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ABSTRACT Computational thinking is a key universal competence, often taught using methods specific to
computer science. One step towards achieving it is learning to analyse and create algorithms. Researchers
have long been trying to establish how the form of representation of algorithms (pseudocode versus
flowchart) affects its understanding and have reached varying, sometimes conflicting results. This article
presents findings that provide objective new data on this topic. In our experiment, we used two different
types of algorithmic tasks with three levels of complexity and a group of 114 research participants with
varying programming skills. In addition, we used an eye tracking technique that allowed us to collect
detailed information about the subjects’ attention distribution during analysis of algorithms. Our results
show that subjects took significantly less time to analyse flowcharts (than they did with pseudocode), made
much fewer errors, and had higher confidence in the correctness of their solution. Based on eye tracking
data, a reduced number of both re-analyses of the algorithm and input data re-referencing was observed
for graphically presented tasks. The difference in favour of flowcharts was revealed (with few exceptions)
for all levels of algorithm complexity (simple, medium, complex), while regarding the duration of analysis
the advantage of flowcharts increased with the growing complexity of algorithms. For complex algorithms,
a significant relationship was observed between algorithm presentation and level of programming skills
versus the duration of task solving and confidence level. Our study strongly supports the idea of using
graphic representation of algorithms both when learning to code and in acquiring computational thinking
skills.

INDEX TERMS Coding, computational thinking, eye tracking, flowchart, pseudocode, solving algorithmic
problems.

I. INTRODUCTION
Due to technological and civilisational progress and the
resulting emergence of new professions, an ever-greater
attention is being paid to developing universal competencies
that can improve creativity in finding solutions to problems
from different area s of life. Computational thinking (CT) is
considered one such competence [1], [2]. A growing interest
in CT education in schools has made it an integral part
of curricula in many countries around the world [3], [4].
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Attempts have been made to incorporate CT education in
the curricula of various courses but, since computer thinking
requires adherence to certain rules inherent in algorithmics
[5], it is becoming very obvious that one should use coding
lessons to teach it.

Programming skills are widely considered to be among the
most desirable yet difficult to master [6]. Cabo [7] believes
that first-year programming courses at universities are still
characterised by high drop-out and failure rates. It is therefore
recommended that teachers choose easy problems in the first
phase of the learning process to provide appropriate guid-
ance for their students so that they gain experience through
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learning correct behaviour patterns [8]. Many studies have
shown that it is not only creating new algorithms, but also
analysing readymade solutions and implementing them in a
programming language, that are difficult tasks for students
[9]. It has also been observed that students encounter prob-
lems related to the correct interpretation of the syntax of the
programming language; this is often a practical obstacle to
solving even simple tasks [10].

One important question is which teaching strategies related
to algorithms, code or flowchart, are more effective? Does
the integration of these two forms of algorithm affect learn-
ing to program, and if so, how? The research in [10]
found that the vast majority of students write algorithms
successfully using flowcharts, and that using a programming
language distracts them from the concept of the algorithm
because of the difficulty involved in using the syntax of
the programming language. When considering the problem
of students’ preferences regarding the manner of present-
ing algorithms, the aforementioned researchers showed that,
when given a choice, 95% of students chose to express algo-
rithms using flowcharts rather than a traditional programming
language. This was a different conclusion from previous
research, including studies by [11] and [12], according to
which flowcharts were only an alternative form of repre-
senting the syntax of a language and did not help in under-
standing algorithms, especially in the case of experienced
programmers.

These discrepancies in the results obtained by researchers
and, at the same time, the growing efforts made by many
governments to adopt computational thinking and coding
as a new student skill that is equal to literacy in terms of
importance as well as to support students in creative problem
solving have led us to attempt a new and objectified study of
how the way an algorithm is presented (pseudocode versus
flowchart) affects its understanding.

An in-depth analysis of the body of research concern-
ing this issue allowed us to determine what tasks students
should solve in an experiment and under what conditions.
We expanded the methodology by an objective eye tracking
research technique which permitted us to arrive at a
triangulation of results: task solutions, survey data, and mea-
surements of eye coordinates. We made a hypothesis that
structured flowcharts would prove more efficient than pseu-
docode under all experimental conditions adopted. We also
assumed that flowchart analysis takes less time compared to
pseudocode, does not require as much re-analysis and refer-
encing of input data, and generates fewer incorrect responses.
We planned an experiment in which 114 students solved two
types of tasks (presented in the form of pseudocode and
flowcharts).

Our results enrich previous findings regarding the useful-
ness of teaching algorithmic elements using these forms of
algorithm presentation. They will support teachers as well as
other creators of algorithmic and programming instructional
content to optimise methods of educating and working with
students.

II. BACKGROUND
The increasing risk of over-consumption and lack of reflec-
tion on the use of new technologies combined with the
growing opportunities for using them for private and pro-
fessional purposes have made it necessary to return to the
sources of understanding problems and to provide training
on the ability to approach them in such a way that infor-
mation technology helps to solve these problems creatively
and rationally [13]. As a result, a great deal of interest in
the development of students’ computational thinking skills
has been observed in recent years on the part of educational
researchers. The term computational thinking is understood
broadly, some researchers assume that it is not a field of com-
puter science but rather the application of rules that computers
understand [14], [15]. It is also defined as ‘‘an approach
to solving problems, designing systems, and understanding
human behaviour that draws on concepts fundamental to
computing’’ [16]. The need to use computational thinking
arises when the solving of a problem requires the determining
of logical relationships between data, drawing conclusions
based on the analysis of their interrelationships, and the
ability to create algorithms. As a result, it becomes natural
to focus on teaching coding in schools, understood broadly
as an approach to solving problems ranging from problem
determination through finding and developing a solution to
writing it in a programming language, testing its correctness
and introducing possible corrections. Programming requires
logical thinking, abstracting, and critical analysis skills that
underlie computer thinking [17]. Programming has become
the primary way (means) of teaching computational thinking
[18], [19] as it has been introduced to primary and secondary
school curricula [4], [20], [21].

Analysing, reading, and writing algorithms is one of
the first skills acquired by novice programmers. Expanding
knowledge in this area seems crucial since failure to master
the competences related to the presentation and construction
of algorithms is widely recognised as one of the primary
causes of difficulties accompanying the learning of program-
ming [8]. Whether an algorithm is easier to comprehend if
presented as a flow chart or as pseudocode was the subject of
research by [22] who showed that algorithms presented in the
form of flowcharts had an advantage in the process of under-
standing them. In their studies, this advantage was revealed
in the case of complex algorithms - test subjects made more
errors when faced with a text representation of the algorithm,
while no such relation was observed in the case of simple
algorithms. Kammann [23] also studied the understanding
of ‘‘procedures’’ written in the form of verbal instructions
and diagrams. He assumed that both speed and correctness
of response constituted the measure of comprehension; in
his study, diagrams were found to work better. In contrast,
[12] postulated that flowcharts were not helpful for writing,
understanding, or modifying computer programs and that
no statistically significant differences were found between
the flowchart and non-flowchart groups. Arguing against the
findings of [12] and [24] criticised the research methodology
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they used. According to [24], its drawbacks included: using
unstructured and only simple algorithms, a small number of
subjects studied (N=20), and an inappropriate criterion for
comparison. In the view of [24], that criterion should not
be the score obtained but the time the respondents took to
answer the questions, given that time needed to understand
an algorithm is the key and most sensitive measure of its
difficulty. In his studies, [24] applied algorithm structures
that were practically identical to the ones used by [25]
who studied the effectiveness of the graphic representation
of algorithms versus other forms of algorithm presentation
and found that decision trees were superior to both struc-
tured English and decision tables for representing conditional
logic. The results obtained by [24] indicated that present-
ing algorithms in the form of flowcharts was superior to
pseudocode.

A later study [26] also confirmed that a graphic represen-
tation of algorithms seemed to be more effective (in terms of
correct reading and determining the result of their operation),
if only because tracking the control flow (the sequence of
instructions) was easier.

Meanwhile, [27] found that both visual programming and
flowcharts were suitable for designing algorithms, with no
statistical difference in terms of the number of errors or the
time required to write the corresponding Java code.

The discrepancies in research results show how crucial it is
to seek objective research methods and techniques, as well as
a methodologically correct manner of executing the research
process. All this drew out interest towards using eye tracking
techniques in our research.

III. EYE TRACKING RELATED WORK
Previous research using eye tracking, which provides a bet-
ter understanding of the process of acquiring programming
skills through analysing cognitive processes (related to visual
attention), was mainly concerned with various aspects of
program code analysis [28]. The study by [29], in which
they compared oculographic data of novice and advanced
programmers to see how experience affected code scanning
patterns in the process of code interpretation (understanding),
can be considered ground-breaking.

The research in [30] was also involved in searching for
behavioural patterns during code analysis. The researchers
noted that, when searching for bugs in programs, most sub-
jects first performed a preliminary scan of the entire code,
presumably to understand the structure of the program, and
only later focused on its selected parts. Furthermore, the time
spent on this initial code scan influenced the effectiveness of
error detection.

Similar conclusions were reached by the study by [31],
which further demonstrated that scanning time affected the
visual effort (measured by the number and time of fixations)
needed to identify errors. They also noted that experienced
programmers devoted less time to the initial scanning of
the program preceding the actual bug search compared to
novices. While continuing the research on these issues, [32]

showed that program content analysis was a non-linear pro-
cedure and that experts read code less linearly than novices.
Meanwhile, [33] recorded the oculomotor activity of stu-
dents analysing Java codes in a programming environment
that provided code visualisation in addition to code editing
tools. The purpose of their experiment was to investigate the
dynamics of students’ interactions with different forms of
program representations in the course of program analysis
(understanding program operation) and to compare whether
these processes occurred similarly in individuals with differ-
ent levels of experience. Oculographic results also show that
the process of reading program source code is fundamentally
different from reading natural language text but that these
discrepancies disappear if the program code becomes similar
to natural language text [34], [35].

However, there is little research that uses eye tracking
while focusing on solving algorithmic problems presented
in pseudocode and flowchart form. In their analysis of this
topic, [36] divided study participants into two groups: correct
answers (effective group) and incorrect answers (ineffective
group). Algorithms presented in graphic form were easier
to interpret for the ineffective group. The results of the
study confirmed the hypothesis that the use of formal nota-
tion specific to a programming language for the purpose of
presenting algorithms is often a practical difficulty in the
process of solving even simple tasks. Algorithms presented
in graphic form were easier to interpret for the ineffective
group.

In the approach that we present which uses the eye track-
ing technique, we undertook to develop research concepts
which compare the efficiency of solving algorithmic tasks
presented in the form of pseudocode with those presented as
flowcharts.

IV. METHODS
A. CURRENT STUDY
Our study takes into account the majority of the methodolog-
ical elements identified by [24] and in addition, an eye track-
ing technique was applied to provide a qualitative expansion
of the set of experimental data obtained. The said data pro-
vided detailed information not only regarding the temporal,
but also the spatial distribution of the respondents’ attention
during the process of algorithm analysis. The eye tracking
study made it possible, among other things, to separate the
phases of reading the instructions, analysing the algorithm,
and referencing the input data. Furthermore, we expanded the
outlines of our experiment by a new element, i.e. we intro-
duced an additional type of assignment that required a differ-
ent solving procedure. Two types of assignments were used to
ensure that the same trends related to the level of complexity
and the form of representation of the assignment emerged in
both cases. The design of those assignments was modelled
on algorithms used by [37] in their study; it should be noted,
however, that the structure of the algorithms in both types
of assignments was exactly the same. In addition, our study
sample was more diverse in terms of programming skills.
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FIGURE 1. Areas of interest (AOIs) - True-False algorithms, Medium level, left Flowchart right Pseudocode.

FIGURE 2. Areas of interest (AOIs) - Output-Answer algorithms, Medium level, left Flowchart, right Pseudocode.

Study participants also included novices, namely students of
computer science who had started learning programming a
few months earlier and had just completed an introductory
programming course (CS1).

B. RESEARCH QUESTIONS AND HYPOTHESIS
We made a general hypothesis that structured flowcharts
would prove more efficient than pseudocode under all exper-
imental conditions adopted. In particular, we assume that
solving a task presented in the form of structured flowcharts:
H01: takes less time, H02: reduces the number of algo-
rithm re-analyses, H03: reduces the number of ‘‘returns’’ to
(re-referencing of) input data, H04: generates fewer incorrect
answers, H05: gives students more confidence that they have
understood the algorithm.

We also predict that H06: flowcharts are more efficient
in terms of time required to analyse algorithms as their
complexity increases. In addition, we strive to answer the
following research questions: (1) does the students’ level
of programming skills affect dependent variables associated

with hypotheses H01 to H05, and (2) will the same trends be
observed for both types of assignment.

C. EYE MOVEMENT PARAMETERS
Areas of interest (AOIs) were marked on all the boards of
all the assignments to provide detailed information about the
distribution of the respondents’ visual attention. AOIs were
determined for the following areas: (AOI 001) assignment
instruction, (AOI 002) algorithm, (AOI 003) input data (see
Figure 1 and Figure 2), and AOIs for individual pseudocode
lines and flowcharts (see Figure 3).

Using the SMI BeGazeTM2.4 software, information was
generated concerning the primary indicators of visual activity
called Key Performance Indicators (KPIs), the names and
meaning of which was derived from [38]. Two AOI-related
eye tracking parameters were analysed and interpreted for
the purposes of examining study hypotheses: (1) Dwell Time
(DT), i.e. the duration of watching a selectedAOI (where time
is the sum of fixation and saccade times) and (2) Glances
Count (GC), that is the number of glances towards the AOI
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FIGURE 3. Areas of interest (AOIs) – lines and blocks, Output-Answer algorithms; left Flowchart, right Pseudocode.

in the case of externally triggered saccades. We chose these
ocular indicators because we assumed that themost important
dependent variable was the time spent on algorithm anal-
ysis. In order to maximise the sensitivity of this variable,
study participants were allowed to view the algorithms for
as long as necessary to understand them. We also assumed
that the more difficulty the respondents had with interpreting
the algorithm, the more often they returned to code lines or
flowchart blocks they had already ‘‘viewed’’ and ‘‘jumped’’
between the algorithm area and the input data area.

D. DESIGN
The main independent variable was the form used to
present the algorithms, i.e. structured flowcharts versus pseu-
docode. The level of programming skill (Expertise) was an
additional independent variable in our model - the partici-
pants were divided into 2 groups (Novice versus Non-novice).
The main dependent variables directly related to the hypothe-
ses were: 1. time associated with algorithm analysis: the
number of milliseconds (Dwell Time) spent looking at the
algorithm area (AOI 001) (see Figure 1 and Figure 2); 2. num-
ber of algorithm re-examinations: the number of additional
return glances (Glances Count) on the areas of single lines
or single blocks of algorithms (see Figure 3); 3. number of
return times to input data: the number of glances (Glances
Count) per area (AOI 003), an analysis which was only
performed for the True-False task (see Figure 1); 4. percent-
age of correct answers to questions concerning algorithms;
5. the level of confidence associated with the correctness
of the answers provided: measured for each answer accord-
ing to the Likert scale ranging from very low (1) to very
high (5). The data collected was mainly analysed using a
mixed model ANOVA, while significant effects were anal-
ysed using Tukey’s post-hoc HSD test. Variance analysis was
performed independently for the two types of assignment
(True-False and Output-Answer) and independently for each
level of algorithm complexity (Simple, Medium, Complex)
for all dependent variables. Within-subject factors include

two forms of algorithm representation (Flowchart (FC) and
Pseudocode (PC)), while between-subject factors are two
levels of expertise (Novice and Non-novice). The analysis
encompassed the main effects of Form (FC vs. PC) and
Expertise (Novice vs. Non-novice) as well as the interaction
effect of Form∗Expertise.

E. PARTICIPANTS AND PROCEDURE
The study group consisted of 115 subjects aged 19 to 26
(M=21.72, SD=1.99), of which there were 97 males and
18 females. All participants were students majoring in com-
puter science at the same university. They participated in the
study on a voluntary basis. For technical reasons, the oculo-
graphic data of one individual was discarded and the results
of 114 students were accepted for further analysis. The partic-
ipants’ experience in the field of programming varied. They
were divided into two groups (Novice vs. Non-novice) based
on the level of their programming skills (Expertise). The
Novice group comprised 1st year students (N=58, number of
years of learning to program M=1.50, SD=0.82), while 2nd
and 3rd year students were assigned to the Non-novice group
(N=56, number of years of learning to program M=2.49,
SD=0.84).
The eye tracking experiment took place in a room that

ensured the same conditions for all subjects in terms of
lighting, temperature, and acoustic isolation.

Each examination took place individually, with only one
participant and the experiment supervisor present in the room
at any given time. Prior to the experiment, each participant
read the outline of the experiment procedure and solved sam-
ple model tasks. The study proper, which involved solving
assignments displayed on a computer screen, was recorded
by an eye tracker. This part of the experiment began with
measures ensuring that the eye tracking measurements were
performed correctly, i.e. by setting up the correct position of
the subject and calibrating the device.

Questions were displayed on the screen in random order.
The participants did not use any writing utensils. The time
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for solving the assignments was not limited; each respondent
worked at their own pace. The respondents provided verbal
answers and, after giving them, rated their level of confidence
in the correctness of the relevant solution. After this stage was
completed, each participant filled out an electronic question-
naire which collected demographic data.

F. RESEARCH MATERIALS
The experiment involved testing two types of algorithm
(differing in terms of the manner of providing answers) at
three levels of complexity: Simple, Medium, and Complex.
The algorithms were displayed in the form of pseudocode
and flowcharts. The test consisted of 12 questions, six of
which were of the True-False (TF) type and six of the Output-
Answer (OA) type. There were four tasks at each level of
complexity (Simple, Medium, and Complex); six questions
were presented in the form of a flowchart (FC) and 6 in
the form of pseudocode (PC). Examples of Medium level
assignments are shown in Figure 1 and Figure 2.

All algorithms had the same structure of conditional
blocks, with two blocks at Simple level, 4 blocks at the
Medium level, and 6 blocks at the Complex level. TF assign-
ments were modelled after the tasks used by [24]. They posed
questions concerning the Boolean states for each conditional
block. The questions were as follows: ‘‘What YES (true) /
NO (false) decisions should be made in which conditional
instructions (W1. . . ) in the next steps of the algorithm in order
to display . . . ’’. Output-Answer assignments were modelled
after the tasks used by [37] in their study. They were worded
as follows: ‘‘What values will be displayed as a result of
executing the following instructions, for input data . . . ’’. The
same typeface and font size were used in the flowcharts
and pseudocode, and the sizes of all blocks were also the
same. The algorithms were displayed centrally on a computer
screen.

G. EYE TRACKING DEVICE
The course of the experiment was recorded in real time using
an iViewX Hi-Speed eye tracker manufactured by Senso-
Motoric Instrument (SMI). It is an instrument designed for
non-invasive testing at high sampling rates (i.e. 500/1,250Hz)
in a laboratory setting. The workstation includes a computer
used to manage the experiment, 2 computer screens (one
each for the test subject and the supervisor), and an eye
tracking module. The device permits the subject to hold
their head still without restricting their field of vision. The
tasks were displayed on a 23’’ LCD screen with Full HD
1920 × 1080 resolution. A 13-point calibration process was
performed prior to the session. Ultimately, a final valida-
tion was performed to check for any calibration inaccura-
cies. The experiment was conducted using SMI Experiment
SuiteTM360 software.

V. RESULTS
Two-way mixed ANOVA with one within-subject variable
Form (FC vs. PC) and one between-subject factor Expertise

(Novice vs. Non-novice) was performed for each depen-
dent variable. The main effects of the Form (FC vs. PC)
and Expertise (Novice vs. Non-novice) and interaction effect
Form∗Expertise was analysed.

A. TIME OF SOLVING ALGORITHMS
Variance analysis revealed a significant main effect (FC vs.
PC) at each level of algorithm complexity and for both
assignment types, with the exception of the Simple level in
the Output-Answer assignment. Average time of flowchart
analysis was significantly shorter compared to pseudocode
at all three levels of complexity, except for the Simple
level in the Output-Answer assignment (see Table 1). This
means that, in line with our predictions, respondents took
less time to understand structured flowcharts. No signifi-
cant main effect related to level of expertise (Novice vs.
Non-novice) emerged in any case, while a significant inter-
action effect between assignment form and the subjects’
expertise (Form∗Expertise) was observed for both assign-
ment types at the Complex level (True-False: F(1, 112) =
4.92, p = 0.029, Output-Answer: F(1,112) = 4.84, p =
0.030). The post-hoc analysis of the interaction effect was
performed using Tukey’s HSD test. In terms of the True-
False assignment, as per our expectations, Novices took
the longest to solve the Complex-level pseudocode assign-
ment (M_PC=52.935 s); the time required in their case was
significantly longer (p=0.035) than the time Non-novices
devoted to this assignment form (M_PC=40.704 s). In gen-
eral, the times spent by the Novices (M_FC=19.419 s)
and Non-novices (M_FC= 20.045 s) in solving flowchart-
based assignments were the only ones which did not show
significant differences (p=0.999). In terms of the Output-
Answer assignment, significantly less time (p<0.001) was
needed by Novices when solving the assignment using
the flowchart (M_FC=28.753 s) compared to pseudocode
(M_PC=45.720 s). It also deviated at the level of statistical
trend (p=0.059) from the time needed by Non-novices to
solve the pseudocode-based assignment (M_PC=40.472 s).
The relationships discussed are also shown in Figure 4.

B. RATIO TIME
In order to verify whether structured flowcharts continued
to be more efficient than pseudocode with an increase in
algorithm complexity, ratios were designed that compared
pseudocode to flowchart in terms of the time needed to
solve the given assignment. At each level of algorithm
complexity, the ratio of the higher time value (flowchart
or pseudocode) to the lower time value was calculated for
every participant. If the time value was lower for pseu-
docode, the ratio was marked as negative; meanwhile, if it
was lower for flowcharts, it was marked positive. Positive
ratios indicated the predominance of flowcharts, and negative
ratios the predominance of pseudocode. ANOVA with one
within-subject variable Complexity (Simple vs. Medium vs.
Complex) and one between-subject factor Expertise (Novice
vs. Non-novice) was performed for each type of assignment
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FIGURE 4. Interaction effect Expertise∗Form for Dwell Time (s): left True-False Complex algorithm, right Output-Answer Complex
algorithm.

TABLE 1. ANOVA for Dwell Time (s) involved in analysing the algorithms.

for ratios established in this manner. The main effect associ-
ated with the Complexity variable was significant for each
type of assignment (True-False: F(2,224) = 21.41, p <

0.001; Output-Answer: F(2,224) = 9.52, p < 0.001). For
both assignment types, variance analysis revealed no signif-
icant main effect for the Expertise factor and no interaction
effect between algorithm complexity and level of program-
ming skill (Complexity∗Expertise). The average factor values
amounted to, respectively: for the True-False assignment,
1.09 for simple algorithms, 1.84 for medium algorithms,
and 2.30 for complex algorithms; for the Output-Answer
assignment, −0.03 for simple algorithms, 0.76 for medium
algorithms, and 0.92 for complex algorithms. These averages
would amount to 0.00 if there was no prevalence of flowcharts
over pseudocode or vice versa. The relationships discussed
are also presented in Figure 5. Further post-hoc analyses
for the True-False assignment showed that all mean values
of the ratios differed to a significant degree. Significance
levels were p<0.001 (Simple, Medium); p<0.001 (Simple,
Complex), and p<0.001 (Medium, Complex), respectively.
For the Output-Answer assignment, the Simple level ratio
differed significantly from both the Medium level (p=0.004)
and the Complex level (p<0.001). Meanwhile, the Medium
level ratio was not significantly different from the Complex
level ratio (p=0.799).

C. NUMBER OF ALGORITHM RE-ANALYSES
The variance analysis resulted in a statistically significant
main effect related to the form of algorithm presentation
(FC vs. PC), i.e. the average number of returns to already
analysed algorithm areas (returns to areas of individual lines
or individual blocks (see Figure 3)) was significantly lower
in the case of flowcharts compared to pseudocode in terms of
both assignment types and at all three levels of complexity,
except for the Simple level in the Output-Answer assignment
(see Table 2).

For both assignment types, variance analysis revealed no
significant main effect for the Expertise factor (Novice vs.
Non-novice) and no significant interaction effects between
the form of algorithm presentation and the programming
skills of the respondents (Form∗Expertise) at any level of
algorithm complexity.

D. NUMBER OF RETURNS TO INPUT DATA
The analysis was only performed with respect to the True-
False assignment due to the manner of solving the Output-
Answer assignment which required referencing the input
data for each conditional block. A statistically significant
main effect related to the form of algorithm presentation was
observed at each level of algorithm complexity, while the
average number of return times to input data was signifi-
cantly lower (p<0.000) in the case of flowcharts compared
to pseudocode (see Table 3). Variance analysis revealed no
significant main effects for the Expertise factor (Novice vs.
Non-novice) and no significant interaction effects between
the form of algorithm presentation and programming skills
(Form∗Expertise) at any level of algorithm complexity.

E. CORRECT ANSWERS
The respondents made fewer errors in the case of flowcharts,
i.e. the average percentages of correct answers obtained with
respect to algorithms presented as flowcharts were higher
than in the case of pseudocode, with the exception of the
Output-Answer task at the Complex level (see Table 4).
For both assignment types, variance analysis revealed no
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FIGURE 5. ANOVA for Ratios time; left True-False algorithms, right Output-Answer algorithms.

TABLE 2. ANOVA for the number of times the algorithm areas (PC lines or
FC blocks) were re-analysed.

TABLE 3. ANOVA for the number of return times to the input data areas,
True-False task.

significant main effect for the Expertise factor (Novice vs.
Non-novice) and no significant interaction effects between
the form of algorithm presentation and the programming
skills of the respondents (Form∗Expertise) at any level of
algorithm complexity.

F. CONFIDENCE LEVEL
In the case of flowcharts, the respondents were more
confident they had solved the task correctly. Variance anal-
ysis revealed a statistically significant main effect related to
the form of algorithm presentation (FC vs. PC), i.e. mean
levels of the Confidence variable differed significantly in
favour of flowcharts for both types of assignment and at
each level of algorithm complexity, except for the Simple
level in the Output-Answer assignment (see Table 5). For
both assignment types, variance analysis revealed no signif-
icant main effects related to the Expertise factor (Novice vs.

TABLE 4. ANOVA for the percentage (%) of correct answers to the
questions about the algorithms.

Non-novice). There was an interaction effect at the level of
statistical trend between the form of algorithm presentation
and the level of programming skills (Form∗Expertise) with
respect to the True-False assignment at the Complex level
(F(1,112) = 3.34, p = 0.070). The post-hoc analysis using
Tukey’s HSD test showed that Novices rated their confidence
level significantly lower (p<0.001) with respect to assign-
ments presented in the form of pseudocode (M_PC=4.00)
compared to the flowchart version (M_FC=4.77). The sit-
uation was similar in the Non-novice group (M_PC=4.14,
M_FC=4.64), the difference between confidence levels was
smaller but also significant (p<0.001). The relationships dis-
cussed are also presented in Figure 6.

VI. DISCUSSION
The analysis of our study results indicates that the way an
algorithmic task is represented (flowchart vs. pseudocode)
affects the process of its solution. In general, we observed
a similar relation between the variables for both types of
assignment used in our experiment (True-False and Output-
Answer) and our results are similar to those obtained by
[24]. The subjects took significantly less time to analyse
algorithms in the case of flowcharts (versus pseudocode),
made significantly fewer errors (with some exceptions), and
had a considerably greater confidence in the correctness of
their solution. With respect to ratio time, our results were also
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FIGURE 6. Interaction effect Expertise∗Form for Confidence level,
True-False Complex algorithm.

TABLE 5. ANOVA for confidence level related to the answers to the
questions about the algorithms.

similar to [24] (especially in True-False assignments), i.e.
as the complexity level of the algorithms increased, their anal-
ysis in the case of pseudocode took the subjects an increasing
amount of time compared to structured flowcharts. The mean
values of all ratios (ratio time) differed significantly in pairs.
As a result, we confirmed the observations of [37] that the
more complex an algorithm becomes, the more efficient it is
to use flowcharts.

Although the results provide a strong case in favour of
flowcharts, there were some exceptions. Of particular interest
seems to be the outlier for the correct answer variable in the
Complex/Output-Answer task (see Table 4). The differences
that appeared were statistically significant and indicated a
pseudocode advantage.

We assumed that this was not directly related to the form
(flowchart vs. pseudocode) in which the task was presented,
but was the result of a wrong decision in condition W1
(flowchart) and the subjects’ incorrect execution of an arith-
metic operation. In the case of the pseudocode 1·2 should
have been multiplied, while in the case of the flowchart
it was 6·9. Which seems to be a more difficult task and
likely to generate errors. To test our assumptions related to
arithmetic operations we conducted an additional analysis
of the value of average fixation duration for selected areas

of interest. Many eye tracking investigations confirmed that
longer fixation duration on the AOI is connected with dif-
ficulty in interpreting the information present or a greater
involvement in its exploration, and by contrast the AOIs
that are comprehensible, and those that do not contribute
significant semantic informativeness, have a shorter duration
of fixation. The paired t-test was performed for the average
duration of fixation (AFD) variable for AOIs, in which the
calculations (AOI marked as PR5) and data (AOI marked as
AOI3) were stored. For both AOIs in question, the average
fixation duration was significantly longer for flowchart-based
assignments (PR5: M_FC=304.33 ms, M_PC= 242.02 ms,
t= 2.818, p=0.006; AOI3: M_FC=277.55, M_PC=235.11,
t= 8.999, p<0.001).
For more detail on the average duration of fixation, we also

performed a t-test against groups of correct and incorrect
responses (see Table 6) for each of the AOIs discussed. As can
be seen from Table 6, significant differences between the
groups only occurred for the flowchart and AOI related to
the multiplication operation (PR5). But the result obtained
was surprising, as it turned out that those who gave an incor-
rect answer had a significantly shorter average fixation time
(M=178. 94 ms) than those who gave the correct answer
(M=374.77). The next step of data analysis showed that 21 of
the 41 people who answered incorrectly did not fixate at all in
the PR5 area, and the average fixation time of the remaining
20 people was similar (M=366.83 ms) to those who gave
the correct answer. Analysis of the responses given by these
21 subjects showed that 17 of them had already made the
wrong decision at the initial stage of solving the task, i.e.
condition W1, which was associated with a lack of fixation
in AOI PR5.

In summary, the analysis of the eye tracking data firstly
supported our assumption that performing the 6·9 multipli-
cation was more difficult for the subjects than performing
the 1·2 calculation, this was indicated by the significantly
longer average fixation time in AOI PR5 and secondly con-
firmed that the subjects misinterpreted the W1 condition in
the flowchart task.

The eye tracking technique enabled the re-analyses of
algorithms to be measured based on the number of fixation
regressions in areas of individual code lines and algorithm
blocks. We observed that the respondents were significantly
less likely to re-analyse flowcharts than pseudocode for each
combination of variables (with the exception of the OA
assignment at the Simple level).

The eye tracking analysis of re-referencing input data was
performed only for True-False assignments because Output-
Answer assignments required referencing input data for each
conditional block and each conditional instruction. Regard-
less of the level of algorithm complexity, the respondents
were significantly more likely to return to the input data in
the case of pseudocode than in the case of flowcharts. We can
find a parallel here with the studies of [39] who observed
an increase in the number of fixations related to transitions
between areas of pseudocode and problem description as the
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TABLE 6. T-test for the average duration of fixation (AFD) involved in
selected AOIs for correct and incorrect answers.

problem difficulty increased, as well as with the research of
[40] who found that students with lower programming skills
were more likely to return to the initial values of variables
needed to perform calculations when solving algorithmic
tasks.

The analysis of the results also showed the existence of
relations between the form of assignment and the level of the
respondents’ programming skills as regards the duration of
solving assignments at the Complex level for both types of
tasks. In the True-False assignment, Novices devoted signif-
icantly more time to analysing the pseudocode assignment
compared to the Non-novice group; in the Output-Answer
task, this relation was revealed at the level of statistical
trend. No such effect was observed with respect to the other
variables i.e. re-referencing input data, algorithm re-analyses,
or the percentage of correct answers. Meanwhile, as regards
the degree of confidence, an interaction effect between the
variables in question (assignment form and skill level) was
revealed at the level of statistical trend in the TF Complex
task. Novices rated their confidence level far lower with
regard to assignments presented in the form of pseudocode
compared to their flowchart versions. A similar phenomenon
was observed with respect to Non-novices, but in their case
the difference in rating was smaller.

We note that our observations only apply to the analysis
of structured conditional instructions and only to already
designed algorithms. In the future, we are considering explor-
ing more diverse algorithms (e.g. using loops) at the design
stage, also using eye tracking technology.

VII. CONCLUSION
The purpose of our experiment was to verify the effi-
ciency of solving algorithmic assignments presented in the
form of pseudocode and structured flowcharts. The tasks in
both representation categories were divided into two types
(True-False and Output-Answer) and had 3 levels of com-
plexity: (Simple, Medium, and Complex).

In light of the results obtained, it should be concluded that
our research hypotheses H01–H05 regarding the advantage of
flowcharts over pseudocode were verified positively (with a
few exceptions) for all levels of complexity and for both types
of assignment. Solving a task presented in the form of struc-
tured flowcharts compared to pseudocode: (1) takes less time,
(2) reduces the number of re-examinations of the algorithm,

(3) reduces the number of ‘‘returns’’ to input data, (4) gener-
ates fewer incorrect answers, and (5) gives the respondents
more confidence that they have understood the algorithm.
Furthermore, significant interactions were observed in the
case of complex algorithms related to the form of algorithm
presentation and the level of programming skill in relation to
the duration of task solving and the confidence level.

Our results indicate that the use of structured flowcharts in
various educational materials, including textbooks, should be
encouraged. Debatable conclusions concerning the effective-
ness of teaching algorithms using pseudocode and flowcharts
have contributed to reducing the role of graphic presentation
of algorithms and, over time, even resulted in a downright
elimination of flowcharts. It turns out that it is uneconomical
to include block diagrams in traditional computer science
textbooks, hence publishers are more likely to include pseu-
docode. It seems that the best solution in this situation is to
provide additional algorithmic learning aids via flowcharts
which are available to students electronically (online).

Our results confirm that flowcharts can help novice pro-
grammers understand how control proceeds - especially in
complex conditional instructions, and it can be assumed
that also in various types of loops (especially in nested
loops). We therefore advocate that teachers use flowchart-
based programming environments aimed at novices, which
have functionalities that support concurrent representation of
flowcharts and pseudocode to the greatest extent possible.
We mean, for example pseudocode and flowchart are dis-
played concurrently, flowchart generates a pseudocode and
the pseudocode generates a flowchart, synchronized high-
lighting and visual execution of flowchart and pseudocode.

In conclusion, our research supports the use of teaching
methods that optimally combine both forms of algorithm
presentation. These issues should be revisited, given that
teaching to program and algorithmics fosters the development
of computational thinking skills.
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