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ABSTRACT This work conceives novel target detection and parameter estimation schemes in millimeter-
wave (mmWave) multiple-input multiple-output (MIMO) radar (mMR) systems for both stationary and
mobile targets/radar platform. Initially, the orthogonal matching pursuit (OMP)-based mmR (OmMR)
algorithm is proposed for stationary targets to estimate their radar cross-section (RCS) coefficients, angle,
range locations together with the number of targets. Next, mMR systems with mobile targets and platform are
considered, followed by development of the simultaneous OMP (SOMP)-based mMR (SmMR) algorithm
for RCS, angle/range estimation together with their Doppler velocities. The proposed algorithms lead to a
significant improvement in performance since they exploit the inherent sparsity of the mMR scattering scene
in contrast to the conventional schemes. Two-dimensional (2D) mMR imaging procedures are also presented
for both scenarios in the angle, range, and Doppler dimensions. Analytical expressions are derived for the
Cramér-Rao bounds (CRBs) for the mean-squared error (MSE) of joint estimation of the RCS coefficients
and Doppler velocities. Simulation results demonstrate that proposed schemes perform well even in low
signal-to-noise ratio (SNR) scenarios with a few snapshots of the scattering environment and yield improved
performance in comparison to existing sparse as well as non-sparse schemes.

INDEX TERMS Millimeter wave (mmWave), MIMO radar, RCS coefficients, Doppler velocity, radar
imaging, parameter estimation, sparsity, simultaneous orthogonal matching pursuit.

I. INTRODUCTION
Automotive Radar is a critical and promising technology for
autonomous vehicles and driving assistance systems. Auto-
motive radar technology can help avoid traffic congestion
and road accidents, enable automatic cruise control (ACC),
automatic emergency brakes (AEB) and forward collision
warning (FCW) systems, in addition to greatly improving
the fuel efficiency [1]. However, it is important to note
that the reliability of these functions in autonomous driving
systems depends critically on the accuracy of the angle, range
and velocity estimates obtained by the radar in a multi-
target scenario [2]. Millimeter-wave (mmWave) technology
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is expected to play a pivotal role in future communication
systems due to its ultra-high data rates that can enable various
applications such as Vehicle-to-Everything (V2X) [3], body
area networks, UAV communication, to name a few [4].

This is well suited also for radar applications, since the
mmWave band provides a large bandwidth, which leads to a
significantly higher angle and range resolution in radar, thus
aiding in the accurate detection of various targets followed by
the estimation of their location parameters [1]. The temporal
and angular sparsity of the mmWave channel [5] can be
efficiently exploited to further improve the accuracy of radar
detection and imaging [6]. The small wavelength of signals
at mmWave frequencies enables the packing of large antenna
arrays on wireless devices of limited sizes. According to
the well-known Rayleigh criterion [7], a large antenna array
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can significantly strengthen the angular resolution of the
radar. Therefore, Multiple-input multiple-output (MIMO)
technology, which uses large arrays with multiple transmit
and receive antennas for sensing the scattering environment
and detection of targets, can lead to a significant improvement
in radar performance [8]. This is due to the fact that
MIMO technology supports the simultaneous transmission of
multiple probing signals followed by the reception ofmultiple
signals reflected by the targets. Therefore, deployingmultiple
antennas in the radar system enables the transmission of
multiple probing signals and also the subsequent reception
of multiple reflected copies of the probing signals, which
yields increased degrees of freedom obtained via exploiting
spatial diversity. This, in turn, leads to enhanced estimation
accuracy and better parameter identifiability in comparison to
a standard phased-array radar, which transmits phase shifted
versions of a single waveform [9], [10], [11], [12]. A brief
review of the existing works in this rapidly evolving area of
mMR systems is presented next.

A. REVIEW OF EXISTING WORKS
Several techniques have been described in the existing
literature on MIMO Radar toward target detection and
parameter estimation. Bekkerman et al., in [13] proposed a
generalized likelihood ratio test (GLRT) for target detection
and maximum likelihood (ML) estimation of target location.
However, the implementation of GLRT is computationally
complex, especially in a multi-target scenario, as the param-
eter search space becomes exponentially large. Moreover,
the GLRT also requires prior information pertaining to
the number of targets, which is infeasible in practice.
To overcome this challenge, the authors in [14], proposed two
alternative schemes, i.e., the conditional GLRT (cGLRT) and
iterative GLRT (iGLRT), which only require searches over
one-dimensional spaces instead of the highly complex K -
dimensional search required by the GLRT, while achieving
a performance close to that of the GLRT for parameter
estimation. However, the cGLRT and iGLRT require a large
number of snapshots for acceptable performance. Li et al.
in [15] proposed a range-angle generalized Likelihood
ratio test (RA-GLRT) for target detection with efficient
clutter rejection. However, additional degrees of freedom
are needed in the range domain to distinguish targets of
interest from the clutter. The authors in [16] proposed an
ESPRIT-based angle of arrival estimation scheme to generate
highly resolvable images of the scattering environment.
Their technique employed an intelligent scheme based on
the division of time-frequency resources to generate high
quality radar snapshots. However, the scheme propounded
by them can be computationally expensive since it requires
the eigenvalue decomposition of the spatial signal covariance
matrix. Yang et al. in [17] described a reduced-dimensional
ESPRIT algorithm to lower the dimensionality of the received
data prior to estimation of the angles of arrival in a multi-
target scenario. Ngai et al. in [18], proposed a suitably refined
version of the ESPRIT algorithm, employing the Kalman

filter, for the one-dimensional direction finding problem
of MIMO radar. The results therein demonstrate that the
proposed scheme performs well in a system with a large
number of TAs and RAs, and has the ability to resolve all
the targets as long as they are fewer in number than the total
number of antennas.

Other researchers have presented MIMO radar techniques,
such as Capon [19], APES [20] for the detection of multiple
targets using data dependent algorithms followed by the esti-
mation of the target location and associated RCS parameters.
However, it must be noted that the Capon scheme yields
good estimates of target locations, while its RCS coefficient
estimates are biased downward. APES on the other hand
provides accurate estimates of the RCS coefficients at the
expense of a poorer resolution and hence leads to poorer
estimation accuracy of the target locations. In [21], the
authors proposed a CAPES algorithm, which combines the
best features of the Capon and APES algorithms, to refine the
estimates of the RCS coefficients and target locations. Zhang
et. al in [22] proposed a reduced dimensional Capon (RD-
Capon) algorithm which requires only a single dimensional
search, thus entailing a substantially lower computational
complexity. However, the constraint restricts only the data
received for first transmitted signal to be used to estimate
the angle of arrival, which results in a performance loss.
The authors in the treatise in [23] presented the novel Capon
and Approximate Maximum Likelihood (AML) method,
termed CAML, to improve the accuracy of RCS estimation.
It must be noted that all the above works consider the
targets to be located at an identical range, which is not a
realistic assumption in practical scenarios. In a rich scattering
environment, the multiple targets are often located at distinct
angles and ranges [10]. Several schemes to tackle the
problem of identification, followed by estimation of the RCS,
range and angle parameters were described in works such
as [24], [25], [26], and [27] for stationary and mobile targets.
Yardibi et. al [24] proposed two non-parametric, viz., iterative
adaptive approach (IAA) and its extension, termed IAA-ML,
for RCS estimation coupled with target imaging. Roberts et.
al, in their treatise in [25], proposed the regularized IAA for
mobile targets. However, these schemes incur a significant
computational burden owing to the large number of matrix
inversions required.

Rawat et. al in [26] developed block least mean squares
(BLMS) and fast BLMS (FBLMS) algorithms for the
estimation of RCS coefficients and imaging in a MIMO
radar system. The fast FBLMS technique was clearly seen
to result in improved estimation and imaging performance,
together with faster convergence. However, the framework
considered in their work, and hence, the techniques described,
were restricted to stationary targets and radar platform.
In [27], the authors extended the BLMS and FBLMS
for scenarios with mobile targets and radar platform. The
authors of [28] proposed recursive least squares (RLS)-
based adaptive techniques for time-varying RCS coefficient
estimation and 2D MIMO radar imaging in the presence of
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an unknown number of targets with unknown angles and
ranges. In [29], the authors proposed a two-stage parameter
estimation technique for automotive MIMO radar. In their
scheme, the first stage successfully performs low-complexity
three-dimensional peak detection, while the second stage
estimates the direction-of-arrival (DOA) via ESPRIT. Fur-
thermore, the authors of [30] proposed a novel cost function
for joint estimation of the Doppler frequency and DOA of the
targets employing time division multiplexing (TDM) MIMO
radar toward resolving the velocity ambiguity for automotive
applications. However, the proposed framework therein is
only limited to the estimation of velocities lower than a
certain maximum velocity and the spectra of signals of targets
with velocities higher than the velocity corresponding to the
Nyquist rate are still aliased, and hence cannot be accurately
estimated. To address this issue, Sohee et al. in [31] proposed
a method for velocity estimation while simultaneously
resolving the velocity ambiguity in a frequency-modulated
continuous wave (FMCW) radar system. The authors of [32]
proposed a tensor generalized weighted linear predictor
(TGWLP) for a frequency diverse array (FDA) MIMO radar
toward parallel estimation of radar parameters.

The significant difference of the previously published
works [26], [27], and [28] with respect to the present
work is that while the former consider only conventional
sub-6 GHz MIMO systems, the current work incorporates
mmWave MIMO technology, which is expected to play
a crucial role in 5G communication networks due to its
ultra-high data rates. This move to 5G mmWave MIMO
technology leads to substantial challenges. For instance,
note that the conventional techniques, such as least squares
(LS)/Linear minimummean squared error (LMMSE), require
the transmission of a large number of probing signals,
particularly in high delay spread scenarios. This is because
channel estimation using such conventional methods requires
an overdetermined system, thus leading to an ill-posed
problem when the number of probing signals is lower than
the maximum number of channel taps in the finite impulse
response (FIR) filter representing the frequency-selective
MIMO radar channel. However, all the above papers fail to
exploit the inherent sparsity of the scattering environment
at mmWave frequencies, arising from the presence of only
a few significant non-zero channel taps in the channel
response, which can play a crucial role in improving the
accuracy of target detection and RCS/location estimation.
To overcome this challenge, other approaches such as
compressed sensing (CS), the convex-relaxation based least
absolute shrinkage and selection operator (Lasso) [33], and
the focal underdetermined system solver (FOCUSS) [34],
have been proposed for sparse parameter estimation in
ill-posed scenarios. However, the performance of Lasso
depends critically on a user-defined regularization parameter,
while that of FOCUSS suffers from convergence problems.
As a further development, Peng et al. [35] proposed
sparse Bayesian learning (SBL) based direction of arrival
(DOA) estimation in MIMO radar systems with unknown

mutual coupling among the antennas. However, the proposed
framework is unsuitable for colocated MIMO radar since
it involves a large number of computations. The authors
of [36] proposed a reduced-complexity SBL for colocated
MIMO radar toward DOA estimation. The array data
obtained from matched filters is initially subjected to a low
complexity transformation, thereby removing redundancies
in order to lower the computational complexity. However,
the authors therein consider only single dimensional spar-
sity in the angular domain. Zhao et al. [37] proposed
a framework for sparse parameter estimation in bistatic
MIMO radars based on l2 norm minimization employing
the residual sum of square (RSS) technique. In their work,
the constrained optimization model is initially transformed
into an unconstrained optimization model with the aid of
Lagrange multipliers. The sparse solution is next obtained by
minimizing this unconstrainedmodel. However, the proposed
solution requires the inversion of a dictionary matrix, which
incurs a high computational complexity. In [38], the authors
proposed a two-stage sparse parameter estimation procedure.
In the first stage, the estimation problem is transformed
into a sparse signal recovery problem, whose solution is
determined via a modified version of the sparse learning via
iterative minimization (SLIM) technique. In the second stage,
a RELAX-based iterative algorithm is employed to refine
the estimates obtained via the SLIM algorithm. However,
since the proposed method has two stages, and additionally
requires the RELAX algorithm to compute the sparse values
of the target parameters, it can potentially be resource
intensive. Furthermore, the proposed algorithm also suffers
from amplitude-related dynamic range issues, which hampers
its ability to efficiently exploit the sparsity of the radar
parameters. Zhimin et al., in [39], proposed an SBL varaint
for phase errors-based DOA estimation, which exploits the
target sparsity in the spatial domain. Advantageously, the
proposed framework does not require prior knowledge of the
phase errors.

Although the works reviewed above focus on sparse
parameter estimation in MIMO radar systems, they are
based on the conventional fully-digital signal processing
architecture at the transmitter and receiver, which demands
a separate RF chain for each antenna. This poses significant
implementation challenges in the mmWave regime due to
the large number of antennas coupled with the high power
consumption of the high rate analog-to-digital converters
(ADCs) [40]. To overcome this obstacle, novel hybrid
analog-digital beamforming architectures were advanced
that successfully realized beamforming in mmWave MIMO
systems, especially in 5G, which require a much fewer
number of RF chains [41], [42], [43]. Thus, motivated by
these limitations of the above works in the existing literature,
this paper conceives novel techniques for target identification
via sparse parameter estimation in mmWave MIMO radar
(mMR) systems using hybrid analog-digital beamforming,
considering stationary as well as mobile targets and radar
platform, which efficiently exploit the sparse nature of
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the scattering environment toward improved performance.
Table 1 presents a visual comparison of the contributions of
the various works discussed above in relation to the current
one. The various contributions of our paper are described
below in an itemized fashion.

B. CONTRIBUTIONS
This paper focuses on RCS, location estimation and radar
imaging for stationary and mobile targets/radar platforms in
mMR systems.

1) Initially, a model is developed for mMR systems with
stationary targets and radar platform with a specific
focus on the sparsity of the mmWave MIMO channel.
Subsequently, the orthogonal matching pursuit (OMP)-
based mmWave MIMO Radar (OmMR) algorithm is
proposed to estimate the RCS coefficients for multiple
targets of interest in mMR systems.

2) Next, the proposed model is extended to include
mobility of the targets and radar platformwithmobility.
For this system, the simultaneous orthogonal match-
ing pursuit (SOMP)-based mmWave MIMO Radar
(SmMR) technique is developed for joint estimation
of the RCS coefficients, angle/range parameters as
well as Doppler velocities of the multiple targets using
multiple snapshots. Once again, taking advantage of
the sparsity leads to a substantial improvement in the
estimates. Furthermore, radar imaging algorithms of
the scattering environment are presented in the angle
and range dimensions as well as the Doppler and range
dimensions.

3) Furthermore, closed-form analytical expressions are
derived for the Cramér-Rao bounds (CRBs) of the
error covariance matrices pertaining to the estimation
of the RCS coefficients and Doppler velocities for the
stationary and mobile target/radar platform scenarios.

4) Exhaustive simulation results are presented to char-
acterize the RCS coefficient and Doppler velocity
estimation performance of the proposed techniques in
mMR systems. Results demonstrate that the proposed
schemes exploit the inherent sparsity of the clutter
environment to yield a significant improvement in
comparison to the conventional linear minimum mean
squared error (LMMSE) estimator [44] that does not
leverage the sparsity, as well as the focal under-
determined system solver (FOCUSS) [34] that is not
as efficient in utilizing the sparsity.

The rest of the paper is organized as follows. The mMR
system model for stationary targets is developed in section II,
followed by the RCS coefficient estimationmodel. Section III
describes the proposed OmMR algorithm for sparse estima-
tion of the RCS coefficient vector, followed by radar imaging.
In Section IV, we extend the stationary system model of
Section II to incorporate target as well as radar platform
mobility. The SmMR algorithm is subsequently developed
for joint RCS coefficient and Doppler velocity estimation.
Section V derives the closed form analytical expressions for

FIGURE 1. Block diagram of mmWave MIMO radar signal processing.

the CRBs pertaining to estimation of the RCS coefficients and
Doppler velocities of the multiple targets. Finally, Section VI
presents our simulation results to illustrate the performance
of the proposed algorithms, followed by the conclusion in
Section VII. The intermediate steps in the derivation of the
CRBs are presented in Appendix A.

1) NOTATIONS
The following notation is used throughout this paper. Vectors
andmatrices are denoted by boldfaced lowercase a and upper-
case A, respectively. The quantity diag (a1, a2, · · · , aN )
represents a diagonal matrix with a1, a2, · · · , aN on the
principle diagonal and superscripts (·)T , (·)H , (·)∗, (·)−1 and
(·)† denote the transpose, Hermitian, conjugation, inverse
and pseudoinverse of a matrix or a vector, respectively. The
notation 0M×N denotes matrix of zeros of size M × N . The
quantity vec(.) denotes the vector obtained by stacking the
columns of a matrix. The quantity [a]i denotes the ith element
of vector a. The quantities |·| and 6 (·) represent themagnitude
and phase of a complex quantity. The matrix Kronecker
product is denoted by⊗ whereas the l2-norm and the l0 norm
are represented by ‖ · ‖2 and ‖ · ‖0, respectively. Cardinality
ofA is denoted as |A|. The quantity w ∼ CN (α,6) denotes
a circularly symmetric complex Gaussian random vector w
with mean vector α and covariance matrix 6. The statistical
expectation operator is denoted by E{·}.

II. mmWave MIMO RADAR SYSTEM MODEL
Consider a co-located mMR system with NT transmit
antennas (TAs), NR receive antennas (RAs), NT

RF transmit
radio-frequency chains (RFCs) and NR

RF receive RFCs,
where NT

RF � NT and NR
RF � NR. The hybrid

analog-digital beamforming (HAD) architecture leads to a
significant reduction in the number of RF chains required
for beamforming. The schematic block-diagram of the mMR
system is given in Fig. 1. We commence by considering the
system model for stationary targets and a stationary radar
platform. A comprehensive system model for mobile targets
and a mobile radar platform is considered in section IV.
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TABLE 1. Comparison of the salient contributions of existing and present works.

FIGURE 2. mMR frame structure for stationary targets.

The scattering environment can be segmented into Q
angular bins and R range bins. Consider L targets to be
randomly dispersed within the scattering environment at
some unidentified angles and ranges from the radar. Assume
all the targets to be in the far field of the radar system, i.e.,
the distance between the targets and the radar platform is
substantially larger than the dimension of the antenna array.
The signal echoes are assumed to bounce off all the targets
of interest and reach the radar transceiver (TRX). Thus, the
signals reaching the targets from the TAs and the signal echos
arriving at RAs can be assumed to be parallel. Let α̃(q, r)
denote the RCS coefficient associated with a generic target
located at an angle θq and range Rr from the radar platform.
The transmitted signal is reflected back by a target located at
a range Rr , and received at the radar platform after a round
trip delay of τr = 2Rc/c, where c is the speed of light. The
RCS coefficient α̃(q, r) is set to zero for the (q, r)th bin if no
target is present in the bin. We consider a practical scenario
where prior information regarding the number of targets and
their angle and range bins is unknown to the radar transceiver
(TRX). Let x̄(d) ∈ CNT

RF×1 0 ≤ d ≤ D − 1 be the initial
probing signal vector at time instant d sent by the radar TRX
with covariance matrix 6x = E{x̄(d)x̄H (d)}. The received
echo ȳ(d) ∈ CNR

RF×1 reflected by the L targets and summed
over all Q angular bins at time instant d can be written as

ȳ(d) =
Q−1∑
q=0

WH
RFaR(q)a

H
T (q)FRF (x̄(d) ∗ α̃(q, d))

+WH
RFv̄(d), (1)

where v̄(d) ∈ CNR×1 represents the Gaussian noise vector
at the receiver with covariance matrix σ̄ 2

v INR . The symbol ∗
denotes the linear convolution between the RCS coefficients
α̃(q, d) and probing signal vector x̄(d). The mMR transmitter
consists of the RF transmit precoder (TPC) FRF ∈ CNT×NT

RF .
Similarly, the receiver end is equipped with the RF receive
combiner (RC) WRF ∈ CNR×NR

RF . Note that the RF TPC
FRF and RF RC WRF, respectively, comprise digitally
controlled phase-shifters with a constant magnitude for each
element. Let λ denote the signal wavelength and dT and dR
denote the spacings between the antenna elements of the
transmitter and receiver arrays, respectively. The steering
array response vectors aT (q) ∈ CNT×1 and aR(q) ∈
CNR×1, at the transmitter and receiver, respectively, are
given by

aT (q) =
[
1 e−j

2π
λ
dT (1) sin θq · · · e−j

2π
λ
dT (NT−1) sin θq

]T
,

(2)

aR(q) =
[
1 e−j

2π
λ
dR(1) sin θq · · · e−j

2π
λ
dR(NR−1) sin θq

]T
.

(3)

To simplify the signal processing in a wideband mMR
system, this study utilizes a frequency-domain (FD) equal-
ization technique [45]. One can obtain the corresponding
FD representation by using the well-known overlap-and-add
principle. The model to estimate the RCS coefficients is
developed next.

A. RCS COEFFICIENTS ESTIMATION MODEL
The probing signal matrix consisting of D snapshots X(d) =
[x̄(0), · · · , x̄(D − 1)] ∈ CNT

RF×D is grouped into M sub-
blocks, where the mth block, 0 ≤ m ≤ M − 1, is of
length D′ < D as shown in Fig. 2. Let x̄(m, d ′) ∈ CNT

RF×1

represent the d ′th, 0 ≤ d ′ ≤ D′ − 1, probing vector of
the mth block. The ‘‘Add ZP’’ block in Fig. 1 pads all the
M blocks with R − 1 zeros. The new block length of the
zero-padded (ZP) probing sequence equals K = D′ + R −
1 with x̄(m, l)K−1l=0 denoting the probing sequences. The RCS
coefficient parameter sequence α̃(q, d ′) of length R is padded
with D′ − 1 zeros to obtain the ZP sequence α̃(q, l)K−1l=0 . One
can represent the ZP probing sequence and RCS coefficient
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sequence as

{x̄(m, l)}K−1l=0

= {x̄(m, 0), x̄(m, 1), · · · , x̄(m,D′ − 1), 0, · · · , 0︸ ︷︷ ︸
R−1

}, (4)

{α̃(q, l)}K−1l=0

= {α̃(q, 0), α̃(q, 1), · · · , α̃(q,R− 1), 0, · · · , 0︸ ︷︷ ︸
D′−1

}. (5)

The received signal vector after RF combining ȳ(m, l) ∈
CNR

RF×1, 0 ≤ l ≤ K − 1 for the mth block, corresponding
to the time index l, is given by

ȳ(m, l) =
Q−1∑
q=0

WH
RF,maR(q)a

H
T (q)FRF,m (x̄(m, l)~K α̃(q, l))

+WH
RF,m v̄(m, l), (6)

where FRF,m ∈ CNT×NT
RF and WRF,m ∈ CNR×NR

RF represent
the RF TPC and RF RC, for the mth block, respectively,
and ~K denotes the K-point circular convolution between
the sequences x̄(m, l) and α̃(q, l). The mth frequency domain
(FD) output block {y[m, k]}K−1k=0 ∈ CNR

RF×K is obtained as

{y[m, k]}K−1k=0 = FFT
(
{ȳ(m, l)}K−1l=0

)
= {y[m, 0], y[m, 1], · · · , y[m,K − 1]}.

(7)

The received signal vector for the mth block and kth
subcarrier can be written as

y[m, k] =
Q−1∑
q=0

WH
RF,maR(q)a

H
T (q)FRF,mx[m, k]α[q, k]

+WH
RF,mv[m, k], (8)

where v[m, k] ∈ CNR×1 and x[m, k] ∈ CNT
RF×1 represent the

kth FFT-point of the noise vector v(m, l) and probing signal
vector x̄(m, l), respectively. Also, note that variance of each
element of v[m, k] is σ 2

v = K σ̄ 2
v . The TD probing signal

vector for the mth block is given as

x̄(m, l)K−1l=0 = x(m)× IFFT(s[m, k])K−1k=0 , (9)

where {s[m, k]} represents a known random sequence of
symbols with s[m, k] ∈ {+1,−1}. After multiplying both
sides of (8) with s[m, k], one can define ω̄(m, q) ∈ CNR

RF×1 as

ω̄(m, q) =WH
RF,maR(q)a

H
T (q)FRF,m x(m). (10)

Next, concatenate {ω̄(m, q)}Q−1q=0 for all the angular bins to

obtain the common sensing matrix �̄(m) ∈ CNR
RF×Q across

all the subcarriers of the mth block as

�̄(m) = [ω̄(m, 0) ω̄(m, 1) · · · ω̄(m,Q− 1)] . (11)

The RCS coefficient vector for kth subcarrier is represented
as

γ̃ [k] = [α[0, k] α[1, k] · · · α[Q− 1, k]]T ,

where elements of γ̃ [k] ∈ CQ×1 denote the kth component
of the K -point FFT of the RCS coefficients α̃(q, l). Thus, (8)
can be re-written as

y[m, k] = �̄(m)γ̃ [k]+ ṽ[m, k], (12)

where ṽ[m, k] = WH
RF,mv[m, k], which follows the

Gaussian distribution CN
(
0NR

RF×1
, σ̄ 2

v6NR
RF

)
, with 6NR

RF
=

KWH
RF,mWRF,m as its covariance matrix. One can now

horizontally concatenate y[m, k] across all the K sub-
carriers, to form the output receive matrix Y(m) =

[y[m, 0] y[m, 1] · · · y[m,K − 1]] ∈ CNR
RF×K . The sparse

parameter estimation model for the mMR system can be
reformulated as

Y(m) = �̄(m)0 + V(m), (13)

where V(m) =
[
ṽ[m, 0] ṽ[m, 1] · · · ṽ[m,K − 1]

]
∈

CNR
RF×K and 0 =

[
γ̃ [0] γ̃ [1] · · · γ̃ [K − 1]

]
∈ CQ×K

denote the concatenated noise matrix and the RCS coefficient
matrix in the frequency-domain, respectively.
Utilizing the zero-padding done in the time domain, one

can express the frequency-domain RCS coefficient matrix 0
as 0 =

[
0̄ 0Q×(D′−1)

]
F where F ∈ CK×K represents the

discrete Fourier transform (DFT) matrix. This can be further
simplified as 0 =

[
0̄ 0Q×(D′−1)

] [
FT1 F

T
2

]T
= 0̄F1, where

0̄ ∈ CQ×R and F1 ∈ CR×K represent the RCS coefficient
matrix in the time-domain and DFT matrix corresponding
to the non ZP component, respectively. The RCS coefficient
matrix 0̄ in the time-domain is as follows

0̄ =

 α̃(0, 0) · · · α̃(0,R− 1)
...

...

α̃(Q− 1, 0) · · · α̃(Q− 1,R− 1)

, (14)

where α̃(q, r) represents the RCS coefficient of the target
present in the (q, r)th bin corresponding to angle θq and range
Rr with respect to the radar TRX. The coefficient α̃(q, r) is
either zero or non-zero depending on absence or presence,
respectively, of a target in the (q, r)th bin. Substituting 0 =
0̄F1 in (13), the parameter estimationmodel for themth block
can be written as

Y(m) = �̄(m)0̄F1 + V(m), (15)

Applying the vec(·) operator, i.e., y(m) = vec (Y(m)) to (15),
one can reformulate the above model as

y(m) = (FT1 ⊗ �̄(m))︸ ︷︷ ︸
�(m)

γ̄ + v(m), (16)

where �(m) ∈ CNR
RFK×QR = (FT1 ⊗ �̄(m)), while γ̄ ∈

CQR×1
= vec(0̄) and v(m) ∈ CNR

RFK×1 = vec(V(m))
represent the vectorized form of the RCS coefficients and
noise matrix, respectively. Next, one can stack the received
output vectors y(m) for all theM blocks resulting in the final
estimation model

y = � γ̄ + v, (17)
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Algorithm 1 OmMR for Sparse RCS Estimation
Input: Sensingmatrix�, output vector y, dictionarymatrices
AR(8) and AT (8), stopping parameter εt
Initialization: Index set I = [ ], �I

= [ ], residue vectors
r−1 = 0NR

RFKN×1
, r0 = y, ̂̄γOmMR = 0QR×1, counter i = 0

while
(∣∣‖ ri−1 ‖22 − ‖ ri ‖22∣∣ ≥ εt

)
do

1) i← i+ 1
2) j = arg max

k=1,··· ,QR

∣∣rHi−1�(:, k)∣∣
3) I = I ∪ j
4) �I

= �(:, I)
5) ̂̄γ iLS = (�I

)†
y

6) ri = y−�Î̄γ iLS
end whilê̄γOmMR (I) = ̂̄γ iLS
Output: ̂̄0OmMR = vec−1

(̂̄γOmMR
)

where � ∈ CNR
RFKM×QR and v ∈ CNR

RFKM×1 are obtained
by vertically stacking the sensing matrices �(m) and noise
vectors v(m) for all m. Note that the RCS coefficient vector
γ̄ has a sparse structure, i.e., most of the entries of γ̄ are
close to zero, with only a few of them taking significant non-
zero values. One can now observe that (17) represents a well-
known sparse signal recovery problem. It is worth noting that
the sparsity of the RCS coefficient vector was not utilized
in [27]. To address this shortcoming, in this work, we develop
the appropriate system model to fully exploit sparsity toward
efficient and accurate estimation of the RCS parameters.

III. OmMR-BASED RCS ESTIMATION AND RADAR
IMAGING
For the radar cross-section (RCS) coefficient estimation
model of (17), one can now formulate the following
optimization problem to determine a sparse estimate of the
RCS coefficient vector γ̄ as

min
γ̄
‖γ̄ ‖0

s.t. ‖y−�γ̄ ‖22 ≤ εt , (18)

where ‖·‖0 represents the l0-norm, which equals the number
of non-zero elements in the vector [46], and εt represents
a tunable parameter, which can be adjusted to vary the
observational error. Note that, the optimization problem in
(18) is non-convex [47], which renders it challenging to solve
using conventional optimization techniques. Therefore, the
OmMR procedure is described next toward sparse estimation.

The key steps of the OmMR technique are described
next. These are also summarized in Algorithm 1. In Step-
2, the algorithm selects the column of the sensing matrix
� that attains the maximum projection along residue ri−1.
Step-3 updates the index-set I by incorporating the index
j determined in Step-2. Subsequently, Step-4 builds the
submatrix �I of the sensing matrix � by extracting the

FIGURE 3. mMR frame structure for mobile targets and radar platform.

columns indexed by the set I. Next, Step-5 obtains the
intermediate least squares (LS) solution ̂̄γ iLS using the
submatrix �I . Finally, the associated residue vector ri is
computed using �I in Step-6. These steps are iterated until
the difference between the successive residuals becomes
sufficiently small, i.e.,

∣∣‖ ri−1 ‖22 − ‖ ri ‖22∣∣ < εt , where
εt is a suitable threshold. Finally, the estimate of the RCS
coefficient matrix ̂̄0OmMR ∈ CQ×R is obtained as ̂̄0OmMR =

vec−1
(̂̄γOmMR

)
. The central advantages of the proposed

OmMR algorithm are that it yields a sparse solution and has a
low computational complexity. It is important to note that the
choice of the stopping parameter εt plays a prominent role in
determining the convergence of the OmMR algorithm.

The radar image can now be obtained as follows. The
element α̂OmMR(q, r) of the matrix ̂̄0OmMR corresponds to
the estimate of the RCS coefficient of the target present in the
(q, r)th bin. Plotting the magnitudes of the RCS coefficients
across the angle/range bins yields the radar intensity image.
One can also estimate the number of targets as the number
of non-zero entries of the RCS coefficient matrix. The next
section develops the system model for RCS and Doppler
velocity estimation for a scenario with mobile targets and
radar platform.

IV. RCS ESTIMATION AND RADAR IMAGING WITH
MOBILITY
The model developed for stationary targets in the previous
section can be readily extended for mobile targets incorporat-
ing also mobility of the radar platform. The frame-structure
for the mobile target and radar platform is given in Fig. 3. The
relative Doppler velocity υl associated with the lth target can
be related to radar platform’s linear velocity υr , and target’s
linear velocity ύl , as υl = (υr − ύl) cos θl , where θl is the
angle between the lth target and radar platform. Consider that
the pth pulse, x̄(m, p, l), 0 ≤ p ≤ P − 1 in the mth block
to be subjected to a Doppler shift of 2πυlTmm/λ. The block
pulse repetition interval Tm is related to the symbol period T
as Tm = KPT . Hence, one can recast the system model of
(16) for the mobile scenario as

y(m, p) = �(m, p) diag (d(m)) γ̄︸ ︷︷ ︸
h(m)

+v(m, p), (19)
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where d(m) ∈ CQR×1 is the Doppler shift vector with
the (q + rQ)th element defined as ej2πυq,rTmm/λ, where υq,r
indicates the relative Doppler velocity of the target present in
the (q, r)th bin. The scattering scene vector h(m) ∈ CQR×1 is
defined as the element-wise product of the RCS coefficient
vector γ̄ and Doppler shift vector d(m) which can be stated
as h(m) = diag (d(m)) γ̄ = diag (γ̄ )d(m). Assume that the
scattering scene vector h(m) is the same for all the P pulses
in the mth block. This assumption is justified for an mMR
system due to the small symbol period T . Keeping the sensing
matrix �(m, p) identical for all the M blocks, the received
signal vector y(m, p) ∈ CNR

RFK×1 in the mth block for the pth
pulse is given by

y(m, p) = �(p)h(m)+ v(m, p). (20)

Stacking the received signal y(m, p) across all the p =
1, · · · ,P pulses, the received signal vector in the mth block
i.e., y(m) ∈ CNR

RFKP×1 can be obtained asy(m, 1)...

y(m,P)


︸ ︷︷ ︸

y(m)∈CN
R
RFKP×1

=

�(1)...
�(P)


︸ ︷︷ ︸

�∈CN
R
RFKP×QR

h(m)+

v(m, 1)...

v(m,P)


︸ ︷︷ ︸

v(m)∈CN
R
RFKP×1

,

which can be compactly written as

y(m) = �h(m)+ v(m). (21)

The overall received signal matrix Y can be written as

Y = �H+ V, (22)

where Y ∈ CNR
RFKP×M , H ∈ CQR×M and V ∈ CNR

RFKP×M ,
which are determined as

Y = [y(0) y(1) · · · y(M − 1)] ,

H = [h(0) h(1) · · · h(M − 1)],

V = [v(0) v(1) · · · v(M − 1)], (23)

denote the received signal matrix, scattering scene matrix
and noise matrix obtained after horizontal concatenation,
respectively. The scattering scene matrix H has a unique
simultaneous sparse structure. Each column of H has the
same sparsity profile which results in several zero rows and
a few non-zero rows. The SmMR-based technique can be
efficiently employed to obtain an estimate of the scattering
scene matrix H, which is discussed next.

A. SmMR-BASED JOINT ESTIMATION OF RCS
COEFFICIENTS AND DOPPLER VELOCITIES
The optimization problem for estimation of the scattering
scene matrix H for a mobile radar and target scenario can be
stated as follows

argmin ‖Y−�H‖F
s.t.

∥∥∥diag(HHH )
∥∥∥
0
= QR, (24)

Algorithm 2 SmMR for Sparse Scattering Scene Estimation
in Mobile mMR Systems
Input: Dictionary matrix �, observation matrix Y and
stopping parameter εs
Initialization: I = [ ], residue R0 = Y, R−1 = 0 ĤSmMR =

0QR×M , counter k = 0 �̃
I
= [ ]

while
(∣∣‖ Rk−1 ‖

2
2 − ‖ Rk ‖

2
2

∣∣ ≥ εs
)
do

1) k ← k + 1
2) 9 = �HRk−1
3) i(k) = argmax

[
99H ]

l,l

4) �̃
I
k =

[
�̃
I
k−1|ω(i(k))

]
5) ĤSmMR =

(
(�̃

I
k )
H �̃

I
k

)−1
(�̃

I
k )
HY

6) Rk =
Y−�̃I

k ĤSmMR

‖Y−�̃I
k ĤSmMR‖F

end while
Return: ĤSmMR

where ‖·‖F represents the Frobenius-norm. Algorithm 2
describes the proposed SmMR technique for estimation of
the matrix H. Step-1 performs a projection of the dictionary
column, followed by greedy selection of the columns of �
that has the maximum projection along the residue, similar
in principle to the OmMR technique. Step-3 updates the
submatrix �̃

I
using indices found in Step-2. Subsequently,

the LS estimate of the scattering scene matrix ĤSmMR
for the kth iteration is obtained in Step-4. Finally, Step-5
obtains the associated normalized residueRk . These steps are
repeated for 1 ≤ k ≤ QR, after the completion of which
one obtains the scattering scene matrix estimate ĤSmMR.
To detect the presence of the target in a particular angle-
range bin, an appropriate threshold ηth(� 1) is chosen.
The target is considered to be present in the (q, r)th bin if
1
M

∑M−1
m=0 |[̂h̄SmMR(m)]q+rQ| ≥ ηth.

One can now extract the RCS coefficients and Doppler
velocities from the estimated scattering scene matrix ĤSmMR.
Note that the mth column ĥSmMR(m) of the matrix ĤSmMR,
corresponding to the mth block, represents an estimate of
the scattering scene vector h(m) = diag (γ̄ )d(m). The
relation between the RCS coefficient vector γ̄ and columns
of scattering scene matrix H can be expressed as

1
M − 1

M−2∑
m=0

(diag (h(m+ 1)))−m (diag (h(m)))m+1

=
1

M − 1

M−2∑
m=0

(diag (γ̄ ))−m (diag (d(m+ 1)))−m

× (diag (d(m)))m+1 (diag (γ̄ ))m+1 = diag (γ̄ ) ,

where the last equality stems from the relation

(diag(d(m+ 1)))−m(diag(d(m)))m+1 = IQR.

Thus, one can relate the estimate of the RCS coefficient vector̂̄γ SmMR to the columns of estimated scattering scene matrix
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ĤSmMR as

diag
(̂̄γ SmMR

)
=

1
M − 1

M−2∑
m=0

((
diag

(
¯̂hSmMR(m+ 1)

))−m
×

(
diag

(̂
h̄SmMR(m)

))m+1)
. (25)

Toward estimation of the Doppler velocity υl of lth target
from the scattering scene matrix, consider the ratio[

h̄(m+ 1)
]
l[

h̄(m)
]
l

=
[ γ̄ ]l e

j2πυlTm(m+1)/λ

[ γ̄ ]l ej2πυlTmm/λ
= ej2πυlTm/λ. (26)

Thus, one can estimate the Doppler velocity υl , 0 ≤ l ≤
L̃ − 1 as

υ̂l =
λ

2πTm

1
M − 1

M−2∑
m=0

6


[̂
h̄SmMR(m+ 1)

]
q̃l+r̃lQ[̂

h̄SmMR(m)
]
q̃l+r̃lQ

 ,
(27)

where (q̃l, r̃l) denotes the estimated angle and range index
pair of the lth target and L̂ = |Ĩ| is the total number of
estimated targets. Note that the estimates of the RCS coeffi-
cients and the Doppler velocities are non-linear functions of
ĤSmMR. Therefore, minor errors in locations of the targets can
result in large mean squared errors (MSEs) corresponding to
estimation of the RCS coefficients and the Doppler velocities.
However, the SmMR technique can overcome these issues
efficiently due to its superior ability for sparse recovery.

The next section derives the Cramér-Rao bounds pertaining
to the MSEs of RCS and target Doppler velocity estimation
in mMR systems.

V. Cramér-RAO BOUNDS
The CRBs are computed in this section for estimation of the
RCS coefficient vector γ̄ and Doppler velocity vector υ =
[υ1, · · · , υL]T , for mMR systems with and without mobility,
as derived in equations (16) and (21). Let the effective
RCS coefficient vector be defined as γ̄ ef = [γ̄ TR, γ̄

T
I ]
T
∈

R2QR×1, where the real and imaginary components of the
RCS coefficient vector are given by γ̄R and γ̄ I , respectively.
The expression to obtain the Fisher information matrix from
the log-likelihood function L(y;2) is given as

F(w, x) = −E
{
∂

∂w

(
∂L(y;2)
∂xT

)}
, (28)

where 2 = [γ̄ Tef, υ
T ]T ∈ R2QR+L×1 is the vector of

unknown parameters obtained via concatenating γ̄ ef and υ.
Thus, the derived CRBs are applicable for the scenarios
without and with mobility, as is appropriate for the particular
system. The CRB for joint estimation of the RCS coefficients
in γ̄ and Doppler velocities in υ is given as

CRB (2) =
[
F
(
γ̄ ef, γ̄ ef

)
F
(
γ̄ ef,υ

)
F
(
υ, γ̄ ef

)
F (υ,υ)

]−1
. (29)

The following Lemma derives the equations for the compo-
nent Fisher information matrices.

Lemma 1: The CR bounds for the RCS coefficient vector
γ̄ and target Doppler velocity vector υ for a system with
mobility can be expressed as

CRB
(
γ̄ ef
)

=

[
F
(
γ̄ ef, γ̄ ef

)
− F

(
γ̄ ef,υ

)
F−1 (υ,υ)F

(
υ, γ̄ ef

)]−1
,

(30)

CRB (υ)

=

[
F (υ,υ)− F

(
υ, γ̄ ef

)
F−1

(
γ̄ ef, γ̄ ef

)
F
(
γ̄ ef,υ

)]−1
,

(31)

where the matrix F(γ̄ ef, γ̄ ef) ∈ R2QR×2QR can be derived as

F
(
γ̄ ef, γ̄ ef

)
=2

I2 ⊗
M−1∑
m=0

P−1∑
p=0

diag(d(m))6c diag(d(m))

 .
(32)

Further, the components of the Fisher information matrices
F(γ̄ ef,υ) ∈ R2QR×L and F(υ, γ̄ ef) ∈ RL×2QR are given as

F
(
γ̄R, υl

)
= 2

M−1∑
m=0

P−1∑
p=0

(
diag(d(m))6c diag(ḋl(m))γ̄

)
R ,

F
(
γ̄ I , υl

)
= 2

M−1∑
m=0

P−1∑
p=0

(
diag(d(m))6c diag(ḋl(m))γ̄

)
I ,

(33)

where the vector ḋl(m) =
∂d(m)
∂ul
∈ CQR×1 is given as

ḋl(m) =
[
0, · · · , j 2π

λ
mTm [d(m)]ql+rlQ , · · · , 0

]T
, (34)

and the non-zero entry in the vector ḋl(m) is at the location
ql + rlQ for the lth target corresponding to the angle-
range bin (ql, rl). Note that F(υl, γ̄R) = (F(γ̄R, υl))

T and
F(υl, γ̄ I ) = (F γ̄ I , υl))T . The Fisher Information matrix
F(υ, υ) ∈ RL×L has elements F(υl, υl′ ), 1 ≤ l, l ′ ≤ L,
which can be written as

F (υl, υl′) = 2γ̄H
M−1∑
m=0

P−1∑
p=0

diag(ḋ∗l (m))6c diag(ḋl′ (m))γ̄ .

(35)

Proof: The log likelihoodL(y;2) of the received output
vector y =

[
y(0)T , y(1)T , · · · , y(M − 1)T

]T
∈ CNR

RFKPM×1

is given as

L(y;2)

= −κ

−

M−1∑
m=0

P−1∑
p=0

‖yR(m, p)−�R(p)hR(m)+�I (p)hI (m)‖2

−

M−1∑
m=0

P−1∑
p=0

‖yI (m, p)−�I (p)hR(m)−�R(p)hI (m)‖2,

(36)
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where the constant κ = MPKNR
RF

2 lnπ . The quantities ∂L(y;2)
∂ γ̄R

,
∂L(y;2)
∂ γ̄I

, ∂L(y;2)
∂υl

can be determined as shown in (37), (38) and
(39), as shown at the bottom of the page, respectively.

Other pertinent terms can be obtained as follows

∂

∂ γ̄R

(
∂L(y;2)

∂ γ̄ TR

)

=
∂

∂ γ̄ I

(
∂L(y;2)

∂ γ̄ TI

)
(41)

= −2
M−1∑
m=0

P−1∑
p=0

diag (d(m))�T (p)�(p)diag (d(m)) ,

∂

∂ γ̄R

(
∂L(y;2)

∂ γ̄ TI

)

=
∂

∂ γ̄ I

(
∂L(y;2)

∂ γ̄ TR

)
= 0QR,QR. (42)

∂

∂ γ̄R

(
∂L(y;2)
∂υl

)
=

(
∂

∂υl

(
∂L(y;2)

∂ γ̄ TR

))T

= −2
M−1∑
m=0

P−1∑
p=0

((
− diag

(
ḋl(m)

)
�T (p)v(m, p)

)
R

+

(
diag (d(m))�T (p)�(p)diag

(
ḋl(m)

)
γ̄
)
R

)
, (43)

∂

∂ γ̄ I

(
∂L(y;2)
∂ul

)
=

(
∂

∂υl

(
∂L(y;2)

∂ γ̄ TI

))T

FIGURE 4. Radar image showing the true target locations, i.e., angle and
range bins for a stationary scenario.

= −2
M−1∑
m=0

P−1∑
p=0

((
− diag

(
ḋl(m)

)
�T (p)v(m, p)

)
I

+

(
diag (d(m))�T (p)�(p)diag

(
ḋl(m)

)
γ̄
)
I

)
. (44)

The detailed procedure to derive these expressions is given
in Appendix A. Lastly, the second-order derivative ofL(y;2)
with respect to the target Doppler velocity υl is given in (40),
as shown at the bottom of the page, where d̈l(m) ∈ CQR×1 is
given as

d̈l(m) =
∂2d(m)
∂2υl

= [0, · · · , (j
2π
λ
mTm)2[d(m)]ql+rlQ, · · · , 0]

T . (45)

∂L(y;2)
∂ γ̄R

= −2
M−1∑
m=0

P−1∑
p=0

((
diag (d(m))�T (p)�(p)diag (d(m)) γ̄

)
R
−

(
diag (d(m))�T (p)y(m, p)

)
R

)
, (37)

∂L(y;2)
∂ γ̄ I

= −2
M−1∑
m=0

P−1∑
p=0

((
diag (d(m))�T (p)�(p)diag (d(m)) γ̄

)
I
−

(
diag (d(m))�T (p)y(m, p)

)
I

)
, (38)

∂L(y;2)
∂υl

= −

M−1∑
m=0

P−1∑
p=0

(
dH (m)diag

(
γ̄ ∗
)
�H (p)�(p)diag (γ̄ ) ḋl(m)− 2yH (m, p)�(p)diag (γ̄ ) ḋl(m)

+ḋHl (m)diag
(
γ̄ ∗
)
�H (p)�(p)diag (γ̄ )d(m)

)
, (39)

∂

∂υl′

(
∂L(y;2)
∂υl

)
= −2

M−1∑
m=0

P−1∑
p=0

ḋHl (m)diag
(
γ̄ ∗
)
�H (p)�(p)diag (γ̄ ) ḋl′ (m), for l 6= l ′,

= −2
M−1∑
m=0

P−1∑
p=0

(
ḋHl (m)diag

(
γ̄ ∗
)
�H (p)�(p)diag (γ̄ ) ḋl(m)− vH (m, p)�(p)diag (γ̄ ) d̈l(m)

)
, for l = l ′.

(40)
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FIGURE 5. Stationary scenario: (a) normalized mean squared error vs. SNR for the proposed OmMR, FOCUSS and LMMSE techniques. (b) Impact
of number of snapshots M on the estimation of RCS coefficients using the proposed OmMR, FOCUSS and LMMSE algorithms.

FIGURE 6. Stationary scenario: reconstructed radar images obtained using (a) proposed OmMR, (b) FOCUSS, (c) LMMSE techniques at
SNR = −10 dB.

Substituting the various quantities derived above, one can
readily obtain the Fisher Information matrices which in turn
yield the CRBs in (30), (31). For the case of a stationarymMR
system, the unknown parameter vector 2 = γ̄ eff ∈ R2QR×1.
The CRB for the estimation of the RCS coefficient vector for
this scenario is given as

CRB(2) =
1
2M

(I2 ⊗6−1c ). (46)

VI. SIMULATION RESULTS
This section presents the simulation results to illustrate
the performance of the proposed techniques for RCS and
Doppler velocity estimation for stationary as well as mobile
targets and radar platforms. Consider an mMR TRX with
NT = 8 transmit antennas, NR = 16 receive antennas,
NT
RF = 4 transmit RF chains and NR

RF = 6 receive
RF chains. The inter-element spacings between the transmit
and receive antenna arrays are set to be dT = 0.7λ and
dR = 0.9λ, respectively, where λ = 0.0107m for the
28 GHz radar frequency. The number of targets L is set
equal to 10, and the scattering environment is divided into

Q = 32 angular bins and R = 32 range bins. The widths of
the angular and range bins are 1Q = 1◦ and 1R = 1 m,
respectively. It is assumed that the number of targets, RCS
coefficients, Doppler velocities, angular and range bins in
which the targets are present are unknown to the radar TRX.
The number of probing signal vectors D′ in a block is set as
D′ = 33 and the FFT size is K = D′ + R − 1 = 64. The
elements of the probing signal vector x(d) are drawn from
an 8-PSK (phase shift keying) constellation with an average
power of unity. The RCS coefficients are randomly initialized
from a zero-mean and unit variance circularly symmetric
complex Gaussian distribution and the noise is considered
to be circularly symmetric complex Gaussian with mean
zero and unit variance. A comprehensive list of the various
simulation parameters and their values are given in Table 2.
The results obtained for various scenarios are elaborated
next.

A. STATIONARY TARGETS AND RADAR PLATFORM
For a stationary scenario, L = 10 targets were placed at
some angle and range bins in the scattering environment by
randomly selecting L grid points from the angle-range grid
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FIGURE 7. Mobile mMR system: (a) True radar image of target RCS values; (b) True Doppler velocity image of scattering scene.

FIGURE 8. For a mobile mMR system: (a) NMSE of RCS estimation vs. SNR for various schemes; (b) NMSE of Doppler velocity estimates vs.
SNR for various schemes.

TABLE 2. Simulation parameters.

of size Q × R. Fig. 4 shows the true radar image obtained
by plotting the RCS coefficient matrix against the angle and

range bins. The empty bins are indicated by white colors
while the colored bins show the RCS coefficient magnitudes
in dB, along with the colorbar that maps the intensity of color
to dB values given on the right. Fig. 5 shows the normalised
MSE (NMSE) performance of the proposed OmMR scheme
corresponding to M = 5 snapshots. It can be observed that
the NMSE of the RCS coefficient vector estimate decreases
with increasing signal to noise ratio (SNR), which is along
expected lines since probing signals of higher power result
in RCS estimates of higher accuracy. Furthermore, it can
also be noted that the proposed OmMR scheme performs
better than the existing FOCUSS [34] and conventional
LMMSE schemes for mMR systems. It may be observed
that for a low value of SNR = −15 dB, the performance
of the OmMR algorithm improves by approximately 20 dB
in comparison to the FOCUSS and conventional LMMSE
schemes. This is due to the fact that the OmMR efficiently
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FIGURE 9. For a mobile mMR system: Reconstructed RCS images obtained after thresholding with ηth = 0.1 using (a) proposed SmMR,
(b) FOCUSS, (c) LMMSE algorithms at SNR = −10 dB; reconstructed Doppler velocity images of the scattering obtained after
thresholding with ηth = 0.1 using (d) proposed SmMR, (e) FOCUSS, (f) LMMSE schemes at SNR = −10 dB.

exploits the sparsity of the RCS coefficient vector, which
leads to a significant improvement in the estimation accuracy.
The performance of FOCUSS suffers because it is sensitive
to the regularization parameter, which ultimately leads to
convergence deficiencies. Note that the LMMSE scheme
that does not exploit sparsity has the worst performance.
Thus, the performance of FOCUSS and LMMSE schemes
is not competitive. On the other hand, the NMSE of the
proposed OmMR scheme is seen to be close to the associated
CRB derived in Section-V, which demonstrates its efficiency.
Remarkably, Fig. 5b shows that the OmMR algorithm for
even M = 5 snapshots yields an improved performance in
comparison to the FOCUSS and the conventional LMMSE
schemes with M = 10, 15 snapshots. Thus, one can draw a
clear conclusion that OmMR can provide accurate estimates
even in scenarios with a significantly fewer snapshots of the
scattering environment. Fig. 6a-6c show the reconstructed
radar images obtained using the OmMR, FOCUSS and
conventional LMMSE schemes at SNR = −10 dB. One
can visually observe that image obtained for OmMR in
Fig. 6a is noticeably more accurate when compared to
the images obtained using the FOCUSS and conventional
LMMSE techniques in Fig. 6b and Fig. 6c, respectively.
In fact, one can observe that the reconstructed OmMR image
in Fig. 6a accurately maps all the targets to their true angular
and range bins shown in Fig. 4. On the other hand, the
images obtained using FOCUSS and LMMSE contain several
non-zero entries in the estimated RCS coefficient matrix
as they fail to efficiently exploit the innate sparsity of the
RCS vector and thus are not able to accurately map the
targets.

B. MOBILE TARGETS AND RADAR PLATFORM
For the scenario with mobile targets and radar platform, the
number of pulses in a block is set as P = 10. The vector
containing Doppler velocities pertaining to the L targets is set
as υ = [11, 13, −13, 4, 14, 9, 16, −9, −12, 8]T . Fig. 7a
and Fig. 7b show the true RCS and Doppler images of the
radar scattering scene with the side color bars mapping the
respective image bin color intensities to dB values of their
magnitudes. The threshold ηth to determine the non-zero RCS
coefficient estimates, and thus obtain an estimate of the total
number of targets present in the scattering environment, is set
as ηth = 0.1.

Fig. 8a contrasts the NMSE performance of RCS estima-
tion of the proposed SmMR algorithm for the mobile system
with that of the FOCUSS and LMMSE techniques along with
the associated CRB. As seen for the stationary scenario, the
proposed SmMR algorithm results in lower NMSE values
as compared to those obtained from the FOCUSS and
conventional LMMSE schemes. The poor performance of
the LMMSE scheme is attributed to the fact that it fails to
exploit the inherent structural sparsity of scattering scene
matrix H. Furthermore, the poor performance of FOCUSS is
due to its sensitivity to the regularization parameter, which
ultimately leads to convergence deficiencies. Fig. 8b plots
the NMSE of the Doppler velocity estimates versus SNR.
The SmMR is once again seen to result in a significantly
improved performance in comparison to the FOCUSS and
LMMSE schemes. Furthermore, it can be observed that
the minimum NMSE of Doppler velocity estimates that
can be achieved using the SmMR is approximately 10−4,
which is comparatively higher than NMSE of the RCS
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coefficient estimates that is close to 10−6 for the same
setting. This is due to the fact that estimation of Doppler
velocity involves the phase of a ratio which is non-linear
in nature. A minute error in estimation of the scattering
scene matrix H can lead to a high NMSE for the Doppler
velocity estimates. It is also worth noting that the proposed
SmMR scheme achieves an NMSE performance close to the
associated CRBs in Fig. 8a and Fig. 8b, which clearly demon-
strates its superior estimation and imaging performance.
Fig. 9a-9c and Fig. 9d-9f show the reconstructed images
for RCS coefficients and relative Doppler velocities at
SNR = −10 dB. As before, proposed scheme outperforms
the FOCUSS and conventional LMMSE schemes, a nat-
ural result of the improved NMSE of estimation of the
former.

VII. CONCLUSION
This work developed novel parameter estimation and imaging
schemes for co-located mMR systems for stationary as well
as mobile scenarios. To begin with, the sparse estimation
model and an OmMR based RCS coefficient, angle and range
estimation algorithm were developed for a scenario with sta-
tionary targets and radar platform.Next, the SmMR technique
was also developed to estimate the various parameters along
with target Doppler velocities considering target and radar
mobility. Subsequently, the relevant CRBs were also derived
to rigorously characterize the error covariance for estimation
of the RCS coefficients and Doppler velocities of multiple
targets. Simulation results demonstrated that the proposed
techniques yield a significant improvement in performance
in comparison to other conventional and competing sparse
techniques.

APPENDIX A
The various derivatives of the log likelihood function
L(y;2) with respect to the unknown joint parameter
2 = [γ̄ TR, γ̄

T
I , υ

T ]T ∈ R2QR+L×1 as mentioned in
Lemma 1 of section V are derived here. The log likelihood
function L(y;2) is given as

L(y;2) = −κ −
M−1∑
m=0

P−1∑
p=0

‖y(m, p)−�(p)h(m)‖2, (47)

where κ = MPKNR
RF

2 lnπ and h(m) = diag(γ̄ )d(m) =
diag(d(m)) γ̄ . The quantity ∂L(y;2)

∂υl
obtained by differ-

entiating the likelihood function with respect to υl is
given in (39) in section V. Further, one can express the
log likelihood function L(y;2) in terms of the real and
imaginary parts of the vector y(m, p), h(m) and matrix
�(p) as shown in equation (36). Substituting the expression
h(m)R = diag(d(m))R γ̄R + diag(d(m))I γ̄ I and h(m)I =
diag(d(m))R γ̄ I + diag(d(m))I γ̄R in the log likelihood
function, the intermediate steps to obtain the vector ∂L(y;2)

∂ γ̄R

given in equation (37) are

∂L(y;2)
∂ γ̄R

=−

M−1∑
m=0

P−1∑
p=0

(
− 2diag (d(m))R�

T
R(p)yR(m, p)

+2diag (d(m))I �
T
I (p)yR(m, p)

−2diag (d(m))R�
T
I (p)yI (m, p)

−2diag (d(m))I �
T
R(p)yI (m, p)

+2diag (d(m))R�
T
R(p)�R(p)diag (d(m))R γ̄R

+2diag (d(m))I �
T
I (p)�I (p)diag (d(m))I γ̄R

)
(48)

Similarly, ∂L(y;2)
∂ γ̄I

can also be obtained as given in equation
(38). The expressions in (41) and (42) can be easily obtained
with the help of the first order derivatives ∂L(y;2)

∂ γ̄R
, ∂L(y;2)

∂ γ̄I
.

The intermediate steps to determine the expressions for
∂

∂ γ̄R

(
∂L(y;2)
∂υl

)
, ∂
∂υl

(
∂L(y;2)
∂ γ̄ TR

)
can be found at the top of the

page in equations (49) and (50), shown at the top of the next
page, respectively.

The expressions in equation (44) can be obtained likewise.
Finally, the quantities ∂

∂υ ′l

(
∂L(y;2)
∂υl

)
, 1 ≤ l, l ′ ≤ L

are given in equation (51), shown at the top of the
next page, where the d̈l(m) ∈ CQR×1

=
∂2d(m)
∂2υl

=

[0, · · · (j 2π
λ
mTm)2[d(m)]ql+rlQ, · · · , 0]

T . Hence, the Fisher
information matrices F

(
γ̄ ef, γ̄ ef

)
, F

(
γ̄ ef,υ

)
, F

(
υ, γ̄ ef

)
and F (υ,υ) required to compute the CRBs given in
equations (30) and (31) are as follows.

1) To begin with, the Fisher information matri-
ces F

(
γ̄R, γ̄R

)
, F

(
γ̄ I , γ̄ I

)
, F

(
γ̄R, γ̄ I

)
and

F
(
γ̄ I , γ̄R

)
can be found using equations (41) and (42)

given in section V.

F
(
γ̄R, γ̄R

)
= F

(
γ̄ I , γ̄ I

)
= 2

M−1∑
m=0

P−1∑
p=0

diag (d(m)) 6c diag (d(m)) ,

(52)
F
(
γ̄R, γ̄ I

)
= F

(
γ̄ I , γ̄R

)
= 0QR,QR, (53)

where 6c = E{�T (p)�(p)}. Subsequently one
can derive the expression for F

(
γ̄ ef, γ̄ ef

)
given in

Lemma 1 of section V.
2) The vectors F

(
γ̄R, υl

)
, F

(
υl, γ̄R

)
and F

(
γ̄ I , υl

)
,

F
(
υl, γ̄ I

)
are obtained using the expressions (43)

and (44) respectively and are mentioned in Lemma
1 of section V. Therefore, the matrices F

(
γ̄ ef,υ

)
and

F
(
υ, γ̄ ef

)
are obtained as

F
(
γ̄ ef,υ

)
=

[ [
F
(
γ̄R, υ1

)
, · · · ,F

(
γ̄R, υL

)]T︸ ︷︷ ︸
F(γ̄R,υ)

,

[
F
(
γ̄ I , υ1

)
, · · · ,F

(
γ̄ I , υL

)]T︸ ︷︷ ︸
F(γ̄I ,υ)

]

= F
(
υ, γ̄ ef

)T
. (54)
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∂

∂ γ̄R

(
∂L(y;2)
∂υl

)
= −

M−1∑
m=0

P−1∑
p=0

(
− 2

(
diag

(
ḋl(m)∗

)
�H (p)y(m, p)

)
R
+ 2

(
diag

(
d(m)∗

)
�H (p)�(p)diag

(
ḋl(m)

)
γ̄
)
R

+2
(
diag

(
ḋl(m)∗

)
�H (p)�(p)diag (d(m)) γ̄

)
R

)
, (49)

∂

∂υl

(
∂L(y;2)

∂ γ̄ TR

)
= −

M−1∑
m=0

P−1∑
p=0

(
− 2

(
y(m, p)T�(p)diag

(
ḋl(p)

))
R
+ 2

(
γ̄ T diag (d(m))�T (p)�(p)diag

(
ḋl(m)

))
R

+2
(
γ̄ T diag

(
ḋl(m)

)
�T (p)�(p)diag (d(m))

)
R

)
, (50)

∂

∂υ ′l

(
∂L(y;2)
∂υl

)
= −

M−1∑
m=0

P−1∑
p=0

(
− 2yH (m, p)�diag (γ̄ ) d̈l(m)+ 2dH (m)diag

(
γ̄ ∗
)
�(m)H�(m)diag (γ̄ ) d̈l(m)

+2ḋHl (m)diag
(
γ̄ ∗
)
�H (p)�(p)diag (γ̄ ) ḋl(m)

)
, for l = l ′,

=−

M−1∑
m=0

P−1∑
p=0

(
− 2vH (m, p)�(p)diag (γ̄ ) d̈l(m)+ 2ḋHl (m)diag

(
γ̄ ∗
)
�H (p)�(p)diag (γ̄ ) ḋl(m)

)
, for l = l ′,

= −

M−1∑
m=0

P−1∑
p=0

(
− 2ḋHl′ (m)diag

(
γ̄ ∗
)
�H (p)�(p)diag (γ̄ ) ḋl(m)

)
, for l 6= l ′, (51)

3) Finally, using the result for F (υl′ , υl), 1 ≤ l, l ′ ≤ L
given in Lemma 1 of section V, one obtains the Fisher
information matrix F (υ,υ) invoking the relation

F (υ,υ) =

 F (υ1, υ1) · · · F (υ1, υL)
...

...

F (υL , υ1) · · · F (υL , υL)

. (55)

The CRB for the estimation of the RCS coefficient vector
γ̄ ef for the stationary mMR system is given as follows. The
log likelihood function L(y; γ̄ ef) of the vector received at the
output y =

[
yT (0), · · · , yT (M − 1)

]T
∈ CNR

RFKM×1 with
y(m) defined in equation (16) is given as

L(y; γ̄ ef)

= −κ

−

M−1∑
m=0

P−1∑
p=0

‖yR(m, p)−�R(p)γ̄R(m)+�I (p)γ̄ I (m)‖
2

−

M−1∑
m=0

P−1∑
p=0

‖yI (m, p)−�I (p)γ̄R(m)−�R(p)γ̄ I (m)‖
2,

(56)

where κ = MKNR
RF

2 lnπ . The individual components of the
Fisher information matrix F

(
γ̄ ef
)
∈ R2QR×2QR are given as

F
(
γ̄R, γ̄R

)
= −E

{
∂

∂ γ̄R

∂

∂ γ̄R

T
L(y; γ̄ )

}
= 2

M−1∑
m=0

E
{
�T (m)�(m)

}
= 2M6c,

F
(
γ̄ I , γ̄ I

)
= −E

{
∂

∂ γ̄ I

∂

∂ γ̄ I

T
L(y; γ̄ )

}
= 2

M−1∑
m=0

E
{
�T (m)�(m)

}
= 2M6c,

F
(
γ̄R, γ̄ I

)
= −E

{
∂

∂ γ̄R

∂

∂ γ̄ I

T
L(y; γ̄ )

}
= 0QR,QR,

F
(
γ̄ I , γ̄R

)
= −E

{
∂

∂ γ̄ I

∂

∂ γ̄R

T
L(y; γ̄ )

}
= 0QR,QR.

Using these results, one can readily obtain CRB(γ̄ ef) as

CRB
(
γ̄ ef
)
=

1
2M

(
I2 ⊗6−1c

)
. (57)

REFERENCES
[1] X. Li, X. Wang, Q. Yang, and S. Fu, ‘‘Signal processing for TDM

MIMO FMCW millimeter-wave radar sensors,’’ IEEE Access, vol. 9,
pp. 167959–167971, 2021.

132850 VOLUME 10, 2022



M. Jafri et al.: Sparse Parameter Estimation and Imaging in mmWave MIMO Radar Systems

[2] C. Vasanelli, R. Batra, A. D. Serio, F. Boegelsack, and C. Waldschmidt,
‘‘Assessment of a millimeter-wave antenna system for MIMO radar appli-
cations,’’ IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1261–1264,
2017.

[3] K. Sakaguchi, R. Fukatsu, T. Yu, E. Fukuda, K. Mahler, R. Heath,
T. Fujii, K. Takahashi, A. Khoryaev, S. Nagata, and T. Shimizu, ‘‘Towards
mmWave V2X in 5G and beyond to support automated driving,’’ 2020,
arXiv:2011.09590.

[4] F. Liu and C. Masouros, ‘‘A tutorial on joint radar and communi-
cation transmission for vehicular networks—Part I: Background and
fundamentals,’’ IEEE Commun. Lett., vol. 25, no. 2, pp. 322–326,
Feb. 2021.

[5] K. V. Mishra, M. R. B. Shankar, V. Koivunen, B. Ottersten, and
S. A. Vorobyov, ‘‘Toward millimeter-wave joint radar communications: A
signal processing perspective,’’ IEEE Signal Process. Mag., vol. 36, no. 5,
pp. 100–114, Sep. 2019.

[6] K. V. Mishra and Y. C. Eldar, ‘‘Sub-Nyquist channel estimation over IEEE
802.11ad link,’’ in Proc. Int. Conf. Sampling Theory Appl. (SampTA),
Jul. 2017, pp. 355–359.

[7] J. Hatch, A. Topak, R. Schnabel, T. Zwick, R.Weigel, and C.Waldschmidt,
‘‘Millimeter-wave technology for automotive radar sensors in the 77 GHz
frequency band,’’ IEEE Trans. Microw. Theory Techn., vol. 60, no. 3,
pp. 845–860, Mar. 2012.

[8] M. Lesturgie, ‘‘T06—MIMO radar,’’ in Proc. IEEE Radar Conf.,
May 2014, p. 33.

[9] J. Li and P. Stoica, ‘‘MIMO radar with colocated antennas,’’ IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007.

[10] J. L. P. Stoica,MIMORadar Signal Processing. Hoboken, NJ, USA:Wiley,
2009.

[11] D. W. Bliss and K. W. Forsythe, ‘‘Multiple-input multiple-output (MIMO)
radar and imaging: Degrees of freedom and resolution,’’ in Proc. IEEE
Conf. Rec. 37th Asilomar Conf. Signals, Syst. Comput., vol. 1, Nov. 2003,
pp. 54–59.

[12] E. Fishler, A. Haimovich, R. Blum, L. Cimini, D. Chizhik, and
R. Valenzuela, ‘‘Spatial diversity in radars—Models and detection per-
formance,’’ IEEE Trans. Signal Process., vol. 54, no. 3, pp. 823–838,
Mar. 2006.

[13] I. Bekkerman and J. Tabrikian, ‘‘Target detection and localization using
MIMO radars and sonars,’’ IEEE Trans. Signal Process., vol. 54, no. 10,
pp. 3873–3883, Oct. 2006.

[14] L. Xu and J. Li, ‘‘Iterative generalized-likelihood ratio test for MIMO
radar,’’ IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2375–2385,
Jun. 2007.

[15] S. Li, L. Zhang, N. Liu, J. Zhang, and S. Zhao, ‘‘Range-angle dependent
detection for FDA-MIMO radar,’’ in Proc. CIE Int. Conf. Radar (RADAR),
Oct. 2016, pp. 1–4.

[16] X. Zhang and D. Xu, ‘‘Low-complexity ESPRIT-based DOA estimation
for colocated MIMO radar using reduced-dimension transformation,’’
Electron. Lett., vol. 47, no. 4, pp. 283–284, 2011.

[17] M. Yang, B. Chen, G. Zheng, and X. Dang, ‘‘Reduced-dimensional
ESPRIT algorithm for MIMO radar,’’ in Proc. IEEE CIE Int. Conf. Radar,
Oct. 2011, pp. 347–349.

[18] N. Liu, L. R. Zhang, J. Zhang, and D. Shen, ‘‘Direction finding of MIMO
radar through ESPRIT and Kalman filter,’’ Electron. Lett., vol. 45, no. 17,
pp. 908–910, Aug. 2009.

[19] J. Capon, ‘‘High-resolution frequency-wavenumber spectrum analysis,’’
Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, Aug. 1969.

[20] E. G. Larsson, J. Li, and P. Stoica, ‘‘High-resolution nonparamet-
ric spectral analysis: Theory and applications,’’ in High-Resolution
Robust Signal Processing. Boca Raton, FL, USA: CRC Press, 2017,
pp. 151–252.

[21] A. Jakobsson and P. Stoica, ‘‘Combining Capon and APES for estimation
of spectral lines,’’ Circuits, Syst., Signal Process., vol. 19, no. 2,
pp. 159–169, Mar. 2000.

[22] X. Zhang and D. Xu, ‘‘Angle estimation in MIMO radar using reduced-
dimension Capon,’’ Electron. Lett., vol. 46, no. 12, pp. 860–861, Jun. 2010.

[23] L. Xu, J. Li, and P. Stoica, ‘‘Target detection and parameter estimation for
MIMO radar systems,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3,
pp. 927–939, Jul. 2008.

[24] T. Yardibi, J. Li, and P. Stoica, ‘‘Nonparametric and sparse signal
representations in array processing via iterative adaptive approaches,’’ in
Proc. 42nd Asilomar Conf. Signals, Syst. Comput., Oct. 2008, pp. 278–282.

[25] W.Roberts, P. Stoica, J. Li, T. Yardibi, and F. A. Sadjadi, ‘‘Iterative adaptive
approaches to MIMO radar imaging,’’ IEEE J. Sel. Topics Signal Process.,
vol. 4, no. 1, pp. 5–20, Feb. 2010.

[26] A. Rawat, S. Dwivedi, andA. K. Jagannatham, ‘‘BLMS and FBLMS-based
adaptive time varying RCS estimation and 2D-imaging for monostatic
MIMO radar systems,’’ in Proc. 23rd Nat. Conf. Commun. (NCC),
Mar. 2017, pp. 1–6.

[27] S. Dwivedi, P. Aggarwal, and A. K. Jagannatham, ‘‘Fast block LMS
and RLS-based parameter estimation and two-dimensional imaging
in monostatic MIMO RADAR systems with multiple mobile tar-
gets,’’ IEEE Trans. Signal Process., vol. 66, no. 7, pp. 1775–1790,
Apr. 2018.

[28] A. Rawat, S. Dwivedi, S. Srivastava, and A. K. Jagannatham, ‘‘RLS-
based adaptive time-varying RCS estimation and imaging in MIMO radar
systems,’’ in Proc. Nat. Conf. Commun. (NCC), Feb. 2020, pp. 1–6.

[29] Y. C. Lin, T. S. Lee, Y. H. Pan, and K. H. Lin, ‘‘Low-complexity high-
resolution parameter estimation for automotive MIMO radars,’’ IEEE
Access, vol. 8, pp. 16127–16138, 2020.

[30] A. B. Baral and M. Torlak, ‘‘Joint Doppler frequency and direction of
arrival estimation for TDMMIMO automotive radars,’’ IEEE J. Sel. Topics
Signal Process., vol. 15, no. 4, pp. 980–995, Jun. 2021.

[31] S. Lim, J. Jung, J. Kim, S.-C. Kim, and J. Choi, ‘‘Enhanced velocity esti-
mation based on joint Doppler frequency and range rate measurements,’’
in Proc. 13th Int. Conf. Ubiquitous Future Netw. (ICUFN), Jul. 2022,
pp. 217–221.

[32] C. Wen, Y. Xie, Z. Qiao, L. Xu, and Y. Qian, ‘‘A tensor gen-
eralized weighted linear predictor for FDA-MIMO radar parameter
estimation,’’ IEEE Trans. Veh. Technol., vol. 71, no. 6, pp. 6059–6072,
Jun. 2022.

[33] R. Tibshirani, ‘‘Regression shrinkage and selection via the lasso,’’ J. Roy.
Statist. Soc., B, Methodolog., vol. 58, no. 1, pp. 267–288, 1996.

[34] I. F. Gorodnitsky andB.D. Rao, ‘‘Sparse signal reconstruction from limited
data using FOCUSS: A re-weighted minimum norm algorithm,’’ IEEE
Trans. Signal Process., vol. 45, no. 3, pp. 600–616, Mar. 1997.

[35] P. Chen, Z. Cao, Z. Chen, and X. Wang, ‘‘Off-grid DOA estimation
using sparse Bayesian learning in MIMO radar with unknown mutual
coupling,’’ IEEE Trans. Signal Process., vol. 67, no. 1, pp. 208–220,
Jan. 2019.

[36] T. Liu, F. Wen, L. Zhang, and K. Wang, ‘‘Off-grid DOA estimation for
colocatedMIMO radar via reduced-complexity sparse Bayesian learning,’’
IEEE Access, vol. 7, pp. 99907–99916, 2019.

[37] X. Zhao, C. Guo, and W. Peng, ‘‘Joint estimation of multiple parameters
in bistatic MIMO radar based on sparse signal restoration,’’ in Proc. Int.
Conf. Microw. Millim. Wave Technol. (ICMMT), May 2018, pp. 1–3.

[38] C.-Y.Wu, T. Zhang, J. Li, and T. F.Wong, ‘‘Parameter estimation in PMCW
MIMO radar systems with few-bit quantized observations,’’ IEEE Trans.
Signal Process., vol. 70, pp. 810–821, 2022.

[39] Z. Chen, W. Ma, P. Chen, and Z. Cao, ‘‘A robust sparse Bayesian learning-
based DOA estimation method with phase calibration,’’ IEEE Access,
vol. 8, pp. 141511–141522, 2020.

[40] R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed,
‘‘An overview of signal processing techniques for millimeter wave MIMO
systems,’’ IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp. 436–453,
Feb. 2016.

[41] F. Sohrabi and W. Yu, ‘‘Hybrid digital and analog beamforming design for
large-scale antenna arrays,’’ IEEE J. Sel. Topics Signal Process., vol. 10,
no. 3, pp. 501–513, Apr. 2016.

[42] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr.,
‘‘Spatially sparse precoding in millimeter wave MIMO systems,’’ IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Jan. 2014.

[43] A. Alkhateeb, G. Leus, and R. W. Heath, ‘‘Limited feedback hybrid
precoding for multi-user millimeter wave systems,’’ IEEE Trans. Wireless
Commun., vol. 14, no. 11, pp. 6481–6494, Nov. 2015.

[44] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[45] K. Venugopal, A. Alkhateeb, N. González-Prelcic, and R. W. Heath,
Jr., ‘‘Channel estimation for hybrid architecture-based wideband mil-
limeter wave systems,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 9,
pp. 1996–2009, Sep. 2017.

[46] D. P. Wipf and B. D. Rao, ‘‘Sparse Bayesian learning for basis selection,’’
IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2153–2164, Aug. 2004.

[47] M. Rossi, A. M. Haimovich, and Y. C. Eldar, ‘‘Spatial compressive sensing
in MIMO radar with random arrays,’’ in Proc. 46th Annu. Conf. Inf. Sci.
Syst. (CISS), Mar. 2012, pp. 1–6.

VOLUME 10, 2022 132851



M. Jafri et al.: Sparse Parameter Estimation and Imaging in mmWave MIMO Radar Systems

MEESAM JAFRI (Student Member, IEEE)
received the B.E. degree in electronics and
communication engineering from Jamia Millia
Islamia, New Delhi, India, in 2016, and the
M.Tech. degree in communication and infor-
mation technology from the National Institute
of Technology Srinagar, India, in 2018. He is
currently pursuing the Ph.D. degree with the
Department of Electrical Engineering, Indian
Institute of TechnologyKanpur, Kanpur, India. His

research interests include coordinated beamforming in 5G wireless systems,
mmWave communication, orthogonal time-frequency space (OTFS), radar
signal processing, and joint radar and communication (RadCom). He was
awarded Qualcomm Innovation Fellowship (QIF) from Qualcomm, in 2022.

SURAJ SRIVASTAVA (Member, IEEE) received
the M.Tech. degree in electronics and commu-
nication engineering from the Indian Institute
of Technology Roorkee, India, in 2012, and the
Ph.D. degree in electrical engineering from the
Indian Institute of Technology Kanpur, Kanpur,
India, in 2022. From July 2012 to November
2013, he was employed as a Staff-I Systems
Design Engineer with Broadcom Research India
Pvt. Ltd., Bengaluru, and from November 2013 to

December 2015, he was employed as a Lead Engineer with Samsung
Research India, Bengaluru, where he worked on developing layer-2 of
the 3G UMTS/WCDMA/HSDPA modem. His research interests include
applications of sparse signal processing in 5G wireless systems, mmWave
and terahertz communication, orthogonal time-frequency space (OTFS),
joint radar and communication (RadCom), and optimization and machine
learning. He was awarded the Outstanding Ph.D. Thesis and Outstanding
TeachingAssistant Awards from the IITKanpur. Hewas awardedQualcomm
Innovation Fellowship (QIF) from Qualcomm, in 2018 and 2022.

SANA ANWER received the B.Tech. degree
in electronics and communication engineering
from the J. K. Institute of Applied Physics
and Technology, University of Allahabad, Praya-
graj, India, in 2019, and the M.Tech. degree
in electrical engineering with specialization in
signal processing, communication and networking
from the Indian Institute of Technology Kanpur,
Kanpur, India, in 2022. She is currently a Systems
Engineer with Qualcomm, Hyderabad, India. Her

research interests include joint sensing and communication systems, radar
signal processing, orthogonal time-frequency space (OTFS), and mmWave
communications.

ADITYA K. JAGANNATHAM (Senior Member,
IEEE) received the bachelor’s degree from the
Indian Institute of Technology, Bombay, and the
M.S. and Ph.D. degrees from the University of
California at San Diego, San Diego, CA, USA.
From April 2007 to May 2009, he was employed
as a Senior Wireless Systems Engineer with
Qualcomm Inc., San Diego, where he was a part
of the Qualcomm CDMA Technologies (QCT)
Division. He is currently a Professor with the

Department of Electrical Engineering, IIT Kanpur, where he also holds
the Arun Kumar Chair Professorship. His research interests include next-
generation wireless cellular and WiFi networks, with a special emphasis on
various 5G technologies, and such as massive MIMO, mmWave MIMO,
FBMC, NOMA, and full duplex. He has been twice awarded the P. K.
Kelkar Young Faculty Research Fellowship for excellence in research, the
Qualcomm Innovation Fellowship (QInF), the IIT Kanpur Excellence in
Teaching Award, the CAL(IT)2 Fellowship at the University of California
at San Diego, and the Upendra Patel Achievement Award at Qualcomm.

132852 VOLUME 10, 2022


