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ABSTRACT For electric power companies, the economic utilization of existing fossil fuel is currently a
primary issue because of the diminishing supply of fossil fuel. Thermal power plants have fuel limitations and
contractual restrictions that must be adhered to. As a result, the scenario-based fuel-constrained short-term
hydrothermal scheduling problemwith renewable energy sources is presented in this paper. The elephant clan
optimization (ECO) approach is offered for short-term hydro-thermal scheduling (STHTS) with thermal
generators, cascaded hydro, solar PV plants, wind turbine generators (WTG), and pumped storage hydro
(PSH) with and without demand side management (DSM) for various scenarios. On a typical test system,
the suggested approach is shown to be successful. An analysis of the typical test system’s numerical results is
compared to those produced via the self-organizing hierarchical particle swarm optimizer with time-varying
acceleration coefficients (HPSO-TVAC) and grey wolf algorithms (GWO). The comparison shows that the
suggested ECO is capable of providing a better solution.

INDEX TERMS Fuel constraints, solar PV plants, wind turbine generators, cascaded reservoirs, different
scenarios, demand side management (DSM), short-term hydrothermal scheduling (STHTS), thermal
generators.

NOMENCLATURE
FC : Cost function ($).
asi, bsi, csi, dsi, esi: Cost coefficients and.
ηsi, δsi, µsi, λsi, ρsi: Fuel consumption coefficients of ith

thermal generator.
C1j,C2j, C3j,
C4j, C5j, C6j: Power generation co-efficients of jth

hydro plant.
Fsim: During interval m, the fuel delivered

to ith thermal.
Fsmin

i ,Fsmax
i : Lower and upper limits of fuel deliv-

ery of ith thermal generator.

The associate editor coordinating the review of this manuscript and
approving it for publication was Lin Wang.

FDm: The total fuel delivered during period
m.

Ihjt ,Qhjt : The inflow rate and rate of discharge
of water of jth reservoir at hour t .

Qhmin
j ,Qhmax

j : Lower and upper rate of discharge of
water of jth reservoir.

Ruj: Upstream number of units directly
above jth hydro plant.

Shjt ,Vhjt : Spillage and storage volume of jth
reservoir at hour t .

τlj: Delay in water transport from reser-
voir l to j.

Vhmin
j ,Vhmax

j : Lower and upper volume of storage
of jth reservoir.

Vhj0,VhjM: Initial and final volume of storage of
jth reservoir respectively.
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Psit : At hour t . o/p power of ith thermal
generator.

Psmin
i ,Psmax

i ,
URi, DRi: Lowest and highest limits of genera-

tion and limits of ramp-up and ramp-
down rate for ith thermal generator.

Phjt : At hour t , o/p power of jth hydro
plant.

Phmin
j ,Phmax

j : Lower and upper generation limits
for jth hydro plant.

Pwkt : At hour t , wind power available of
kth WTG.

Pwmin
k ,Pwmax

k : Lower and upper limits of generation
for kth WTG.

Pwrk : Rated wind power of kth WTG.
Kdwk : Direct cost co-efficient for kth WTG.
uewk , oewk : Penalty and cost of reserve for the kth

WTG.
vcin, vcout ,
vwr , vwt : Cut in,cut out, rated speed and fore-

casted speed of wind respectively.
Ppvlt ,Ppvrl : o/p power and rated power output of

lth solar plant at hour t .
Gr : Predicted solar irradiation.
Tambt ,Tref ,: Ambient and reference temperature.
αr : Coefficient of temperature.
Kdsl : Direct cost co-efficient for lth solar

plant.
uePVl , oePVl : Penalty and reserve cost for lth solar

plant.
Ppsgnt ,PpsPnt : Power generation and pumping

power of nth PSP at hour t .
Ppsmin

gn , Ppsmax
gn : Ppsmin

pn , Ppsmax
pn : minimum and maxi-

mum power generation and pumping
power limits of nth PSH plant respec-
tively.

Qgnt
(
Ppsgnt

)
,

QPnt (PpsPnt): Discharge rate and pumping rate of
nth PSH plant at hour t .

Vres,nt : Volume of water in upper reservoir of
nth PSH plant at hour t .

Vmin
res,n, V

max
res,n: Lower and upper limit of upper

reservoir storage of nth PSH plant.
V start
res,n , V

end
res,n: Starting and final specified value

of stored water volume in upper
reservoir of nth PSH plant.

Vsim: Fuel storage of ith thermal generator
in interval m.

Vsmin
i ,Vsmax

i : Lower and upper limit of fuel storage
of ith thermal generator.

Vs0i : Initial fuel storage of ith thermal
generator.

Inclmax: At any hour t , maximum augmented
demand of power.

LBase,t : At hour t , predicted demand of base
power demand.

DRt : At hour t , percentage of predicted
based demand participated in DRP.

Inclt ,LSt : Amount of augmented power
demand and transferable power
demand at hour t.

T, t ,: Scheduling period and time index.
Tgen,Tpump,
Tchange_over : Set containing all time intervals when

PSH plant operated in generation,
pumping and idle mode respectively.

tm: Time period of subinterval m.
M,Ns,Nh,: Nw,NPV ,NPump: Number of sub-

intervals, thermal generators, hydro
power plants, WTGs, solar and PSH
plants, respectively.

I. INTRODUCTION
Thermal power plants continue to be the primary generators
of electric power to this day. There is a fear of a fuel shortage
due to the diminishing supply of fossil fuels. For this reason,
electric power providers have been obliged to alter their
production schedules in response to the fluctuating supply of
fuel from their suppliers.

Solar PV and waste-to-gas (WTG) facilities are now being
utilized to supply electricity demand without harmful dis-
charges because of growing concerns about climate change
and unpolluted energy. Increased uncertainty has resulted
from the introduction of climate-driven energy sources such
as solar PV plants and WTGs. On the generation schedule,
this sort of irregularity presents substantial obstacles that
may be solved. This unpredictability may have negative
consequences for the grid overall. The integration of PSH
plants, whichminimize the swings between power production
and demand, may mitigate this impact.

A. RELATED WORK
Fuel limits have been taken into account by Trefny and Lee
[1] to explain the economic dispatch issue. References [2]
and [3] have discussed the scheduling of fuel resources in the
energy management field.

Solar PV plants and WTGs have been explored in [4].
Despite the fact that these sources of energy do not produce
any pollution or greenhouse gases, they only provide a little
quantity of power. Reference [5] describes the combination
of thermal generators with renewable energy sources for
energy. Here, hydrothermal scheduling, including WTGs,
is described [6].

The PSH plant has received a lot of interest around the
globe for its ability to store energy [7]. One of the primary
functions of PSH plants [8] is to store hydroelectric potential
energy, which is a low-cost form of extra electric energy
that is available off-peak and may be utilized to generate
electricity when demand is high. Evolutionary programming
has been considered by Hota et al. [9] to solve hydrothermal
scheduling problems for the PSH plant. WTG and PSH
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plants have been integrated into hydrothermal scheduling
by Helseth et al. [10]. Ma et al. [11] explored the PSH
plant for microautonomous systems when it comes to solar
energy penetration. Patwal et al. [12] have presented an
explanation of hydrothermal scheduling. To overcome short-
term hydrothermal scheduling issues, Nguyen et al. [13] used
an adaptive cuckoo search approach. Jian et al. [14] used
logarithmic-scale mixed-integer linear programming [15] to
better describe STHTS. To solve this issue, Yin et al. [15]
used crisscross optimization [16]. Kaur et al. [16] used
crisscross differential evolution to perform hydrothermal
scheduling. Hydrothermal scheduling that takes into account
wind infiltration has been detailed in [17]. Sakthivel et al.
[18], [19] used quasi-oppositional turbulent water flow-based
optimization to perform hydrothermal scheduling.

Demand-side management (DSM) is the most important
choice for all energy policy decisions, according to the
International Energy Agency’s plan. There are several
benefits to DSM, including lowering the cost, increasing the
security of the system, and much more [20].

For a population-based strategy inspired by elephant
behavior and social structure, Jafari et al. [30] created the
elephant clan optimization (ECO) algorithm.

Short-term hydrothermal scheduling has been addressed
for fuel-limited thermal generators, cascaded reservoir
hydropower facilities, solar PV plants, WTGs, and PSH
plants with and without DSM.

B. RESEARCH GAP
Hydrothermal scheduling problems for different scenarios
have not been considered in any of the above papers.
Different restrictions on thermal and hydropower-producing
capacities for both thermal and hydro units, as well as ramp
rates for thermal generators, were also not considered. Fuel
restrictions and thermal generator ramp rate limits haven’t
been taken into account.

In our estimates, we account for solar PV and WTGs.
Thermal and hydropower-producing capacity limitations for
both thermal and hydro units, as well as thermal generator
ramp rates, are the primary constraints.

The problem of STHTS is solved with and without DSM
in three distinct conditions using ECO. Comparisons have
been made between the test results and those obtained
using the HPSO-TVAC (self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients)
and the Grey Wolf Optimization (GWO). The comparison
shows that the suggested ECO is a higher-quality alternative.
Fig. 1 shows the schematic representation of the proposed
problem formulation.

This manuscript’s most significant features are as follows:

• Hydrothermal scheduling problems for different scenar-
ios have been considered.

• Fuel restrictions and thermal generator ramp rate limits
were taken into account.

• With or without DSM, the problem is solved.

• Elephant clan optimization has been employed to solve
this problem.

II. FORMULATION OF PROBLEM
The primary goal of STHTS is to incorporate a combination
of solar PV, WTG, and PSH plants with DSM for different
scenarios in order to minimize both thermal generators’ fuel
costs as well as the costs of WTGs and solar plants while
taking advantage of all hydro resources that are available
during the scheduling horizon.

Minimize Fc

=

T∑
t=1

[ Ns∑
i=1

{fsit ( Psit)}

+

NW∑
k=1

{Kdwk × Pwkt + Oewkt (Pwkt)+ Uewkt (Pwkt)}

+

NPV∑
l=1

{Kdsl × Ppvlt+OePVlt (Ppvlt)+UePVlt (Ppvlt)}


(1)

When the valve-point impact [29] is taken into account, the
cost function of fuel for the i-th generator at hour t is affirmed
as

fsit (Psit) = asi + bsiPsit + csiPs2it

+

∣∣∣dsi × sin
{
esi ×

(
Psmin

i − Psit
)}∣∣∣ (2)

The costs of overestimating and underestimating dispatchable
wind power [22], as well as the costs of reserve and penalty,
are confirmed.

Oewkt (Pwkt) = ewk ×

Pwkt∫
Pwmin

kt

(Pwkt − y)× fw (y) dy (3)

Uewkt (Pwkt) = uewk ×

Pwmax
kt∫

Pwkt

(y− Pwkt)× fw (y) dy (4)

Due to overestimation and underestimation of dispatchable
solar power, the reserve and penalty costs [23] are computed
as follows:

OePVlt (Ppvlt)= oePVl×

Ppvlt∫
Ppvmin

lt

(Ppvlt−x)× fpv (x) dx (5)

UePVlt (Ppvlt)= uePVl×

Ppvmax
lt∫

Ppvlt

(x−Ppvlt)× fpv (x) dx (6)

subject to

A. POWER BALANCE CONSTRAINTS

Ns∑
i=1

Psit+
Nh∑
j=1

Phjt+
NW∑
k=1

Pwkt+
NPV∑
l=1

Ppvlt +
Npump∑
n=1

Ppsgnt

= (1− DRt)× LBase,t + LSt + PLt , t ∈ Tgen (7)
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FIGURE 1. Schematic representation of the overall proposed problem formulation.

Ns∑
i=1

Psit +
Nh∑
j=1

Phjt +
NW∑
k=1

Pwkt +
NPV∑
l=1

Ppvlt −
Npump∑
n=1

PpsPnt

= (1− DRt)× LBase,t + LSt + PLt , t ∈ Tpump (8)
Ns∑
i=1

Psit +
Nh∑
j=1

Phjt +
NW∑
k=1

Pwkt +
NPV∑
l=1

Ppvlt

= (1− DRt)× LBase,t + LSt + PLt , t ∈ Tchange_over (9)

Taking the assumption that, when power demand is
curtailed due to DRP, Lst = 0 at that time While the demand
for power is shifted to the base demand, it is not curtailed
during that time.

A hydroelectric plant’s power generation is determined by
the rate of discharge of water and the amount of water stored
in the reservoir.

Phjt = C1jVh2jt + C2jQh2jt + C3jVhjtQhjt + C4jVhjt
+C5jQhjt + C6j, j ∈ Nh vt ∈ T (10)

B. WIND POWER MODEL
Depending on thewind speed, theWTG’s power outputmight
vary greatly. Power output and wind speed are non-linearly
connected by using operational factors such as the WTG’s
cut-in speed and rated speed as well as its cut-out speed [24].
For a given wind speed, the kth WTG output power at t hours
is given as,

Pwkt = 0, for vwt < vcin and vwt > vcout

Pwkt =
(
Aw+Bwvwt + Cwvw2

t

)
Pwrk for vcin≤vwt < vwr

Pwkt = Pwrk , for vwr ≤ vwt ≤ vcout (11)

Constants Aw, Bw, and Cw are function of vcin and vwr and
are calculated by using the following equations:

Aw =
1

(vcin − vwr )2
[vcin (vcin + vwr )

− 4vcinvwr
(vcin − vwr )3

2vwr

]
(12)

Bw =
1

(vcin − vwr )2

2− 4

(
4
vcin
+ vwr

)3
2vwr

 (13)

Cw =
1

(vcin − vwr )2
[4 (vcin + vwr )

+
(vcin + vwr )3 − (3vcin + vwr )

2vwr

]
(14)

C. MODEL OF SOLAR POWER
The power output [25] of the lth solar plant at hour t is stated
as

Ppvlt=Ppvrl ×
[
1+ αr ×

(
Tref − Tamb,t

)]
×

Gr
1000

(15)

D. CONSTRAINTS FOR DELIVERY OF FUEL
Over the scheduling horizon, the total fuel supplied will equal
the total fuel given to all generators.

Ns∑
i=1

Fsim − FDm = 0, m ∈ M (16)

E. CONSTRAINTS FOR FUEL STORAGE
At the beginning of each period, the amount of fuel in the
thermal generators is divided by the amount of fuel given to
those generators minus the amount of fuel consumed by those
generators.

Vsim = Vsi(m−1) + Fsim

−

tm∑
t=1

[
ηsi + δsiPsit + µsiPs2it

+

∣∣∣λsi sin {ρsi (Psmin
i −Psit

)}∣∣∣] , i∈Ns, m ∈ M

(17)
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F. LIMITS OF FUEL DELIVERY
Each thermal generator’s fuel supply is within its Fsmin and
maximum limits Fsmax at all times.

Fsmin
i ≤ Fsim ≤ Fsmax

i , i ∈ Ns, m ∈ M (18)

G. LIMITS OF FUEL STORAGE
Each generator’s capacity for fuel storage must remain within
its minimum Vsmin and maximum limits Vsmax at each
interval.

Vsmin
i ≤ Vsim ≤ Vsmax

i , i ∈ Ns, m ∈ M (19)

H. PSH PLANT CONSTRAINTS
Pumping of water is done from the lower to the higher
reservoir at the PSH plant during off-peak hours in order to
generate power during periods of high demand. As a result
of the PSH plant’s physical limitations, it must be shut down
for an hour each time it switches from producing to pumping
mode, and this period is referred to as the ‘‘changeover time.’’

Vres,n(t+1)=Vres,nt + QPnt (PspPnt) , n∈Npump, t ∈Tpump
(20)

Vres,n(t+1)=Vres,nt − Qgnt
(
Pspgnt

)
, n∈Npump, t ∈Tgen

(21)

Vres,n(t+1)=Vres,nt , n ∈ Npump and t ∈ Tchange_over (22)

Pspmin
gn ≤ Pspgnt ≤ Pspmax

gn , n ∈ Npump, t ∈ Tgen (23)

Pspmin
Pn ≤ PspPnt ≤ Pspmax

Pn , n ∈ Npump, t ∈ Tpump
(24)

Vmin
res,n ≤ Vres,nt ≤ V

max
res,n, n ∈ Npump, t ∈ T (25)

The initial and final volumes of water in the upper reservoir
of the PSH plant are presumed to be similar.

Vres,n0 = Vres,nT = V start
res,n = V end

res,n (26)

I. GENERATION LIMITS

Phmin
j ≤ Phjt ≤ Phmax

j j ∈ Nh t ∈ T (27)

Psmin
i ≤ Psit ≤ Psmax

i i ∈ Ns, t ∈ T (28)

J. LIMITS OF RAMP RATE OF THERMAL GENERATORS

Psit − Psi(t−1) ≤ URi, i ∈ Ns, t ∈ T

Psi(t−1) − Psit ≤ DRi, i ∈ Ns, t ∈ T (29)

K. CONSTRAINTS FOR HYDRAULIC NETWORK
Hydraulic restrictions include water balance formulas for
each hydroelectric facility, as well as storage and discharge
goals for reservoirs. These boundaries are set by the hydro
system’s many functions and the physical restrictions of the
reservoirs and plants that support them. Constraints include:
(a) Physical limits on water reservoir storage volumes and

rate of discharge,

Vhmin
j ≤ Vhjt ≤ Vhmax

j j ∈ Nh, t ∈ T (30)

Qhmin
j ≤ Qhjt ≤ Qhmax

j j ∈ Nh, t ∈ T (31)

(b) Continuity equation for hydro reservoir system

Vhj(t+1) = Vhjt + Ihjt − Qhjt − Shjt

+

Ruj∑
l=1

(
Qhl(t−τlj) + Shl(t−τlj)

)
,

j ∈ Nh, t ∈ T (32)

L. DEMAND SIDE MANAGEMENT
As a result of demand side management (DSM), there are
several benefits, such as decreasing costs, improving power
system security, and so on [20]. Demand response programs
(DRP), tactical conservation, etc. are some examples of DSM
initiatives. A time-of-use (TOU) program [21] combined
with DRP can shift demand from peak hours to off-peak
hours while still maintaining the overall level of demand for
electricity. The result is a flattening of the electricity demand
curve. The TOU program is designated by equation (33) and
constrained by equations (34)–(37).

Lt = (1− DRt)× LBase.t + LSt (33)
T∑
t=1

LSt =
T∑
t=1

DRt × LBase,t (34)

LInclt = Inclt × LBase,t (35)

DRt ≤ DRmax, t ∈ T (36)

Inclt ≤ Inclmax, t ∈ T (37)

III. ELEPHANT CLAN OPTIMIZATION
Elephant clan optimization (ECO) has been developed by
Jafari et al. [30]. A populace-driven method, ECO, was
inspired by elephants’ behavior and societal structure. Unlike
humans, elephants have a long-term memory and a strong
capacity to learn new things. Needing water, food, and
rest, elephants are known to travel great distances. As the
group’s leader, it’s up to the materfamilias to guide them to
their destination. The materfamilias may identify the route
to water and food supplies by drawing on their memories
and experiences. The male elephants that are growing and
maturing out of their group are now living on their own or
with other male elephants. The male elephant joins the family
group just for mating and competition, and to encourage
the birth of offspring from stronger generations. Only two
parameters can be changed in the ECO algorithm.

In the ECO algorithm, there are many family clans and
a single male clan. The eldest female elephant, known
as materfamilias, is in charge of each family clan, which
consists of many female elephants and their calves. The
male elephants can stay in the male clan when they’re well-
advanced adults. Those that are stupid will be left out of
the optimization process, so they will have to survive on
their own. Optimizing each clan’s population size has been
a constant consideration. As a result, the number of elephants
that have perished or left their family group is the same as the
number of elephants that were born into the group.

VOLUME 10, 2022 133737



C. Jena et al.: Scenario-Based Fuel Constrained Short-Term Hydrothermal Scheduling

As a result of this knowledge, the algorithm’s four key
operators have become more familiar.

(i) The family clan update operator takes into account
the best elephant in each group in order to keep the family
informed. Global search is boosted by the mobility of these
elephants during the optimization process.

(ii) It is necessary to minimize the amplitude of current
male elephants to update their positions in the male clan
throughout the optimization procedure. In the beginning,
the capacity to hunt globally was aided by the mobility
of male elephants. To improve exploitation, the search is
limited to locations around the current location as the iteration
progresses.

(iii) The generator operator uses the community’s best
members to produce better and fresher members. This
operator expands the community’s options for a suitable
setting, which aids in local search.

(iv) The male clan’s members are turned upside down via
the substitution operator. In the optimization process, mature
male elephants were used to update and improve the elephant
placements.

A solution
(
X =

⌊
x1, x2, . . . , xj, . . . , xN

⌋)
in the

M-dimensional search space is symbolized by an elephant,
and objective function is an elephant’s fitness value, which is
expressed as f (M). ECO algorithm’s stages are summarised:

Step 1: Two variable parameters, α and β, which are
initialised with the number of elephants (NP) and the
number of clans (Nc), balance the algorithm’s exploration and
exploitation capabilities.

Step 2: A family clan and a male clan make up each of
the Nc clans that are created at random from the overall
population.

Step 3: In the group of elephants, the fitness function
determines each individual’s fitness value.

Step 4: Members of the same family clan are ranked
according to their fitness, and the materfamilias of each
family is held in high regard.

Step 5:Members of a family clan shift in response to their
materfamilias’ place in the clan structure:

Where xFCiEmj and xFCiM j are the variables of elephant
m an the mater familias in family clan I respectively.
Furthermore, it signifies the present iteration, α is the scaling
factor, which controls exploration and exploitation balancing.
r is a random number between 0 and 1.

Step 6: Every family’s materfamilias moves in accordance
with the collective wisdom of its members.

Where xbest,j is the jth variable of the best experience
acquired by the whole populace, β is a scaling factor,
controlling exploration and exploitation balancing.

Step 7: When the elephants finally mate, the best female
elephants are chosen as calves and used to determine the
elephants’ new positions.

Step 8: Every clan’s worst calf has been culled because it
has died or been killed by its rivals.

Step 9: When they reach maturity, male calves separate
from their mothers’ herds. With other male members of the

male clan, they either live alone or in a group. In this method,
all the elephant calves in each family are randomly selected
to become adult male elephants.

Step 10: The male elephants of the male clan are the ones
that make their own decisions and wander about the search
area without having a specific aim in mind.

in where xMC,Em,j indicates the j th elephant m in the male
clan’s variable list, and r is a random value between−1 and 1,
dictating the random movement of each component. Aside
from that, the values xmax

j and xmin
j represent the high and

low positions of the j th variable, respectively.
A parameter called p restricts the movement of male

elephants in the search space, and it decreases as the
optimization progresses. This parameter is stated as follows:
‘‘C is a factor that affects the pace at which aimless members
travel in a region around the member’s current location and
is chosen based on the optimal operating mode.’’ In this
case, 0.5 is the consistent value for the coefficient. It is the
current iterative number, but the maximum iterative number
is itmax .
Step 11: For mating and reproducing, only the finest

elephants are maintained in the male clan, where their new
rank is decided.

Step 12: It is the weakest member of each male elephant’s
family group that is updated when a grown elephant departs
from his family group.

where XMC,worst is the feeblest elephant in the male clan,
and XFCi,GM is the matured male elephant in family clan i.

Step 13:A calf is born when one of the best male elephants
meets one of the best female elephants from each familial
group. Fresh calves, taken from the familial clans, have taken
their place. The following is a list of parents that are used to
produce the young calves:

where xFCi,calf ,j denotes variable j of a new born calf in
clan i and xFCi,Rf ,j and xMc,Rm,j are variable j of a random
female of clan i and a random male of the best elephants of
the male clan, respectively

Step 14: Every elephant family’s new arrivals are plotted
out.

Step 15: A maximum of 14 iterations is reached by
repeating steps 4–14, and the program then delivers the best
experience gained during optimization.

Fig. 2 shows the flowchart of ECO algorithm.

IV. NUMERICAL RESULTS AND DISCUSSION
The test system was solved in three distinct methods, both
with and without DSM, using the elephant clan optimization
(ECO) approach. The efficacy of the suggested ECO has
been matched to that of HPSO-TVAC [31] and grey wolf
optimization [32].

To simulate the projected Eco, HPSO-TVAC, and GWO,
MATLAB (version 8.1.0.504.R2013a) is used in a 64-bit
system with an Intel Core (TM) i7-4770 CPU at 3.66 GHz
and 16 GB of RAM.

ECO, HPSO-TVAC, and GWO are used to resolve the
issue. In case of ECO, parameters are taken as NP = 100,
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FIGURE 2. Flowchart of ECO algorithm.

Nc = 10, α = β = 2. In HPSO-TVAC, parameters taken
are NP = 100, wmax = 0.25, wmin = 0.05, c1i = 2.5,
c1f = 0.2 and c2i = 0.2, c1f = 2.5. For the purposes of

GWO, a wolf population of 100 is considered adequate.300
is the maximum number of iterations for each of the three
approaches.
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TABLE 1. Limits of Generation, ramp rate limits, cost coefficients of fuel and initial storage of fuel of coal-burnt thermal units.

TABLE 2. Consumption of fuel coefficients, fuel delivery and limits of fuel storage of coal-burnt thermal units.

A. TEST SYSTEM DESCRIPTION
The testing system takes into consideration ten coal-fired
thermal generators, one equivalent WTG, one equivalent
solar PV plant, and a multi-chained reservoir hydroelectric
facility.

Each day is divided into 24 periods, each holding an hour of
scheduling time. There are three ways to tackle the problem.
There is 0.9 times as much power demand on day one as there
is on day two, as seen in Table 3. Table 3 shows that the second
day’s power demand is the same as the first day. Table 3 shows
that the third day’s power demand is 1.1 times greater than the
third day’s power demand shown in Table 3.

Coal-burning thermal reactors’ ramp rate restrictions and
valve point effects are taken into account. According to [25],
hydro plants’ system specifications are given. Tables 1 and
2 contain all the data you’ll need concerning coal-fired power
stations, including cost and coefficients of coal consumption,
fuel supply and storage constraints, and initial fuel storage.
Table 3 displays the temperature over the course of a 24-hour
period. Table 4 shows the energy that was delivered on
schedule and in accordance with the plan. Numbers two and
three represent the lowest and highest expected limits for
solar irradiation and wind velocity, respectively. The rating

of WTG is Pwr = 150 MW. Cut in, cut out and rated speed
of wind are vcin = 4m/sec, vcout = 25m/s and vwr = 15m/s
respectively. Direct cost coefficient (Kdw) forWTG is chosen
7. The reserve cost (oew) and penalty cost (uew) for WTG are
chosen as 2 and 1 respectively. Solar plant rating is PPVr =
175MW. Direct cost coefficient (Kds) of solar plant is chosen
6. Reserve cost (oePV ) and penalty cost (uePV ) is taken as
2 and 1 respectively. T (Tref ) is assumed as 250C and co-
efficient of temperature (αr ) is chosen as −0.0025/Kelvin.
During DSM 10% of 15th, 16th and 17th hour load is
shifted to 3rd, 4th and 5th hour. PSH plant has the below
characteristics:

Generating mode
Qght is positive while generating, Psght is positive and

0 ≤ Psght ≤ 100MW, Qght
(
Psght

)
= 50+ 2Psght acre-ft/hr.

Pumping mode
Qpht is negative while pumping, Pspht is negative and
−100MW < Pspht ≤ 0MW , Qpht

(
Pspht

)
= −200 acre-ft/h

with Pspht = −100 MW.
Operating restrictions: While pumping, the PSH is only

allowed to run at a maximum of 100 MW. The reservoir’s
capacity is set at 3000 acre-feet, and it must remain at this
level for the duration of the 24-hour period.
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TABLE 3. Hourly temperature and power demand.

TABLE 4. Fuel delivered within period of scheduling.

1) SIMULATION RESULTS
Table 1 contains data for 10 thermal generating units,
including generation limit, ramp-up rate and ramp-down rate
limit, fuel cost co-efficient and initial storage of fuel.

Table 2 shows data on the coefficients of fuel consumption,
limits of fuel delivery, and limits of fuel storage for coal-
burning thermal units. It is seen that the initial fuel delivery
and initial fuel storage are both ‘‘0.’’

Table 3 displays the 24-hour base load demand along
with the hourly temperature. The temperature rises with the
hour and reaches its peak between the tenth and fifteenth
hours. At the 13th hour, the base load demand is at
its peak.

Table 4 depicts the amount of fuel delivered over six four-
hour intervals. The maximum fuel delivered is at the third and
fourth intervals.

FIGURE 3. The lower and upper forecast limits of solar irradiation.

Figure 3 shows the variation of solar irradiation in W/m2

with time in hours. The black, bold line shows the upper limit,
and the blue line shows the lower forecast limits of solar

irradiation. Themaximumupper limit is 1115W/m2, whereas
the maximum lower limit is 1063 W/m2.

FIGURE 4. The Lower and upper forecast limits of wind speed.

Figure 4 depicts the relationship between wind speed in
m/s and time in hours. The black, bold line shows the upper
limit, while the blue line shows the lower forecast limits of
solar irradiation. The maximum upper limit is 23.90399 m/s,
whereas the maximum lower limit is 20.1123 m/s.

FIGURE 5. Power generation obtained from thermal generators with DSM
and fuel constraints using ECO.

Figure 5 shows the power generation received from
10 thermal units with demand-side management and fuel
limits corresponding to the best cost using ECO. Here the
time span is 72 hours. In the first 24 hours, the power demand
was 0.9 times higher than the demand given in Table 2. From
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the 25th to the 48th hour, the power demand is the same as in
Table 3. From the 49th to the 72nd hour, the power demand
is 1.1 times what it is in Table 2.

FIGURE 6. Power Generation received from thermal units with DSM using
ECO.

The graph in Fig. 6 shows the variation of power generated
in MW received from ten thermal units with respect to
time in an hour, considering DSM using ECO without fuel
constraints. The time required is 72 hours.

FIGURE 7. Power Generation received from thermal units without DSM
using ECO.

Figure 7 shows the variation of power generated in MW
received from ten thermal units without DSM and without
fuel constraints using ECO with respect to time in an hour.
The time span used in this case is 72 hours.

FIGURE 8. Power Generation received from different plants with DSM
and fuel constraints using ECO.

Figure 8 shows the power generation from different plants
with DSM and fuel constraints using ECO. With ECO,
the generation of power is obtained from four hydropower
plants: one WTG, one solar, and one PSH plant, with DSM
considering fuel constraints corresponding to the best cost
over a span of 72 hours.

Figure 9 depicts the variation of power generation in MW
with time in hours from four hydropower plants: one WTG,
one solar plant, and one PSH plant, with DSM corresponding
to the best cost using ECO and without fuel constraints over
a 72-hour period.

FIGURE 9. Power Generation received from different plants with DSM
using ECO.

FIGURE 10. Power Generation received from different plants without
DSM using ECO.

Figure 10 shows the variation of power generation in MW
with time (in hours) obtained from four hydropower plants,
one WTG, one solar plant, and one PSH plant, corresponding
to the best cost using ECO without DSM and without fuel
constraints for a time span of 72 hr.

Figure 11 depicts the variation of power generation in MW
with time (in hours), corresponding to the best cost obtained
from ten thermal generating units using HPSO-TVAC with
DSM and fuel constraints over a 72-hour period.

Figure 12 depicts the variation of power generation in MW
with time (in hours), corresponding to the best cost obtained
from ten thermal generating units using HPSO-TVAC with
DSM and no fuel constraints over a 72-hour period.

Figure 13 depicts the variation of power generation
in MW with time (in hours), which corresponds to the
best cost obtained from ten thermal generating units using
HPSO-TVACwithout DSM and without fuel constraints over
a 72-hour period.
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FIGURE 11. Power Generation received from thermal unit with DSM and
fuel constraints using HPSO-TVAC.

FIGURE 12. Power Generation received from thermal unit with DSM using
HPSO-TVAC.

FIGURE 13. Power Generation received from thermal unit without DSM
using HPSO-TVAC.

Figure 14 depicts the variation of power generation in
MW with time (in hours), which corresponds to the best cost
obtained from four hydropower plants: one WTG, one solar
plant, and one PSH plant using HPSO-TVAC with DSM and
with fuel constraints over a 72-hour period.

Figure 15 depicts the variation of power generation in MW
with time (in hours), corresponding to the best cost obtained
from four hydropower plants, one WTG, one solar plant, and
one PSH plant using HPSO-TVAC with DSM and no fuel
constraints over a 72-hour period.

FIGURE 14. Power Generation received from different plants with DSM
and fuel constraints using HPSO-TVAC.

FIGURE 15. Power Generation received from different plants with DSM
using HPSO-TVAC.

FIGURE 16. Power generation obtained from hydro plants, WTG, solar PV
plant and PSH without DSM using HPSO-TVAC.

Figure 16 shows the variation of power generation in MW
with time (in hours), corresponding to the best cost obtained
from four hydropower plants: one WTG, one solar plant, and
one PSH plant using HPSO-TVACwithout DSM and without
fuel constraints for a time span of 72 hr.

The variation shown in Fig. 17 for power generation in
MW versus time (in hours) corresponds to the best cost
obtained from ten thermal generating units using GWOwhile
accounting for DSM and fuel constraints over a 72-hour
period.

The variation shown in Fig. 18 for power generation inMW
versus time in hours corresponds to the best cost obtained
from ten thermal generating units using GWOwith DSM and
no fuel constraints over a 72-hour period.
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FIGURE 17. Power Generation received from thermal unit with DSM and
fuel constraints using GWO.

FIGURE 18. Power Generation received from thermal units with DSM
using GWO.

FIGURE 19. Power Generation received different plants with DSM and
fuel constraints using GWO.

The variation shown in Fig. 19 for power generation inMW
with time (in hours) corresponds to the best cost obtained
from four hydropower plants: one WTG, one solar plant,
and one PSH plant using GWO, considering DSM and fuel
constraints for a time span of 72 hr.

Figure 20 shows the variation of power generation in MW
with time in hours, corresponding to the best cost obtained
from four hydropower plants, one WTG, one solar plant,
and one PSH plant, using GWO with DSM and without fuel
constraints for a time span of 72 hr.

The variation in power generation in MW with time in
hours shown in Fig. 21 corresponds to the best cost obtained
from ten thermal generating units using GWO without DSM
and without fuel constraints over a 72-hour period.

FIGURE 20. Power Generation received from different plants with DSM
using GWO.

FIGURE 21. Power Generation received from thermal units without DSM
using GWO.

FIGURE 22. Power Generation received from different plants without
DSM using GWO.

Figure 22 depicts the variation of power generation in
MW with time in hours, which corresponds to the best cost
obtained from four hydropower plants, one WTG, one solar
plant, and one PSH plant, all using GWO without DSM and
without fuel constraints over a 72-hour period.

Figure 23 shows the amount of fuel per ton being supplied
with fuel based on the best cost gained from the planned ECO
for ten thermal generators at different intervals.

Figure 24 depicts the fuel supply in tons based on
the best cost obtained from the planned HPSO-TVAC for
ten thermal generators at different 18-hour intervals. Each
interval contains 4 hours when considering DSM.

Figure 25 shows the amount of fuel, in tons, being supplied
based on the best cost gained from the planned GWO to
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FIGURE 23. Fuel delivered to thermal units using ECO.

FIGURE 24. Fuel delivered to thermal generators using HPSO-TVAC.

FIGURE 25. Fuel delivered to thermal units using GWO.

ten thermal generators at different 18-hour intervals. Each
interval contains 4 hours when considering DSM.

FIGURE 26. Characteristics of cost convergence with DSM and fuel
constraints.

Characteristics of cost convergence obtained from ECO,
HPSO-TVAC, andGWOconsideringDSMand fuel limits are
shown in Fig. 26. From the above curve, it is observed that
ECO converges in 153 iterations. HPSO-TVAC converges
in 168 iterations, and GWO converges in 192 iterations.

As a result, the authors can conclude that ECO is faster
than HPSO-TVAC, while HPSO-TVAC is faster than GWO.
Hence, the performance of ECO is the best among all other
techniques.

Cost convergence characteristics are depicted in
Figs. 25 and 26 by considering DSM and taking into account
ECO, HPSO-TVAC, and GWO.

Characteristics of cost convergence obtained from ECO,
HPSO-TVAC, and GWO with and without fuel limits are
shown in Fig. 27. From the above curve, it is observed that
ECO converges after 173 iterations. HPSO-TVAC converges
in 180 iterations, and GWO converges in 189 iterations.
From this, it can be concluded that ECO converges faster
than HPSO-TVAC, while HPSO-TVAC converges faster than
GWO. Hence, the performance of ECO is the best among all
other techniques.

FIGURE 27. Characteristics of cost convergence with DSM.

Characteristics of cost convergence obtained from ECO,
HPSO-TVAC, and GWO without DSM and without fuel
limits are shown in Fig. 28. From the above curve, it is
observed that ECO converges after 177 iterations. HPSO-
TVAC converges in 185 iterations, and GWO converges in
196 iterations. From this, it can be concluded that ECO
converges faster than HPSO-TVAC, while HPSO-TVAC
converges faster than GWO. Hence, the performance of ECO
is the best among all other methods.

FIGURE 28. Characteristics of cost convergence without DSM.

Table 5 shows the overall comparison, taking three
different cases. The three cases are: (a) with DSM and

VOLUME 10, 2022 133745



C. Jena et al.: Scenario-Based Fuel Constrained Short-Term Hydrothermal Scheduling

TABLE 5. Performance comparison.

fuel constraints (b) With DSM and without fuel constraints;
(c) Without DSM and without fuel constraints among the
different optimization techniques on the basis of best cost,
average cost, worst cost dollars, and CPU time in seconds.
In all of the above cases, ECO was the least expensive
technique when compared to HPSO, TVAC, and GWO. It is
also observed that the cost is lowest in the second case, i.e.,
with DSM and without fuel constraints. In all three of the
cases above, the CPU time is lower with ECO compared to
HPSO-TVAC and GWO. Again, it is least in the third case,
i.e., without DSM and without fuel constraints, as compared
to the other two cases. Even if fuel limitations are ignored, the
cost of using DSM is less than the cost of not using it. This
table further shows that the cost obtained from the suggested
ECO is the cheapest of the three approaches.

2) DISCUSSION
Loading of thermal units without considering fuel constraints
depends on ramp rate limits, generation limits, and fuel cost
coefficients. Loading of thermal units with fuel constraints is
determined not only by generation limits, ramp rate limits,
and fuel cost coefficients but also by fuel consumption
coefficients, fuel delivery limits, fuel storage limits, and
thermal unit initial fuel storage. The power generated by the
thermal unit is never used to dispatch power economically.

V. CONCLUSION
In this work, ECO is proposed for solving complex fuel-
constrained short-term hydrothermal scheduling involving
thermal generators, cascaded hydro power plants, solar,
WTGs, and PSH plants with and without DSM for three
different scenarios. Three scenarios are considered here:
(a) with DSM and fuel constraints; (b) with DSM and no
fuel constraints; and (c) without DSM and no fuel constraints.
The test system is also solved by using the HPSO-TVAC
and GWO. In the case of DSM and fuel constraints, ECO
is nearly 0.00595% less expensive than HPSO-TVAC and
nearly 0.0001% less expensive than GWO. In the case of
DSM and without fuel constraints, ECO provides nearly

0.00776% less cost compared to HPSO-TVAC and nearly
0.0001% less cost compared to GWO. In the absence of DSM
and fuel constraints, ECO is nearly 0.0090% less expensive
than HPSO-TVAC and nearly 0.0189% less expensive than
GWO. Likewise, considering CPU time, in the case of
DSM and with fuel constraints, ECO is using 3.95% less
time compared to HPSO-TVAC and nearly 4.11% less time
compared toGWO. In caseswith andwithout fuel constraints,
ECO has 3.69% and 2.09% less CPU time compared to
HPSO-TVAC and GWO, respectively. In the absence of DSM
and without fuel constraints, ECO provides nearly 4.1% and
2.33% less CPU time compared to HPSO-TVAC and GWO,
respectively. After analysis, it is concluded that the proposed
ECO provides better results than HPSO-TVAC and GWO.
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