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ABSTRACT Robotics has come a long way from industrial robotic arms and is all set to enter our homes.
The capability of a robot to navigate in an unknown human populated environment with obstacles and
making map simultaneously is one of the significant characteristics in the domain of autonomous robotics.
Further, the problem of robot navigating in a social environment while ensuring human safety and comfort
through social norms needs to be addressed. This article presents a solution for mapping of unknown terrains
with dynamic obstacles using simultaneous localization in social environments through Adaptive Squashing
Function based artificial neural network training, which is able to track the target orientation angles more
efficiently as compared to conventional fixed slope squashing function based backpropagation training
algorithm. The performance of different state of the art techniques have been compared with proposed work
through simulation models. Simulation results demonstrated the effectiveness of the proposed algorithm in
complex environment where the proposed algorithm converged in less than 50% of the iterations taken by
the exhaustive search algorithms and approximately 33% of the iterations taken by random search algorithm.
Further, the proposed approachwas tested in the real-world settings, wherein the robot was deployed to create
map for the Kalpana Chawla Center for Research in Space Science and Technology, Chandigarh University
with mobile humans.

INDEX TERMS Active SLAM, autonomous robot navigation, obstacle avoidance, real-time systems,
socially aware robot navigation, stereo-vision.

I. INTRODUCTION
One of the most important fields in robotics is the capacity
of an autonomous robot to navigate in an unfamiliar
environment while simultaneously generating a map and
localizing itself. Extremely dependable technologies and
solutions have emerged over decades of research and
development on simultaneous localization and mapping
(SLAM) [1]. The technique finds its place in many real-world
robotic applications [2] evolving from simple manipulators to
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driverless cars, targeting almost similar objectives of finding
where the robot is, what its surroundings look like, and how
it can move around.

SLAM tries answering these questions by using LiDAR’s,
RADARs, and Cameras etc., often utilizing multiple sensors
to improve accuracy. Vision sensors in comparison to
LiDAR’s and RADARs, are inexpensive and provide more
information about location and surroundings giving SLAM
(VSLAM) methods more popularity [3] than SLAMmethods
using LiDAR’s or RADARs. In [4], the authors analyze
state of the art VSLAM techniques. Significant developments
towards robust feature extraction contributes majorly to the
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success of SLAM. The references [5], [6], [7] present an
evaluation of feature extractors directed towards VSLAM
applications.

Navigation is a crucial part of SLAM where probabilistic
approaches involving parametric (Filter Based Approaches)
and non-parametric (Monte Carlo) methods address the
inherent uncertainty in orientation of robot, measurement
space and errors [8]. Whereas non-probabilistic methods [9],
formulate uncertainty without incorporating any statistical
estimation resulting in lower accuracy, although decreasing
load substantially [10].

In many applications, the robot is required to define its
trajectory in real time, for unknown environments [11].

However, with low a priori knowledge about the envi-
ronment, performance degrades. The authors in [12] modify
cognitive-based adaptive optimization (CAO) approach [13]
for navigation in unknown terrains while detecting obstacles
and the free space of environment using a stereo vision
camera. But, in real life situations, dynamic obstacles
quickly and un-expectantly take arbitrary shapes, sizes and
orientations. This problem is resolved by Artificial Neural
Networks (ANNs) based reactive algorithm as developed
in [14].

Unlike industrial applications, the behavior of robots in
social environments needs to adapt to social expectations.
Unfavorable social response (e.g., Delivery Robots were
kicked) is inevitable [15], [16] unless the robot path planning
includes elements of human robot interaction (HRI). Socially
Aware Robot Navigation (SARN) can bemade effective if the
robot understands factors like human behavior, social rules,
and environment or infers such factors from context, resulting
in Context Aware Mapping (CAM). Abiding to physical and
social constraints in particular environment and context, the
authors in [17] present a framework catering to reactive and
deliberate components for effective SARN.

A Social Convention block in the framework specifically
takes care of local planning, slightly ahead of real execution,
while catering to social and societal norms, providing
solution in conflicting situations. The Human Motion block
predicts human motion and accordingly adapts the velocity
and geometry of the path to bring naturalness in robot
motion. Social Convention in conjunction with Human
Motion prediction and Context aware mapping delivers
social awareness to the robot, increasing the efficiency
of SARN.

The knowledge of environment and map should not be
a limitation for the deployment of social robots in public
spaces. Further, the element of human robot interaction
is not considered while defining robotic path planning
problems. In this article we present a solution to simultaneous
localization and mapping of unknown terrains with dynamic
obstacles in social environments, addressing the following
objectives:
• To conduct a systematic review and analysis with regard
to SLAM-based techniques for map making by a mobile
robot.

• To propose a novel design of Adaptive Squashing Func-
tion based on Artificial Neural Network for optimum
navigation in social environmentwith dynamic obstacles
for active SLAM

• To evaluate the performance of proposed approach in
comparison to random and exhaustive search algorithm
across different terrains in simulated and real-world
environment in terms of mean squared error and
objective function convergence.

Organization of Paper: The rest of the paper is organized
as follows. Section II describes the related work. Section III
focuses on the proposed system model, and Section IV
describes the simulation as well as experimental result
analysis. Section V concludes the paper with future scope.

II. RELATED WORK
Variousmethods have been developed for SLAM in the recent
years [18], [19], [20]. By maximizing the robot’s entropic
information received through two cameras and an inertial
sensor, extended Kalman Filter (EKF)-based algorithm [21]
could successfully localize and map terrains at theoretical
level. SLAM for robotic navigational aid utilizing visual
range odometry based algorithm for pose estimation is
proposed in [22]. The proposed algorithm involves ego
motion estimation from the range and intensity data of camera
and state estimation through an EKF. In another SLAM
approach [23], based on the covariance matrix from the
EKF algorithm, simulations on a robot with ideal sensors,
proved that conventional exploration algorithms that uses
an EKF on the information from only the bearings can
update the filters in an ill-conditioned manner. As an alternate
approach a line feature-based SLAM [24] that associates line
features through a weighted Euclidean distance measured in
Hough space was studied through infrared sensors for active
exploration. But due to limitations of the embedded robotic
system it could not produce accurate maps.

While few of these methods enabled reliable mapping and
to a certain level solved real-time problems, their solutions
were mostly theoretical, or the implementations required
high accuracy sensors. However, SLAM techniques based
on visual data extracts the information from the cameras.
Since visual data is used, such techniques are computationally
very complex. Few of the techniques have been developed to
reduce this computational burden like using corner detection
to restrict the landmarking process [25] or use of multiple
cameras to reduce the time required for construction of maps
[26]. The authors in [27] propose an approach for autonomous
exploration and SLAM in indoor environments for mobile
robots utilizing polygonmapmaking and graph-based SLAM
with directional end point features. A sparse motion removal
(SMR) model-based approach for robust visual localization
is proposed in [28]. A Bayesian framework is employed
for detecting the dynamic and static portions of an input
frame. The detection uncertainty is reduced by utilizing the
similarity between subsequent frames and the difference
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between the current frame and the reference frame. The work
is extended to dynamic environments in [29].

Passive SLAM techniques focus on constructing the map
when the robot explores the area on a predefined path. This
type of technique is best suited for mapping the empty
space without any obstructions. But, Active SLAM technique
works in real time to create the navigation path of the robot
and its efficiency to map the area depends largely on the
unknown environment [7]. Since the trajectory of the robot
in active SLAM techniques is decided in real time it requires
a strong knowledge of the environment and the positioning
of all the obstacles with high accuracy. Through modified
version of the cognitive-based adaptive optimization (CAO)
approach [12], an autonomous robot with stereo cameras
was developed to localize the robot and map an unknown
space with very less prior knowledge of the environment. The
technique overcame the problems in SLAM presented by the
obstructions of random shape and orientation. The technique
for Active SLAMhowever considers only static obstacles and
does not cater to the future needs where robots will share the
social space with humans who will be moving in the explo-
ration environment. To cater for this futuristic requirement the
exploration robot needs to be able to identify the humans and
perform the exploration tasks without disturbing the humans
around them and ensure the comfort and safety of humans
as well.

The Convolutional Neural Network (CNN) based model
You Look Only Once (YOLO) [30], while working in real-
time allows different elements in the exploration environment
to be detected and further identified as moving and static
objects. Moreover, it can also identify moving objects into
humans or non-humans (pets or machines) The paper utilizes
themodified version of YOLO [31] offering the advantages of
YOLO while utilizing fewer computational resources, solv-
ing the problem of restrictions of computational resources
associated with a movable robotic system. The authors
in [32] utilize Artificial Fish Swarm Algorithm and a
trial based forward search for collision avoidance through
alternative local and global trajectory planning. The proposed
technique performs well even in case of unforeseen obstacles.
Differentiating humans from other moving objects enables
the path planning for the exploration robot as per the human
social conventions [33]. For example, while navigating if
the robot encounters a group of people and there is no
free space available to move, the robot will wait for the
group to disassemble and provide a way, it will never cross
the group and evade their personal space to make its way.
While exploring the environment through Active SLAM, the
navigation path needs be optimized to overpass the possible
local minima causing the deadlocks. A modified SLAM by
mathematically analyzing the CAO parameters has been able
to show progress as it could overcome the deadlock in a faster
and efficient way [12].

However, the existing techniques only optimize the
navigation path under the presence of static obstacles which
are mostly linear. The navigation under social environments

FIGURE 1. Components of the mobile robot used.

(in the presence of humans), involves non-linear paths
due to consideration of social norms while path planning.
The present article proposes a novel approach for active
exploration in an unknown structured and social environment.
The moving robot is required to explore the area, following
the rules of social engagement with the humans, while
simultaneously constructing the map. A modified version
of SLAM has been presented in the present paper that
uses adaptive squashing function [34] to optimize the non-
linearities in the navigation path of the robot in a social
environment.

III. PROPOSED METHODOLOGY
A. SYSTEM MODEL
The schematic of the mobile robot housing different sensors
and actuators is shown in Fig. 1. The mobile robot houses
6 ultrasonic rangefinder sensors (named as S1 to S6 in Fig. 1)
that cover the 180 degrees around (in the front), with a stereo-
vision camera for object detection, which is utilized for map
making during the navigation. Along with the sensors, the
mobile robot is also mounted with 2 independent actuators
(motors, named asM1 andM2 in Fig. 1) attachedwith the two
driving wheels for motion and orientation of the robot in the
human-populated environment. One of the prime objectives
of the mobile robot is to build a map of an unknown terrain
(that includes static obstacles and mobile humans) with the
utilization of the images captured from stereo-vision camera
and navigate the environment to reach the destination in min-
imum possible motion steps, as depicted in Fig. 2. The flow
diagram of the proposed methodology is depicted in Fig. 3.
The navigation starts with detecting whether complete area
has been covered or not. In case if whole area is not covered
semantic mapping takes place where in the robot identifies
objects and humans in the field of view of the camera.
In parallel, the robot also evaluates the proxemics to evaluate
non approachable positions to cater to the social norms.

Subsequently, for the approachable positions the robot
evaluates the path for navigation based upon adaptive
squashing function while utilizing active SLAM in social
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FIGURE 2. Functional flow diagram of the robot.

FIGURE 3. The flow diagram of the proposed methodology.

environment. Further, the robot evaluates its next pose
for navigation and ends navigation, if the complete area
is covered. The details of the proposed methodology are
illustrated in the following subsections.

B. REAL-TIME ACTIVE SLAM
As the robot will navigate in the human populated space, it is
assumed that it mapsM (t) area out of T (t) area at each time-
step t , which in turn reduces the U (t) area. It is assumed that
the robot system has no information of number of humans
moving, location of static obstacles and terrain topology.
Further, it is also assumed that the terrain (for navigation)
is square along the two axes, for analytical simplicity. The
objective of the moving robot is to maximize the covered/
mapped area by covering each point in the terrain through
minimum number of motion steps. The objective function

considering all the constraints for maximization is defined as

J (t + 1) = max

 ∫
a∈M (t)

da ∪
∫

a∈U (t+1)

da


/ xmax∫

xmin

ymax∫
ymin

dxdy

 (1)

where, xmin, xmax, ymin, ymax are the extremities of the terrain
in which robot is navigating. Ideally, the objective function
should converge to 1, which means 100% area coverage by
the robot. Considering the presence of stationary objects and
mobile/ sedentary humans in the same terrain, the robot will
not be able to achieve the ideal value of 1 for the objective
function defined in (1). In real, the objects and/or humans
located at O(x, y) and H (x, y, t), respectively, in the area
being explored. As the objects also cover some space/ area,
the modified objective function is defined as

J (t + 1) = max

 ∫
a∈M (t)

da ∪
∫

a∈U (t+1)

da


/ xmax∫

xmin

ymax∫
ymin

dxdy−
∫
a∈O

da−
∫

a∈H (t)

da


(2)

Considering that the stereo-vision camera cannot capture
the entire region at once, it is dependent on its viewing
angle and the maximum viewing distance. While capturing
the part of U (t), the obstacle (objects and/or humans) is
detected along with the vacant space for navigation that
is remembered by the robot for efficient navigation design
by defining the locations, such as Odet(x, y) for stationary
objects and Hdet(x, y, t) for humans. Since the location of the
detected obstacles have been identified, the objective function
is modified as

J (t + 1) = max

 ∫
a∈M (t)

da ∪
∫

a∈U (t+1)

da


/ xmax∫

xmin

ymax∫
ymin

dxdy−
∫

a∈Odet

da−
∫

a∈Hdet(t)

da


(3)

The basic obstacle avoidance is performed using the
v-disparity algorithm [35], in which the basic geometric
features of the captured scene is encoded based on the
disparity values from a horizontal histogram. Every pixel
in a v-disparity picture has a positive integer value that
represents the number of pixels on the same image line with
a disparity value equal to the abscissa [36]. The resulting
v-disparity picture separates the ground plane pixels from
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the corresponding obstacle pixels. The suggested technique
uses a simplified form of v-disparity and combines low
computational complexity with advanced data processing to
keep the total computational cost low.

The suggested method is used to define the next optimal
motion once the region T (t) has been mapped. At each
time step, a new set of candidate places for the robot
is produced, with the proposed algorithm determining the
most efficient position. It calculates the suggested method’s
objective function J (t), if the robot had progressed toward
these candidate spots. The optimum position that corresponds
to the maximum J (t) is chosen. Physical restrictions should
be fulfilled by a navigation method that is efficient. The
robot’s movement must be limited inside the terrain’s bounds,
and it cannot travel toward an item or outside of its field of
view (FOV). Finally, its movement requires consideration of
its dimensions.

With the robot performing SLAM tasks for area mapping,
it becomes necessary to optimize the objective function
defined in (3). This criterion is also a function of the
robot’s positions and orientations assumed in due course of
time while navigation. It is considered that the optimization
criterion is a non-linear function of the robot’s position/
orientation, defined as

J (t) = =(Rpos(t)) (4)

where, Rpos(t) is the position vector of the robot at time t , and
=(.) is the non-linear function. While planning a navigation
path in a social environment, where humans play an important
role, the robot has to restrict certain positions/ orientations
following social conventions. This burdens the robot with a
set of constraints at each time-step t for the position vector
Rpos(t), as

C(Rpos(t)) ≤ 0 (5)

where, C(.) is a set of non-linear functions of the robot’s
poses while navigating. This function depends upon the
environment in which the robot is navigating, which can be
completely unknown because of humans’ dynamic nature.
The proxemics and social conventions play a vital role
in deciding the constraints for the robot for efficient
navigation. As a result, the challenge of active SLAMmay be
characterized mathematically as the task of moving Rpos(t) to
a collection of places with a given orientation that satisfies the
restricted optimization problem, that is, maximize (4) subject
to (5).

C. ROBOT KINEMATICS AND NAVIGATION
The robot navigates the terrain with the usage of two
independent motors (right and left) on the robot chassis. The
resultant velocity of the robot depends upon the linear and
angular velocities of the right and left wheels of the robot.

v(t) =
1
2

(
vright (t)+ vleft (t)

)
ω(t) =

1
l

(
vright (t)− vleft (t)

)
(6)

FIGURE 4. ANN architecture for robot navigation.

The linear velocities of the two wheels are dependent upon
the angular velocities, given as

vright (t) = rr,wheelωright (t) =
(
R+ l

/
2
)
ωright (t)

vleft (t) = rl,wheelωleft (t) =
(
R− l

/
2
)
ωleft (t) (7)

where, l is the distance between the two wheels of the robot,
and R is the distance between center of the wheel spindle
and instantaneous center of curvature (assuming that the
dimensions of both the wheels is same). It is necessary to
generate sufficient left and right wheel speeds for the robot
to navigate that follows necessary direction trajectories to
ensure efficient and optimized map making.

The position of the robot at any instantaneous time t can
be denoted by a vector containing the planar coordinates and
the orientation of the robot, given as

Rpos(t) =
[
Rx(t) Ry(t) Rθ (t)

]T (8)

Here, Rx and Ry correspond to the planar coordinates of the
robot’s center of gravity on the ground plane, Rθ is the robot
orientation with respect to the horizontal axis. The position
attained by the robot is given as

Rx(t) =

t∫
0

v(t) cos (Rθ (t)) dt (9)

Ry(t) =

t∫
0

v(t) sin (Rθ (t)) dt (10)

Rθ (t) =

t∫
0

ω(t)dt (11)

assuming zero initial value. The kinematics equation of the
robot may be described as

Ṙpos =

 ṘxṘy
Ṙθ

 =
 cos (Rθ ) −Rd sin (Rθ )
sin (Rθ ) Rd cos (Rθ )

0 1

[ v
ω

]
(12)
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FIGURE 5. (a) Sample terrain-1. (b) Sample terrain-2. (c) Robot navigating in terrain-1 (d) Robot positions and area covered with proposed
approach. (e) Area covered by robot with random search algorithm. (f) Area covered with exhaustive search algorithm.

FIGURE 6. (a) Mean squared error of different ANN training algorithms. (b) Tracking comparison of proposed (orange) algorithm and conventional (blue)
algorithm against orientation target values (black) for sample terrain-1. (c) Tracking comparison of proposed (orange) algorithm and conventional (blue)
algorithm against orientation target values (black) for sample terrain-2.

FIGURE 7. Objective function convergence comparison of presented algorithm (green), exhaustive search (orange) and random search (blue) for (a)
Sample terrain-1. (b) Sample terrain-2.

where,
[
v ω

]T is the velocity vector which is calculated from
the output of the neural network, as described below.

For navigation, the robot has to move across the terrain
while avoiding the objects. Since, the navigation is a non-
linear function of unknown terrain and objects placed inside,
non-parametric estimation methods such as artificial neural
networks (ANNs) can be utilized to figure out the next

position/ orientation of the robot to navigate. ANNs are a
functional network of non-linear units called neurons that are
interconnected through weighted connections. Considering
the underlying system conditions, a three-layer ANN archi-
tecture (as shown in Fig. 4) is used to output the steering angle
and velocity for the next time-step robot motion [14]. The
input-layer consists of 8 neurons, out of which 6 are based

134460 VOLUME 10, 2022



K. J. Singh et al.: Map Making in Social Indoor Environment Through Robot Navigation Using Active SLAM

FIGURE 8. (a) The robot used during experimentation. (b) Terrain map in the robot will navigate. (c) Positions attained by robot in the human
populated terrain. (d) – (i) Random images taken by the robot of the terrain during exploration.

on the output of distance sensors and 2 neurons are based on
the distance and angle detected from stereo-vision camera for
the next position, avoiding the obstacles. The hidden-layer
utilizes 120 neurons fully-connected with the input-layer,
which is further connected to 2 neurons in the output-layer
that outputs the steering angle and velocity for the next
motion step.

The input vector for the input-layer can be defined as[
inp1 inp2 inp3 inp4 inp5 inp6 inp7 inp8

]
=
[
s1 s2 s3 s4 s5 s6 Rpos(t + 1) Rθ (t + 1)

]
(13)

where, si is the data received from distance sensors,
Rpos(t + 1) =

√
R2x(t)+ R2y(t), Rθ (t + 1) =

tan−1
(
Ry(t + 1)

/
Rx(t + 1)

)
with

(
Rx(t + 1),Ry(t + 1)

)
as

the position coordinates for the next motion step, as targeted
from the stereo-vision camera image processing. The input-
output relationship for the ANN structure is described as [34]:

net (1)j =

8∑
i=1

w(1)
ji inpi(p) for j = 1, 2, . . . , 120 (14)

v(1)j = f
(
net (1)j

)
= tanh

(
α
(1)
j net (1)j

)
(15)

net (2)k =

120∑
j=1

w(2)
kj v

(1)
j for k = 1, 2 (16)

v(2)k = f
(
net (2)k

)
= tanh

(
α
(2)
k net (2)k

)
(17)

where, w(q)
ji signifies the synaptic-weight of connection

between the j-th neuron of q-th layer with the i-th output of
previous layer; net (q)j is the net induced input field of j-th
neuron in the q-th layer by the previous layer neurons; f (.) is
the nonlinear squashing-function, which is considered here as
hyperbolic-tangent function with slope factor α(q)j . To attain
faster convergence of Neural Networks, which is vital for
navigation, an adaptive squashing function that adjusts the
slope of squashing in addition to other network parameters
through back propagation of errors into the network is
considered [34]. The update of network parameters including
the slope of squashing function starts with assigning trivial
random values to the weights and unity slope to the squashing
function for each neuron. Based on the error vector calculated
from the output obtained w.r.t. inputs specified in (13), the
network parameters are updated and the process continues
until maximum epochs or acceptably low value of error is
achieved. The ANN training enables the robot to adapt to
the dynamism of the terrain due to human movement and/or
involvement. The forthcoming robot position remain within
the field of view of the robot, which also helps in tackling the
complexity of the executed problem.

IV. RESULTS AND DISCUSSION
In order to calculate the effectiveness of the proposed method
different scenarios in simulation and real world were taken in
consideration. The programming, simulation and modelling
were performed on Webots along with a MATLAB based
controller. The proposed method used in experiments and
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FIGURE 9. Random time-steps of space coverage by the robot while map making.

compared with random approach and exhaustive search
algorithm. The proposed method utilized the stereo camera
to digitize the visual space and conducted search over all
combinations to minimize the objective function.

A. SIMULATION EXPERIMENT
A simulation robot equipped with 6 ultrasonic rangefinder
sensors covering 180 degrees, stereo camera with an angle
of view of 120 degree and monitoring distance of 3 meters
was deployed in a rectangular terrain of length 15 meters and
breadth of 18 meters. The robot is 20 cm in length, 17 cm
tall and 18 cm wide which is exactly same to the dimensions
of real robot and it has no knowledge of the morphology
of the terrain and obstacles in the scenario. The position of
the robot is depicted by the scattered dots in all maps during
the complete mapping process. The blue color represents the
obstacles in the terrain i.e., two rectangle and one circular
in nature as shown on Fig. 5. In order to compare the
effectiveness of the training algorithm before applying onto
the real scenario, the presented adaptive squashing function-
based backpropagation training algorithm is compared with
the fixed slope hyperbolic tangent function based algorithm,
on the basis of mean squared error (MSE). It can be connoted
from Fig. 6(a) that the presented adaptive slope squashing
function based algorithm tends to provide better results with

lower MSE, owing to better adaptiveness due to tuning of
slope parameter along with other free parameters of the ANN
used. Also, the above-mentioned algorithms are compared
while tracking the orientation target values for the simulation
environment described above. Fig. 6(b) and Fig. 6(c) depicts
that the presented algorithm tracks the target orientation
angles with a better accuracy for different simulation terrains,
that is Sample Terrain-1 and Sample Terrain-2, as shown in
Fig. 5(a) and Fig. 5(b) respectively.

Further, Fig. 7 represents the convergence of objective
functions for proposed method in comparison to random
approach and exhaustive search algorithm. For each sample
terrain, 15 different scenarios were simulated with different
initial positions and mean value of the objective functions
for all methods is compared and shown in Fig. 7. The
effectiveness of all the approaches can be assessed by
observing both the number of positions robot visited and the
coverage of terrain. The robot was able to cover 100% of
the terrain in almost 1110 iterations as shown in Fig. 7(a).
The random based approach was able to cover only 76%
of the terrain whereas the exhaustive search algorithm
covered 100% in 850 iterations. When the complexity
of the terrain was increased as shown in Fig. 7(b), the
proposed method took almost 1500 iterations to cover 100%
of the terrain as compared to 93% for exhaustive search
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FIGURE 10. (a) Objective function convergence comparison of presented algorithm (green), exhaustive search (orange) and random search (blue) for
experiment terrain. (b) Robot’s left wheel (blue) and right wheel (brown) velocity (in cm/sec) while traversing the experiment terrain.

algorithm, which took almost 3500 iterations and random
based algorithm took 4700 iterations to cover only 68% of the
terrain.

B. EXPERIMENTAL RESULTS WITH A REAL
OPERATIONAL ROBOT
The robot used for the experiments is equipped with
Raspberry Pi 3, stereo camera, 6 ultrasonic rangefinder
sensors, two servo motors and ATmega328p microcontroller
as depicted in Fig. 8(a). The robot equipped with 6 ultrasonic
distance sensors and a stereo camera was deployed at
Kalpana Chawla Centre for Research in Space Science and
Technology (KCCRSST), Chandigarh University along with
5 human subjects to test the proposed approach in real world
while following the social norms. Firstly, the images captured
by the robot are sent to a central computer where bitmaps are
processed in order to execute the proposed protocol. The epi-
polar geometry is applied on the received images and further
sums of absolute differences was utilized as a metric to find
the correlation between the blocks of images while keeping
complexity at low level.

The next position of the robot are computed by processing
the data from 6 ultrasonic rangefinder sensors and then the
basic principles of odometry are applied to coordinate
the execution of motion of the robot. The rotational and
translational motion is executed by robot while making use
of servo motors. Further stereo-vision odometry principles
were also embedded to support the continuous transitions.
In light of the proposed approach the robot was able to avoid
the obstacles while following the social norms in presence
of humans. Robot was also able to cover the whole terrain
and finally generated the map of the terrain following the
active SLAM technique as shown in Fig. 8. The results of
map making in real world by deployment of the proposed
approach is shown in Fig. 9. All sixteen snapshots shown in
the Fig. 9 depict different stages of robot exploration in social
space while avoiding all the obstacles along with following
all social norms. Also, Fig. 10(a) represents the convergence
of objective functions for proposed method in comparison

to random approach and exhaustive search algorithm for the
terrain used for experimental work and Fig. 10(b) represents
the velocities (in cm/sec) of left wheel and right wheel of the
robot while traversing the terrain.

V. CONCLUSION AND FUTURE SCOPE
Rapid developments in the fields of robotics and artificial
intelligence have led to significant deployment of robots
across a plethora of applications. A major challenge in the
field of autonomous robotics is navigation and mapping in
indoor environments that involve humans. Such scenarios
require autonomous robots to ensure the safety and comfort of
humans as they traverse. This article presented an approach
to mapping unfamiliar terrains with mobile obstacles while
addressing social norms.

The approach involved an autonomous robot housing a
stereo-vision camera and ultrasonic rangefinder sensors to
identify and avoid different elements in the environment.
The robot utilized adaptive squashing function based trained
artificial neural network to navigate through entire terrain
while simultaneously creating a map of the environment. The
proposed approach was compared with exhaustive search and
random approach for fifteen different scenarios with different
initial positions. Simulation results established the supremacy
of exhaustive search algorithm which covers 100% terrain in
850 iterations, over the proposed technique which takes more
than 1000 iterations. However, in complex environments,
the proposed approach outperforms, taking 1500 iteration
to cover entire terrain, as compared to exhaustive search
covering only 93% terrain in 1500 iterations and random
approach covering only 68% terrain in 4700 iterations.
Further, the proposed approach was tested in real world
settings to create maps in a dynamic environment populated
with humans.

In future, we plan to test the performance of proposed work
in outdoor public spaces with enhanced hardware and will try
to utilize different optimization algorithms to further enhance
the performance.

VOLUME 10, 2022 134463



K. J. Singh et al.: Map Making in Social Indoor Environment Through Robot Navigation Using Active SLAM

REFERENCES
[1] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,

and M. Csorba, ‘‘A solution to the simultaneous localization and map
building (SLAM) problem,’’ IEEE Trans. Robot. Autom., vol. 17, no. 3,
pp. 229–241, Jun. 2001, doi: 10.1109/70.938381.

[2] E. Zamora and W. Yu, ‘‘Novel autonomous navigation algorithms in
dynamic and unknown environments,’’ Cybern. Syst., vol. 47, no. 7,
pp. 523–543, Oct. 2016, doi: 10.1080/01969722.2016.1209372.

[3] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix, ‘‘Vision-based SLAM:
Stereo and monocular approaches,’’ Int. J. Comput. Vis., vol. 74, no. 3,
pp. 343–364, Feb. 2007, doi: 10.1007/S11263-007-0042-3.

[4] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendón-Mancha, ‘‘Visual
simultaneous localization and mapping: A survey,’’ Artif. Intell. Rev.,
vol. 43, no. 1, pp. 55–81, Nov. 2012, doi: 10.1007/S10462-012-9365-8.

[5] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004, doi:
10.1023/B:VISI.0000029664.99615.94.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, ‘‘Speeded-up robust
features (SURF),’’ Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, Jan. 2008, doi: 10.1016/J.CVIU.2007.09.014.

[7] J. Klippenstein and H. Zhang, ‘‘Quantitative evaluation of feature
extractors for visual SLAM,’’ in Proc. 4th Can. Conf. Comput. Robot Vis.
(CRV), May 2007, pp. 157–164, doi: 10.1109/CRV.2007.52.

[8] S. Thrun,W. Burgard, andD. Fox,Probabilistic Robotics. Cambridge,MA,
USA: MIT Press, 2005.

[9] L. Jaulin, ‘‘A nonlinear set membership approach for the localization and
map building of underwater robots,’’ IEEE Trans. Robot., vol. 25, no. 1,
pp. 88–98, Feb. 2009, doi: 10.1109/TRO.2008.2010358.

[10] L. Nalpantidis, G. C. Sirakoulis, and A. Gasteratos, ‘‘Non-probabilistic
cellular automata-enhanced stereo vision simultaneous localization and
mapping,’’Meas. Sci. Technol., vol. 22, no. 11, Oct. 2011, Art. no. 114027,
doi: 10.1088/0957-0233/22/11/114027.

[11] S. Chatzichristofis, A. Kapoutsis, E. B. Kosmatopoulos, L. Doitsidis,
D. Rovas, and J. Borges de Sousa, ‘‘The NOPTILUS project: Autonomous
multi-AUV navigation for exploration of unknown environments,’’ IFAC
Proc. Volumes, vol. 45, no. 5, pp. 373–380, 2012, doi: 10.3182/20120410-
3-PT-4028.00062.

[12] V. S. Kalogeiton, K. Ioannidis, G. C. Sirakoulis, and E. B. Kosmatopoulos,
‘‘Real-time active SLAM and obstacle avoidance for an autonomous
robot based on stereo vision,’’ Cybern. Syst., vol. 50, no. 3, pp. 239–260,
Apr. 2019, doi: 10.1080/01969722.2018.1541599.

[13] E. B. Kosmatopoulos, ‘‘An adaptive optimization scheme with satisfac-
tory transient performance,’’ Automatica, vol. 45, no. 3, pp. 716–723,
Mar. 2009, doi: 10.1016/J.AUTOMATICA.2008.09.014.

[14] K. K. A. Farag, H. H. Shehata, and H.M. El-Batsh, ‘‘Mobile robot obstacle
avoidance based on neural network with a standardization technique,’’
J. Robot., vol. 2021, pp. 1–14, Nov. 2021, doi: 10.1155/2021/1129872.

[15] I. A. Hamilton. People Kicking These Food Delivery Robots is an
Early Insight Into How Cruel Humans Could be to Robots. Accessed:
Oct. 24, 2022. [Online]. Available: https://www.businessinsider.in/people-
kicking-these-food-delivery-robots-is-an-early-insight-into-how-cruel-
humans-could-be-to-robots/articleshow/64518813.cms

[16] B. Mutlu and J. Forlizzi, ‘‘Robots in organizations: The role of workflow,
social, and environmental factors in human–robot interaction,’’ in Proc.
3rd ACM/IEEE Int. Conf. Hum. Robot Interact. (HRI), Mar. 2008,
pp. 287–294, doi: 10.1145/1349822.1349860.

[17] K. J. Singh, D. S. Kapoor, and B. S. Sohi, ‘‘Understanding socially aware
robot navigation,’’ J. Eng. Res., vol. 9, pp. 131–149, Oct. 2021, doi:
10.36909/JER.11123.

[18] N. Fairfield and D. Wettergreen, ‘‘Active SLAM and loop prediction
with the segmented map using simplified models,’’ in Field and
Service Robotics (Springer Tracts in Advanced Robotics), vol. 62. 2010,
pp. 173–182, doi: 10.1007/978-3-642-13408-1_16.

[19] C. Leung, S. Huang, and G. Dissanayake, ‘‘Active SLAM in structured
environments,’’ in Proc. IEEE Int. Conf. Robot. Autom., May 2008,
pp. 1898–1903, doi: 10.1109/ROBOT.2008.4543484.

[20] C. Leung, S. Huang, and G. Dissanayake, ‘‘Active SLAM using
model predictive control and attractor based exploration,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006, pp. 5026–5031, doi:
10.1109/IROS.2006.282530.

[21] M. Bryson and S. Sukkarieh, ‘‘An information-theoretic approach to
autonomous navigation and guidance of an uninhabited aerial vehicle in
unknown environments,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
Aug. 2005, pp. 3770–3775, doi: 10.1109/IROS.2005.1545114.

[22] C. Ye, S. Hong, and A. Tamjidi, ‘‘6-DOF pose estimation of a robotic
navigation aid by tracking visual and geometric features,’’ IEEE Trans.
Autom. Sci. Eng., vol. 12, no. 4, pp. 1169–1180, Oct. 2015, doi:
10.1109/TASE.2015.2469726.

[23] R. Sim, ‘‘Stable exploration for bearings-only SLAM,’’ in Proc.
IEEE Int. Conf. Robot. Autom., Apr. 2005, pp. 2411–2416, doi:
10.1109/ROBOT.2005.1570474.

[24] Y.-H. Choi, T.-K. Lee, and S.-Y. Oh, ‘‘A line feature based SLAM with
low grade range sensors using geometric constraints and active exploration
for mobile robot,’’ Auto. Robots, vol. 24, no. 1, pp. 13–27, Oct. 2007, doi:
10.1007/S10514-007-9050-Y.

[25] C.-H. Chien, C.-C. Hsu, W.-Y. Wang, W.-C. Kao, and C.-J. Chien,
‘‘FPGA-implemented corner feature extracting simultaneous localiza-
tion and mapping,’’ in Proc. IEEE 6th Int. Conf. Consum. Elec-
tron. Berlin (ICCE-Berlin), Sep. 2016, pp. 98–99, doi: 10.1109/ICCE-
BERLIN.2016.7684729.

[26] D. Zou and P. Tan, ‘‘CoSLAM: Collaborative visual SLAM in dynamic
environments,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 2,
pp. 354–366, Feb. 2013, doi: 10.1109/TPAMI.2012.104.

[27] H. Gao, X. Zhang, J. Wen, J. Yuan, and Y. Fang, ‘‘Autonomous indoor
exploration via polygon map construction and graph-based SLAM using
directional endpoint features,’’ IEEE Trans. Autom. Sci. Eng., vol. 16, no. 4,
pp. 1531–1542, Oct. 2019, doi: 10.1109/TASE.2018.2883587.

[28] J. Cheng, C. Wang, and M. Q.-H. Meng, ‘‘Robust visual localization
in dynamic environments based on sparse motion removal,’’ IEEE
Trans. Autom. Sci. Eng., vol. 17, no. 2, pp. 658–669, Apr. 2020, doi:
10.1109/TASE.2019.2940543.

[29] J. Cheng, H. Zhang, and M. Q.-H. Meng, ‘‘Improving visual localization
accuracy in dynamic environments based on dynamic region removal,’’
IEEE Trans. Autom. Sci. Eng., vol. 17, no. 3, pp. 1585–1596, Jul. 2020,
doi: 10.1109/TASE.2020.2964938.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 779–788, doi: 10.1109/CVPR.2016.9.

[31] K. J. Singh, D. S. Kapoor, K. Thakur, A. Sharma, and X. Z. Gao,
‘‘Computer-vision based object detection and recognition for service robot
in indoor environment,’’ Comput. Mater. Continua, vol. 72, no. 1, p. 197,
Feb. 2022, doi: 10.32604/CMC.2022.022989.

[32] X. Zhou, X. Yu, Y. Zhang, Y. Luo, and X. Peng, ‘‘Trajectory planning and
tracking strategy applied to an unmanned ground vehicle in the presence of
obstacles,’’ IEEE Trans. Autom. Sci. Eng., vol. 18, no. 4, pp. 1575–1589,
Oct. 2021, doi: 10.1109/TASE.2020.3010887.

[33] K. J. Singh, D. S. Kapoor, M. Abouhawwash, J. F. Al-Amri, S. Mahajan,
andA. K. Pandit, ‘‘Behavior of delivery robot in human-robot collaborative
spaces during navigation,’’ Intell. Autom. Soft Comput., vol. 35, no. 1,
pp. 795–810, 2023.

[34] D. S. Kapoor and A. K. Kohli, ‘‘Adaptive-slope squashing-function-based
ANN for CSI estimation and symbol detection in SFBC-OFDM system,’’
Arabian J. Sci. Eng., vol. 46, no. 10, pp. 9451–9464, Oct. 2021, doi:
10.1007/s13369-020-05207-w.

[35] G. De Cubber, D. Doroftei, L. Nalpantidis, G. C. Sirakoulis, and
A. Gasteratos, ‘‘Stereo-based terrain traversability analysis for robot
navigation,’’ in Proc. IARP/EURON Workshop Robot. Risky Intervent.
Environ. Surveill., Brussels, Belgium, 2009, p. 69.

[36] R. Labayrade, D. Aubert, and J.-P. Tarel, ‘‘Real time obstacle detection
in stereovision on non flat road geometry through ‘v-disparity’ repre-
sentation,’’ in Proc. Intell. Vehicle Symp., Oct. 2003, pp. 646–651, doi:
10.1109/IVS.2002.1188024.

KIRAN JOT SINGH (Member, IEEE) received
the bachelor’s and master’s degrees in electronics
domain from Punjab Technical University, the
P.G.D.M. degree from IIM Rohtak, and the Ph.D.
degree in human–robot interaction. He is currently
an Associate Professor and the Assistant Dean
Industrial Relations at Chandigarh University,
Mohali, India. He has also served patent industry.
He has filed 12 patents with the Indian patent
office and is working on various funded projects.

His research interests include embedded systems and robotics.

134464 VOLUME 10, 2022

http://dx.doi.org/10.1109/70.938381
http://dx.doi.org/10.1080/01969722.2016.1209372
http://dx.doi.org/10.1007/S11263-007-0042-3
http://dx.doi.org/10.1007/S10462-012-9365-8
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/J.CVIU.2007.09.014
http://dx.doi.org/10.1109/CRV.2007.52
http://dx.doi.org/10.1109/TRO.2008.2010358
http://dx.doi.org/10.1088/0957-0233/22/11/114027
http://dx.doi.org/10.3182/20120410-3-PT-4028.00062
http://dx.doi.org/10.3182/20120410-3-PT-4028.00062
http://dx.doi.org/10.1080/01969722.2018.1541599
http://dx.doi.org/10.1016/J.AUTOMATICA.2008.09.014
http://dx.doi.org/10.1155/2021/1129872
http://dx.doi.org/10.1145/1349822.1349860
http://dx.doi.org/10.36909/JER.11123
http://dx.doi.org/10.1007/978-3-642-13408-1_16
http://dx.doi.org/10.1109/ROBOT.2008.4543484
http://dx.doi.org/10.1109/IROS.2006.282530
http://dx.doi.org/10.1109/IROS.2005.1545114
http://dx.doi.org/10.1109/TASE.2015.2469726
http://dx.doi.org/10.1109/ROBOT.2005.1570474
http://dx.doi.org/10.1007/S10514-007-9050-Y
http://dx.doi.org/10.1109/ICCE-BERLIN.2016.7684729
http://dx.doi.org/10.1109/ICCE-BERLIN.2016.7684729
http://dx.doi.org/10.1109/TPAMI.2012.104
http://dx.doi.org/10.1109/TASE.2018.2883587
http://dx.doi.org/10.1109/TASE.2019.2940543
http://dx.doi.org/10.1109/TASE.2020.2964938
http://dx.doi.org/10.1109/CVPR.2016.9
http://dx.doi.org/10.32604/CMC.2022.022989
http://dx.doi.org/10.1109/TASE.2020.3010887
http://dx.doi.org/10.1007/s13369-020-05207-w
http://dx.doi.org/10.1109/IVS.2002.1188024


K. J. Singh et al.: Map Making in Social Indoor Environment Through Robot Navigation Using Active SLAM

DIVNEET S. KAPOOR received the B.E., M.E.,
and Ph.D. degrees in electronics and communica-
tion engineering from the Thapar Institute of Engi-
neering & Technology, Patiala, Punjab, in 2009,
2011, and 2021, respectively. He is currently
working as an Assistant Professor at Chandigarh
University. He has published articles in various
national and international journals, including peer-
reviewed and impact factor journals. He has also
filed more than 12 patents in Indian patent office.

His current interests include the Internet of Things, embedded systems,
robotics, and signal processing.

KHUSHAL THAKUR received themaster’s degree
from Jay Pee University and the Doctorate degree
from Chandigarh University, India. He is currently
the Assistant Dean of Chandigarh University. His
area of research during his Ph.D. work was MIMO
precoding systems. He is also working on various
funded projects. His research interests include
wireless and the IoT.

ANSHUL SHARMA received the master’s degree
from Punjab University and the Doctorate degree
from Chandigarh University, India. He is currently
the Assistant Dean of Chandigarh University.
His area of research during his Ph.D. work was
fire management systems. His research interests
include robotics and the IoT. He has filed multiple
patents in Indian patent office and working on
various funded projects.

ANAND NAYYAR received the Ph.D. degree in
computer science from Desh Bhagat University,
in 2017, in the area of wireless sensor networks,
swarm intelligence, and network simulation. He is
currently working with the School of Computer
Science, Duy Tan University, Da Nang, Vietnam,
as an Assistant Professor, the Scientist, the Vice
Chairperson (Research), and the Director of the
IoT and Intelligent Systems Laboratory. A Certi-
fied Professional with more than 125 professional

certificates from CISCO, Microsoft, Amazon, EC-Council, Oracle, Google,
Beingcert, EXIN, GAQM, and Cyberoam. He has published more than
140 research articles in various high-quality ISI-SCI/SCIE/SSCI impact
factor journals cum Scopus/ESCI indexed journals, more than 70 papers in
international conferences indexed with Springer, IEEE, and ACM digital
library, more than 40 book chapters in various Scopus, Web of Science
indexed books with Springer, CRC press, Wiley, IET, and Elsevier with
citations: more than 7800, H-Index: 46, and I-Index: 160. He is a member of
more than 60 associations as a senior member and a life member, including
IEEE and ACM. He has authored/coauthored cum edited more than 40 books
of computer science. He has associated with more than 500 international
conferences as the programme committee/the chair/an advisory board/a
review board member. He has 18 Australian patents, four German patents,
two Japanese patents, 11 Indian design cum utility patents, one USA patent,
three Indian copyrights, and two Canadian copyrights to his credit in the
area of wireless communications, artificial intelligence, cloud computing,
IoT, and image processing. He awarded 38 awards for a Teaching and
Research—Young Scientist, a Best Scientist, the Young Researcher Award,
the Outstanding Researcher Award, Excellence in Teaching, and a Best
Senior Scientist Award. He is listed in top 2% scientists as per Stanford

University (2020, 2021, and 2022). He is acting as an Associate Editor of
Wireless Networks (Springer), Computer Communications (Elsevier), Inter-
national Journal of Sensor Networks (IJSNET) (Inderscience), Frontiers in
Computer Science,PeerJ Computer Science,Human-Centric Computing and
Information Sciences (HCIS), IET Quantum Communications, IET Wireless
Sensor Systems, IET Networks, IJDST, IJISP, IJCINI, and IJGC. He is
acting as the Editor-in-Chief of IGI-Global, USA Journal titled International
Journal of Smart Vehicles and Smart Transportation (IJSVST). He has
reviewed more than 2500 articles for diverse Web of Science and Scopus
indexed journals. He is currently researching in the area of wireless sensor
networks, Internet of Things, swarm intelligence, cloud computing, artificial
intelligence, drones, blockchain, cyber security, network simulation, big
data, and wireless communications.

SHUBHAM MAHAJAN (Graduate Student
Member, IEEE) received the B.Tech. degree from
the Department of Electronics and Communica-
tion Engineering, Baba Ghulam Shah Badshah
University, and the M.Tech. degree from the
Department of Electronics and Communication
Engineering, Chandigarh University. He is cur-
rently pursuing the Ph.D. degree with Shri Mata
Vaishno Devi University (SMVDU), Katra, India.
He is working as a Senior IT Faculty with

Ajeenkya D Y Patil University, Pune. He has six Indian, one Australian,
one German Patent to his credit in the area of artificial intelligence and image
processing. He has authored/coauthored more than 45 publications including
peer-reviewed journals and conferences. His main research interests include
image processing, video compression, image segmentation, fuzzy entropy,
nature-inspired computing methods with applications in optimization,
data mining, machine learning, robotics, and optical communication,
and also received the ‘Best Research Paper Award’ from ICRIC 2019
(Springer, LNEE) and also received the Best Student Award-2019, IEEE
Region-10 Travel Grant Award-2019, 2nd runner up prize in IEEE RAS
HACKATHON-2019 (Bangladesh) and IEEE Student Early Researcher
Conference Fund (SERCF-2020), Emerging Scientist Award-2021, and
IEEE Signal Processing Society Professional Development Grant-2021. He
was a Campus Ambassador for IEEE, IIT Bombay, Kanpur, Varanasi, Delhi
and various MNC’s.

MOHD. ASIF SHAH is currently working as an
Associate Professor at the Department of Eco-
nomic, Bakhtar University, Kabul, Afghanistan,
and an Adjunct Faculty with the School of
Business, Woxsen University, Kamkole, Sada-
sivpet, Hyderabad, Telangana, India. He has been
working as an Assistant Professor in economics
at the Forbes Business School, India, and LPU,
India. He has worked as a Lecturer at JCE, Jammu
andKashmir, India, and also helped his department

with teaching assistance during his Ph.D. degree. He has publishedmore than
20 research papers (SCI/WOS/UGC indexed) with more than 30 citations.

VOLUME 10, 2022 134465


