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ABSTRACT Traffic modeling and prediction is a vital task for designing efficient resource allocation
strategies in telecommunication networks. This is challenging because network traffic data exhibits complex
nonlinear spatiotemporal interactions. Moreover, the data can have missing values when traffic statistic
collection is unavailable in certain nodes. In this paper, we introduce a graph Gaussian Process (GP) model
for this challenging problem. The GP is a Bayesian non-parametric model and highly flexible in capturing
complex patterns in the data. Additionally, it provides uncertainty information which can be exploited for
robust resource allocation problems. The developed graph GP model is almost free of hyper-parameter
tuning, can accurately capture short-term and long-term temporal patterns and can infer missing values
by learning spatiotemporal interactions among the nodes in the network. Subsequently, we approximate
the intractable posterior distribution using Variational Bayes (VB) algorithm which can be efficiently
implemented. Finally, we evaluate the accuracy of the proposed model for predicting the data traffic using
two real-world network datasets. Our simulation results shows that the proposed model can achieve better
prediction accuracy with respect to the state-of-the-art approaches.

INDEX TERMS Gaussian process, Bayesian modeling, variational bayes, traffic prediction, graph data
structure.

I. INTRODUCTION
Accurate traffic modeling and prediction is essential for
efficient proactive resource allocation and traffic engineering
in telecommunication networks. It has been widely used
to perform different management tasks such as network
maintenance, network optimization, routing policy design,
load balancing, protocol design, anomaly detection and Vir-
tualized Network Functions (VNF) deployment decisions [1],
[2], [3]. Network traffic patterns can be affected by many
factors, such as user behavior, network topology and routing
strategy, and can have complex nonlinear spatiotemporal
interactions. Moreover, even though currently available
technologies, such as software-defined networking (SDN),
allow for the centralized collection of network statistics, older
equipment or failures often make it impossible to have a
complete view across all network nodes. Therefore, due to
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missing values, it is challenging to effectively explore and
utilize the data for accurate prediction.

In the literature, various statistical time series models and
analysis methods have been developed for traffic predic-
tion. The most commonly-used is autoregressive integrated
moving average (ARIMA) model [4], [5]. A limitation of
ARIMA is that it can only capture a short-term temporal
interaction. Nevertheless, data analysis shows that data traffic
can also exhibit long-term interaction [6]. The Seasonal
ARIMA (SARIMA) model is an extension of ARMA can
improve the prediction accuracy by capturing a long-term
interaction and it has been adopted to traffic prediction in [7]
and [8]. However, ARIMA and SARIMA are linear models
and have limited expressiveness power therefore they cannot
capture nonlinear patterns.

More recently, artificial neural networks have attracted
major attention in both academia and industry. These models
are non-linear and can potentially capture any non-linearity
in the data. The authors in [9] applied a general multilayer
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perceptron (MLP) network to predict the base station traffic
under different wireless network setups. Recurrent neural
networks (RNN) which are specific to sequence data are
used in [5], [10], [11], [12], and [13]. In [14], a multi-
ple RNN based learning models along with a multi-task
learning framework is proposed to explore spatio-temporal
correlations among base stations in cellular networks. Similar
works used RNN combined with convolutional neural
network (CNN) to capture the spatiotempral structure [15].
However, the aforementioned works assume that the data
lie within a regular Euclidean space and do not explicitly
exploit the graph structure of telecommunication networks,
and therefore the proposed models may not perform
satisfactorily.

Artificial graph neural networks [16], [17] which are
particularly designed for modeling and predicting time-
varying graph-based data are adopted in [18] and [19]
for network traffic prediction. However, these developed
artificial neural networks have two important limitations.
Firstly, they cannot efficiently handle missing values due
to their special architectures. Secondly, they cannot provide
uncertainty information in the prediction because they are
deterministic models.

GP, a Bayesian non-parametric model, which can effi-
ciently capture uncertainty in the prediction has been
used, more recently, by researchers for network traffic
prediction [20], [21], [22], [23]. The authors in [20] studied
a mixture of Gaussian processes using Dirichlet process
to improve the scalability of inference and to model data
non-stationarity. In [21], a GP model is used to capture
a quasi-periodic pattern. In [22], the authors developed an
enesemble learning algorithm where each learner is modeled
by a GP and the predictions of the GPs are combined
to improve the prediction accuracy. In [23] the alternating
direction method of multipliers (ADMM) algorithm is used
for parallel hyper-parameter optimization to scale up the
GP inference. Nevertheless, the developed GP models are
specifically designed for univariate time-series and cannot
capture complex traffic pattern interactions among different
nodes in the network.

In this paper, we aim to introduce a graph-based GP model
for traffic prediction. In particular, our contributions are as
follows.
• We develop a graph-based GP model which can capture
the spatiotemproal interactions in the data. In particular,
the GP exploits the structure of the telecommunication
network which can be leveraged to infer the missing
values.

• Moreover, a structured kernel function is proposed to
capture short-term and long-term temporal dependen-
cies to provide accurate prediction.

• Using the VB, we develop an inference algorithm to
approximate the posterior distribution of the GP model.
The developed inference algorithm is almost free of
hyper-parameter tuning and the hyper-parameters are
estimated using historical data.

• Finally, throughout our simulations, we show that the
introduced graph-basedGPmodel outperforms the state-
of-the-art models on two real-world datasets.

This paper is organized as follows. The problem statement
is described in Section II. In Section III, we provide an
overview to GP. In Section IV, we introduce a GP model for
network traffic modeling. In Section V, we develop a VB
algorithm for inference and prediction. Finally, Section VI
shows the simulation results and Section VII concludes the
paper.

II. PROBLEM DEFINITION
We consider a communication network which consists of
a set of nodes, e.g., routers, which are connected to each
other by communication links. Due to the graph-structured
topology, we define the traffic prediction problem on a graph,
as depicted in Fig. 1. Mathematically, the network can be
represented by un-directed graph Gt := (yt ,V, E) where V is
the set of nodes and E is the set of edges (i.e., communication
links). We denote the presence of an edge between node i
and node j as {i, j} ∈ E . Moreover, yt ∈ RM is a vector that
contains data traffic at nodes at time t , e.g., in Mb per time
unit, where M is the total number of nodes. Set V is divided
into two disjoint sets Vo and Vō such that V = Vo ∪ Vō,
where Vo and Vō contain nodes that traffic can be measured
and nodes that traffic cannot be measured respectively. The
number observed nodes and missing nodes are respectively
defined byMo and Mō such thatM = Mo +Mō.

The objective in traffic prediction problem is to predict
the traffic over the next H time steps given T historical
observations of data traffic. In this paper, we advocate
a probabilistic approach. This requires to compute the
predictive distribution p(yt+1, . . . , yt+H |yo,t , . . . , yo,t−T+1),
where yot ∈ RMo is the observation vector of Mo nodes a
time t , each element records historical traffic observations
for a specific node in set Vo. The traffic at nodes are not
independent but related by pairwise relationships. In other
words, it is expected that neighboring nodes have similar
traffic patterns over time. Moreover, in practice, some of the
nodes may degenerate, e.g., due to packet loss, or generate,
e.g., edge nodes, the data traffic. Therefore, the flow balance
equations cannot be used to predict the traffic at the missing
nodes. In particular, the relationship among the nodes in
the graph is not deterministic and is stochastic. Therefore,
it is essential to effectively capture the network structure for
improved prediction accuracy. In the next section, we review
the basic of GP since it is used as the main tool to construct
our graph-based probabilistic model for traffic prediction.

III. OVERVIEW TO GAUSSIAN PROCESS
GPs are powerful non-parametric Bayesian tools suitable
for modeling real-world problems. A GP is a collection
of random variables, any finite number of which have a
joint Gaussian distribution. Using a GP, we can define a
distribution over non-parametric functions f (x):

f (x) ∼ GP
(
m (x) ,K

(
x, x′

))
, (1)
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FIGURE 1. Illustration of network traffic data.

where x is an arbitrary input variable with Q dimensions, and
the mean function, m (x), and the Kernel function, K

(
x, x′

)
,

are respectively defined as:

m (x) := E [f (x)] , (2)

K
(
x, x′

)
:= E

[
(f (x)−m (x))

(
f
(
x′
)
−m

(
x′
))]
. (3)

This means that a collection of N function value samples has
a joint Gaussian distribution:

[f (x1) , . . . , f (xN )]T ∼ N (m,K) , (4)

where m := [m (x1) , . . . ,m (xN )]T and the covariance
matrix K has entries [K]i,j := K

(
xi, xj

)
. The kernel function

specifies the main characteristics of the function that we wish
to model and the basic assumption is that variables x which
are close are likely to be correlated. Constructing a good
kernel function for a learning task depends on intuition and
experience. More details about GP can be found in [24].

IV. GAUSSIAN PROCESS FOR NETWORK TRAFFIC DATA
In this section, we introduce a Bayesian model based on
GP for data traffic. The developed model includes both the
missing and observed nodes. In Section V, we explain how
the model is used for inference and prediction in presence of
missing nodes in more details. Our model assumes that the
traffic is e generated based on a factor analysis model with
Gaussian likelihood as:

yt =Wft + b+ nt , (5)

where W := [wT
1 , . . . ,w

T
M ]T ∈ RM×D is factor loading

matrix which row wm captures node m specific patterns
and ft := [f11, . . . ., fDt ]T ∈ RD is a temporal latent
variable vector which captures common temporal patterns
among the nodes. Vector b ∈ RM is the bias term which
captures the overall traffic volume at each node. Moreover,
nt := [n1(t), . . . , nM (t)] is the additive white noise assumed
nm(t) ∼ N (0, σ ), ∀m = 1, . . . ,M . The expressiveness
power of the model is determined by the number of latent
factors D. In particular, the model can capture more diverse
and more complex patterns in the data as D increases.
However, we should note that increasing D can also increase

the risk of overfittng. Therefore, choosing the right value for
D is important for achieving accurate prediction.
In order to effectively capture the graph structure of the

network and temporal patterns in the traffic, it is important
to model variables W, ft and b with flexible priors. In the
following, we focus on this problem.

A. PRIOR FOR ft
In order to capture the time evolution of the data traffic,
we assume that the latent variables ft follows an additive
model with four components given by:

fdt := fd (t) := f1d (t)+f2d (t)+f3d (t)+f4d (t),∀d = 1, . . . ,D.

(6)

The additive model in (6) is used to capture the disjunction
of four main temporal characteristics of the data. Function
f1d (t) models a short-term trend and is assumed to be a GP
with radial basis function (RBF) kernel as:

f1d (t) ∼ GP(0, k1d (t, t ′)),

k1d (t, t ′) = α1d exp
(
−β1d ||t − t ′||2

)
. (7)

Parameters α1d and β1d model the important behavior of
function f1d (t). In particular, α1d captures the horizontal
variation and β1d captures the vertical variation of function
f1d (t) in time domain. Function f2d (t) models a daily quasi
periodic pattern and is modeled by a GP as:

f2d (t) ∼ GP(0, k2d (t, t ′)),

k2d (t, t ′) = α2d exp (−β2d ||t − t ′||2)

× exp (−γ1d sin2
π

λ1
(t − t ′)).

(8)

Kernel function k2d (t, t ′) is the product of a RBF and a purely
periodic RBF kernel which can capture the conjunction of
both kernels [25], [26]. The overall kernel is a quasi periodic.
As in 7, parameters α2d , β2d and γ1d capture the horizontal
and the vertical variations of function f2d (t). Moreover,
parameter λ1 should be set as the number of observations per
day. In a similar way, function f3d (t) models a weekly quasi
periodic pattern and is modeled by a GP as:

f3d (t) ∼ GP(0, k3d (t, t ′)),

k3d (t, t ′) = α3d exp (−β3d ||t − t ′||2)

exp (−γ2d sin2
π

λ2
(t − t ′)), (9)

where λ2 should be set as the number of observations
per week. Similarly, parameters α3d , β3d and γ2d capture
the horizontal and the vertical variations of function f3d (t).
Furthermore, function f4d (t) models the unstructured patterns
and is given by:

f4d (t) ∼ GP(0, k4d (t, t ′)),

k4d (t, t ′) = αndδ(t − t ′). (10)
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where δ(.) is the Dirac delta function. We note that, using the
additive property of GP, function fd (t) can be rewritten as the
following GP model:

fd (t) ∼ GP(0, kd (t, t ′)),

kd (t, t ′) = k1d (t, t ′)+ k2d (t, t ′)+ k3d (t, t ′)+ k4d (t, t ′).

(11)

B. PRIOR FOR W
Now we define prior destitution forW such that to explicitly
exploit the graph topology of the network. To do so, we use a
Gaussian random field (GRF) model as:

p(w:,d ) ∝

e

−
θd1

2

∑
{i,j}∈E

(wid − wjd )2 −
θd2

2

∑
i

w2
id ,

∀d = 1, . . . ,D, (12)

or equivalently:

p(w:,d ) = N (0,Q−1d ), (13)

where Qd = θd1L + θd2IM and L is the graph Laplacian
matrix. The graph Laplacian matrix is defined as:

L = IM − A, (14)

In 14, A is the adjacency matrix corresponding to the graph
where Aij is 1 if node i is connected to node j otherwise
is 0. GRF is a sparse approximation of a GP defined over
discrete input set. The connection between GRF and GP
has been studied in [27]. The assumption by using the GRF
is that nodes that are connected to each other should have
similar data traffic patterns. The GRF encourages the values
wi,d and wj,d to be similar if nodes i and j are neighbors
and therefore acts as a regularizer which can improve the
prediction accuracy.

C. PRIOR FOR b
Similarly, for the bias term, b, we use a GRF as prior given
by:

p(b) = N (Za,Q−1D+1), (15)

where QD+1 = θD+1,1L + θD+1,2I. Matrix Z contains
some nodes specific features such as the degree of nodes.
In particular, by using this prior we encourage neighbor nodes
to have similar bias if they have similar features.
Since the coefficient a in (15) is unknown, we put the

following non-informative prior over its values:

p(ai) = N (0, 10−3),∀i. (16)

Finally, the complete probabilistic graph-based GP model is
depicted in Fig. 2. A summary of the model’s parameters is
also shown in Tab. 1.

FIGURE 2. Probabilistic graph-based GP model.

TABLE 1. A summary of parameters.

D. THE COVARIANCE STRUCTURE
To have a better understanding about the underlying data
pattern that the model in (5) can capture, we compute the
overall covariance structure as:

E[ymtym′t ′ ] =
D∑
d=1

E[wmd ,wm′d ]E[fd (t), fd (t ′)]+ σ (17)

where for simplicity of the analysis we ignore the bias term.
We can express (17) in a matrix form given by:

E[yyT ] =
D∑
d=1

Q−1d ⊗Kd + σ IMT , (18)

where y = vec(YT ), Y = [y1, . . . , yT ]. It can be seen
that the covariance matrix is sum of D covariance matrices
which each has a Kronecker structure. In a special case,
the covariance matrix has a simple Kronecker structure
for D = 1. Designing covariance matrices with Kronecker
structure is a common approach to model multi-variate output
GP for graph structured data, e.g., in [28]. The limitation
with the simple Kronecker structure is that it cannot capture
complex patterns in the data. On the other hand, the sum
Kronecker structure introduces much more expressiveness
power for complex and non-linear patterns.
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V. MODEL INFERENCE AND PREDICTION
In this section, we focus on model inference and prediction
in the light of the data traffic measurements at the observed
nodes in set Vo. We note that the likelihood function
in (5) depends on the parameters of both missing and
observed nodes which are highly correlated through the GRF
prior distributions in (13) and (15). However, the traffic
measurements are unavailable for the missing nodes and
therefore the inference is not trivial. To tackle the issue, our
approach is to integrate out the parameters of missing nodes
from the model to obtain a marginal model which includes
only the observed nodes. Using the marginal model, we can
perform the inference. In Section V-A, we focus on this
problem. After the inference, we define posterior predictive
distributions to make predictions about both the observed and
the missing nodes by exploiting their interaction structures
encoded in the GRF priors. This problem is explained in
Section V-B.

A. INFERENCE
As we mentioned previously, the inference problem requires
to compute the marginal model of the observed nodes. Let
divide matrix W into two submatrices Wo ∈ RMo×D and
Wō ∈ RMō×D, where Wo and Wō are the latent factors for
the observed nodes andmissing nodes respectively. Similarly,
we divide vector b into two subvectors bo ∈ RMo and bō ∈
RMō , where bo and bō are the bias terms for the observed
nodes and the missing nodes respectively. The marginal prior
distributions of the parameters of observed nodes can be
computed as:

p(Wo)=
∫
p(Wo,Wō)dWō, p(bo)=

∫
p(bo,bō)dbō,

(19)

where the joint distributions p(Wo,Wō) and p(bo,bō) are
given by the GRFs in (12) and (15) respectively. By
re-arrangingW and b, the GRF models can be rewritten as:[

wo,:,d
wō,:,d

]
∼ N (0,Q−1d ),

[
bo
bō

]
∼ N (

[
Zoa
Zōa

]
,Q−1D+1),

(20)

Qd =

[
Q11d Q12d ,

Q21d Q22d

]
, ∀d = 1, . . . ,D+ 1

where Q11d ∈ RMo×Mo , Q12d = QT
21d ∈ RMo×Mō and

Q11d ∈ RMō×Mō . Using Schur complement lemma [29],
we can compute the marginal distributions ofWo and bo as:

p(wo,:,d ) = N (0,Q−1o,d ), p(bo) = N (Zoa,Q−1o,D+1), (21)

Qo,d = Q11d −Q12dQ−122dQ21d , ∀d = 1, . . . ,D+ 1.

Given the marginal priors in (21), the inference problem
focuses on the following Gaussian marginal model:

yot =Woft + bo + nt , (22)

where yot contains the data traffic measurements of the
observed nodes.

In particular, the inference goal is to compute the posterior
distribution of random variables h := {F,Wo,bo, a},
where F := [f1, . . . , fT ] ∈ RD×T ; and find the best
values for the hyperparameters of GPs ψGP

:= {ψGP
d }

D
d=1,

ψGP
d := {αd1, αd2, αd3, βd1, βd1, βd1, , βd2, γd1, γd2},

GRFs ψGRF
:= {ψGRF

d }
D
d=1, ψ

GRF
d := {θd1, θd2} and noise

variance σ given the traffic observations over T samples in
time, i.e., Y := {yot }Tt=1.
The posterior of h has the following form:

p(h|Y;ψ) =
1

Z (ψ)
p(bo)p(a)

T∏
t=1

p(yot |ft ,Wo,b)

D∏
d=1

p(wo,:d )p(f:d ) (23)

where ψ := {ψGP,ψGRF , σ } and Z (ψ) is the marginal
likelihood which only depends on the hyperparameters.
The common approach for finding the best values for the
hyperparameters is to maximize the log marginal likelihood
as:

ψopt = argmax
ψ

logZ (ψ). (24)

However, neither of the problems in (23) and (24) are
trivial to solve because computing the marginal likelihood
involves multiple high dimensional integrals which are
difficult to obtain in a closed form. To tackle the issue,
we use the VB learning algorithm [30]. The VB is an
iterative approach where each iteration consists of two
main steps. In one step, we approximate the posterior
distribution of h given the hyperparameters. In the next
step, we optimize the hyperparameters given the approximate
posterior distribution. In particular, at iteration i, we solve the
following subproblems:
Subproblem 1) We approximate the posterior distribution

by q(i)(h) given ψ (i−1) as:

q(i)(h) ≈ p(h|Y;ψ (i−1)). (25)

The approximate distribution q(i)(h) is determined such that
to have minimum dissimilarity with the true posterior. Using
the KL divergence to measure this dissimilarity, q(i)(h) can be
found by solving the following optimization problem:

min
q(i)(h)

KL
(
q(i) (h) || p

(
h|Y;ψ (i−1)

))
,

s.t :
∫
q(i) (h) dh = 1, (26)

where KL (q (.) || p (.)) := Eq(.)
{
log q(.)p(.)

}
.

Subproblem 2) We optimize the hyperparameters by
maximizing a lower bound of the log marginal likelihood.
It can be shown that the negative of KL divergence in (26)
is an upper bound for the log marginal likelihood [31].
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Theretofore, the KL divergence in (26) can be used to
optimize the hyperparameters as:

ψ (i)
= argmax

ψ
−KL

(
q(i) (h) || p (h|Y;ψ)

)
. (27)

We now explain the VB learning algorithm in more detail.
Hereafter, we ignore superscript i for notational simplicity.

1) POSTERIOR APPROXIMATION
To simplify the optimization problem in (26), the assumption
will be that the probability density function q(h) is factorized
with respect to each variable in h as:

q(h) = q(bo)q(a)q(F)q(Wo)

= q(bo)q(a)
∏
d

q(f:,d )q(wo,:,d ). (28)

Note that the second equality is obtained without any further
assumption. In particular, when we assume Wo and F are
independent, they are automatically factorized over latent
dimensions d due to the factorized form of their prior. Using
the Karush–Kuhn–Tucker (KKT) conditions, it can be shown
that the optimized form of j factor based on the minimization
of (26) is given by [30]:

q
(
hj
)
∝ exp

(
E∼q(hj)

[
log (p (h,Y))

])
, (29)

where the notation E∼q(hj) [.] means to take the expectation
with respect to all the variables except hj. Each optimal
variational distribution can be obtained as in the following.
• Compute q(f:,d ): The optimal un-normalized log varia-
tional density can be written as:

log q(f:,d )

∝ E∼q(f:,d )

[
T∑
t=1

log p(yot |Wo, fdt ,bo)+ log p(f:,d )

]

∝ −
1
2
fT:,dCwd f:,d −

1
2
fT:,dK

−1
d f:,d + cwd f:,d , (30)

where we define Cwd := E∼q(f:,d )
[
1
σ
wT
o,:,dwo,:,d

]
IT ,

cwd := E∼q(f:,d )
[
1
σ
wT
o,:,dRd

]
,Rd := [rd1, . . . , rdT ] and

rdt := yot − bo −
∑

d ′ 6=d wo,:,d ′ fd ′t . It can be seen that
(30) is in a form of a normal density given by:

q(f:d ) = N (µfd , 6fd ), (31)

where 6fd := (Cwd +K−1d )−1 and µfd := 6fd c
T
wd .

• Compute q(wo,:d ): The un-normalized log variational
density can be written as:

log q(wo,:d ) ∝

E∼q(wo,:d )

[
T∑
t=1

log p(yot |Wo, ft ,bo)+ log p(wo,:d )

]

∝−
1
2
wT
o,:dC

f
dwo,:d−

1
2
wT
o,:dQo,dwo,:d + cfdwo,:d ,

(32)

where Cfd := E∼q(wo,:d )
[
1
σ
fT
:d f:d

]
IMo , cfd :=

E∼q(wo,:d )
[
1
σ
fT
:dEd

]
, Ed :=

[
ed1, . . . , edMo

]
, edm :=

ȳm−bm−
∑

d ′ 6=d wd ′mf:d ′ , and ȳm := [yom1, . . . , yomT ]T .
It can be seen that (32) is in a form of a normal density
given by:

q(wo,:d ) = N (µwd , 6wd ), (33)

where 6wd := (Cfd +Qo,d )−1 and µwd := 6wd c
T
fd .

• Compute q(bo): The un-normalized log variational
density can be written as

log q(bo) ∝ −
1
2
bToCbbo + bTo cb −

1
2
bToQo,D+1bo,

(34)

where Cb =
1
σ
IMo , cb =

1
σ
(
∑T

t=1 yot −
E∼q(bo) [Woft ])+Qo,D+1ZoEq(a) [a]. It can be seen that
(34) is in a form of a normal density given by:

q(bo) = N (µb, 6b), (35)

where 6b = (Cb +Qo,D+1)−1 and µb = 6bcb.
• Compute q(a): The un-normalized log variational den-
sity can be written as

log q(a) ∝ −
1
2
aTZToQo,D+1Zoa

+aTZToQo,D+1Eq(bo) [bo]−
1
2
aT a,

(36)

which is in a form of a normal density given by:

q(a) = N (µa, 6a), (37)

where 6a = (ZToQo,D+1Zo + I)−1 and µa =

6a(ZToQo,D+1Eq(bo) [bo]).

2) HYPERPARAMETER OPTIMIZATION
In this step, the goal is to optimize the hyper-parameters given
the posterior distribution. Using the optimization problem
in (27), the objective functions for the GP, GRF, parameters
and σ to be minimized can be written as:

L1(ψGP
d )

=
1
2
log |Kd |−

1
2
tr(K−1d E[fT:d f:d ]),∀d = 1, . . . (38)

D L2(ψGRF
d )

= −
1
2
log |Qo,d |−

1
2
tr(Qo,dE[wT

o:dwo:d ]),∀d = 1, . . .D

(39)

L3(ψGRF
D+1)=−

1
2
log |Qo,D+1|−

1
2
tr(Qo,D+1E[bTo bo]),

(40)

L4(σ ) =−
MoT
2

log σ−
1
2σ

T∑
t=1

E[rTt rt ], (41)
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where rt = yot − Woft − bo. The maximal value of the
objective (41) can be obtained by taking its gradient equal
to zero which is given by:

σ =
1

MoT

T∑
t=1

E[rTt rt ]. (42)

Due to non-linear dependency of GP and GRF objective
functions to the hyperparameters, there are no-closed form
solutions for (39), (39) and (40). However, the functions
are differentiable with respect the hyper-parameters and
gradient-based methods (e.g., Newton method) can be used
in order to minimize the objective functions.

Overall, the inference algorithm for posterior approxima-
tion and hyperparameter optimization takes the form as in
Alg. 1.

B. PREDICTION
For the H -step ahead prediction, we need to compute two
types of posterior predictive distributions (PPDs), one for the
observed nodes and one for the missing nodes.

1) OBSERVED NODES
The PPD for the observed node is given by:

p(Y∗o|Y) =
∫
p(Y∗o|Wo,F∗,bo)p(F∗|F)q(F)

q(Wo)q(bo)dF∗dWodFdbo, (43)

where Y∗o =
[
yo,T+1, . . . , yo,T+H

]
and F∗ =

[
fT+1, . . . ,

fT+H
]
. The conditional p(F∗|F) density can by computing by

noting that the joint p(F,F∗) is a normal as:

p(f:d , f∗:d ) = N (0, [
Kd K∗d
K∗d

T K∗∗d
]), ∀d = 1, . . . ,D, (44)

where [K∗d ]ij = Kd (i, j), ∀i ∈ {1, . . . ,T }, j ∈ {T+1, . . . ,T+
H}, and [K∗∗d ]ij = Kd (i, j), ∀i, j ∈ {T +1, . . . ,T +H}. Using
the conditional property of normal [29], we obtain:

p(f∗:d |f:d ) = N (Md f:d ,Pd ),

Md = K∗d
TK−1d ,Pd = K∗∗d −K∗d

TK−1d K∗d . (45)

We can integrate out the latent variables f:d and bo to
simplify (43) as:

p(Y∗|Y) =
∫ T+H∏

t=T+1

N (yt |Wof∗t + µb, σ I+6b)p(f∗:d )

× q(Wo)df∗:ddWo, (46)

where

p(f∗:d ) = N (µf ∗d , 6f ∗d
),

µf ∗d
= Mdµfd , 6f ∗d

=MdPdMT
d +6fd . (47)

It is difficult to obtain a closed-form expression of (46).
However, the mean and the variance can be computed
analytically as:

E(Y∗|Y) =
D∑
d=1

µwdµ
T
f ∗d
+ µb, (48)

var(ymt |Y) = σ + [6b]m,m +
D∑
d=1

[µwd ]
2
m[6f ∗d

]t,t .

+[µf ∗d ]
2
t [6wd ]m,m + [6wd ]m,m[6f ∗d

]t,t .

(49)

2) MISSING NODES
The PPD for the missing nodes is given by:

p(Y∗ō|Y) = ∫
p(Y∗ō|Wō,F∗,bō)p(F∗)p(Wō|Wo)q(a)

p(bō|bo, a,Zō)q(bo)q(Wo)df∗

× dWodbodbōdWō, (50)

where Y∗ō =
[
yō,T+1, . . . , yō,T+H

]
is the future traffic

of the missing nodes and p(F∗) is the marginal predictive
distribution of the time latent variables defined in (47).
To compute (50), we need to obtain the distributions of the
missing nodes latent factorsWō and biases bō conditioned on
the inferred parameters, which are respectively represented
by p(Wō|Wo) and p(bō|bo, a,Zō). The latent variables Wō,
bō and F∗ are subsequently used as the parameters of
the distribution of the missing nodes p(Y∗ō|Wō,F∗,bō) to
generate the data traffic. Note the this distribution is similar
to (28) and is given by:

p(Y∗ō|Wō,F∗,bō) =
T+H∏
t=T+1

N (yōt |Wōf∗t + bō, σ I) (51)

In order to simplify the PPD in (50), we compute the
marginal predictive distribution of the missing nodes latent
variables by integrating out all the inferred latent variables
of the observed nodes. In the following, we derive these
marginal distributions.

Using the GRF model in (20), the conditional density
p(Wō|Wo) can be computed as:

p(wō,:d |wo,:d ) = N (Mwdwo,:d ,Pwd ),∀d = 1, . . . ,D,

(52)

where Mwd = QT
oōdQ

−1
od , Pwd = QT

oōdQ
−1
od Qoōd and

Qoōd = −Q−111dQ12dQ−1ōd . The marginal predictive Wō can
be computed by integrating outWo as:

p(wō,:d ) = N (µwōd , 6wōd ),

µwōd = Mwdµwd , 6wd =MwdPwdM
T
wd +6wd . (53)

Similarly, we can compute the marginal predictive distri-
bution of bō as:

p(bō) = N (µbō , 6bō ), (54)

where

µbō = Zōµa +Mb(µbo − Zoµa)

6bō = Ma6aMa + P̄b
P̄b = Mb6boMb + Pb
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Algorithm 1 The VB Algorithm

1: Initialize hyperparameters ψ (0) and posterior parameters µ(0)
` , 6

(0)
` ,∀` = a, b, f1, . . . , fD, w1, . . . ,wD;

2: Set i = 1;
3: repeat
4: · Approximate the posterior distribution:
5: for d ← 1,D do F Update the parameters of q(f:d ), ∀d = 1, . . .D
6: 6

(i)
fd = (Cwd +K−1d )−1, µ(i)

fd = 6
(i)
fd c

T
wd ;

7: where Cwd = IT 1
σ (i−1)

∑Mo
m=1[6

(i−1)
wd ]m,m, cwd =

1
σ (i−1)

µ
(i−1)
wd

T
R̄d , R̄d = [r̄d1, . . . , r̄dT ], r̄dt = yot − µ

(i−1)
b −∑

d ′ 6=d µ
(i−1)
wd ′ [µ(i−1)

fd ′
]t ;

8: end for
9: for d ← 1,D do F Update the parameters of q(wo,:d ), ∀d = 1, . . .D
10: 6

(i)
wd = (Cfd +Qo,d )−1, µ

(i)
wd = 6

(i)
wd c

T
fd ;

11: where Cfd = IMo
1

σ (i−1)

∑T
t=1[6

(i−1)
fd ]t,t , cfd =

1
σ (i−1)

µ
(i−1)
fd

T
Ēd , Ēd =

[
ēd1, . . . , ēdMo

]
, ēdm = ȳm − [µ(i−1)

b ]m −∑
d ′ 6=d [µ

(i−1)
wd ′ ]mµ

(i−1)
fd ′

;
12: end for
13: 6

(i)
b = (Cb +Qo,D+1)−1, µ

(i)
b = 6

(i)
b cb; F Update the parameters of q(bo)

14: where Cb = IMo
1

σ (i−1)
, cb = 1

σ (i−1)
(
∑T

t=1 yot − W̄o f̄t )+Qo,D+1Zoµ
(i−1)
a , f̄t = [[µ(i)

f1
]t , .., [µ

(i)
fD ]t ]

T , W̄o = [µ(i)
w1 , . . . ,µ

(i)
wD ];

15: 6
(i)
a = (ZToQo,D+1Zo + I)−1, µ(i)

a = 6
(i)
a (ZToQo,D+1µ

(i)
b ); F Update the parameters of q(a)

16: · Optimize the hyperparameters F Update ψ
17: for d ← 1,D do
18: ψ

GP(i)
d = argminψGP

d

1
2 log |Kd | −

1
2 tr(K

−1
d (µ(i)T

fd µ
(i)
fd +6

(i)
fd ));

19: ψ
GRF(i)
d = argminψGRF

d
−

1
2 log |Qo,d | −

1
2 tr(Qo,d (µ

(i)T
wd µ

(i)
wd +6

(i)
wd ));

20: end for
21: ψ

GRF(i)
D+1 = argminψGRF

D+1
−

1
2 log |Qo,D+1| −

1
2 tr(Qo,D+1(µ

(i)T

b µ
(i)
b +6

(i)
b ));

22: σ (i)
=

1
MoT

(
∑T

t=1(r
T
t rt + ζwd ζ

T
ft )+ ζb);

23: where rt = yot − W̄o f̄t − µ
(i)
b , ζwd =

∑Mo
m=1[6

(i)
wd ]m,m, ζwd = [ζw1 , .., ζwD ], ζ ft = [[6(i)

f1
]t,t , .., [6

(i)
fD ]t,t ], ζb =∑Mo

m=1[6
(i)
b ]m,m;

24: Recompute Kd , ∀d = 1, ..D, and Qd , ∀d = 1, ..D+ 1, using the updated hyperparameters ψ (i);
25: until convergence

Ma = Zō −MbZo
Mb = QT

oō,D+1Q
−1
o,D+1

Pb = QT
oō,D+1Q

−1
o,D+1Qoō,D+1

Qoō,D+1 = −Q−111,D+1Q12,D+1Q−1o,D+1.

Using (54), (53) and by integrating out a, the integral in
(50) can be simplified as:

p(Y∗o|Y) =
∫ T+H∏

t=T+1

N (yōt |Wōf∗t + µbō , σ I+6bō )

p(f∗:d )p(Wō)df∗:ddWō, (55)

which can be seen that it has a similar form as (46). Finally,
the mean and the variance are computed as:

E(Y∗ō|Y) =
D∑
d=1

µwōdµ
T
f ∗d
+ µbō , (56)

var(yō,mt |Y) = σ + [6bō ]m,m +
D∑
d=1

[µwōd ]
2
m[6f ∗d

]t,t

+[µf ∗d ]
2
t [6wōd ]m,m + [6wōd ]m,m[6f ∗d

]t,t .

(57)

Overall, the workflow of posterior and prediction com-
putations can be summarized in Fig. 3. In particular, first,
the recorded data traffic at the observed nodes are loaded.
Next, in the preprocessing step, we scale down the data.
This step is essential because the raw data can have large
values and rescaling can help better convergence of the
VB algorithm. Subsequently, using Alg. 1, we compute
the posterior distribution. Finally, using (43) and (50), the
traffic flow at the missing and the observed nodes are
predicted. The per-iteration computational complexity of
approximating the posterior distribution is O(DT 3

+ DM3)
which is mainly due to matrix inversion operations. The
computational complexity of prediction is the same.

VI. SIMULATION RESULTS
In this section, we evaluate the prediction accuracy of the
proposed graph-based GP (GGP) model using the following
two real-world network traffic datasets.
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TABLE 2. The MSE performance for different prediction ahead, H .

FIGURE 3. The workflow of posterior and prediction computations.

FIGURE 4. The abilene network topology.

FIGURE 5. The geant network topology.

• Abilene dataset [32]: The Abilene was a high-
performance backbone network created by the Internet2

community in the late 1990s. The network consists of
12 routers in United States which are connected by
bidirectional links, as shown in Fig. 4. The traffic data
on each link were recorded every 5 minutes (in Mb)
from 2004/03/01 to 2004/09/10. In the original dataset,
the traffic was measured on each link which are in total
30 links. We aggregate the data traffic of the incoming
links to each node in order to obtain node-level traffic
measurement. We further aggregate the dataset on an
hourly basis.

• Geant dataset [32]: Geant is a pan-European data
network. The network consists of 22 routers which are
connected by bidirectional links, as shown in Fig. 4.
The data were taken in 15 minutes steps starting on
04/05/2005 and ending on 31/08/2005. In the original
dataset, the traffic was measured on each link which are
in total 72 links. We aggregate the data traffic of the
incoming links to each node in order to obtain node-level
traffic measurement. We also aggregate this dataset on
an hourly basis.

To help better convergence of learning procedure, the data
have been scaled down by factor of 10000.

In order to compare with the proposed model, we consider
the following benchmarks:
• ARIMA model: The model is implemented using the
statsmodel python package [33]. We select the orders
from the set {(1, 0, 1), (3, 0, 3), (5, 0, 5), (7, 0, 7)}
which has the best performance.

• LSTM [34]: A fully connected network with two recur-
rent layers. In each recurrent layer, we select the number
of hidden unit form the the set {50, 100, 150, 200}which
yields the best performance.

• GCRN [16]: It consists of a stack of graph CNN and
LSTM. The structure of the LSTM is selected similar
the previous model.

• Graph Multi-Attention Network (GMAN) [35]: It is
designed using attention mechanisms with gated fusion
to model the spatio-temporal correlations. This model
has three hyperparameters including the number of
spatio-temporal attention blocks, the number of atten-
tion heads, and the dimensionality of each attention
head. We fix the number of spatio-temporal attention
blocks to 3 and number of attention heads to 8 as in [35].
We select the dimensionality of attention heads from the
set {4, 8, 12, 16} which yields the best performance.

Moreover, we train the neural network models, i.e., LSTM,
GCRNandGMAN, usingAdamoptimizer [36] with an initial
learning rate of 0.001.
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FIGURE 6. The ground truth and predicted traffic flow trajectories of node
‘‘ch1.ch’’ versus prediction ahead, H , for Geant dataset.

FIGURE 7. The ground truth and predicted traffic flow trajectories of node
‘‘ATLAng’’ versus prediction ahead, H , for Abilene dataset.

Table 2 shows the MSE for different prediction ahead
length, H , for different models. Note that the MSE computes
the discrepancy between the ground truth and the predicted
traffic flow values. Therefore, a prediction model with
smaller a MSE has better performance since its prediction
is closer to the ground truth. In this experiment, we set
Mō = 0 and D = 5. We trained the models for T =
{100, 200, 300, 400, 500} observations and the predictions
are computed for the subsequentH time steps for each T . The
MSE is computed by taking predictions in all T s. The table
shows that the developed GGP has lower MSE with respect
to the other benchmarks. Additionally, it can be observed
that, in general, the MSE increases as H increases for all
the models. This is expected since predicting a far-distant
future is more challenging. Moreover, in Fig. 6 and Fig. 7,
we show the ground truth and the predicted traffic flow
trajectories versus prediction ahead H , for T = 500, for
nodes ‘‘ATLAng’’ and ’’it1.it’’ in Abilene and Geant datasets
respectively. We can see that the predicted traffic flow using
GGP model is much closer to the ground truth with respect to
the other models.

Further, we investigate the sensitivity of the models against
noise. For this, we add artificial noise to the training datasets

FIGURE 8. The MSE versus the variance of noise, σ̄ , added to the data
traffic for Geant dataset.

FIGURE 9. The MSE versus the variance of noise, σ̄ , added to the data
traffic for Abilene dataset.

and train the models. In particular, we add a folded Gaussian
noise with zero mean and variance σ̄ . Fig. 8 and Fig. 9
illustrate the MSE versus σ̄ for Geant and Abilene datasets
respectively. The results are obtained by averaging over 25
Monte Carlo simulations. It can be observed that the GGP
model is much more robust against the noise with respect
to the other models. In addition, we see that, in general,
the MSE first decreases and then increases as the noise
variance increases. The reason is that injecting small noise
to the training dataset can reduce overfitting and improve the
prediction accuracy. Note that applying noise to the training
dataset is widely used in deep learning literature as a data
augmentation technique to reduce overfitting [37]. However,
increasing the noise variance eventually increases the MSE
because the added noise dominates the underlying patterns in
the data that are useful to capture for accurate prediction.

Next, we show the prediction error in the presence of
missing nodes. We set T = 300, D = 5 and H = 15. For this
experiment, it is not straightforward to implement the GCRN
because it requires the data traffic of all the nodes. Therefore,
we only use LSTM and ARIMA as benchmarks. For these
models, we use an iterative mean imputation method to
predict the data traffic at the missing nodes. In particular,
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FIGURE 10. The MSE for different number of missing nodes for Abilene
dataset.

FIGURE 11. The MSE for different number of missing nodes for Geant
dataset.

we fix the predictions at the observed nodes and initialize
the missing nodes with zero values. Next, each missing node
computes the mean of data traffic from its one-hop neighbors
and sends the computedmean to its neighbors. This procedure
is repeated until convergence. Fig. 10 and Fig. 11 depict the
MSE versus the number of missing nodes,Mō for the Abilene
and Geant networks respectively. The missing nodes are
selected randomly, similar to the previous scenario, the results
are obtained by averaging over 25 Monte Carlo simulations.
We can observe that the developed GGP model outperforms
the other benchmarks on both datasets. Moreover, it can be
seen that as the number of missing nodes increases the MSE
increases for all the models. This is expected because as
Mō increases, the number of observations decreases and it
becomesmuchmore difficult to extract useful patterns among
the nodes in the network.

Finally, we show the MSE versus the latent dimensions
D for T = 100 and T = 300 in Fig. 12 and Fig. 13.
In this experiment, the number of missing nodes is 30% of
the total number of nodes. From the figures, we can see that,
in general, theMSE first decreases and then slightly increases
as D increases. The decreasing trend is because the model
is not yet expressive enough to explain the data traffic well

FIGURE 12. The MSE for different values latent dimensions D for Geant
dataset.

FIGURE 13. The MSE for different values latent dimensions D for Abilene
dataset.

which results in to underfit. The increasing trend is because
the model is too much flexible and fits to the noise rather than
useful patterns which results in to overfit. Moreover, it can be
seen that as the number of observations T increases, a larger
D is required to achieve accurate prediction. For example,
in Fig. 12, we can observe that 8 dimensions are enough for
T = 300 while 4 dimensions are needed for T = 100.

VII. CONCLUSION
In this paper, we introduced a graph-based Gaussian process
model for network traffic analysis and prediction when the
network graph is not fully observable. The model is Bayesian
non-parametric and highly flexible in capturing complex
nonlinear patterns in the data. We defined a structured
kernel function which can model long-term and short-term
temporal trends for accurate prediction. Additionally, the
model can learn spatial interactions among the node in the
network which can be used to predict the missing values.
Next, we developed a variational inference algorithm to
approximate the intractable posterior distribution which can
be efficiently implemented. Finally, using two real-world
datasets, we showed simulation results to demonstrate that the
proposed model can achieve improved prediction accuracy
with respect to the state-of-the-art approaches.
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