical derivation was reported
to model the limit cycle characteristics as a function of
the MPPT perturbation step size and sampling time. More-
over, no compensation technique was reported to suppress
oscillations and improve the dc- and ac-side dynamics.
Additionally, the system’s behavior under a wide range of
operating points was not reported. In [25], a constant power
generation loop was proposed, a stiff grid was considered,
and the DF method was used as an analysis tool. However,
the study is limited to the characterization of the limit cycle
behavior, ignoring the effect of the MPPT sampling time,
dc- and ac-side uncertainties, and input/output impedance
interactions. Furthermore, a compensation technique to
suppress low-frequency oscillations was not reported. In [31],
a P&O-based power control loop was proposed to analyze
the system’s stability. The effect of the perturbation step size
and filters was considered in the stability analysis. However,
an analytical model for the MPPT was not developed, and
techniques to improve the dynamic performance were not
reported.

It is apparent from the preceding survey that the nonlinear
stability analysis of grid-connected PV systems has the
following drawbacks.

1) The DF-based analysis reported in the literature did not
consider the INC-based MPPT parameter-dependent
mathematical model to characterize the nonlinear
system dynamics and determine the optimal MPPT
parameters, and

2) To the best of the authors’ knowledge, considering
the discontinuity of the system, the literature did not
develop an active stabilization method to suppress the
oscillations and facilitate stability under a wide range
of operating conditions.

Motivated by these shortcomings in the literature, this
paper presents a comprehensive DF-based nonlinear stability
analysis and active compensation method for a utility-scale

133334 VOLUME 10, 2022



M. M. Rahman, Y. A.-R. I. Mohamed: Nonlinear Stability Analysis and Active Compensation

FIGURE 1. Utility-scale single-stage PV system.

single-stage grid-connected PV system. First, the INC-based
MPPT analytical model is derived and used in the DF-based
analysis to characterize the impact of the MPPT sampling
time and perturbation step size on oscillation magnitude
and frequency. Then, the limit cycle characteristics of the
complete system dynamics are analyzed under different
operating conditions and parameters. Furthermore, an active
compensator is proposed to improve the damping and
mitigate oscillations in the nonlinear system under various
operating conditions. The contributions of this paper to the
research field are as follows.

1) Developing an INC-based MPPT analytical model and
using it in the DF-based analysis to characterize the
impact of the MPPT sampling time and perturbation
step size on oscillation magnitude and frequency,

2) Analyzing the oscillatory behavior of the complete
utility-scale PV-VSC system considering the MPPT
nonlinearity, PVG operating points, and changing
system parameters, and

3) Developing an active compensator that reduces the
oscillations and improves the stability and dynamic
performance in the presence of the MPPT nonlinear
dynamics.

The remainder of the paper is structured as follows.
A detailed system model is developed in Section II for a
utility-scale PV system. The DF and its principle for the
stability study are presented in Section III. In Section IV,
the mathematical model of the entire system is derived,
considering the continuous and discrete parts as a
function of the MPPT parameters. Section V presents a
detailed stability analysis using the DF method. Section VI
presents the proposed active compensation method. Finally,
detailed nonlinear simulation results are presented in
Section VII to verify the accuracy of the analytical

results and the effectiveness of the proposed compensation
method.

II. MODELING OF UTILITY-SCALE PV SYSTEM
The power circuit model of the complete system is presented
in this section. Fig. 1 shows the configuration of a utility-scale
grid-connected PV-VSC system. Table 1 in Appendix A gives
the PV and dc-link parameters; the PV module parameters
are selected from the Mitsubishi Electric PV-UD190MF5
datasheet [35]. The ac-side and control parameters are given
in Appendix A - Tables 2 and 3, respectively, and they are
selected following the standard guidelines of grid-connected
converters [5], [36].

A. VSC-PV SYSTEM MODEL
Insulated-gate-bipolar-transistors (IGBT) with antiparallel
diodes are used in the three-phase VSC, as shown in
Fig. 1. The dc-cable, with resistance (Rdc) and inductance
(Ldc), connects the PVG to the dc-link capacitor (Cdc). The
interface reactor has a resistance (Rf ) and inductance (Lf ).
The ac-side filter capacitance (Cf ) attenuates the switching
harmonics, and a step-up transformer connects the VSC to
the grid system. The grid impedance has a resistance (Rg)
and inductance (Lg). vg represents the grid voltage. The
mathematical model in the d-q framewith an angular velocity
(ω) is given by(

Rf + sLf
)
Id − ωLf Iq = Vid − Vsd (1)(

Rf + sLf
)
Iq + ωLf Id = Viq − Vsq (2)

sC f Vsd − ωCf Vsq = Id −
1
N
Igd (3)

sC f Vsq + ωCf Vsd = Iq −
1
N
Igq (4)(

Rg + sLg
)
Igd − ωLgIgq =

1
N
Vsd − Vgd (5)
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FIGURE 2. PV-VSC control diagram.

(
Rg + sLg

)
Igq + ωLgIgd =

1
N
Vsq − Vgq (6)

sCdcVdc = Ipv − 1.5
(
Md Id +MqIq

)
(7)

where
(
Vid ,Viq

)
,
(
Vsd ,Vsq

)
,
(
Id , Iq

)
,
(
Vgd ,Vgq

)
, and(

Igd , Igq
)
are the inverter side d-q voltage, the voltage of the

shunt capacitor (vs), reactor current, the grid voltage
(
vg
)
and

the grid current
(
ig
)
, respectively. The VSC dc-side voltage

is Vdc, PV current is Ipv, N is the transformer ratio, and s is
the transformation operator in the Laplace domain.

Balanced ac voltages are considered for the mathematical
model derivation in (1)-(7). The voltage Vsd is aligned to
the d-axis and in a steady-state Vsq = 0. The PV array is
structured with Np parallel strings with Ns series-connected
PV modules. The PV array current Ipv is given by

Ipv = NpIph − NpIrs

(
exp

{
q
(
Vpv +

(
Ns
/
Np
)
RsIpv

)
NsnsAkT

}
−1

)

−
Vpv +

(
Ns
/
Np
)
RsIpv(

Ns
/
Np
)
Rsh

(8)

where the PVmodule equivalent series and shunt resistance is
Rs and Rsh, respectively. The photon-generated current is Iph,
the p-n junction reverse saturation current is Irs, the electric
charge is q, the Boltzmann constant is k , and the diode ideality
factor is A.
The dc cables are used to transmit power generated by the

PV array to the VSC system, and cable dynamic is given by

Ldc
dIpv
dt
+ RdcIpv = Vpv − Vdc (9)

where Ldc and Rdc is the resistance and inductance of the
dc-cable, respectively [28].

B. PV-VSC CONTROL DESIGN
The PV-VSC control system is shown in Fig. 2, where
the outer voltage controller generates the reference dc-link
voltage (V ∗dc) through the MPPT algorithm. The ac current

regulation is achieved through the inner current controller,
and for unity power factor operation i∗q = 0 [1]. The
dc voltage controller (Gvdc(s)) processes the error signal
between Vdc and V ∗dc and generates the active power
generation reference current (i∗d ) as shown in Fig. 2. The
signal after Gvdc(s) is multiplied by a gain of ‘‘−1’’ to
compensate for negative dc-power injection. A proportional-
integral (PI) controller, Gi (s), is used to regulate the currents
id and iq to their reference values i∗d and i∗q. The control loop
dynamics are

I∗d = −
(
V ∗dc − Vdc

)
Gvdc(s) (10)

Vid =
(
I∗d − Id

)
Gi (s)− ωLf Iq + Vsd (11)

Viq =
(
I∗q − Iq

)
Gi (s)+ ωLf Id + Vsq (12)

where Gvdc (s) = K vdc
p + K vdc

i

/
s and Gi (s) = K i

p +

K i
i

/
s. K vdc

p and K i
p represent the proportional gains and K

vdc
i

and K i
i represent the integral gains, for Gvdc(s) and Gi (s),

respectively.
The inner and outer current controllers are explained in the

subsequent subsections.

1) INNER CURRENT CONTROL
The inner current control loop regulates id and iq to their
reference values to regulate the active and reactive power
injection. For a fast current control response and to achieve
high bandwidth (BW) characteristics of the closed-loop
control system, the BW (ωi = 1/

τi
) is usually selected in the

range of 10-20% of the switching frequency (ωsw = 2π fsw)
of the VSC, where τi is the time constant of the closed-loop
current control [36]. The transfer function between the actual
and reference current vectors EI and EI∗ can be given by

EI
EI∗
=

K i
p

/
Lf

s+ K i
p

/
Lf

(13)
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FIGURE 3. Typical structure of a nonlinear system.

From (13), K i
p = Lf

/
τi and K i

i = Rf
/
τi where 1

/
τi is the

BW (Lf
/
K i
p) of the current control loop of the VSC.

2) DC-LINK VOLTAGE CONTROL
The voltage control loop is slower than the inner current
controller loop. Therefore, to ensure that the phase delay of
the current control loop at the gain cross-over frequency is
negligible, the BW of the voltage control loop (ωvdc) should
be chosen adequately lower than the BW of the inner current
control loop (ωi) [2], [36]. The dc-side voltage control open-
loop gain is given by

lvdc (s) =
2
(
1+ τps

) (
K vdc
p + K

vdc
i

/
s
)

Cdcs (1+ τis)
(14)

where τp = 2Lf P0pv/3
(
v0sd
)2

is a positive time constant when
the system operates in the inverting mode [3]. The gain of
Gvdc (s) can be computed as

K vdc
p =

K vdc
i tan θvdc
ωvdc

;

K vdc
i =

Cdcω2
vdc

√
1+ (τiωvdc)2

ωvdc

√
1+ (tan θvdc)2

√
1+

(
τpωvdc

)2
θvdc = PM vdc + tan−1 (τiωvdc)− tan−1

(
τpωvdc

)
(15)

where PM vdc and ωvdc are the phase margin and cut-off
frequency of the dc-side voltage control, respectively.

III. DESCRIBING FUNCTION METHOD-BASED LIMIT
CYCLES CHARACTERIZATION
The DF method is a frequency-domain approximation.
It can approximate the response characteristics of nonlinear
systems, including the amplitude and frequency of oscil-
lation [29]. In contrast, the linearization technique uses
time-domain analysis for nonlinear elements [30]. The DF
is concise and effective in analyzing stability, especially
nonlinear dynamics. The control system structure is shown
in Fig. 3 [31]. Assuming the input to the nonlinear part is
sinusoidal as, x (t) = Esinωt where E is the magnitude of
the input signal and ω is the angular frequency. The nonlinear
system output is y (t). As the plant shows low-pass nature,
higher-order harmonics are filtered out, resulting in only the
fundamental output element. The complex ratio of amplitudes
and phase angles between fundamental components of the
output of a nonlinear element to the input sinusoid defines

FIGURE 4. Stability analysis using the DF method: (a) stable state,
(b) unstable state, and (c) critically stable state.

the DF as [30]

GD(E) =
Y1(E, ω)

E
ejθ1 (16)

From Fig. 3, the nonlinear element is GD(E), and the
total linear components are in G(jω). The closed-loop
characteristic equation G(jω) = −1

GD(E)
is fulfilled if −1

GD(E)
graphically intersects G(jω) Nyquist plot. The intersection
point provides information on oscillation frequency (ω)
and amplitude (E). The linear case where G(jω) encloses
the (−1, j0) point in the Nyquist investigation can be
continued to the nonlinear case where G(jω) encircles the
−1

GD(E)
. Therefore, the stability can be decided based on the

corresponding position of −1
/
GD(E) and G(jω) as [32]

(i) A stable system, as displayed in Fig. 4(a) if−1
/
GD(E)

is not surrounded byG(jω), whereas if it is surrounded,
the system is unstable, as demonstrated in Fig. 4(b).

(ii) A critically stable system if two curves intersect,
as shown in Fig. 4(c), and a limit cycle exists at the
point of intersection.

If a disturbance is applied to a point, P1, as shown in
Fig. 4(c) such that if E is increased from E to E + 1E ,
−1
/
GD(E +1E) shifts to the left of P1, resulting in a stable

systemwith reduced limit cycle amplitude. On the other hand,
if E is decreased from E to E − 1E , −1

/
GD(E +1E)

shifts to the right of P1, resulting in an unstable system. As a
result, the limit cycle magnitude increases, and the operating
point moves toward P1, resulting in an asymptotically stable
system.

IV. DF-BASED STABILITY ANALYSIS AS A FUNCTION OF
MPPT PARAMETERS
The incremental conductance (INC)-based MPPT loop is
nonlinear and discontinuous, creating periodic large-signal
behaviors named limit cycles. But, the classical linearization
technique (small-signal) cannot describe its properties, such
as the magnitude and frequency of oscillation. Therefore,
an MPPT parameter-dependent mathematical model is
required to characterize the nonlinear MPPT behavior.

A. MATHEMATICAL MODEL OF MPPT CONTROLLER
Nowadays, digital implementation is preferred for MPPT
algorithms. An MPPT parameter-dependent model of the
entire system is shown in Fig. 5, which consists of a sign
function and linear plant. Mathematically, an INC-based
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FIGURE 5. DF-based model of the system.

algorithm can be expressed as

H⇒
1
Vdc

dPpv
dV dc

=
Ipv
Vdc
+

dIpv
dV dc

H⇒ e =
Ipv
Vdc
+

dIpv
dV dc

(17)

where the error signal (e) can be approximated in a discrete-
time domain by applying the forward Euler method as

e (k) =
Ipv (k)
Vdc (k)

+
1Ipv (k)
1Vdc (k)

(18)

At the MPP e = 0, the perturbation is unchanged.
However, e is positive on the left and negative on the right
side of the MPP. Therefore, a step size (ε) on the left of the
MPP increases V ∗dc, whereas it decreases V

∗
dc when it is on the

right side of the MPP. Linearizing (18) around the MPP

e = e
(
Vmpp, Impp

)
+
∂e
(
Vdc, Ipv

)
∂Vdc

∣∣∣
MPP

(
Vdc − Vmpp

)
+
∂e
(
Vdc, Ipv

)
∂Ipv

∣∣∣
MPP

(
Ipv − Impp

)
(19)

At the steady-state point
(
Vmpp, Impp

)
∂e
(
Vdc, Ipv

)
∂Vdc

∣∣∣
MPP
=
−IMPP
V 2
MPP

and
∂e
(
Vdc, Ipv

)
∂ipv

∣∣∣
MPP
=

1
Vmpp
(20)

From (19) and (20), the error signal is obtained as

e =
−IMPP
V 2
MPP

(
Vdc − Vmpp

)
+

1
Vmpp

(
Ipv − Impp

)
(21)

Linearizing the PV curve around the MPP by a tangent with
a slope −1/RMPP results

Ipv − Impp =
−1
RMPP

(
Vdc − Vmpp

)
(22)

Substituting (22) into (21) describes the MPPT action as

ẽ = kmṼdc (23)

where, km = −2
VmppRMPP

.

B. DF-BASED ANALYSIS AS A FUNCTION OF MPPT
PARAMETERS
The DF of the relay function, shown in Fig. 5, is
GD(E) = 4ε

πE . The error is adjusted and processed by a
digital integrator (DI). For digital implementation, the DI is
represented by the forward Euler form of Ts

/
(z− 1). The

discrete-time signal can be transformed into a continuous

counterpart using a zero-order hold (ZOH) block to generate
V ∗dc, where GZOH (s) = 1− e−sTs

/
sTs.

From (7),

sCdcVdc = Ipv − 1.5
Vsd
Vdc

Id = Ipv + α1Id (24)

where α1 = 1.5Vsd
/
VdC . Linearizing (24) around the

operating points and considering α2 = −
∂Ipv
∂Vdc

∣∣
(Ipv0,Vdc0,Id0)

,

Vdc(s)
Id (s)

=
α1

sCdc + α2
(25)

The outer controller output (I∗d ) is processed by a current
controller to generate Id . Finally, using (25), the transfer
function between Vdc(s) and V ∗dc(s) can be obtained as

Tc (s) =
Vdc(s)
V ∗dc(s)

=
α1K vdc

i

/
α2τi

s2 +
(
1
/
τi
)
s+ α1K vdc

i

/
α2τi

(26)

Comparing the system with a second-order system results in

Tc (s) =
Vdc(s)
V ∗dc(s)

=
1

2τ 2i s
2 + 2τis+ 1

(27)

The linear part transfer function with z = esTs results

G (s) =
km
(
1− e−sTs

)
sTs

(
esTs − 1

) (
2τ 2i s

2 + 2τis+ 1
)

=
km (1− sTs)

sTs
(
2τ 2i s

2 + 2τis+ 1
) (28)

Based on the relationship of G(jω) = −1
GD(E)

and substituting
the real and imaginary components results

E =
4εkm
πTs

(τi + Ts) and ω2
=

1
2τi (τi + Ts)

(29)

From (29), the limit cycle magnitude (E) depends on
ε. Also, a higher value of the MPPT sampling time (Ts)
results in a lower oscillation frequency and vice-versa. From
Fig. 6(a), if Ts increases, the intersection point of G (jω) and
−1

GD(E)
moves towards the right from A to C. Therefore, the

dominant poles move closer to the imaginary axis, resulting
in a slower response. Fig. 6(b) demonstrates a critically
stable system; when ε increases from 0.25 to 0.75 V, the
oscillation magnitude increases, but there is a slight change
in the oscillation frequency. The oscillation magnitude and
frequency for different sampling times can be calculated as
AA = .022 W
AB = .018 W
AC = .017 W


ωA = 378 rad/s
ωB = 289 rad/s
ωC = 213 rad/s

AD = 1000 W
AE = 550 W
AF = 100 W


ωD = 86 rad/s
ωE = 74 rad/s
ωF = 62 rad/s

For smaller values of ε and larger values of Ts, the dominant
pole moves close to the imaginary axis resulting in a slower
response with a higher settling time, as shown in Fig. 7.
However, larger values of ε result in a faster response, which
increases the oscillation amplitude.
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FIGURE 6. The Nyquist and DF diagrams: (a) effect of Ts and (b) effect
of ε.

FIGURE 7. Effect of MPPT parameters on system performance.

V. DESCRIBING FUNCTION-BASED STABILITY ANALYSIS
OF A PV-VSC SYSTEM
The transfer function of the entire system is determined, and
a DF-based comprehensive analysis is carried out to assess
the oscillatory behavior under different operating conditions
and varying system parameters.

A. TRANSFER FUNCTION OF THE PV-VSC SYSTEM
Linearizing the PV power and separating the linearized
quantities gives 1PPV = V 0

PV1IPV + I0PV1V PV . Finally,
at the MPP, for Np parallel strings with Ns series PV modules

1IPV = −
Np
Ns

IMPP
VMPP

1V PV = KPV1V PV (30)

where, KPV = −
Np
Ns

IMPP
VMPP

.

From (1), (2), and (7),

1Id =
ωL f1Iq + V 0

dc1Md +M0
d1V dc

sLf + Rf
(31)

1Iq =
−ωL f1Id + V 0

dc1Mq +M0
q1V dc

sLf + Rf
(32)

1V dc =
−1.5

(
M0
d1Id + I

0
d1Md +M0

q1Iq
)

Cdcs− KPV
(33)

From (1), (2), and (31)-(33), considering Rf ≈ 0,

1Id = A11Md + A21Mq (34)

1Iq = A31Md + A41Mq (35)

1V dc = A51Md + A61Mq (36)

where the equation can be derived, as shown at the bottom of
next page. From the control diagram shown in Fig. 2,

1Md =
[(
1V dc −1V ∗dc

)
Gvdc (s)−1Id

]
Gi (s) (37)

1Mq = −1IqGi (s) (38)

From (34)-(38),

1Iq =
A3

1+ A4Gi (s)
= A71Md (39)

1Id = [A1 − A2Gi (s)A7]1Md = A81Md (40)

1V dc = [A5 − A6Gi (s)A7]1Md = A91Md (41)

Substituting the values of1Id ,1Iq and1V dc in (37) results

1V dc

1V ∗dc
= G (s) =

A9Gvdc (s)Gi (s)
Gvdc (s)Gi (s)A9 − A8Gi (s)− 1

(42)

Equation (42) is used to analyze the limit cycle character-
istics of the PV-VSC system using the DF method, where the
system parameters are listed in Appendix A.

B. OVERALL PV-VSC SYSTEM STABILITY STUDY
Fig. 8 shows the Nyquist diagram of the entire system
dynamics at different PVG operating conditions and varying
system parameters. Fig. 8(a) shows that the system remains
stable at the MPP and points on the right side of the MPP.
However, movement of the operating point to the left of the
MPP (voltage lower than the MPP voltage) greatly influences
the oscillation amplitude and suffers from low-frequency
stability problems. As a result, the oscillation amplitude
and frequency on the left side of the MPP are 5.1 kW
and 205 rad/s (equivalent frequency is 33 Hz), respectively.
Reduced dc-link capacitor (Cdc) with operating points on the
left side of the MPP results in a critically stable system with
increasing oscillation magnitude, as shown in Fig. 8(b). For
Cdc = 1000 µF, the oscillation magnitude and frequency are
3.7 kW and 94.2 rad/s, respectively. The effect of changing
the ac-side filter inductance on the system behavior is shown
in Fig. 8(c). As Lf changes from 0.1 to 0.5 mH, the system
becomes stable. However, for Lf = 0.1 mH, the oscillation
is more prominent and results in a critically stable system
with an oscillation magnitude and frequency of 22.2 kW and
114 rad/s, respectively.
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VI. PROPOSED ACTIVE COMPENSATOR STRATEGY FOR
THE PV-VSC SYSTEM
The DF-based analysis showed that the grid-connected PV
system might suffer high oscillations due to the nonlinear
MPPT dynamics and changes in the PVG operating con-
ditions and system parameters. To overcome this difficulty
in a simple way, this paper presents an effective active
compensation technique that reduces the dc-side impedance
of the VSC in a way that minimizes undesirable interactions
between the VSC and MPPT controller. The proposed active
compensator modifies the converter impedance by injecting
a compensation signal in the d-axis control structure of
the VSC interface to maintain stability and high damping
capability at different operating conditions and in the
presence of MPPT nonlinearity. In a PV-VSC system, the dc-
link voltage (Vdc) is usually measured. Therefore, it is used
in the proposed compensator to map the voltage dynamics to
the closed-loop system to achieve the desired dynamics [34].

A. VSC DC-SIDE IMPEDANCE DERIVATION
From the power balance equation

VdcIdc = 1.5
(
Vid Id + ViqIq

)
(43)

The relationship between Id − Vsd and Vid − Vsd can be
expressed in a small-signal sense as

1Id =
(
sCf +

1
N 2 ·

1
Zg

)
1V sd (44)

1V id =

[
1+

(
Rf + sLf

) (
sCf +

1
N 2 ·

1
Zg

)]
1V sd (45)

From (10) and (11),

1V sd =
M0
d + Gvdc(s)Gi(s)(

Rf + sLf + Gi(s)
) (
sCf + 1

N 2 ·
1
Zg

)1V dc (46)

From (43),

V 0
dc1Idc + I

0
dc1V dc

= 1.5
(
V 0
id1Id + I

0
d1V id + V 0

iq1Iq + I
0
q1V iq

)
(47)

From the voltage orientations, the q-axis inverter output
voltage is zero and I0q = 0 for unity power factor operation.
From (44), (45), and (47),

V 0
dc1Idc + I

0
dc1V dc

=
1.5

N 2
(
Rg + sLg

)
×

[
I0dN

2LgLf Cf s3 +
{
N 2LgCf

(
V 0
id + I

0
dRf

)
+ I0dN

2Lf RgCf
}
s2 +

{
N 2RgCf

(
V 0
id + I

0
dRf

)
+ I0d

(
Lf + N 2Lg

)}
s+V 0

id + I
0
d

(
Rf + N 2Rg

)]
1V sd

(48)

From (46) and (48), the small-signal dc-side impedance
(1Zdc) can be calculated as

1Zdc =
1V dc

1Idc
=
V 02
dc

(
β5s5 + β4s4 + β3s3 + β2s2 + β1s

)
α5s5 + α4s4 + α3s3 + α2s2 + α1s+ α0

(49)

where the coefficients α5, α4, α3, α2, α1, α0, β5, β4, β3, β2,
and β1 are listed in Appendix B.

A1 =
Lf CdcV 0

dcs
2
− Lf

(
1.5I0dM

0
d + KPVV

0
dc

)
s+

(
1.5M02

q V 0
dc − 1.5I0dM

0
qωL f

)
L2f Cdcs

3 − L2f KPV s
2 +

(
Cdcω2L2f + 1.5M02

d Lf + 1.5M02
q Lf

)
s− KPVω2L2f

A2 =
ωL f CdcV 0

dcs−
(
ωL f KPVV 0

dc + 1.5M0
dM

0
qV

0
dc

)
L2f Cdcs

3 − L2f KPV s
2 +

(
Cdcω2L2f + 1.5M02

d Lf + 1.5M02
q Lf

)
s− KPVω2L2f

A3 =
−

(
ωL f CdcV 0

dc + 1.5I0dM
0
qLf

)
s+ 1.5I0dM

0
dωL f + ωL f KPVV

0
dc − 1.5M0

dM
0
qV

0
dc

L2f Cdcs
3 − L2f KPV s

2 +

(
Cdcω2L2f + 1.5M02

d Lf + 1.5M02
q Lf

)
s− KPVω2L2f

A4 =
Lf CdcV 0

dcs
2
− Lf KPVV 0

dcs+ 1.5M02
d V 0

dc

L2f Cdcs
3 − L2f KPV s

2 +

(
Cdcω2L2f + 1.5M02

d Lf + 1.5M02
q Lf

)
s− KPVω2L2f

A5 =
−1.5

(
L2f I

02
d s2 +M0

dV
0
dcLf s+ I

0
dω

2L2f −M
0
qV

0
dcωL f

)
L2f Cdcs

3 − L2f KPV s
2 +

(
Cdcω2L2f + 1.5M02

d Lf + 1.5M02
q Lf

)
s− KPVω2L2f

A6 =
−1.5

(
M0
qV

0
dcLf s+M

0
dV

0
dcωL f

)
L2f Cdcs

3 − L2f KPV s
2 +

(
Cdcω2L2f + 1.5M02

d Lf + 1.5M02
q Lf

)
s− KPVω2L2f
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FIGURE 8. Low-frequency stability study: (a) effect of changes in the PVG
operating points, (b) effect of Cdc and (c) ) effects of Lf .

FIGURE 9. Schematic diagram of the proposed active compensator.

B. PROPOSED ACTIVE COMPENSATOR
A simple yet effective active compensation technique (shown
in Fig. 9) is proposed to reduce the oscillations and improve
the stability of the PV-VSC system under different operating

FIGURE 10. Converter impedance reduction with the proposed
compensator.

conditions. In this method, a scaled version of the measured
dc-link voltage (Vdc) is scaled by a gain (Kv) and processed
by a first-order low-pass filter with a transfer functionH (s) to
generate the damping signal (idmp). The latter is injected into
the d-axis control channel of the interfacing VSC. The low-
pass filter has a cut-off frequency of ωc. The damping signal
can be expressed as

idmp = Kv
ωc

s+ ωc
Vdc (50)

The compensators parameter are designed by varying ωc and
Kv to achieve reduced voltage oscillations in the dc-link.
The optimal selection of the compensator parameters ensures
high damping and reduces unsatisfactory interactionswith the
MPPT controller. The control law in (11) with the proposed
compensator can be expressed as

vid =
(
i∗d − id − idmp

)
Gi (s)− ωL f iq + vsd (51)

The modified1V sd −1V dc relationship can be expressed as

1V sd =
M0
d + Gvdc (s)Gi (s)+ Gi (s)Kv

ωc
s+ωc(

Rf + sLf + Gi(s)
) (
sCf + 1

N 2 .
1
Zg

) 1V dc (52)

From (48) and (52), the modified dc-side impedance
(1Zdc−com) with the proposed compensator can be
determined as

1Zdc−com

=
1V dc

1Idc

=
V 02
dc

(
A6s6 + A5s5 + A4s4 + A3s3 + A2s2 + A1s

)
B6s6 + B5s5 + B4s4 + B3s3 + B2s2 + B1s+ B0

(53)

where the coefficients A6, A5, A4, A3, A2, A1, A0, B6, B5, B4,
B3, B2, B1 and B0 are listed in Appendix B.
Fig. 10 shows the profile of the converter impedance with

different cut-off frequencies and gains. The proposed com-
pensator reduces the converter impedance in a wide range of
frequencies corresponding to the dc-link voltage oscillations
originating from the nonlinear MPPT dynamics. The reduced
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impedance reduces interactions with the nonlinear MPPT
controller and yields higher damping capability and reduced
oscillations than the uncompensated system.

VII. EVALUATION RESULTS
Detailed nonlinear time-domain simulations of the PV-VSC
system depicted in Fig. 1 are conducted to evaluate the
analytical results and the performance of the proposed active
damping scheme. The simulation study is implemented in the
Matlab/Simulink environment using the switching models of
the VSC. A sample time of 20 µs is used for the discrete-type
simulation. The complete system and control parameters are
listed in Appendix A. The model is tested under a wide range
of operating conditions. The following simulation scenarios
are reported:

1) Influence of MPPT parameters.
2) Operation under varying dc-link capacitor and filter

inductor.
3) Operation of the uncompensated PV-VSC system.
4) Operation with the proposed compensator.
5) Operation under fault.
6) Operation under grid-voltage parameter variation.
7) Operation under a weak grid condition.

A. INFLUENCE OF MPPT PARAMETERS
Fig. 11 shows the dc-link voltage (Vdc) response under
changing MPPT parameters. If the step size (ε) increases
from 0.25 to 0.75 V at t = 1.5 s (with sampling time,
Ts = 0.02 s), the dc-link voltage oscillation increases,
as shown in Fig. 11(a), verifying the higher oscillation
magnitude revealed in the theoretical analysis presented in
Section IV. The oscillation amplitude and frequency are
1.0 kV and 14.25 Hz (low-frequency oscillation), respec-
tively, for ε = 0.75 V. However, the limit cycle frequency
does not change. Fig. 11(b) presents the Vdc response when
Ts changes from 0.001 to 0.01 s. The smaller value of
the MPPT sampling time gives a faster transient response,
as illustrated in Fig. 11(b). Therefore, the MPPT parameters
play an important role in assessing the complete dynamic
behavior of a grid-connected PV-VSC system.

B. OPERATION UNDER VARYING DC-LINK CAPACITOR
AND FILTER INDUCTOR
This case study demonstrates the effects of the dc-link
capacitance (Cdc) and filter inductance (Lf ) on the dc-link
votlage dynamics. If Cdc changes from 3000 to 1000 µF,
with the PVG operating point moving to the left of the
MPP, higher oscillations are yielded, as shown in Fig. 12(a).
Fig. 12(b) shows the effect of Cdc when a disturbance
is enforced at t = 1.0 s with a duration of 0.06 s by
connecting a shunt resistance. Under the disturbance, if Cdc
changes from 3000 to 5000 µF, Vdc suffers from higher
oscillations, as demonstrated in Fig. 12(b). If Lf decreases,
more oscillations are seen when the PVG operates on the
left of the MPP, as shown in Fig. 12(c). The oscillation
frequencies are 110 and 92 rad/s when Lf changes from

FIGURE 11. DC-link Voltage response: (a) the effect of ε and (b) the effect
of Ts.

0.1 to 0.5 mH, respectively. Therefore, it is clear that different
selections of system parameters might introduce oscillations
at changing PVG operating conditions.

C. UNCOMPENSATED PV-VSC SYSTEM
Fig. 13 shows the nonlinear time-domain uncompensated Vdc
and injected ac current (Id ) responses for changing dc-link
voltage reference. The change in the operating point yields
a critically stable system. Vdc oscillates with a frequency of
42.9 Hz for an operating point of the left side of the MPP,
as shown in Fig. 13(a), validating the theoretical analysis. The
oscillations in Vdc is reflected in the Id response, as shown
in Fig. 13(b). However, the system remains stable when it
operates at the MPP.

D. OPERATION WITH THE PROPOSED COMPENSATOR
The compensator proposed in (51) is added to the system
model, and the response is demonstrated in Fig. 14.
Compared to the uncompensated response in Fig. 13, the
proposed compensator provides a high damping capability
in the overall PV-VSC system. As a result, Vdc (shown
in Fig. 14 (a)) remains stable, and the oscillation frequency
changes from 269 to 78.5 rad/s even if the operating
point moves, reflecting the effectiveness of the proposed
compensator. Moreover, the oscillations in the injected ac
currents are reduced, as shown in Fig. 14(b), verifying that the
proposed compensator adds positive damping to the system.
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FIGURE 12. Performance under changing parameters: (a) Cdc , (b) Cdc
with disturbance, and (c) Lf .

E. OPERATION UNDER FAULT
A fault (phase A to ground) is introduced at t = 0.6 s for
0.2 s at the grid side to investigate the effectiveness of
the proposed compensator. The uncompensated Vdc response
shown in Fig. 15(a) is subjected to undershoot at the fault
instant (t = 0.6 s) and overshoot once the fault is
cleared with a high settling time. The proposed compensator
reduces the overshoot in Vdc from 1.10 p.u. to 1 p.u. and
demonstrates better damping. The proposed compensator
also demonstrates better damping against the undershoot,
which changes from 0.53 to 0.95 p.u., as shown in Fig. 15(a).
The DF-based works already published in the literature did
not consider dynamic performance improvement strategies
under varying operating points and faults.

FIGURE 13. Uncompensated response: (a) Vdc and (b) Id .

FIGURE 14. Compensated system response: (a) Vdc and (b) Id .

F. OPERATION UNDER GRID-VOLTAGE PARAMETER
VARIATION
The phase angle of phase A of the grid voltage is shifted by
30◦, and its effect is shown in Fig. 15(b). The uncompensated
Vdc suffers from an undershoot of 0.8 p.u. and overshoot
of 1.03 p.u. at t = 0.4 s and t = 0.6 s, respectively.
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FIGURE 15. DC-link voltage response: (a) fault and (b) grid-voltage phase
angle change.

FIGURE 16. Performance under weak grid: (a) Uncompensated and (b)
Compensated Vdc .

A similar scenario has been applied to the compensated
system where a remarkably improved transient response is
achieved, as shown in Fig. 15(b), implying the robustness
of the proposed compensator against grid-voltage parameter
variation.

G. OPERATION UNDER A WEAK GRID CONDITION
The operation and performance investigation of the proposed
compensator under a weak grid (short circuit ratio is 2) is
evaluated in this section, where the solar insolation level is
changed from 1 to 0.6 kW/m2 at t = 0.3 s. Fig. 16(a) shows

that uncompensated Vdc suffers from higher oscillation under
a weak grid condition. However, the compensated response
shows a better dynamic performance, as shown in Fig. 16(b),
implying increased damping under weak grid conditions.

VIII. CONCLUSION
This paper has presented a comprehensive DF-based nonlin-
ear stability analysis and active compensation method for a
utility-scale single-stage grid-connected PV system. First, the
INC-based MPPT model is derived and used in the DF-based
analysis to characterize the impact of the MPPT sampling
time and perturbation step size on oscillation magnitude
and frequency. Then, the limit cycle characteristics of the
complete system are analyzed under different operating con-
ditions and parameters. Furthermore, a simple yet effective
active compensator is proposed to improve the damping
and mitigate oscillation under various operating conditions.
Finally, detailed time-domain simulation results verify the
analytical findings and the effectiveness of the proposed
compensator under a wide range of operating conditions. The
key findings of this study are summarized as follows.

1) Changes in the INC-based MPPT sampling time and
step size significantly affect the oscillatory behavior of
the system. A shorter sampling time and larger step size
result in a faster response. However, an increase in the
step size increases oscillationmagnitude; the latter does
not change with the sampling time. Therefore, stability
studies for grid-connected PV-VSC systems should
consider an MPPT parameter-dependent mathematical
model for optimal parameter selection and accurate
stability assessment.

2) The low-frequency stability is mainly affected by
variation in the PVG operating points and reduction in
the dc-link capacitance and ac-side filter inductance.

3) The oscillatory behavior in the nonlinear PV-VSC
system becomes more evident under grid-side single-
line faults, grid-voltage parameter change, and weak
grid conditions. Therefore, nonlinear analysis and
control are essential to enhance the reliability of
grid-connected PV systems.

4) The proposed compensator reshapes the converter
dc-side impedance to reduce undesirable interactions
with the nonlinear MPPT controller, yielding higher
damping capability and reduced oscillations than the
uncompensated system.

APPENDIX
A. SYSTEM PARAMETERS
See Tables 1–3.

B. IMPEDANCE CALCULATION
Uncompensated dc-side impedance

1Zdc =
V 02
dc

(
β5s5 + β4s4 + β3s3 + β2s2 + β1s

)
α5s5 + α4s4 + α3s3 + α2s2 + α1s+ α0

α5 = N 2LgLf Cf
[
1.5I0d

(
V 0
id + V

0
dcK

vdc
p K vdc

i

)
− V 0

dcI
0
dc

]
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TABLE 1. Parameters of the PV panel and DC-link.

TABLE 2. AC-side parameters.

TABLE 3. Control parameters.

α4 = 1.5
[
N 2LgCf

(
V 0
id + I

0
dRf

)
+ I0dLf N

2RgCf
]

+

(
V 0
id + V

0
dcK

vdc
p K i

p

)
+ 1.5I0dN

2LgLf V 0
dc

×

(
K vdc
p K i

i + K
vdc
i K i

p

)
−V 0

dcI
0
dc

[
N 2Cf

(
LgK i

p + LgRf + RgLf
)]

α3 = 1.5I0d
(
Lf + N 2Lg

) (
V 0
id + V

0
dcK

vdc
p K i

p

)
+ 1.5N 2RgCf V 0

id

(
V 0
id + I

0
dRf

)
+ 1.5Cf V 0

dc

×

[
K vdc
p K i

pN
2Rg

(
V 0
id + I

0
dRf

)
+I0dN

2
LgLf K vdc

i K i
i

]
+ 1.5V 0

dc

(
K vdc
p K i

i + K
vdc
i K i

p

)
×

[
N 2LgCf

(
V 0
id + I

0
dRf

)
+ I0dN

2
RgLf Cf

]

−V 0
dcI

0
dc

[
Lf + N 2Cf

(
LgK i

i + RgRf + RgK
i
p

)]
α2 = 1.5I0d

(
Rf + N 2Rg

) (
V 0
id + V

0
dcK

vdc
p K i

p

)
+ 1.5V 02

id

+ 1.5V 0
idV

0
dc

(
K vdc
p K i

i + K
vdc
i K i

pN
2LgCf

)
+ 1.5V 0

dc

(
K vdc
p K i

i + K
vdc
i K i

p

)
×

[
N 2RgCf

(
V 0
id + I

0
dRf

)
+ I0d

(
Lf + N 2Lg

)]
+ 1.5I0dV

0
dcK

vdc
i K i

iN
2Cf

(
LgRf + Lf Rg

)
−V 0

dcI
0
dc

(
K i
p + Rf + K

i
iN

2RgCf
)

α1 = 1.5V 0
dcK

vdc
i K i

i

×

[
N 2RgCf

(
V 0
id + I

0
dRf

)
+ I0d

(
Lf + N 2Lg

)]
+ 1.5V 0

dc

(
K vdc
p K i

i + K
vdc
i K i

p

)
×

[
V 0
id + I

0
d

(
Rf + N 2Rg

)]
− K i

i I
0
dcV

0
dc

α0 = 1.5V 0
dcK

vdc
i K i

i

[
V 0
id + I

0
d

(
Rf + N 2Rg

)]
β5 = N 2LgLf Cf

β4 = N 2Cf
(
LgK i

p + LgRf + Lf Rg
)

β3 = Lf + N 2Cf
(
LgK i

i + RgRf + RgK
i
p

)
β2 = K i

p + Rf + N
2RgCf K i

i

β1 = K i
i

Compensated dc-side impedance

1Zdc−com

=
1V dc

1Idc

= =
V 02
dc

(
A6s6 + A5s5 + A4s4 + A3s3 + A2s2 + A1s

)
B6s6 + B5s5 + B4s4 + B3s3 + B2s2 + B1s+ B0

B6 = N 2LgLf Cf
[
1.5I0d

(
V 0
id + V

0
dcK

vdc
p K vdc

i

)
− V 0

dcI
0
dc

]
B5 = 1.5I0dN

2LgLf Cf
[
V 0
idωc + V

0
dc

(
K vdc
p K i

i + K
vdc
p K i

pωc

+K i
pK

vdc
i − K

i
pKvωc

)]
+1.5

[
N 2LgLf

(
V 0
id + I

0
dRf

)
+ I0dN

2RgLf Cf
]

×

(
V 0
id + V

0
dcK

vdc
p K i

p

)
− V 0

dcI
0
dcN

2Cf

×

[
Lg
(
Lf ωc + Rg

)
+ Lg

(
Rf + K i

p

)]
B4 = 1.5I0dN

2LgLf Cf V 0
dc

×

[
K i
iK

vdc
i +

(
K vdc
p K i

i + K
vdc
i K i

p − K
i
iKv

)
ωc

]
+ 1.5

[
N 2LgCf

(
V 0
id + I

0
dRf

)
+ I0dLf N

2RgCf
]

×

[
V 0
idωc + V

0
dc

(
K vdc
p K i

i + K
vdc
p K i

pωc

+K i
pK

vdc
i − K

i
pKvωc

)]
+1.5

[
N 2RgCf

(
V 0
id + I

0
dRf

)
+ I0d

(
Lf + N 2Lg

)]
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×

(
V 0
id + V

0
dcK

vdc
p K i

p

)
− V 0

dcI
0
dc

×

[
Lf + N 2Cf

{
Lgωc

(
Rf + K i

p

)
+ RgL f ωc

+LgK i
i + Rf Rg + RgK

i
p

}]
B3 = 1.5I0dN

2LgLf Cf K i
iK

vdc
i V 0

dcωc

+ 1.5V 0
dc

[
N 2LgCf

(
V 0
id + I

0
dRf

)
+ I0dLf N

2RgCf
]

×

[
K i
iK

vdc
i +

(
K vdc
p K i

i + K
vdc
i K i

p − K
i
iKv

)
ωc

]
+ 1.5

[
N 2RgCf

(
V 0
id + I

0
dRf

)
+ I0d

(
Lf + N 2Lg

)]
×

[
V 0
idωc + V

0
dc

(
K vdc
p K i

i + K
vdc
p K i

pωc

+K i
pK

vdc
i − K

i
pKvωc

)]
+ 1.5

[
V 0
id + I

0
d

(
Rf + N 2Rg
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