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ABSTRACT A stacking ensemble model (SEM) is proposed in this paper to identify non-technical losses.
Three layers make up the proposed model. Data pre-processing is performed at the first layer, where issues
of data imbalance, missing values, and data normalization are dealt with. Min-max and a simple imputer
are used to handle data normalization and missing values, respectively. Besides, ADASYN and TomekLink
are used in a combined form to address the problem of data imbalance. The second layer employs three
different machine learning models. The models, also referred to as base classifiers, used at the second layer
in the proposed SEM include the following classifiers: random forest (RF), extra tree (ET), and extreme
gradient boosting (XGBoost). To accomplish the final classification using the ridge classifier, the output of
the basic classifiers is ensembled at the third layer. The ridge classifier is also regarded as the meta classifier.
Furthermore, the training and testing of the suggested model is aided by real-time data from the smart grid
corporation of China (SGCC). The proposed model’s performance is validated by multiple simulations using
various performance indicators and is found to surpass the standalone classifiers in terms of ETD.

INDEX TERMS ADASYN, deep learning, non-technical losses, SGCC, stacking model, smart grids,
TomekLink.

I. INTRODUCTION
The power grids comprise power generators, power distrib-
utors and power transmission lines, and form complicated
designs. In such grids, detecting losses on a real-time basis
is extremely challenging due to the lack of an intelligent
system. The one-way communication between the grid
and the end users is another issue that these grids face.
It prevents the traditional grids from providing electricity to
end customers on demand in real-time. These issues harm the
performance of the power grids and reduce their lifespan. The
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incorporation of the advanced metering infrastructure (AMI)
makes smart grids a reality. The bidirectional communication
between the grid and the end users is made possible via
the smart grid. However, they face energy losses, broadly
grouped into two categories: technical and non-technical. The
losses increased from 11% to 16% from 1980 to 2000 [1].
In the USA, the losses are 6% while in Russia, Brazil
and India the losses are 6%, 10% and 16% of the whole
energy production, respectively [2]. Technical losses (TLs)
are brought on by faulty transmission lines or transformers.
Contrarily, non-technical losses (NTLs) are brought about
by issues with metres, improper metre installation, theft of
electricity, etc., [3], [4]. Through effective electricity theft
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detection (ETD), our main objective is to find NTLs. It is
based on several approaches, which are broadly classified into
the following three categories [5].

1. State-based methodologies: these methodologies mea-
sure users’ electricity consumption using various hardware
components, such as sensors and radio frequency identifi-
cation tags. These are also known as the hardware-based
methodologies. Such methodologies have more robust ETD
performance. However, they face maintenance issues.

2. Game-based methodologies: in such methodologies,
a game is played between electricity consumers and attackers
to profit both entities [6]. As such methodologies are based
on assumptions, they do not produce efficient ETD results.

3. Machine learning methodologies: such methodologies
analyze the users’ electricity consumption trends using vari-
ety of machine learning approaches. These methodologies
give the best ETD performance. Such methodologies are
also used in various fields of life like healthcare, education,
transport, etc.

In the ETD, the number of dishonest users is minimal.
However, the number of honest users is large. Such a situation
is referred to as class imbalance, and is not good in the context
of ETD. It is because it gets challenging for the classifier to
make a fair categorization in such conditions. In [7] and [8],
the authors develop several artificial intelligence (AI) based
strategies for analyzing users’ electricity usage patterns to
identify suspected customers. However, the desired results
are not obtained. Besides, the literature is found to have the
following limitations.
• Class imbalance: it is one of the leading issues in
terms of ETD. During classification, the classifier tends
towards the majority class instances, due to this issue.
In such situations, the accuracy is misleading as the
minority class is confused for the majority class to
maximize the accuracy of a classifier. To overcome this
issue, various oversampling, undersampling and hybrid
techniques are proposed [9]. To solve this issue, we put
forward the ADASYN and TomekLink based hybrid
technique in the proposed model.

• High dimensional problem: the selection of relevant
features is also one of the leading problems in ETD.
Various machine and deep learning approaches are
used to solve this issue [10]. We propose machine
learning-based methods to solve this issue.

• High false positive rate (FPR): high FPR is also one of
the leading issues in the context of ETD. It occurs due to
misclassification [11]. The proposed work resolves the
issue by the combination of ADASYN and TomekLink.

• Overfitting: when a classifier is trained to a greater
extent or with small amount of data volume compared
to the input dimension, it does not perform well.
We proposed the ridge-based classifier in the proposed
work that includes the penalty constraint. The objective
is to solve the overfitting problem [10], [11].

• For both classification and selection, researchers mostly
use various convolutional deep neural networks (DNNs),

which are flavors of original convolutional neural
network (CNN) along with Alexnet. These strategies
mostly use different activation functions like sigmoid,
tanh, relu, etc. These activation functions face both
vanishing gradient and exploding gradient issues. As a
result, the learning process is affected to a greater
extent [12].

We proposed a viable approach for analyzing massive data
for the ETD in this research work. The primary goal is to
efficiently distinguish between honest and dishonest users
based on their electricity usage patterns. The following are
the paper’s main contributions.

• A hybrid technique based on ADASYN and TomekLink
is utilized for tackling the problem of class imbalance.

• A stacking ensemble model (SEM) is proposed for
detecting the NTLs in the underlying work. The model
employs three classifiers at level-0 and one classifier at
level-1.

• The proposed model’s performance is validated using
different performance metrics.

The following is the organization of the paper. Section II dis-
cusses the existing models that have been employed for ETD.
Sections III and IV define the problem statement and presents
the proposed system model. Section V presents the problem
formulation. Section VI provides the model evaluation. The
simulation results are discussed in Section VII. Section VIII
presents the conclusion.

II. LITERATURE SURVEY
This section presents the literature review. The current works
are broadly categorized into three groups.

A. METAHEURISTIC TECHNIQUES FOR PARAMETER
TUNING AND FEATURE SELECTION
In this section, numerous possible metaheuristic strategies
that have been used in the literature for parameter tuning and
feature selection are discussed. The basic goal is to achieve
the most satisfactory possible convergence. For ETD, CNN-
gated recurrent unit (GRU)-particle swarm optimization
(PSO) based deep hybrid model (HDM) is proposed by the
authors of [5]. In the proposed HDM, CNN chooses the
most relevant features while GRU is used to classify them.
Besides, PSO is used to fine-tune the GRU’s parameters. The
proposed HDM’s goal is to increase the model’s accuracy
and make it more resilient against outliers. The authors
in [13] use the long short term memory (LSTM) to deal
with data dimensionality. Random undersampling (RUS)-
Boost method is utilized for classification. It is a hybrid
of RUS and AdaBoost algorithm. Undersampling is done
by RUS, while boosting is done by AdaBoost. To solve
the binary classification problem in ETD, the AdaBoost
parameters are sent to a metaheuristic approach. The authors
proposed the HDM in [14]. The visual geometry group
(VGG-16) is utilized in the proposed HDM to choose the
target features. The binary classifications are done using
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firefly algorithm (FA) based XGBoost. FA is used for
parameter tuning. The goal is to describe the difference
between fraudulent and innocent users. The black hole
algorithm (BHA) method is proposed in [15] to select the
most representative features. The paper’s primary goal is
to pinpoint the irregular consumption patterns and identify
commercial losses.

B. OVERSAMPLING AND UNDERSAMPLING TECHNIQUES
TO HANDLE DATA IMBALANCE
In [16], TomekLink borderline synthetic minority oversam-
pling technique with support vector machine (TBSSVM)
is proposed to tackle the data imbalance issue. While the
combined model of temporal correlation network (TCN) and
enhanced multi-layer perceptron (EMLP) is proposed for
classification. Rusboost is combined with the maximal over-
lap discrete wavelet-packet transform (MODWPT) in [17]
for feature engineering. The validation results demonstrate
the accuracy of the model proposed in this work. The
authors of [18] employ the CNN model to distinguish
between normal and abnormal electricity usage patterns.
The simulation results demonstrate that the model perform
better on random oversampling (ROS) than other sampling
methods. The authors in [9] develop an ensemble machine
learning approach for ETD and to combat outliers. Synthetic
minority oversampling technique (SMOTE) is used to address
the problem of data imbalance. The results demonstrate that
other benchmark models are less accurate and resilient than
the proposed model.

C. FEATURE ENGINEERING TO MAKE THE MODEL
ROBUST AGAINST ATTACKS
The authors in [11] use the gradient boosting theft detector
(GBTD). The proposed strategy defends against multiple
attacks by combining the boosting techniques: XGBoost,
CatBoost, and LightBoost. To reduce the FPR, various
stochastic features like mean, standard deviation, etc., are
used. The gradient boosting classier is used for ETD by the
authors of [19]. Genetic algorithm (GA) is used to build new
features from existing ones. Various attacks are induced for
the model testing. The results demonstrates that the suggested
model is more reliable and accurate than another benchmark
models.

III. PROBLEM STATEMENT
The power grid is being harmed by electricity theft [20].
NTLs are the primary cause of it. In the imbalanced
dataset [9], the number of trustworthy users is more than
the number of dishonest users. Maintaining a balance
between honest and fraudulent consumers’ consumption is
challenging when using such a dataset. In the literature,
oversampling and undersampling-based class imbalance
approaches are used [9], [18] as the foundation for machine
learning and deep learning-based algorithms. The proposed
techniques have poor learning and generalization capabilities
since they either generate synthetic data or randomly remove

TABLE 1. Description of SGCC dataset.

data from the majority class. Consequently, high FPR is
achieved [11]. These issues further lead to less accurate
results and depreciated robustness when dealingwith outliers.
Therefore, to address all the mentioned issues, SEM-based
stacking model is proposed.

IV. PROPOSED MODEL
The proposed method is composed of a data pre-processing
and stacking model. The stacking model further comprises
four different classifiers, employed at levels 0 and 1. The
following subsections discuss the proposed system model in
more depth.

A. PRE-PROCESSING OF DATA
In this stage, the data imbalance issue is handled using
ADASYN, while data normalization is perfomed and the
missing values are imputed using min-max and interpolation
techniques. The details of the steps involved in data
pre-processing are discussed below. Table 1 provides a
description of the SGCC dataset [21].

1) HANDLING THE DATA IMBALANCE ISSUE
The imbalance data problem is tackled via different strategies
in the ETD context. These strategies are broadly classified
into three categories: data level, algorithmic and hybrid. The
objective of data-level strategies is to improve sample gath-
ering involved in data distribution. In algorithmic strategies,
the work is done on the algorithm rather than data. In the
hybrid strategies [22], the positive aspects of data level and
algorithmic strategies are combined. The researchers used
numerous data sampling algorithms to balance the data in the
literature. Tomanage the imbalance data, SMOTE is used [9],
[12]. This strategy replicates instances in the minority class
at random, and is prone to overfitting [20]. Besides, RUS is
also employed in the data balancing process. The issue with
RUS is that it causes information loss [18]. To deal with this
issue, near miss (NM) technique is used [23], [24]. Rather
than data level or hybrid strategies, our focus is on algorithmic
strategies. In this paper, we employed a hybrid method based
on ADASYN [14] and TomekLink [16]. As illustrated in
Figure 1, ADASYN is an oversampling technique. Whereas,
TomekLink is an undersampling technique, as shown in
Figure 2. The mathematical representation of ADASYN is
given in the following equations.

d =
ms
mi

(1)

Equation 1 describes the ratio between the majority and
minority classes. mi represents the minority class instances
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FIGURE 1. Workflow of ADASYN: resampling of imbalanced class instances.

while ms represents the majority class instances.

G = (ms − mi) ∗ β (2)

Equation 2 describes the number of synthetic observations
between two classes that are balanced using β, keeping its
value equal to 1.

ri = 4i/K , i = 1, 2, . . . ,m (3)

In Equation 3, the synthesized samples are represented by
4i while i denote the number of neighbors that belong
to the majority class. Suppose, K is selected to be five.
So for a particular class, two out of five observations
are from the majority class, which are represented by the
4i. As a result, the ri for the specific minority class is
0.4. ri is normalized using the density distribution r̂i via
Equation 4.

r̂i = ri/
ms∑
i=1

ri (4)

Equation 5 determines the number of points synthetically
generated for any individual minority point.

gi = r̂i ∗ G (5)

ADASYN oversampling technique intelligently creates syn-
thetic samples for any instance of the probability distribution.
As seen in Figure 1, instances with high probability generate
large number of synthetic instances, instances with moderate
probability create moderate number of instances while
the instances with the lowest probability create the least
number of instances. Unlike ADASYN, the TomekLink
technique [16] removes unneeded instances from themajority
class, creating a balance between the majority and the
minority classes, as demonstrated in Figure 2. TomekLink is
an undersampling technique that makes pairs of data points
(mn,mj). Themn denotes the minority class instance whilemj
represents the majority class instance. The pair (mn,mj) forms
a TomekLink in the case of the condition being unsatisfied
by sample xk , given as d(mn, xk ) < d(mn, mj). Also, given
as d(mj, xk ) < d(mn, mj). By doing so, the removal of
the majority class samples placed near the minority class

FIGURE 2. Workflow of TomekLink.

samples happens, which leads to data balancing. Besides,
both ADASYN and TomkeLink are combined in a hybrid
approach through a pipeline technique [25].

2) DATA NORMALIZATION
The neural network model is very sensitive to data, so every
significant or minor change in the data affects the learning
process. To tackle this issue, normalization proves to be the
most effective method. Equation 6 presents the mathematical
formulation of min-max normalization [12].

Z =
B− min(B)

max(B)− min(B)
(6)

The consumer’s energy consumption pattern is described by
B. The difference between the upper and lower bounds of
min and max functions represents the amount of electricity
consumed. As Equation 6 is the ratio, its value lies in the range
0 to 1. Thus, the normalized value of the user’s consumed
energy lies between 0 and 1.

3) HANDLING THE MISSING VALUES
Generally, each dataset contains missing values or NaN
values, which are to be removed before classification.
Usually, for filling the NaN values, a simple imputer
technique is employed. In this paper, we also used the simple
imputer technique to handle the missing values [26].
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4) REMOVING OUTLIERS
The outliers are the values that are different from other
values of the dataset under observation. The outliers affect
the performance of the classifier. Hence, they are removed
during classification with the aid of three-sigma rule of
thumb [10].

B. STACKING MODEL
After pre-processing, a stacking model is used to classify the
data. The stacking model works with two types of classifiers:
base classifier andmeta classifier. The base classifiers include
heterogeneous classifiers that are trained individually on
the dataset to perform classification before being handed
to the meta-classifier for final classification, as shown in
Figure 4. The overall goal of the stacking model is to increase
classification accuracy.

The proposed SEM employs three classifiers at level-0 and
one classifier at level-1. RF, ET andXGBoost are employed at
level-0 as base-learners while ridge classifier is employed at
level-1 as a meta-learner. Various machine learning models
have been used in the ETD to perform classification like
support vector machine (SVM), logistic regression (LR), etc.
The problemswith these classifiers are overfitting and limited
generalization capability [13]. Hence, the overfitting issue is
resolvedwith the help of ridge regression used in combination
with the regularization parameters. The correlation between
each base learner’s prediction result is also dealt with using
the same combination.

In ETD, various techniques are used to distinguish the
fraudulent and honest users. However, accuracy still remains
the main concern. The stack-based machine learning model
improves the performance due to the efficient performance
of the base models, which are very skillful in solving the
problem at hand in different ways [9], [25], [32], [33].

1) BASE CLASSIFIERS
The base classifiers used in the proposed stacking model
are RF, ET and XGBoost. The RF and ET are bagging
techniques while XGBoost is a boosting technique. In the
bagging technique, several weak learners (decision tree
models) are combined to estimate the final standardized
output. The working of bagging technique is provided in
Algorithm 1 [27].

Using the replacement technique, random bootstraps
(small samples) are generated in the bagging process.
The working of the bootstrap technique is given in Algo-
rithm 2 [10], [27]. The way to better utilize and comprehend
the entire dataset is demonstrated in Figure 5.

The boosting is an ensemble technique. In the boost-
ing technique, various weak learners are combined into
a single strong learner. The primary difference between
bagging and boosting is that in bagging, the weak learners
perform in parallel. While in boosting, the weak learners
perform sequentially. The working of boosting is given in
Algorithm 3 [27].

Algorithm 1 Bagging Technique Algorithm
1: Initialization
2: Input: Dataset Z = {z1, z2, . . . , zN}, with zi = (xi, yi),

where xi ∈ X and yi ∈ {0,1}, B, number of bootstrap
samples.

3: Output: Classifier H: X→ {0,1}, the final classifier
4: for b = 1 to B do
5: Draw, with replacement, N samples fromZ, obtaining the

b-th bootstrap sample Z∗

6: From each bootstrap sample Z∗b, learn classifier Hb.
7: end for
8: Produce the final classifier as a majority vote of H1, . . . ,
HB that is,H(x) = sign(

∑B
b=1Hb(x))

9: End

Algorithm 2 Bootstrap Technique Algorithm
1: Initialization
2: Input: Size-N sample Z ={z1, z2, . . . , zN} of a

(potentially infinite) population P.B, number of bootstrap
samples

3: Output: Estimate T̂ (P) of the population statistic
4: for b = 1 to B do
5: Draw, with replacement, N samples fromZ, obtaining the

b-th bootstrap sample Z∗b
6: Compute, for each sample Z∗b , the estimate of the statistic
T̂ (Z∗b )

7: end for
8: Compute the bootstrap estimate, T̂ (P), as the average of
T̂ (Z∗1 , . . . , T̂ (Z

∗
B)

9: Compute the accuracy of the estimate, using, e.g., the
variance of T̂ (Z∗1 , . . . , T̂ (Z

∗
B)

10: End

Algorithm 3 Boosting Technique Algorithm
1: Initialization
2: Input: Dataset Z = {z1, z2, . . . , zN}, with zi = (xi, yi),

where xi ∈ X and yi ∈ {0,1}
3: Output: Classifier H: X ={0,1}
4: Randomly select, without replacement, L1 < N samples

from Z to obtain Z∗1
5: Run the weak learner on Z∗1 , yielding classifier H1
6: Select L2 < N samples from Z, with half of the samples

misclassified by H1, to obtain Z∗2 .
7: Run the weak learner on Z∗2 , yielding classifier H2
8: Select all samples from Z on which H1 and H2 disagree,

producing Z∗3
9: Run the weak learner on Z∗3 , yielding classifier H3
10: Produce the final classifier as a majority vote: H(x) =

sign(
∑3

b=1Hb(x))
11: End

In Algorithm 3, Z∗1 , Z
∗

2 , Z
∗

3 represent the samples that
are generated with replacement strategy. Besides, H1, H2,
H3 represent the weak classifiers. H (x) represents the
strong learner or classifier that works on the majority
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FIGURE 3. Proposed system model.

vote. Overall, boosting is an iterative process in which
weights are updated after each iteration and priority is
given to misclassified instances. Figure 6 shows the boosting
technique. The working of boosting technique is described in
Algorithm 3. It is used for performing both classification and
regression [28].

The mathematical formulation of the boosting technique is
given as follows.

Our goal for each model F is the correct prediction of the
values using Equation 7.

ŷi = F(x) (7)

The identified mean square error is minimized using
Equation 8.

ŷi =
1
n

∑
i

(ŷi − yi)2 (8)

The actual and the predicted values are represented by yi and
ŷi, respectively. n is the number of samples while i represents
training over a set of size n instances over the actual values
of the output variable y. Besides, to improve the performance
of a less efficient model Fm that returns ŷi = ȳ, with ȳ being
the mean value of y, a new estimator hm(x) is introduced.

Fm+1 = Fm(xi)+ hm(xi) = yi (9)
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FIGURE 4. Schematic diagram.

or it may be

hm(xi) = yi − Fm(xi) (10)

The accuracy is improved for each Fm+1 by attempting to
correct the error of the prior Fm(x). The major goals are to
reduce the loss as in Equations 11 and 12, and increase the
accuracy. In this manner, the model is made resilient against
outliers.

LMSE =
1
n

n∑
i

(yi − F(xi)2) (11)

−
∂LMSE
∂F

=
2
n
(yi − F(xi)) =

2
n
hm(xi) (12)

The base classifiers are discussed in details as follows.

• Random forest
RF is a bagging technique in which numerous trees are
formed during training. The final decisions are made
based on the average or votes of each tree, with the
goals of improving accuracy and avoiding overfitting.
RF may be utilized for both classification and regression

FIGURE 5. Bagging technique.

FIGURE 6. Boosting technique.

as it performs well in the feature selection process. The
working of RF is given in Algorithm 4 [10].
There are three folds of RF [9].

– It picks data randomly and creates numerous classi-
fication trees, making the classifier less susceptible
to error or noise.

– It is adaptable to any dataset and can handle
high-dimensional data with ease.

– Parallel processing allows for rapid training.

The workflow of RF is as follows [27].

– Random samples S are bootstrapped from the
original dataset using a replacement strategy; S =
S1, S2, . . . , Sm, where m is the total number of
samples.

– RF is created by growing a large number of trees
on random samples Sm without pruning (strong
learner).

– The best features are selected from the existing
features based on the best split.
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Algorithm 4 Algorithm of RF
1: Initialization
2: Require
3: i. Training datasets
4: S = {(xi, yj), i = 1, 2, 3 . . . , m}, (X,Y), ∈ R×R

ii. Testing datasets xj ∈ Rm

5: for do 1 to N tree do
6: i. Draw a bootstrap Sd from the original training data
7: ii. Grow an unpruned tree hd using data Sd
8: (a) Randomly select new feature set Mtry from

original feature set e
9: (b) Select the best features from feature set Mtry

based on Gini indicator on each node
10: (c) Split until each tree grows to its maximum
11: end for
12: Ensure
13: i. Collection of trees {hd , d = 1, 2, . . . , Ntree}
14: ii. For xj, the output of a decision tree is hd (xj)
15: f (xj) = majority vote {hd (xj)}Ntree
16: return f (xj)
17: End

– The final classification is performed by themajority
votes.

– The Giniindex calculates the loss.

• Extreme gradient boosting
XGBoost is the gradient boosting-based ensemble
technique [28]. It is designed to achieve high scalability.
The loss in XGBoost is estimated using Equation 13.
To reduce the loss, XGBoost uses additive expansion
in terms of regularization parameters with an objective
function. Furthermore, loss function variation allows for
better control of tree complexity.

Lxgb =
N∑
i

(yi,F(xi))+
M∑
m=1

�(hm) (13)

�(hm) = γT +
1
2
λ||w||2 (14)

T represents the number of leaf nodes, while w
represents the output score. The loss is determined using
decision tree splitting criteria, which pushes the model
towards the pre-pruning approach. The penalty used to
control the minimal loss is represented by λ. If λ is
large, the loss is large, and the tree becomes simple.
If λ is less, the loss causes the tree to be divided into
more nodes. Furthermore, these regularization factors
decay, resulting in additive expansion with a small step
size. Besides, max depth is an important controllable
parameter utilized in the XGBoost to manage the tree’s
complexity, which results in fast training and less
consumption of storage space. The random approach
makes XGBoost less overfit and quick to train [28].
Furthermore, XGBoost uses various methods to speed
up the training process that has nothing to do with the

ensemble classifier’s accuracy. The major goal is to
improve split performance by lowering the complexity.
Due to a linear scan over all sorted attributes [28],
in the splitting phase, all viable candidates are usually
considered and those with the highest gain are chosen.
The working of XGBoost is given in Algorithm 5.

Algorithm 5 XGBoost Algorithm
1: Initialization
2: Input: Explanatory feature matrix: X; target attribute

vector: Y; loss function: l(y,ŷ); base learner: g(X,µ);
number of subtrees: K

3: Output: Prediction probability
4: for t=1:K do
5: Initialize Go(Xi) argminp =

∑N
i=1 L(yi, p)

6: Compute
`
Gt (X)

7: Run the new learner function g(X,µ)
8: Predict the best gradient descent stage size(pk ) =
argminp

∑N
i=1L(yi,Ĝk−1(Xi) + pg(Xiµi))

9: Output the prediction probability Ĝk = Ĝk−1 +
pkgk (Xµ)

10: End

• Extra tree
ET is a bagging technique that uses Ginindex to
determine the best split. However, the working flow of
ET is different from that of RF [29]. The differences are
enlisted below.

– In RF, the best split is used while in ET, a random
split is used for information gain.

– In RF, the bootstrapping process is used while in ET
the whole original sample is used.

2) META CLASSIFIER
The ridge classifier is used as a meta-classifier in our
proposed SEM [30], [31]. The three base classifiers (B1−B3)
are trained on the dataset xmn to perform the prediction after
pre-processing. Each base classBi creates new feature vectors
x ′mn = (B1(xmn)), (B2(xmn)) and (B3(xmn)) derived from
the original xmn vectors. After training the base classifiers,
a meta-classifier is utilized to classify the newly created
feature vectors. Algorithm 6 presents the proposed model’s
working.

V. PROBLEM FORMULATION
The classification problem is solved using the proposed
model. In the first step, a matrix is used.

X =



x11 x12 . . . x1n
x21 x22 . . . x2n

. . . .

. . . .

. . . .

xm1 xm2 . . . xmn


=


0
1
1
1
0
1

 , (15)
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where X stands for the entire dataset, m for observations and
n for features. There exist 1034 features and 42372 obser-
vations in the dataset. The label class column represents
0 and 1 values. After selecting the features, the basic classifier
(B1− B3) is trained on xmn. In the validation step, new
features x ′m are generated from the existing ones. During this
process, loss is calculated by the binary Giniindex [34] using
Equation 16. The Giniindex is a two-step data distribution
technique. The steps are enlisted below.

• Randomly pick the data samples from the dataset.
• Randomly perform the classification of the class distri-
bution using Equation 16.

G =
C∑
i=1

p(i) ∗ (i− p(i)) (16)

C and p(i) represent the total number of classes and the
probability of the features being classified for a particular
class i, respectively. The value of the Giniindex lies between
0 and 1.

Algorithm 6Working of the Proposed Model
1: Initialization
2: The Ds dataset xi,j ∈ SGCC, where I stands for

observations and j for features.
Data splitting into Training and Testing

3: The training is described by Dtr while testing by x ′m
Pre-Processing

4: Normalization is performed by the min-max
5: NaN values are handled by the simple imputer
6: Data imbalance problem is solved by ADASYN-

TomekLink
Base Classifiers

7: The first model is trained in the classification phase. I.
Training Phase

8: For i=1 to S (Where S represents the whole set) on the
dataset Dtr

9: Select S ′ from S using Bootstrap.
10: Model is trained on S ′

11: Loss is calculated on the basis of Giniindex
12: Base Model 1 = Prediction
13: Model 2 is trained on S ′

14: Model weights have been modified (Given preference to
those instances which are misclassified in the previous
model)

15: Loss is calculated on the basis of Ginindex
16: Base Model 2 = Prediction
17: Base Model 3 = Prediction

Meta classifier
18: The well tuned ridge classifier is tested on x ′m for final

classification
19: Performance comparison is measured on the basis of

valid and reliable performance metrics
20: End

VI. MODEL EVALUATION
The proposed model’s performance is validated using various
performance metrics. The validation results are discussed in
detail below.

A. PERFORMANCE METRICS
Below is the discussion of the performance metrics’ function-
ing mechanisms used in this study for model evaluation.

The AUC score is one of the most accurate and dependable
performance indicators. It has a range of 0 to 1. In terms
of TPR and FPR, the intra class separability is measured
using this metric. The AUC’s mathematical form is given in
Equation 17 [8].

AUC =

∑
Ranki∈positiveclass −

P(1+P)
2

P ∗ N
. (17)

The positive class and negative class is denoted by P and N ,
respectively. The AUC value of 1 indicates that themodel per-
forms accurately. Whereas, random guessing is represented
by the value of 0.5.

Precision and recall are used to calculate the F1-Score.
It estimates the precision-to-recall ratio and measures har-
monic means. For calculating F1-Score, Equation 18 is
used [8].

F1− Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(18)

Recall and precision are calculated using Equations 19
and 20.

Recall =
TP

TP+ FN
(19)

Precision =
TP

TP+ FP
(20)

The number of TP in the actual result is used to compute
recall, which is also known as sensitivity. Precision, on the
other hand, is also known as specificity. It is determined by
the relevance of the entire actual result.

Accuracy is one of the reliable performance metrics widely
used in ETD [18]. It is defined as the total number of
accurately classified instances divided by the total number of
instances, as given in Equation 21.

Accuracy =
TP+ TN

TP+ FP+ FP+ FN
(21)

TP, FP, TN and FN are defined as follows.
TP: the users are theft and the classifier considers them as

theft.
FP: the users are honest but the classifier considers them

as theft.
TN: the users are honest and classifier considers them as

honest.
FN: the users are theft but the classifier considers them as

honest.
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TABLE 2. Proposed SEM’s performance comparison.

FIGURE 7. Comparison of the proposed SEM with standalone classifiers
in terms of ROC-AUC.

VII. SIMULATIONS AND RESULTS
This section discusses the proposed model’s simulation setup
and performance results obtained using various performance
metrics.

A. SIMULATIONS’ SETUP
The system having Intel Core i5 alongwith 8Gigabytes RAM
and 500 Gigabytes HDD is used for performing simulations.
The proposed model is implemented using the Python
programming language and well-known machine learning
scikit-learn and XGBoost libraries. The Python programming
language uses Google Colab as a simulation tool. By default,
free-tier Google Colab provides 12 GB RAM, which
is not enough to process the complete SGCC dataset
comprising 42373 records. Therefore, we selected only
4000 samples out of 42372 for analysis purpose where the
original classes’ distribution is maintained. Afterwards, using
ADASYN-TomekLink, the records are increased from 4000 to
7325 and the data is balanced.

B. PERFORMANCE RESULTS
The proposed model’s performance is validated on the real
SGCC dataset [21]. Table 1 provides the detailed description
of the dataset. Moreover, 80% of the total dataset is used for
training while 20% is used for testing. The simulation results’
details are provided below.

Figure 7 shows the performance of RF in terms of
ROC-AUC. The figure exhibits RF to underperform ET.
It is due to the utilization of replica replacement and the
splitting performed on the basis of the best split in which
the whole sample is not covered. However, RF exhibits
high ROC-AUC than XGBoost and ridge. Overall, the
ROC-AUC of the proposed SEM is the highest of all
classifiers.

FIGURE 8. Comparison of the proposed SEM with standalone classifiers
in terms of PR-AUC.

FIGURE 9. Comparison of the proposed SEM with standalone classifiers.

FIGURE 10. Comparison of the proposed SEM with standalone classifiers
in terms of FPR.

Figure 8 presents the PR-AUC of all classifiers. If the
probabilistic curve between precision and recall is high, the
model is robust against the outliers and vice versa. The RF
exhibits 0.01% less PR-AUC than ET. It is due to replica
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replacement, which affects the model learning process and
leads the classifier towards misclassification. Similarly, the
PR-AUC of XGBoost and ridge is also less than that of ET.
However, the proposed model’s PR-AUC is the highest of all
classifiers.

Figure 9 exhibits the comparison in terms of different
well-renowned performance metrics. The figure shows the
proposed SEM’s superiority concerning the mentioned per-
formance metrics.

The proposed SEM model’s FPR comparison with the
existing standalone models is shown in Figure 10. The result
shows that FPR of ridge is the highest while that of the
proposed SEM is the lowest.

VIII. CONCLUSION
The proposed SEM consists of three classifiers at level-0 and
one classifier at level-1. RF, ET and XGBoost are used at
level-0 as base classifiers while ridge classifier is employed
at level-1 as a meta classifier. The proposed model is three-
layered architecture. The data pre-processing is done at the
first layer. In the pre-processing phase, data normalization,
the existence of NaN and data imbalance problems are
addressed. The data normalization and NaN values are
handled using min-max and simple imputer, while the data
imbalance problem is handled by ADASYN and TomekLink
based hybrid technique. Three machine learning models, RF,
ET and XGBoost, are used at the second layer. The output
of these classifiers is ensembled at the third layer to predict
the final classification using ridge classifier. The dataset of
SGCC is used to train and test the model. The proposed
model’s performance is validated using different performance
metrics; the results of which reveal the superiority of the
proposed model in terms of ETD and high robustness.
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