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ABSTRACT A high-efficient wideband through-silicon vias (TSVs) modeling method based on deep
learning is proposed, and a compact three-dimensional (3D) spiral inductor is designed using the proposed
method. By comparing different activation functions and loss functions, an adaptive deep neural network
(DNN) based on Gaussian Error Linear Unit (GELU) and Huber functions for constructing parameterized
TSV models is proposed. The model has much higher accuracy and better robustness than commonly used
circuit equivalent models over a wide range of bandwidths. Moreover, a compact 3D spiral inductor using
ground TSV is designed based on the DNN model. This 3D inductor greatly reduces the inductor area
compared to planar inductors and has weak crosstalk between TSV pairs. The designed inductor is simulated
by direct electromagnetic calculation to verify the proposed method and design.

INDEX TERMS Deep learning, equivalent-circuit model, through-silicon vias (TSVs), 3D spiral inductor.

I. INTRODUCTION
In three-dimensional integrated circuit (3D-IC), through-
silicon via (TSV) is the key technology to realize the intercon-
nection of upper and lower chips in 3D-ICs, which can greatly
shorten the length of the interconnects between chips, reduce
the occupied area, and achieve high performance and high
density system on chips (SOCs) [1]. Moreover, by making
use of TSV, three-dimensional (3D) inductor devices with
higher inductance density and smaller occupancy area can
also be realized. However, for the structure containing mul-
tiple TSVs, the crosstalk between adjacent TSVs seriously
affects the signal integrity of 3D-ICs [2], [3], [4].

To suppress the TSV crosstalk, the methods of using a
protection ring [5], coaxial TSV structure [6], active substrate
coupling [7], coding algorithm [8] were proposed. In another
hand, the existence of TSV makes the electromagnetic (EM)
simulation more complex and time consuming. In this cir-
cumstance, not only the metal layer but also the dielectric
material enclosed the TSVs should be meshed, even the
layered medium Green’s function is used. This is because
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oxide material isolating the metal and substrate has finite area
in horizontal plane, which cannot be characterized using the
planar Green’s function. Therefore, some modeling methods
of TSVs have been proposed to avoid the EM simulation
of TSVs. The modeling of TSVs has been mainly focused on
establishing RLCG equivalent circuit models by extracting
relevant parasitic parameters through analytical formulas [9],
[10], [11], [12], [13], [14]. In [9], the resistance, induc-
tance, and capacitance parameters of the TSV were modeled.
In [10], a modeling method based on integral equations to
solve Maxwell’s system of equations was proposed, but the
solution was complex, and the effective applicable band-
width was only 10 GHz. Moreover, the applicable frequency
bands for the equivalent models proposed in [11] and [12]
were only 20 GHz and 40 GHz, respectively. In [13], the
impedances of the differential TSVs were extracted using
the partial element equivalent circuit (PEEC) method, while
the admittances were calculated analytically. Moreover, Kim
proposed a wideband equivalent circuit model with consid-
eration of the effective substrate current loop [14], but only
adapted to round-signal type TSVs. The 3D EM simulation
of TSVs is time consuming. Especially for TSV optimization,
the EM simulation will be repeatedly used. Although the
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equivalent circuit model of TSV can replace the EM simula-
tion, accurate model is difficult to build for the complex struc-
ture. Therefore, a fast and accurate model that can efficiently
predict the EM characteristics of the TSVs and achieve the
optimization design is very necessary.

In this work, a method for modeling TSVs using deep
neural network (DNN) is proposed. In the process of model-
ing, by comparing the effects of different activation functions
and loss functions, the Gaussian Error Linear Unit (GELU)
activation function and Huber loss function are found that
have better performance than the traditional Rectified Linear
Unit (ReLU) [15] activation function and mean squired error
(MSE) loss [16] function for TSV modeling. It is also found
that the proposed method has higher computational accuracy
and can meet the accuracy requirements in a wide range
of frequency bands comparing with the equivalent circuit
TSV models [17]. In addition, using this accurate and highly
efficient method, a compact TSV-based spiral inductor is
designed, which has a smaller area than the conventional on-
chip inductor and can be further stacked by multilayer chips
to obtain a smaller footprint. The designed inductor is verified
using full-wave simulations, which demonstrate the accuracy
of the proposed model and the miniaturization of the inductor
design.

II. TRAIN THE DNN-TSVs MODEL
A. DEEP NEURAL NETWORK MODEL
FIGURE1 shows the flow chart of DNN-TSV trainingmodel.
After building the parameterized TSV structures, some typ-
ical TSVs with the sampling parameters are simulated by
EM solver. The geometric parameters of the TSV model and
the corresponding S-parameters are used as the input dataset
of the DNN-TSV model. Before training, all input variables
are normalized to [−1, 1], and the datasets are divided into
training data and testing data according to the ratio of 7:3.

FIGURE 1. The flow chart of training DNN-TSVs model.

In the DNN, as the basic components of neural networks,
a neuron is mathematically expressed as

Y = ϕ

(
n∑
i

aiXi + b

)
(1)

where Xi denotes the i-th element of the input matrix,
ai represents the weight factor of the i-th element, b is the
offset, and ϕ represents the activation function, which can
introduce nonlinear factors into neurons and be used to fit
various nonlinear models. In practical applications, the ReLU
activation function is the most used activation function. How-
ever, it is found that for the training of TSV S-parameters, the
performance using the ReLU function is not good.

As the recently proposed activation functions, the Swish
and the GELU activation functions have some advantages in
modeling [18]. The Swish activation function has the prop-
erties of no upper bound and lower bound, smooth and non-
monotonic, and all of which can improve the performance
of the activation function. The mathematical expression of
Swish activation function can be expressed as:

Swish (x) = x · sigmoid (x) = x ·
1

1+ e−x
(2)

Moreover, when a deterministic nonlinear activation func-
tion such as ReLU is used as the activation function of a
neural network, stochastic regularization needs to be added
to the network to improve the generalization ability of the
model, but the stochastic regularization and the activation
function are separated, making a network look like a patch-
work of sub-networks [19]. Unlike the ReLU function, the
GELU function, which combines properties of the ReLU
function and dropout as well as adds stochastic regulariza-
tion to the activation function, can provide both nonlinearity
and stochastic regularity to the neural network. The GELU
activation function can be expressed as

GELU = x · P (X ≤ x) = x ·8(x) (3)

where8(x) denotes the cumulative function of the Gaussian
normal distribution of x. Since the above equation is not
directly computable, it can be approximated as

GELU (x) = 0.5x

(
1+ tanh

[√
2
π

(
x + 0.044715x3

)])
(4)

In this work, the ReLU, Swish and GELU activation
functions are all used for the training of DNN-TSV model,
and the performance of these functions will be compared
in section III.

After choosing the activation function, a deep neural net-
work model is made up of multiple layers of neurons con-
nected in pairs between adjacent layers. A complete neural
network consists of one input layer, several intermediate
layers and one output layer. The mathematical expression of
a complete neural network is shown in (5).

Y = ϕ
(
An · · ·ϕ

(
A2
(
ϕ
(
A1X + b1

))
+ b2

)
· · · + bn

)
(5)

whereX denotes the geometric information of the TSVmodel
(inputs to the neural network) and Y denotes the S-parameters
of the TSV (outputs to the neural network).
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B. LOSS FUNCTION AND OPTIMIZATION ALGORITHM
Owing to the gradient descent convergence, the MSE loss
function is widely used in general regression problems [20].
However, for the DNN-TSV modeling, due to the existence
of a certain number of outlier samples, the MSE squares the
error and makes the error of the outliers too large, which
resulting in the slow decrease of test loss of training. As a
consequence, it is difficult or even impossible to reach the
desired loss threshold.

Huber loss combines the advantages of MSE and mean
absolute error (MAE) [21]. It enhances the outlier robustness
of MSE, reduces the sensitivity problem to outliers, and com-
pensates the slow decreasing speed of MAE loss. Therefore,
the Huber loss function is used in the DNN-TSV modeling.
Specifically, the Huber loss is defined as follows:

Lδ (y, f (x)) =


1
2
(y− f (x))2 , if |y− f (x)| ≤ δ

δ |y− f (x)| −
1
2
δ2, if |y− f (x)| > δ

(6)

where y is the true value, f (x) is the predicted value, and
δ is a hyperparameter of Huber loss which is set to 1 in
this paper. In training the DNN-TSV model, y represents
the real S-parameters in the dataset, and f (x) represents the
S-parameters obtained from the DNN-TSV model. By set-
ting δ, the loss function is derivable, and the gradient is more
stable in the interval [−δ, δ], and the influence of outliers
on the model is attenuated in the interval [−∞,−δ] and
[δ,+∞]. Therefore, the robustness of the loss function is
improved.

Next, the loss function is minimized using an optimization
algorithm, and the loss function is used as the objective
function for optimization in the optimization process, and the
training error of the loss function is reduced by continuously
adjusting the weight factors and offset in the neural network.
Considering the advantage of adaptive moment estimation
(Adam) [22] algorithm that it can design independent adap-
tive learning rates for different parameters by computing
the first- and second-order moment estimates of gradients,
the Adam function is selected as the optimization func-
tion. The mathematical expression of Adam function is as
follows:

mt = β1mt−1 + (1− β1) · gt (7)

vt = β2vt−1 + (1− β2) · g
2
t (8)

where mt and vt are the first- and second-order moment
estimators of gradient, respectively, gt is the gradient of the
loss function after the t step iterations, and β1 and β2 are
constant delay factors, which are usually set at 0.9 and 0.999,
respectively.

After bias correction, the first- and second-order moment
estimators are respectively expressed as

m′t =
mt

1− β t1
(9)

v′t =
vt

1− β t2
(10)

θt+1 = θt −
µ√
v′t + ε

m′t (11)

where θt+1 is the updated parameter of θt , andµ and ε are two
constants, which are usually set as 0.001 and 1, respectively.

FIGURE 2. Schematic of GSG-type TSVs.

FIGURE 3. Top view of the TSV.

FIGURE 4. The total capacitance of TSV varies with the DC bias voltage.

Since the TSV structure contains a metal-oxide-
semiconductor (MOS) structure, the silicon doping forms a
depletion layer with the voltage applied to the TSV, as shown
in FIGURE 2. The MOS structure yields a nonlinear voltage-
dependent capacitive effect due to the formation of the deple-
tion layer. For a P-type substrate, as shown in FIGURE 4,
when large negative bias voltage is applied to the TSV, most
of the carriers will accumulate on the TSV surface, and
the total TSV capacitance approaches the oxide capacitance.

VOLUME 10, 2022 133675



X. Li et al.: Deep-Learning Approach for Wideband Design of 3D TSV-Based Inductors

As the negative voltage decreases, a depletion layer is formed
and thus the depletion layer capacitance, which is equivalent
to the series connection of the oxide and depletion layer
capacitances, so the total TSV capacitance decreases. Contin-
uing to increase the voltage, the capacitance will pass through
a minimum point at low frequencies (below 100 Hz) and then
increases again. Due to the formation of a minority carrier
inversion layer on the TSV surface, and the capacitance
eventually remains stable at high frequencies as the voltage
increases. In [23], the C-V characteristics of the TSV at low
and high frequencies are discussed in detail. In [24], the
MOS capacitance was modeled according to the size and bias
voltage of the TSV. Both the DNN-TSV modeling method
proposed in this paper and the TSV-based inductor designed
later in Section IV are used without DC bias voltage, so the
MOS effect of TSV is weak and can be not considered.

The performance of various combinations of aforemen-
tioned activation and loss functions in training ground-
signal-ground (GSG) typed DNN-TSV models (as shown in
FIGURE 2) is compared, and the final test loss achieved are
given. In this paper, the final test loss is defined as when
training the DNN-TSV model, the number of hidden layers
of the neural network starts from 3, and the loss value is
calculated after every 10,000 iterations using the test set
according to the definition of the loss function. And then,
the hidden layers are added and retrained until the number
of hidden layers increases to 7, and the final minimum loss
value is taken as the final test loss.

In FIGURE 2, there are three TSVs, the signal TSV
is as the signal transmission channel of upper and lower
chips, and the ground TSV provides a reference ground for
signal transmission. The top view of each TSV is shown
in FIGURE 3. In Figs. 2 and 3, p is the distance between two
adjacent TSVs, h is the height of the TSV, Rm is the radius of
the metal layer in the middle of the TSV, tox is the thickness
of the oxide layer in the outer TSV, and Rox is the radius of
the TSV. The parameters of metal layer and dielectric layer
are σsi = 10 S/m, ρtsv = 1.68 × 10−8� · m, µr = 1,
εr,si = 11.9, and εr,Insulator = 4. The sweeping range of
geometric parameters are shown in Table 1.

TABLE 1. Sweep parameters.

For multi-parameter modeling of DNN-TSVs, e.g., when
h, p, Rm and tox all vary as the value shown in Table 1, the
performance of various function combinations is tested and
shown in Table 2. For the modeling, the number of hidden
layers is set to 7, the number of neurons in each hidden
layer is set to 50, the hyperparameter δ in the Huber loss

TABLE 2. Train GSG type DNN-TSVs model with TSV height, spacing, metal
layer radius, oxide layer thickness as input variables (the number of
datasets = 864, the number of hidden layers = 7, the number of neurons
in each hidden layer = 50, the hyperparameter δ in the Huber loss
function = 1, the learning rate = 0.001).

TABLE 3. Train GSSG differential type DNN-TSVs model with TSV height,
spacing, metal layer radius, oxide layer thickness as input variables
(the number of datasets = 864, the number of hidden layers = 7, the
number of neurons in each hidden layer = 50, the hyperparameter δ

in the Huber loss function = 1, the learning rate = 0.001).

function is set to 1, and the learning rate is set to 0.001.
As can be seen from this table, the final test loss using the
Huber loss function is smaller than that using the MSE loss
function. Moreover, the final test loss using the GELU activa-
tion function is smaller than that using the ReLU and Swish
activation functions. Among all the combinations, the final
test loss using the combination of GELU activation function
and Huber loss function is the smallest.

In addition, the S-parameters generated by the DNN-
TSV model depending on different activation functions and
Huber loss function are compared to demonstrate the actual
effect of the activation functions. The S-parameters of the
GSG-type TSV with geometric parameters of h = 42µm,
p = 6 µm, Rm = 2.5 µm, tox = 0.23µm are shown in
FIGURE 5. It can be observed that the S-parameters gener-
ated by the DNN-TSV model with GELU activation function
are the closest one to the results of the EM simulation. And
the combination of GELU activation function and Huber loss
function is chosen for modeling of DNN-TSV.

For different TSV structures, the modeling method can
be still adopted. FIGURE 6 shows the configuration of a
ground-signal-single-ground GSSG-typed differential-TSVs
(D-TSVs). The performance of various function combina-
tions is tested and shown in

Table 3. The combination of the GELU activation function
and the Huber loss function is also the optimal combination.

III. VALIDATION OF DNN-TSV MODELS
The EM simulation results are used to verify the
results obtained by the DNN-TSV models. The structures
of GSG- and GSSG-typed TSVs are calculated, and the final
S-parameters are compared for different methods. More-
over, after building the DNN-TSV model, the EM compu-
tation of the S-parameters are replaced by the DNN model,
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FIGURE 5. Comparison of S-parameters (S21) generated by DNN-TSV
models constructed from three activation functions respectively.

FIGURE 6. Schematic of GSSG-type differential TSVs.

so the efficiency is very high. For calculating the GSSG-type
TSV structure with the same geometric parameters, the
S-parameters predicted by the DNN-TSV model require only
about 3 seconds, and occupy only 1.4 MB of memory, while
the EM simulation will take about 474 seconds, and occu-
pies 2.28 GB. In addition, although efficiency of applying
the circuit model of TSVs is comparable to the DNN model,
the accuracy cannot be guaranteed, so in the following, the
accuracy of DNN-TSV model will be verifies.

Three methods are compared, i.e., the EM simulation, the
DNN-TSV model and the equivalent circuit model based
on [17]. The equivalent circuit model is shown in FIGURE 7,
and the equivalent circuit models for both GSG-type and
GSSG-type are given. FIGURE 8 and FIGURE 9 show
S-parameters results for the GSG-type TSV. The geometric
parameters of GSG-type TSVs are h = 44 µm, p = 5.5 µm,
Rm = 2.5 µm, tox = 0.1 µm. The parameters of the
circuit model are shown in the second column of Table 4,
the DC resistance of TSV is listed in Table 4, and the AC
resistance varies with frequency and is calculated according
to Equation (12) in [17]. It can be seen from the figure that the
deviation between the DNN-TSV model and the EM simula-
tion is much smaller than the deviation between the equiva-
lent circuit model and the EM simulation. FIGURE 10 and
FIGURE 11 show S-parameters results for the differential
GSSG-type TSV, the geometric parameters are set as h =
42 µm, p = 5.2 µm, Rm = 2.5 µm, tox = 0.18 µm.

FIGURE 7. Equivalent circuit model base on [17], where (a) denotes the
equivalent circuit model for GSG-type and (b) denotes the equivalent
circuit model for differential GSSG-type.

TABLE 4. Circuit model parameters for GSG-type and differential
GSSG-type.

FIGURE 8. Comparison of S11 for GSG-type TSV. (a) S11 magnitude and
(b) S11 phase.

The parameters of the circuit model are shown in the third
column of Table 4, as above only the DC resistance of TSV is
listed in Table 4. Similarly, the DNN-TSVmodel is also more
accurate than the equivalent circuit method for the GSSG
case.
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FIGURE 9. Comparison of S21 for GSG-type TSV. (a) S21 magnitude and
(b) S21 phase.

FIGURE 10. Comparison of S11 for differential GSSG-type TSV. (a) S11
magnitude and (b) S11 phase.

FIGURE 11. Comparison of S21 for differential GSSG-type TSV. (a) S21
magnitude and (b) S21 phase.

IV. COMPACT SPIRAL INDUCTOR BASED ON TSV
In this section, a compact spiral inductor based on TSVs is
designed by virtue of the DNN-TSV models.

A. 3D SPIRAL INDUCTOR
The conventional 3D spiral inductor without ground
TSV inserted between adjacent signal TSVs is shown in
FIGURE 12. To suppress the crosstalk, a compact 3D spiral
inductor with ground TSV is herein designed. To further
increase the inductance density, the inductor is designed by
stacking multilayer chips, as shown in FIGURE 13. Ground
TSVs are inserted between signal TSVs to reduce crosstalk
between signal TSVs and provide reference ground for
signal TSVs.

The front view on the yz plane of this design is shown
in FIGURE 14. The whole conductor structure consists of
redistribution layers (RDLs), TSVs and bumps. The TSVs
penetrate through a silicon substrate, with a central metal
layer of copper and an oxide layer of SiO2. The two TSV

FIGURE 12. Schematic of the conventional 3D spiral inductor.

FIGURE 13. Schematic of the compact 3D spiral inductor.

FIGURE 14. Front view along the yz plane.

layers are connected with copper bumps, with the top and
bottom RDLs embedded in the SiO2 layer.
The design parameters of the compact 3D spiral inductor

are shown in Table 5, where ptsv represents the spacing of
TSVs on the same side and Stsv denotes the spacing of TSVs
on the other side.

B. S PARAMETER-CIRCUIT EQUIVALENCE MODEL BASED
ON DNN-TSV
For fast simulation and rapid design of this inductor, the
DNN-TSV model is used. The specific process is as fol-
lows: Firstly, the designed TSV array is split into multiple
substructures. For example, the TSV array on the same side
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TABLE 5. Design parameters.

of the inductor designed in this section can be split into
multiple GSG substructures. Secondly, the DNN-TSV model
proposed above is utilized to obtain the S-parameter of GSG
substructure. Thirdly, the RDL layer is equivalently mod-
eled as a circuit model by using resistance, inductance, and
capacitance, in which the calculation formulas are expressed
as [25]. Moreover, TSVs with the same direction of current
flow contribute to positive mutual inductance, whereas the
opposite direction current flow would contribute to negative
mutual inductance [26]. Therefore, the total inductance can
be improved by placing same-direction TSVs closer and
opposite-direction TSVs farther away [27], and if the spacing
between the TSVs is much greater than six times the radius
of the TSVs can be considered a weakly coupled interconnec-
tion [28], so that the mutual inductance between TSVs along
the y-direction can be ignored in this circumstance.

RRDL,Bump =
ρl
s

(12)

LRDL =
µ0l
2π

[
ln
(
l
w

)
+ 0.5+ 0.447

w
l

]
(13)

LBump =
1
2

[
µ0

2π
hBump ln

(
ptsv
rBump

)]
(14)

MRDL =
µ0l
2π

[
ln
(

l
pRDL

)
+

√
1+

l2

p2RDL

+
pRDL
l
+

√
1+

p2RDL
l2

 (15)

where ρ is the conductor resistivity, l is the length of RDL,
s represents the cross-sectional area of RDL, w is the width of
RDL, pRDL is the distance between two adjacent RDL, ptsv is
the distance between two adjacent TSVs, hBump is the height
of bump, and rBump denotes the radius of bump. Finally, the
S parameters from the DNN-TSV model and the equivalent
circuit of RDL layer are co-simulated.

The S parameter-equivalent circuit model of the designed
TSV inductor is shown in FIGURE 15. The results of the
EM simulations are provided as reference to verify the accu-
racy of this S-parameter-circuit equivalence model, and the

FIGURE 15. Schematic of S parameter-circuit equivalent model
constructed based on the DNN-TSV model.

FIGURE 16. Validation of the S parameter-circuit equivalent model based
on the DNN-TSV model using EM simulation.

TABLE 6. Efficiency comparison of DNN-TSV based S-parameter-circuit
model and EM simulation.

results using the equivalence circuit models of both TSV and
RDL are also given for the comparison. From FIGURE 16,
it is observed that the proposed method is much accurate than
the equivalence circuit method, and its result is very closed
to the EM simulation, and the test results show that ignoring
the mutual inductance between RDLs would produce a large
error.

In addition, because the computational requirements of
the DNN-TSV model are small and the Bump and RDL
in the inductor are equivalent to a simple RLC circuit model,
the simulation efficiency of the inductor designed based
on the DNN-TSV model is very high. A comparison of
the efficiency of the DNN-TSV based design inductor and
EM simulation is shown in Table 6.

The inductance values of the conventional 3D inductor and
the proposed inductor are compared in FIGURE 17. The com-
pact 3D inductor designed in this work can further increase
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FIGURE 17. Comparison of inductance values of conventional 3D
inductors and the compact inductors proposed in this paper.

TABLE 7. Comparison of inductance value, area and inductance density.

the inductance value without increasing the occupied area
compared to the conventional 3D spiral inductor. Moreover,
the comparison of the inductance value, occupied area, and
inductance density of this design with the on-chip inductors
in [29], [30], and [31] is shown in Table 7. It can be seen that
the 3D compact inductor designed in this work can greatly
improve the inductance density.

V. CONCLUSION
In this work, an efficient deep-learning approach for wide-
band design of 3D TSV-Based Inductors was proposed.
By comparing various activation functions and loss functions,
the GELU activation function and the Huber loss function
were employed to build robust DNN-TSVs model. Using this
model, the frequency responses of various TSVs structures
including GSG-type TSVs and GSSG-type D-TSVs can be
accurately analyzed in a wide frequency band. Based on
this model, a compact 3D spiral inductor with ground TSV
has been designed, which can greatly reduce not only the
occupied area by comparison with the conventional inductors
but also the crosstalk between the signal TSV pairs.
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