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ABSTRACT We invented a divide & conquer approach to conditional stable model checking so as to ease the
state space explosion problem. As indicated by its name, the technique concentrates on conditional stable
properties expressed as ϕ1  �ϕ2, where ϕ1 and ϕ2 are state propositions. The properties can be used
to formalize desired properties that self-stabilizing systems should satisfy. Self-stabilization in distributed
systems was first introduced by Dijkstra and became a very crucial concept in fault tolerance to design
robust systems. However, designing self-stabilizing systems needmuchmore effort than non-stabilizing ones
because the former are subject to transient errors at any time. Therefore, it is worth dedicating to conditional
stable properties. In this paper, we report a sequential tool and a parallel technique/tool for the divide &
conquer approach to conditional stable model checking. Some experiments are also conducted showing that
our sequential and parallel tools can ease the state space explosion and improve the running performance of
model checking for conditional stable properties to a certain scope, respectively.

INDEX TERMS Self-stabilizing systems, conditional stable properties, state space explosion, divide and
conquer approach, parallel algorithms.

I. INTRODUCTION
The state space explosion problem is still one of the most
challenges in model checking [1]. It frequently makes it
impossible to carry out model checking experiments. Many
techniques have been proposed to alleviate the problem,
such as partial order reduction [2] and abstraction [3], [4],
[5]. Although they can ease the problem to a certain scope,
there exists the problem left when tackling a large num-
ber of (reachable) states. Another challenge is to increase
the running performance of model checking. To address the
challenge, parallel model checking algorithms and model
checkers [6] have been developed so as to make the best use
of multicore architectures.

Our research group came up with a divide & conquer
approach to model checking leads-to properties [7] expressed
as ϕ1  ϕ2, eventual (or eventually) properties [8] expressed
as ♦ϕ, and conditional stable properties [9] expressed as
ϕ1  �ϕ2, where ϕ, ϕ1, and ϕ2 are state propositions.
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A basic idea of the approach is that the reachable state space
from each initial state is split into multiple layers, generating
multiple sub-state spaces, and conducting model checking
experiments for each sub-state space. If the size of each
sub-state space is much smaller than the one of the original
reachable state space, it is feasible to conduct model checking
experiments with the approach even if it is impossible to do
so for the latter space thanks to the state space explosion.
Our research group also built a sequential tool supporting the
divide & conquer approach to model checking leads-to prop-
erties [10], a parallel version of the tool supporting a divide &
conquer approach to leads-to model checking [11], and a
sequential tool for eventual properties [12]. Although leads-to
properties, eventual properties, and conditional stable proper-
ties can be expressed in Linear Temporal Logic (referred to as
LTL) and the basic idea is used for model checking the three
classes of properties, it is necessary to individually prove the
correctness of each of the three divide & conquer approaches
to leads-to, eventual, and conditional stable model checking,
come up with each algorithm, and develop each sequential
tool supporting each approach. It is also necessary to invent
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three different algorithms for the three parallel versions and
build the three parallel versions of the support tools for the
three classes of properties. This present paper focuses on
a sequential tool and a parallel technique/tool supporting
a divide & conquer approach to conditional stable model
checking. Note that from now on we use DCA2CSMC as the
abbreviation for a divide & conquer approach to conditional
stable model checking to make the paper concise.

Conditional stable properties informally say that whenever
something is true, it will eventually happen that something
else will be always true (or will be stable). The properties
can be used to express desired properties that should be
satisfied by self-stabilizing systems. As known, the term of
self-stabilization in distributed systems was first introduced
by Dijkstra [13] and became a very important concept in fault
tolerance to design a robust system because the system is
subject to transient errors at any time, such as process crashes.
A system is self-stabilizing with respect to a set of legitimate
states if starting from an arbitrary initial state, the system
guarantees to converge to a legitimate state in a finite number
of state transitions and remains in the legitimate states there-
after. A state is legitimate if starting from this state the sys-
tem satisfies its desired properties. Designing self-stabilizing
systems need much more effort than non-stabilizing ones
because transient errors can occur at any time in a system,
which often drives the system into an arbitrary state after each
transient error. Therefore, it is worth dedicating to formal ver-
ification of the conditional stable properties so as to guarantee
that self-stabilizing systems can reach a legitimate state from
an arbitrary state after a finite number of state transitions.

DCA2CSMC has been proposed to aim to ease the state
space explosion in model checking. Besides, DCA2CSMC
can be naturally parallelized when multiple model check-
ing experiments for multiple sub-spaces generated by
DCA2CSMC are basically independent and those in each
layer are totally independent. This paper presents a sequential
tool, a parallel techniquewith themaster-worker pattern in the
form of pseudo-code, and a parallel tool for DCA2CSMC.
Both the sequential and parallel tools are implemented in
Maude, a high-level programming/specification language
based on rewriting logic [14]. Maude has all the necessary
facilities, such as meta-programming and sockets, in order to
build parallel tools, such as a parallel version of a divide &
conquer approach to leads-to model checking [11] and a
parallel version ofMaude-NPA [15]. Besides, many tools also
have been developed in Maude, Maude (LTL) model checker
and Spin are comparable in terms of both running time and
memory consumption [16], and we use Maude as a formal
specification language and its model checker. Hence, we have
chosen Maude for our tool development.

Some experimental results are reported showing that the
sequential and parallel tools ease the state space explosion
and improve the running performance of model checking
to a certain scope, respectively, for all case studies used
except one that is a simple unidirectional token, namely
K -state Machines (referred to as KM), compared to the

straightforward use of Maude model checker. Each process
used in KM has an equal chance to use a privilege to take
its move, while only one process can go ahead at one time,
meaning that KM has a symmetry for each process to use the
privilege to take its move. Therefore, lots of states are likely
to be shared by many sub-state spaces at the final layer in KM
(if DCA2CSMC is used), which cannot make the best use of
software caches used in the parallel tool to avoid duplicated
jobs. The remaining protocols do not have such a symmetry.
This would be probably why the parallel tool cannot work
well for KM. Meanwhile, the sequential tool can not ease the
state space explosion for KM because the size of each sub-
state space at the final layer is likely to be still big, making
the memory consumption high. It would be better if we could
find a proper layer configuration for KM that makes the size
of each sub-state space at the final layer small enough so that
the sequential tool can be effectively used.

In summary, the present paper makes the following
contributions:

• A sequential tool to support the divide & con-
quer approach to conditional stable model checking
(DCA2CSMC) to ease the state space explosion in
model checking.

• A parallel technique with the master-worker pattern
in the form of pseudo-code and a parallel tool for
DCA2CSMC to improve the running performance of
model checking.

• Some case studies are conducted to demonstrate the
usefulness and power of the sequential and parallel tools.

• The sequential and parallel tools as well as some case
studies used in the present paper are publicly available
at https://github.com/yatiphyo/DCA2MC.

The remaining part of the paper is structured as follows.
Some preliminaries are mentioned in Sect. II. Sect. III and
Sect. IV give an overview of the sequential technique/tool
for DCA2CSMC and describe how the parallel technique/tool
of DCA2CSMC works using a simple example. Sect. V and
Sect. VI give an overview of the parallel technique/tool for
DCA2CSMC and describe how the parallel technique/tool
of DCA2CSMC works using a simple example. Experiments
are reported in Sect. VII. Some related work is mentioned in
Sect. VIII and the paper is finally concluded in Sect. IX.

II. PRELIMINARIES
AKripke structure K is 〈S, I ,T ,A,L〉 [1]. S is a set of states,
I is a set of initial states such that I ⊆ S, T is a left-total
binary relation over S such that T ⊆ S × S, A is a set of
atomic propositions, and L is a labeling function whose type
is S → 2A. L(s) is the set of atomic propositions that hold in
a given state s. (s, s′) ∈ T means that a state s directly goes
(or transits) to a state s′ and may be called a (state) transition.
A transition (s, s′) may be written as s →K s′ or s → s′.
An infinite sequence s0, . . . , si, si+1, . . . of states is called a
path (denoted π ) if si →K si+1 for i = 0, . . . , i, . . .. Some
path notations are adopted: π(i) is the ith state si (note that
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the very first state of π is the 0th state s0), π i is a postfix
si, si+1, . . ., πi is a path constructed by adding the ith state si
to a prefix s0, . . . , si at the end infinitely many times.Wemay
call si the last state of πi. We use P to denote the set of all
paths. If s0 is an initial state, we call a path computation.
We use C to denote the set of all computations. Note that
C ⊆ P by definition. Let C be the set of all computations.
We useP(K ,s) to denote the set of paths that start with s ∈ S.

For a natural number b, we use Pb(K ,s) to denote the set of all
πb such thatπ ∈ P(K ,s).We useP∞(K ,s) to be the same asP(K ,s).

Let p is a state proposition in A, an LTL formula ϕ is
defined as:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | © ϕ | ϕ1 U ϕ2

We use F to denote the set of all LTL formulas. For π ∈ P
of K and ϕ ∈ F of K , K , π |H ϕ is inductively defined as:
• K , π |H >
• K , π |H p iff p ∈ L(π (0))
• K , π |H ¬ϕ1 iff K , π 6|H ϕ1
• K , π |H ϕ1 ∧ ϕ2 iff K , π |H ϕ1 and K , π |H ϕ2
• K , π |H ©ϕ1 iff K , π1

|H ϕ1
• K , π |H ϕ1 U ϕ2 iff there exists a natural number i such
that K , π i |H ϕ2 and for all natural numbers j < i,
K , π j |H ϕ1

where ϕ1 and ϕ2 are LTL formulas. Then, K |H ϕ iff K , π |H
ϕ for each computation π ∈ C of K .© and U are called the
next temporal connective and the until temporal connective,
respectively. The other logical and temporal connectives are
defined as usual as follows: ⊥ , ¬>, ϕ1 ∨ ϕ2 , ¬(¬ϕ1 ∧
¬ϕ2), ϕ1 ⇒ ϕ2 , ¬ϕ1 ∨ ϕ2, ♦ϕ , > U ϕ,�ϕ , ¬(♦¬ϕ),
and ϕ1  ϕ2 , � (ϕ1 ⇒ ♦ϕ2). ♦, �, and  are called
the eventual (or eventually) temporal connective, the always
temporal connective, and the leads-to temporal connective,
respectively. LTL formulas that do not have any temporal
connectives at all are called state propositions in this paper.
Properties that can be expressed as ϕ1  �ϕ2, where ϕ1 and
ϕ2 are state propositions, are referred to as conditional stable
properties in this paper. A simple example is used to illustrate
the properties in Sect. 1 of our previous work [9].

A soup is a collection whose (non-empty) constructor is
associative and commutative. A pair of name and value, such
as (pc[i] :cs), is called an observable component, where pc[i]
is the name, cs is the value, and (pc[i] : cs) means that
process i is at cs. A state is formalized as a braced soup of
observable components in this paper. Transitions are written
in terms of rewrite rules. Concretely, Maude [17] is used to
specify systems/protocols as Kripke structures and Maude is
also equipped with an LTL model checker.

III. A SEQUENTIAL VERSION OF DCA2CSMC
We have proposed a divide & conquer approach to condi-
tional stable model checking (called DCA2CSMC for short
as mentioned in Sect. I) [9]. The sequential algorithm of
DCA2CSMC is shown in Algorithm 1. An infinite tree can
be constructed from each initial state of K by unfolding

FIGURE 1. Split of the reachable state space into L + 1 layers.

transitions. Multiple sub-state spaces are generated by slicing
such an infinite tree into layers, such as L + 1 layers, where
L ≥ 0, as depicted in Fig. 1. We use d(i) to denote the depth
of each layer i. d(i) is a positive natural number if i ≤ L,
while d(L + 1) = ∞. Let us assume that there exists layer
0 such that d(0) = 0. We use dl to equal d(0)+ . . .+d(l), the
depth of the bottom of layer l (or the top of layer l + 1) from
the initial state. We call states placed at depth dl beginning
states of layer l + 1 (or ending states of layer l). Note that
ending states of layer l are the same as beginning states of
layer l + 1. The depth of a state means the one (at which the
state is located) from the initial state. The depth of an ending
state of layer l (or a beginning state of layer l + 1) is di by
definition. If the depth of a state is dl , meaning that the state is
an ending state of layer l (or a beginning state of layer l+ 1),
then we let the next depth of the state mean dl+1. We use sjldl to
denote an ending state of layer l, while we use sdl to denote a
beginning state of layer l+ 1. Note that sdl equals s

jl
dl . A self-

transition, such as sjldl → sjldl , is attached to each ending state

of each non-final layer, such as sjldl . This is because transitions
should be left-total for the semantics of LTL.

If s is a beginning state of layer l for l = 1, . . . ,L, Pd(l)(K ,s)
is the set of all paths in layer l that start with s, while if s is a
beginning state of layer L + 1 (namely the final layer), P(K ,s)
is the set of all paths in layer L + 1 that start with s. For π ∈
Pd(l)(K ,s), π(d(l)) is an ending state of layer l that repeats forever

in π . For π ∈ Pd(l)(K ,s), if K , π 6|H �¬ϕ1, we call π (d(l))
a cx state of layer l. Otherwise, we call it a non-cx state.
non-cx states are stored intoNCxS, while cx states are stored
into CxS. For each layer, NCxS ′ and CxS ′ are used to collect
non-cx and cx states, respectively, and assign to NCxS and
CxS to update the non-cx and cx states being gathered for
the current layer, respectively. For state propositions ϕ1, ϕ2,
K , sd0 |H ϕ1  �ϕ2 can be verified in a layered way as
described in Algorithm 1.
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Algorithm 1 DCA2CSMC
input : K – a Kripke structure sd0 ∈ I – an initial state

of K ϕ1, ϕ2 – state propositions L – a positive
integer d – a function such that d(x) is a
positive integer for x = 1, . . . ,L

output: Success (K, sd0 |H ϕ1  �ϕ2) or
Failure (K, sd0 6|H ϕ1  �ϕ2)

1 NCxS← I
2 CxS← ∅
3 forall the l ∈ {1, . . . ,L} do
4 NCxS′← {π(d(l)) | s ∈ NCxS, π ∈ Pd(l)(K,s)}

5 CxS′← {π(d(l)) | s ∈ CxS, π ∈ Pd(l)(K,s)}

6 forall the s ∈ NCxS do
7 forall the π ∈ Pd(l)(K,s) do
8 if K, π 6|H �¬ϕ1 then
9 NCxS′← NCxS′ − {π (d(l))}

10 CxS′← CxS′ ∪ {π (d(l))}
11 NCxS← NCxS′

12 CxS← CxS′

13 forall the s ∈ NCxS do
14 forall the π ∈ P(K,s) do
15 if K, π 6|H ϕ1  �ϕ2 then
16 return Failure
17 forall the s ∈ CxS do
18 forall the π ∈ P(K,s) do
19 if K, π 6|H ♦�ϕ2 then
20 return Failure
21 return Success

Initially, NCxS and CxS are set to the set of initial states
I and an empty set at lines 1–2, respectively. For each layer
l ∈ {1, . . . ,L} and given NCxS and CxS from the previous
layer, NCxS ′ is set to the set of ending (non-cx) states at
line 4, which are obtained from the last state in each π ∈
Pd(l)(K ,s) where s ∈ NCxS, while CxS

′ is set to the set of ending
(cx) states at line 5, which are obtained from the last state in
each π ∈ Pd(l)(K ,s) where s ∈ CxS. The code fragment at lines

6–10 checks if K , π 6|H �¬ϕ1 for each π ∈ Pd(l)(K ,s) where
s ∈ NCxS in layer l. If that is the case, the last state in π is
removed from NCxS ′ and added to CxS ′. When all non-cx
and cx states in layer l have been gathered,NCxS andCxS are
updated to NCxS ′ and CxS ′ at lines 11–12, respectively. The
code fragment at lines 13–20 checks if K , π 6|H ϕ1  �ϕ2
and K , π 6|H ♦�ϕ2 for each path π ∈ P(K ,s) in layer L +
1 where s ∈ NCxS and s ∈ CxS, respectively. The algorithm
returns Failure if so and otherwise Success.
Algorithm 1 does not make a counterexample when

Failure is returned, but we could make a counterexample
as follows. For each l ∈ {0, 1, . . . ,L}, NCxSl and CxSl are
arranged. As elements of NCxSl and CxSl , pairs (s, s′) are
used, where s is a state in S or a dummy state denoted δ-stt
that is different from any state in S, s′ is a state in S, and s′ is

reachable from s if s ∈ S. The two assignments at lines 4 and
5 are to be revised as follows:

NCxS′ ←
{
(s, π(d(l)))| (s1, s) ∈ NCxSl−1, π ∈ P

d(l)
(K,s)

}
CxS′ ←

{
(s, π(d(l)))| (s1, s) ∈ CxSl−1, π ∈ P

d(l)
(K,s)

}
The condition at line 6 is to be revised as (s1, s) ∈ NCxSl−1,
the condition at line 13 is to be revised as (s1, s) ∈ NCxSL,
and the condition at line 17 is to be revised as (s1, s) ∈ CxSL.
The two assignments at lines 9 and 10 are to be revised as
follows:

NCxS′ ← NCxS′ − {(s, π(d(l)))}

CxS′ ← CxS′ ∪ {(s, π(d(l)))}

and the two assignments at lines 11 and 12 are to be revised
as follows:

NCxSl ← NCxS′

CxSl ← CxS′

NCxS0 and CxS0 are initially {(δ-stt, s) | s ∈ I} and ∅,
respectively. A cx could bemade, when Failure is returned,
by searching through NCxSL , CxSL , . . . , NCxS1, CxS1,
NCxS0, and CxS0. By this, both the sequential and parallel
tools show a counterexample when K 6|H ϕ1  �ϕ2.

IV. HOW THE SEQUENTIAL TECHNIQUE/TOOL WORKS
We use the first self-stabilizing, unidirectional token ring that
was proposed by Dijkstra, which is called K -state Machines
(KM) [13] as an example to give an overview of how the
sequential technique/tool works. The ring system KM con-
sists of N machines, numbered from 0 to N − 1, and a
parameter K , which is a natural number, such that K > N .
Each machine status is represented by a natural number S,
satisfying 0 ≤ S < K . The following notations are used for
the ith machine:
• L refers to the status of its lefthand neighbor, machine
(i− 1) mod N .

• S refers to the status of itself, machine i.
• R refers to the status of its righthand neighbor, machine
(i+ 1) mod N .

In the ring system KM, machine 0 is called the bottom
machine. For each machine, one privilege (token) is defined
in form of a Boolean function of its own status and the statuses
of its neighbors. When the Boolean function is true, we say
that the privilege is present at the machine and the machine
can take its move by changing its status. The privilege and
its corresponding move at each machine use the format as
follows:

if privilege then corresponding move fi
We then define the privilege and its corresponding move for
the bottom machine as follows:

if L = S then S := (S + 1) mod K fi
and for the other machines as follows:

if L 6= S then S := L fi
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The legitimate state is that it contains exactly one privi-
lege circulating in KM. Regardless of the initial state and
regardless of the privilege selected each time for the next
move of a machine, the ring system is guaranteed to find
itself in a legitimate state after a finite number of moves. Note
that the number of available privileges in a given state is the
number of possible state transitions derived from the state
in KM.

Let us specify the ring system KM in Maude. When there
are n machines (processes) in KM, each state in SKM is
expressed as:

{(k-states: k)(pc[0]: s0)
. . .(pc[n− 1]: sn−1)(#pc: n)}

The #pc observable component records the number of
processes participating in KM, and the pc[pi] observable
component stores the status si of the process i, which is a
natural number such that si < k . The k-states observable
component stores the natural number k . Initially, si is an
arbitrary natural number such that si < k .
In this paper, we suppose that there are four processes

participating in KM, k is 5, the statuses of four processes
are 0, 2, 2 and 0, respectively. Note that p[0] is the bottom
process. The initial state (referred to as init) is as follows:

{(k-states: 5) (pc[0]: 0) (pc[1]: 2)
(pc[2]: 2) (pc[3]: 0) (#pc: 4)}

IKM has init as one initial state.
TKM is described in terms of rewrite rules as:

crl [bottom] : {(pc[J]: L) (pc[I]: S)
(#pc: N) (k-states: K) OCs}

=> {(pc[J]: L) (pc[I]: ((S + 1) rem K ))
(#pc: N) (k-states: K) OCs}

if #enable({(pc[J]: L) (pc[I]: S) (#pc: N)
(k-states: K) OCs}) > 1

/\ I == 0 /\ J := sd(N,1) /\ L == S .

crl [other] : {(pc[J]: L) (pc[I]: S)
(#pc: N) OCs}

=> {(pc[J]: L) (pc[I]: L) (#pc: N) OCs}
if #enable({(pc[J]: L) (pc[I]: S) (#pc: N)

OCs}) > 1 /\ I =/= 0
/\ J := ((sd(I,1)) rem N) /\ L =/= S .

crl [fin] : {OCs} => {OCs}
if #enabled({OCs}) == 1 .

The names bottom, other, and fin are assigned to the
rules in the order. The first two rewrite rules specify how
to change the statuses of the bottom process and the other
processes if their privileges are true, respectively, while the
last rewrite rule specifies that when the system reaches a
legitimate state, it just stays there and does nothing. The
function #enable returns the number of available privileges
in a given state. Note that a legitimate state has exactly one
privilege. I, J, S, L, N, K are Maude variables of natural
numbers and OCs is a Maude variable of observable com-
ponent soups. sd, which stands for symmetric difference,

takes two natural numbers x and y and returns |x − y|.
Given a state formalized as {(k-states: 5)(pc[0]:

0)(pc[p1]: 2)(pc[p2]: 2)(pc[p3]: 0)(#pc: 4)},
each of the two rewrite rules bottom and other can be
applied to the term expressing the state. Rewrite rule bottom
can be applied to the term at one position and rewrite rule
other can be applied to the term at two positions. Rewrite
rule bottom can change it to the following: {(k-states
: 5)(pc[0]: 1) (pc[p1]: 2)(pc[p2]: 2)(pc[p3]:

0)(#pc: 4)}. The states reachable from init, namely
the reachable states of KM, are depicted in Fig. 2, where
(#pc: 4) is not explicitly written just for the sake of sim-
plicity. The number of the reachable states of KM is 17.

Two atomic propositions illegal and legal are con-
sidered in this paper. So, PKM has illegal and legal.
We define LKM as follows:

eq {OCs} |= illegal = #enabled({OCs}) > 1 .
eq {OCs} |= legal = #enabled({OCs}) == 1 .
eq {OCs} |= PR = false [owise] .

where OCs and PR are Maude variables whose sorts are of
observable component soups and atomic propositions. The
three equations say that if there exist more than one privilege
in a state, LKM (s) has illegal, if there exists solely one
privilege in a state, LKM (s) has legal, and otherwise LKM (s)
have neither illegal nor legal.

Maude model checker is used to verify KKM |H illegal

 � legal, namely that KM satisfies the conditional stable
property, which can be carried out by reducing the term:

modelCheck(init, illegal |-> []legal)

where _|->_ and []_ are the Maude operators that express
 and �, respectively. Maude model checker concludes that
KM satisfies the conditional stable property when there are
four processes with our initial configuration.

It is unnecessary to rely on the sequential technique/tool in
order to model check the conditional stable property, but we
employ it to outline how the sequential technique/tool works.
The reachable state space depicted in Fig. 2 is divided into
three layers as depicted in Fig. 3. Fig. 3 (a), (b), and (c) exhibit
the first, second, and third layers. 15 sub-state spaces are
made. There are some lasso loops, but none of them is long.
The greatest number of states that belong to each sub-state
space is nine, while 17 is the number of states in the entire
reachable state one. In summary, the number of states in each
sub-state space is less than the one in the entire reachable state
space; this is the core idea of DCA2CSMC to ease the state
space explosion.

For layers 1 and 2, it is necessary to change the Maude
specification of KM. We change the state as follows:

{(k-states: k)(pc[0]: s0)
. . .(pc[n− 1]: sn−1)(#pc: n)(depth: d )}

We have added one observable component called depth to
manage the information of depth. The rules are changed as
follows:
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FIGURE 2. Reachable state space of KM.

crl [bottom] : {(pc[J]: L) (pc[I]: S)
(#pc: N) (k-states: K) (depth: D) OCs}

=> {(pc[J]: L) (pc[I]: ((S + 1) rem K ))
(#pc: N) (k-states: K) (depth: (D + 1)) OCs}
if #enable({(pc[J]: L) (pc[I]: S) (#pc: N)

(k-states: K) OCs}) > 1 /\ D < Bound
/\ I == 0 /\ J := sd(N,1) /\ L == S .

crl [other] : {(pc[J]: L) (pc[I]: S)
(#pc: N) (depth: D) OCs}

=> {(pc[J]: L) (pc[I]: L) (#pc: N)
(depth: (D + 1)) OCs}

if #enable({(pc[J]: L) (pc[I]: S) (#pc: N)
OCs}) > 1 /\ I =/= 0 /\ D < Bound

/\ J := ((sd(I,1)) rem N) /\ L =/= S .

crl [fin] : {(depth: D) OCs}
=> {(depth: (D + 1)) OCs}
if #enabled({OCs}) == 1 /\ D < Bound .

crl [stutter] : {(depth: D) OCs}
=> {(depth: D) OCs} if D >= Bound .

where D is a Maude variable whose sort is natural numbers
and Bound is a Maude constant whose sort is natural num-
bers. We use 2 as Bound for the example used.

Let init0 be the state obtained from init by adding the
(depth: 0) observable component as follows:

{(k-states: 5) (pc[0]: 0) (pc[1]: 2)
(pc[2]: 2) (pc[3]: 0) (#pc: 4) (depth: 0)}

FIGURE 3. Layers 1, 2 and 3 of KM.

We are supposed to first gather all non-cx states and all cx
ones placed at depth 2 from init0. The union of non-cx and
cx states is all states placed at depth 2 reachable from init0.
We follow Algorithm 1; if a path satisfies �¬illegal, the last
state (that has the self-transition) of the path is regarded as a
non-cx state; otherwise, the last state is a cx state. A non-cx

state can become a cx state if it is found later as a cx state.
There are only six cx states in the first layer (see Fig. 3 (a)):

{(k-states: 5) (pc[0]: 1) (pc[1]: 1)
(pc[2]: 2) (pc[3]: 0) (#pc: 4) (depth: 2)}

{(k-states: 5) (pc[0]: 1) (pc[1]: 2)
(pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 2)}

{(k-states: 5) (pc[0]: 1) (pc[1]: 0)
(pc[2]: 2) (pc[3]: 0) (#pc: 4) (depth: 2)}

{(k-states: 5) (pc[0]: 0) (pc[1]: 0)
(pc[2]: 0) (pc[3]: 0) (#pc: 4) (depth: 2)}

{(k-states: 5) (pc[0]: 0) (pc[1]: 0)
(pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 2)}

{(k-states: 5) (pc[0]: 0) (pc[1]: 2)
(pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 2)}
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The six states are denoted init4, init5, init6, init7,
init8, and init9 that are utilized as the initial states for the
second layer. Bound should be updated to 4 for layer 2. For
the six initial states, we generate all states positioned at depth
4 reachable from those states for the second layer because
they are cx states.

Fig. 3 (b) shows eight states positioned at depth 4 (from
init0) in the second layer. Two states are positioned at depth
4 reachable from init4. Four states are positioned at depth
4 reachable from init6, where two states of them are also
reachable from init4. One state is positioned at depth 4
reachable from each init5, init7, init8, and init9. The
eight states are denoted init12, init13, init18, init19,
init5’, init7’, init8’, and init9’. Note that init5’,
init7’, init8’, and init9’ are the same as init5,
init7, init8, and init9 except the depth observable
component. Hence, there are actually four new states
init12, init13, init18, and init19 as follows:

{(k-states: 5) (pc[0]: 1) (pc[1]: 1)
(pc[2]: 1) (pc[3]: 0) (#pc: 4) (depth: 4)}

{(k-states: 5) (pc[0]: 1) (pc[1]: 1)
(pc[2]: 2) (pc[3]: 2) (#pc: 4) (depth: 4)}

{(k-states: 5) (pc[0]: 1) (pc[1]: 0)
(pc[2]: 0) (pc[3]: 0) (#pc: 4) (depth: 4)}

{(k-states: 5) (pc[0]: 1) (pc[1]: 0)
(pc[2]: 0) (pc[3]: 2) (#pc: 4) (depth: 4)}

We use the eight states init12, init13, init18,
init19, init5’, init7’, init8’, and init9’ fromwhich
(depth: 4) is removed as the initial states in the final layer.
The initial Maude specification is used for the final layer. The
eight model checking experiments are carried out:

modelCheck(init12, <>[] legal)
modelCheck(init13, <>[] legal)
modelCheck(init18, <>[] legal)
modelCheck(init19, <>[] legal)
modelCheck(init5’, <>[] legal)
modelCheck(init7’, <>[] legal)
modelCheck(init8’, <>[] legal)
modelCheck(init9’, <>[] legal)

Because no counterexample is found, KM satisfies the condi-
tional stable property in the case there are four machines with
our initial configuration.

We use Maude to build a sequential tool for DCA2CSMC.
Given the initial KM specification in which the conditional
stable property and the layer configuration (a positive nat-
ural number list) are written, the sequential tool automates
the model checking experiment described above and returns
Success. We intend to insert the following rule into the
formal specification of KM in order to demonstrate what
is shown by the sequential tool when a counterexample is
discovered:

rl [flaw] : {(pc[0]: 1) (pc[1]: 1)
(pc[2]: 0) (pc[3]: 2) OCs}

=> {(pc[0]: 1) (pc[1]: 1) (pc[2]: 0)
(pc[3]: 2) OCs} .

The following is shown:

Checker: Failure
Cx: counterexample({{#pc: 4~k-states: 5

(pc[0]: 0)(pc[1]: 2)(pc[2]: 2)pc[3]: 0},
’other}{{#pc: 4~k-states: 5(pc[0]: 0)
(pc[1]: 0)(pc[2]: 2)pc[3]: 0},’bottom}
{{#pc: 4~k-states: 5(pc[0]: 1)(pc[1]: 0)
(pc[2]: 2)pc[3]: 0},’other}{{#pc: 4
k-states: 5 (pc[0]: 1)(pc[1]: 0)(pc[2]: 2)
pc[3]: 2},’other}{{#pc: 4~k-states: 5
(pc[0]: 1)(pc[1]: 0)(pc[2]: 0)pc[3]: 2},
’other},{{#pc: 4~k-states: 5(pc[0]: 1)
(pc[1]: 1)(pc[2]: 0)pc[3]: 2},’flaw})

Once we get to the following state:

{(k-states: 5) (pc[0]: 1)
(pc[1]: 1) (pc[2]: 0) (pc[3]: 2) (#pc: 4)}

we will stay there forever because a self-transition can be
taken infinitely many times. We cannot, therefore, get to a
legitimate state from this one.

V. A PARALLEL VERSION OF DCA2CSMC
We use Maude to build a parallel version of DCA2CSMC.
Maude supports object-oriented systems, where objects
exchange messages to communicate with each other. Sockets
can be used in Maude to make it possible for objects residing
in a Maude instance (running as an OS process) to communi-
cate with external objects residing in another Maude instance
(running as another OS process). Object-oriented systems and
sockets are used to develop the parallel tool.
K |H ϕ1  �ϕ2 can be verified with DCA2CSMC [9]

in a layered way. DCA2CSMC categorizes the states at the
bottom of each non-final layer into non-cx states and cx

ones by verifying �¬ϕ1 for the sub-state spaces in the layer.
Meanwhile, it verifies ϕ1  �ϕ2 or ♦�ϕ2 for the sub-state
spaces in the final layer.

Each model checking problem for each sub-state space is
encapsulated as a job. A job has a state located at the begin-
ning of a layer that is considered the initial state of the model
checking problem. If the initial state of a job is a non-cx one,
the type of the job is ncx; if it is a cx one, the type of the job
is cx. Each real initial state of a given Kripke structure K is
a non-cx one and then layer 1 only has ncx jobs. Any other
layers may have both ncx and cx jobs. Once a state s located
at the beginning of layer l (= 2, . . . ,L) is a cx one, any states
located at layer l ′ (= 3, . . . ,L + 1) and reachable from s is
also a cx one. Therefore, for a cx job of any non-final layers,
it is unnecessary to conduct anymodel checking experiments.
For the final layer, ϕ1  �ϕ2 is verified for each ncx job,
while ♦�ϕ2 is verified for each cx job. If a counterexample
is found for the final layer, K |H ϕ1  �ϕ2 does not hold;
otherwise, K |H ϕ1  �ϕ2 holds. To construct a (global)
counterexample when K |H ϕ1  �ϕ2 does not hold, both
the sequential and parallel tools manage a log list for each
state sdl located at the beginning of each layer l+1. Such a list
is in the form < sdl−1 : dl > . . . < sd1 : d2 >< sd0 : d1 >,
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a list of pairs of natural numbers and states. Each element
< sdi−1 : di > consists of a state located at the beginning
of layer i and the depth of layer i. From sdl (and dl) and the
log list, we can construct a finite computation from sd0 to sdl .
When layer l is the final one and a (local) counterexample is
found for a job whose initial state is sdl , the global counterex-
ample can be constructed from the finite computation and the
local counterexample. For each real initial state sd0 of K , the
log list is nil.

Because model checking experiments are independent for
sub-state spaces in each layer, they can be carried out in
parallel. A master-worker pattern is used to build our parallel
tool. It is necessary to take load balancing of tasks tackled
by workers and communication overhead between the master
and workers into account. To this end, we use two types
of caches: one shared cache and multiple local caches. The
shared cache is utilized by the master so as to prevent the
same jobs from being delivered to workers. Each worker
utilizes one local cache in order to prevent the same jobs
from being created and supplied to the master. This is how
the communication overhead between themaster and workers
can be reduced. Map data structures are used to implement
caches. The master creates the very initial job, and workers
create all the other jobs and supply them to the master.
Two queues are utilized by the tool. One (named jobs) is
a queue of jobs, while the other (named workers) is one of
worker identifiers.Whenever both jobs and workers are not
empty, the top extracted jobs is delivered to the top extracted
from workers by the master. This way of delivering jobs to
workers contributes to the load balancing of tasks tackled by
workers.

There are three types of messages used in the tool:
job, getJob, and stop. A job message is a five tuple < s,

jtype, d, d’, log >. s is a beginning state of a layer.
jtype is either cx or non-cx. d is the depth of s. d’ is the
next depth of s. log is a log list of s. The master extracts
the top job and the top worker identifier from jobs and
workers, respectively, constructs a jobmessage from the job,
and sends the worker the message in order to deliver the job
to the worker. Workers also send the master job messages
in order to supply jobs constructed by the workers to the
master. Workers send the master getJob messages to ask the
master to deliver jobs to the workers. As a worker finds a
local counterexample in the final layer, it sends the master
a stop message so as to notify the master of it and displays
the global counterexample. When the stopmessage arrives at
the master, the master closes all connections to the workers,
displays Failure, and terminates the tool. A stop message
has no parameters, and neither does a getJob message.
Each worker is responsible for processing jobs assigned

by the master, creating new jobs, and supplying the new
jobs to the master. We suppose that a job < s, jtype,

d, d’, log > has been delivered to a worker. If s is a
beginning state of a non-final layer and jtype is cx, the
worker just gathers all ending states of the layer that are
reachable from s. All the ending states are cx states. If s is a

Algorithm 2 Delivering Jobs to Workers by a Master
input : K – a Kripke structure

sd0 ∈ I – an initial state of K
ϕ1, ϕ2 – state propositions
d1 . . . dL – a list of positive integers,
where L is a positive integer
d0 = 0, dL+1 = ∞
N – a number of workers

output: Success (K, sd0 |H ϕ1  �ϕ2) or
Failure (K, sd0 6|H ϕ1  �ϕ2)

1 NcxStates← empty; CxStates← empty;
2 next ← empty; jobs← empty; workers← empty;
3 JOB← (sd0 , ncx, d0, d1, nil);
4 enq(jobs, JOB);
5 NcxStates[d0]← NcxStates[d0] ∪ sd0 ;
6 while True do
7 for k ← 1 to N do
8 if MSG← rec(workerk ) then
9 ifMSG = getJob then
10 enq(workers,workerk )
11 else ifMSG = stop then
12 closeConnect();
13 return Failure;
14 else
15 (sdl , type, dl, dl+1, log)← MSG;
16 if type = ncx ∧ sdl /∈ NcxStates[dl] then
17 enq(next,MSG);
18 NcxStates[dl]←

NcxStates[dl] ∪ sdl ;
19 if type = cx ∧ sdl /∈ CxStates[dl] then
20 enq(next,MSG);
21 CxStates[dl]← CxStates[dl] ∪ sdl ;
22 while ¬ isEmpty(workers) ∧ ¬ isEmpty(jobs) do
23 worker ← deq(workers);
24 job← deq(jobs);
25 snd(worker, job);
26 if size(workers) = N ∧ isEmpty(jobs) then
27 jobs← filterJobs(next);
28 next ← empty;
29 if isEmpty(jobs) ∧ isEmpty(next) ∧ size(workers) =

N then
30 closeConnect();
31 return Success;

beginning state of a non-final layer and jtype is non-cx, the
worker gathers all ending states of the layer that are reachable
from s by carrying out a model checking experiment as
described. Some of the ending states are non-cx states, while
the remaining states are cx states. For each of such ending
states gathered of the layer, the worker creates a new job,
uses/updates its local cache to check whether the jobs created
have been already processed by the worker, and only sends
the unprocessed jobs to the master as job messages. If s is
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Algorithm 3 Processing Jobs With Workers
input : K – a Kripke structure

ϕ1, ϕ2 – state propositions
d1 . . . dL – a list of positive integers, where L is a positive integer
d0 = 0, dL+1 = ∞

output: a counterexample if any

1 NcxStates← empty; CxStates← empty;
2 snd(server, getJob);
3 while isOpen() do
4 if MSG← rec(server) then
5 (sdl , type, dl, dl+1, log)← MSG;
6 if type = ncx then
7 if dl+1 6= ∞ then
8 forall the π ∈ Pdl+1(K ,sdl )

do
9 sdl+1 ← π (dl+1);

10 if K , π 6|H �¬ϕ1 then
11 if sdl+1 /∈ CxStates[dl+1] then
12 JOB← (sdl+1 , cx, dl+1, dl+2, < sdl : dl+1 > log);
13 snd(server, JOB);
14 CxStates[dl+1]← CxStates[dl+1] ∪ sdl+1 ;
15 else
16 if sdl+1 /∈ NcxStates[dl+1] then
17 JOB← (sdl+1 , ncx, dl+1, dl+2, < sdl : dl+1 > log);
18 snd(server, JOB);
19 NcxStates[dl+1]← NcxStates[dl+1] ∪ sdl+1 ;
20 else
21 forall the π ∈ P(K ,sdl ) do
22 if K , π 6|H ϕ1  �ϕ2 then
23 snd(server, stop);
24 return buildCx();
25 if type = cx then
26 if dl+1 6= ∞ then
27 forall the π ∈ Pdl+1(K ,sdl )

do
28 sdl+1 ← π (dl+1);
29 if sdl+1 /∈ CxStates[dl+1] then
30 JOB← (sdl+1 , cx, dl+1, dl+2, < sdl : dl+1 > log);
31 snd(server, JOB);
32 CxStates[dl+1]← CxStates[dl+1] ∪ sdl+1 ;
33 else
34 forall the π ∈ P(K ,sdl ) do
35 if K , π 6|H ♦�ϕ2 then
36 snd(server, stop);
37 return buildCx();
38 snd(server, getJob);

a beginning state of the final layer, the worker carries out
a model checking experiment as described. Whenever the
worker finds out a local counterexample in the final layer for
the model checking experiment, it sends the master a stop
message, constructs a global counterexample, and displays
it. Whenever a worker becomes idle, it sends the master a
getJob message in order to ask the master to deliver a new

job to it if any. On the other hand, the master is mostly
responsible for delivering unprocessed jobs to workers. After
the master has distributed all jobs in each layer to workers
with the two queues, it waits until all jobs are to be processed
by workers. Meanwhile, the master receives job messages
sent by workers and temporarily stores the jobs in another
queue next. When all jobs have been processed by workers,
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the master uses/updates the shared cache to check the jobs
in next have been already processed and only saves the
unprocessed jobs in jobs. Whenever the master receives a
stop message from a worker, it closes all connections to all
workers, displays some information, such as Failure, and
terminates the tool. Whenever the master checks all model
checking problems in the final layer without finding any
counterexample, it closes all connections to all workers, dis-
plays some information, such as Success, and terminates the
tool.

The pseudo-code of job scheduling carried out by the mas-
ter is shown as Algorithm 2. The shared cache is implemented
by two map data structures: NcxStates and CxStates.
This is because there are two types of jobs: ncx and cx.
NcxStates and CxStates are used for ncx and cx jobs,
respectively. A natural number (the depth of a state) is utilized
as a key, while a set of states is utilized as a value. For
example, for a natural number (or a depth) d , NcxStates
[d] is a set of non-cx states positioned at depth d . Code
fragment 1 – 5 is the initialization part. In code fragment 7 –
21, the master receives a message from each worker and
checks what type of message it is. The master carries out
what it is supposed to do depending on the type as described.
In code fragment 22 – 25, themaster checks if neither workers
nor jobs is empty and delivers a job to a worker if so as
described. In code fragment 26 – 28, the master checks if all
jobs in the layer to be tackled currently have been processed
and carries out what it is supposed to do if so as described.
Function filterJobs uses the shared cache to delete the jobs
that have been processed from next. In code fragment 29 –
31, the master checks if all jobs in the layer (namely all
layers) have been processed and closes all connections to the
workers, returning Failure and terminating the tool, if so.
The pseudo-code of job handling carried out by each

worker is shown as Algorithm 3. Its local cache is
implemented by two map data structures NcxStates and
CxStates as the shared cache. Code fragment 1 – 2 is the ini-
tialization part. Function isOpen returns true if the connection
between the master and the worker is open; it returns false
if the connection is closed. If the connection is closed, the
worker terminates. The worker receives a job message from
the master at line 4. If the type of the job is ncx, the worker
carries out what it is supposed to do in code fragment 7 –
24 as described. Note that only the depth of the final layer is
∞. If the state encapsulated in the job is in a non-final layer,
the worker follows code fragment 8 – 19 as described. If the
state encapsulated in the job is in the final layer, the worker
follows code fragment 21 – 24 as described. Function buildCx
constructs a global counterexample as described. If cx is the
job type, the worker carries out what it is supposed to do in
code fragment 26 – 37 as described. If the state inside the job
is in a non-final layer, the worker follows code fragment 27 –
32 as described. Otherwise, the state is in the final layer,
the worker follows code fragment 34 – 37 as described.
Whenever the worker becomes idle, a getJob message is sent
to the master by the worker at line 38.

VI. HOW THE PARALLEL TECHNIQUE/TOOL WORKS
We use KM with the same layer configuration as
in Sect. IV, where only four processes participate
in KM, to outline how the parallel technique/tool
works. Readers can visit again the reachable state space
of KM in Fig. 2 and the three layers divided in
Fig. 3 (a), (b), and (c) while reading this section. The labels
of states init0, init4, init5, init6, init7, init8,
init9, init12, init13, init18, init19, init5’,
init7’, init8’, and init9’ are also preserved to denote
their actual states as in Sect. IV. For the sake of simplicity,
we use only one worker and a master in this example.

Our parallel tool can be utilized as a usual existing model
checker. A user is only supposed to provide two formal
specifications to the tool: one is a formal systems specifi-
cation and the other one is a formal property specification
under verification. A formal systems specification needs to be
revised as described, which is also automated by the parallel
tool and a user does not need to care about it. First, several
variables, such as workers, jobs, and next, are initialized
and the first job is created by the master. The job (called
job0) is (init0, ncx, 0, 2, empty). job0 is put into
jobs. init0, together with its key 2, is registered into
NcxStates of the shared cache. Some values managed by
the master are as follows:
NcxStates = 0 |-> {init0}
CxStates = empty
workers = empty
jobs = job0
next = empty

The worker sends the master a getJobmessage. On receipt
of the message, the master puts the worker identifier into
workers, extracting the top job and the top worker identifier
from jobs and workers, respectively, and sending the job
as a job message to the worker, where the job is job0 and
the worker is the one worker. The worker handles job0,
generating all non-cx states and all cx states placed at depth
2 reachable from init0. There are six states denoted init4,
init5, init6, init7, init8, and init9 (see Fig. 3 (a)).
All of them are cx states. The job (init4, cx, 2, 4, <

init0 : 2 >) is made by the worker. The job is named
job1. The worker then updates CxStates of its local cache.
job1 is sent to the master by the worker as a job message.
When the message arrives at the master, the master uses
CxStates of the shared cache to check if job1 has been pro-
cessed. Because job1 has not, the master updates CxStates.
For the other jobs made by the worker for init5, init6,
init7, init8, and init9, similar things are carried out. The
values managed by the master are as follows:
NcxStates = 0 |-> {init0}
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9}
workers = empty
jobs = empty
next = job4 | job5 | job6 | job7 |

job8 | job9
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where job4, job5, job6, job7, job8, and job9 are as
follows:

(init4, cx, 2, 4, <init0 : 2>)
(init5, cx, 2, 4, <init0 : 2>)
(init6, cx, 2, 4, <init0 : 2>)
(init7, cx, 2, 4, <init0 : 2>)
(init8, cx, 2, 4, <init0 : 2>)
(init9, cx, 2, 4, <init0 : 2>)

On the other hand, some values managed by the worker at this
moment are as follows:

NcxStates = empty
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9}

The worker completes job0 and sends the master a getJob
message for a new job being delivered to it. On receipt of
the message, the master enqueues the worker identifier into
workers. At this moment, the worker has completed gener-
ating all possible jobs for the next layer; jobs is empty and
next contains all jobs generated from the worker. We check
that there is no unnecessary job in next, and so we assign
next to jobs and then assign empty to next for the next
layer (the second layer).
job4 is the top of jobs and delivered to the worker next.

On receipt of the job, the worker handles it for layer 2.
Because init4 is a cx state, it is enough to generate all
states located at depth 4 reachable from init4. There are two
states denoted init12 and init13 (see Fig. 3 (b)), which are
two cx states. The worker then constructs jobs to send to the
master. When job4 is completed by the worker, some values
managed by the master at the moment are as follows:

NcxStates = 0 |-> {init0}
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13}

workers = empty
jobs = job5 | job6 | job7 | job8 | job9
next = job12 | job13

where job12 and job13 are as follows:

(init12, cx, 4, unbounded, log4)
(init13, cx, 4, unbounded, log4)

where log4 is <init4 : 4> <init0 : 2>. The values
managed by the worker at the moment are as follows:

NcxStates = empty
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13}

The worker sends the master a getJob message for a new job
being delivered to it. Because the top of jobs is job5, job5
is delivered to the worker. On receipt of the job, the worker
then handles job5 for layer 2. One state is positioned at depth
4 reachable from init5 denoted init5’ (see Fig. 3 (b)).
When job5 has been processed by the worker, some values
managed by the master at the moment are as follows:

NcxStates = 0 |-> {init0}
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13, init5’}

workers = empty
jobs = job6 | job7 | job8 | job9
next = job12 | job13 | job5’

where job5’ is as follows:

(init5’, cx, 4, unbounded, <init5 : 4>
<init0 : 2>)

Some values managed by the worker at the moment are as
follows:

NcxStates = empty
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13, init5’}

The worker sends the master a getJob message for a new job
being delivered to it. The top of jobs is job6 that is delivered
to the worker. On receipt of the job, the worker handles job6
for layer 2. There are four states located at depth 4 reachable
from init6 denoted init12, init13, init18, and init19
(see Fig. 3 (b)). Because CxStates of the local cache
contains init12 and init13 together with key 4, jobs are
not created for the two states. The worker creates job18 and
job19 for init18 and init19 as follows:

(init18, cx, 4, unbounded, log6)
(init19, cx, 4, unbounded, log6)

where log6 is <init6 : 4> <init0: 2>. The worker
sends the master job18 and job19 as job messages. When
the worker has processed job6, some values managed by the
master at the moment are as follows:

NcxStates = 0 |-> {init0}
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13, init5’,

init18, init19}
workers = empty
jobs = job7 | job8 | job9
next = job12 | job13 | job5’ | job18 |

job19

and some values managed by the worker at the moment are
as follows:

NcxStates = empty
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13, init5’,

init18, init19}

The worker sends the master a getJob message for a
new job being delivered to it. The worker handles job7,
job8, and job9 as it has handled job5. One state is
placed at depth 4 reachable from each init7, init8,
and init9. The three states are denoted init7’, init8’,
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and init9’. When job7, job8, and job9 have been pro-
cessed by the worker, some values managed by the master at
the moment are as follows:

NcxStates = 0 |-> {init0}
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13, init5’,

init18, init19, init7’,
init8’, init9’}

workers = empty
jobs = empty
next = job12 | job13 | job5’ | job18 |

job19 | job7’ | job8’ | job9’

where job7’, job8’, and job9’ are as follows:

(init7’, cx, 4, unbounded, <init7 : 4>
<init0 : 2>)

(init8’, cx, 4, unbounded, <init8 : 4>
<init0 : 2>)

(init9’, cx, 4, unbounded, <init9 : 4>
<init0 : 2>)

Some values managed by the worker at the moment are as
follows:

NcxStates = empty
CxStates = 2 |-> {init4, init5, init6,

init7, init8, init9},
4 |-> {init12, init13, init5’,

init18, init19, init7’,
init8’, init9’}

When the jobs have been processed by the worker, a getJob
message is sent to the master by it for a new job being deliv-
ered to it. On receipt of the message, the master enqueues the
worker identifier into workers. The worker has processed all
jobs for layer 2 at the moment, when jobs is empty and next
has all jobs created by the worker. Because no job has been
processed in next, the master sets jobs to next and next
to empty for the final layer.

There are eight jobs left in jobs at the moment denoted
job12, job13, job5’, job18, job19, job7’, job8’, and
job9’. Because the top of jobs is job12, the master delivers
job12 to theworker. On receipt of job12, theworker handles
job12 for the final layer, model checking ♦�legal instead
of illegal  �legal for the sub-state space from init12

encapsulated in job12 because the type of job12 is cx.
The worker does not find any counterexample, completes
job2, and sends the master a getJob message for a new
job being delivered to it. The master delivers the worker the
remaining jobs. On receipt of the jobs, the worker handles
the jobs as it has done for job12. The worker does not find
any counterexample, completes the jobs, and then sends the
master a getJob message for a new job being delivered to it.
Both jobs and next are empty. The master then closes the
connection to the worker, returns Success, and terminates
the tool. In summary, KM enjoys illegal  �legal when
there are four processes with our initial configuration.

VII. EXPERIMENTS
We conduct model checking experiments with (1) Maude
model checker, (2) the sequential tool, and (3) the paral-
lel tool of DCA2CSMC. Maude model checker uses the
same model checking algorithm (the explicit-state on-the-
fly LTL model checking algorithm) as SPIN [18], which is
one of the most popular model checkers for model check-
ing software systems. It has been reported that Maude
model checker and SPIN are comparable in terms of
both running time and memory consumption [19]. This
implies that whenever Maude model checker encounters
the state space explosion problem, making it impossible to
conduct model checking experiments, so do SPIN and most
existing model checkers. Therefore, it is meaningful to com-
pare our sequential and parallel tools with Maude model
checker.

We use two mutual exclusion protocols and the KM pro-
tocol as systems under model checking: Qlock, Anderson,
and KM. Qlock is an abstract version of the Dijkstra binary
semaphore. Anderson is an array-based mutual exclusion
protocol invented by Anderson [20]. We assume that each
process goes to the critical section at most once. For both
Qlock and Anderson, we revise their specifications so that
they become self-stabilizing systems. We add an observable
component abnorm that stores a Boolean value that denotes
the current state is abnormal or not. abnorm is set to true
whenever we detect that there are at least two processes
located at the critical section. abnorm can be set back to false
if the state has been recovered in which there is no process
located at the critical section detected.

Qlock for each process p can be described as follows:

‘‘Start Section’’
ss : enq(qu, p);
ws : repeat until top(qu) = p;

‘‘Critical Section’’
cs : deq(qu);

‘‘Final Section’’
fs : . . .

qu is an atomic queue of process IDs. All processes taking
part in the protocol share qu. enq, top, and deq are atomic
operations for atomic queues. qu is initially empty and each
process p is initially at ss (Start Section). Whenever p would
like to go to cs (Critical Section), it puts its ID into qu at
the end with enq and goes to ws (Waiting Section). p waits
at ws while top(qu) is not p. Whenever top(qu) becomes p,
p goes to cs. When p exits cs, it deletes the top (namely
the p’s ID) from qu with deq and goes to fs (Final Section).
If abnorm is false, process p works as abovementioned.
If abnorm is true, when process p would like to exit cs,
it gets rid of all elements from qu and goes to fs. For Qlock
experiments, the initial state is set to an illegitimate state in
which processes p2, p3, and p5 are located at cs, qu contains
only p3, the other processes are located at ss, and abnorm is
false.
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TABLE 1. Conditional stable model checking running performance by Maude model checker and the sequential tool with 2GB of memory.

TABLE 2. Conditional stable model checking running performance by Maude model checker and the sequential tool for KM with 1GB of memory.

Anderson for each process p can be described as follows:

‘‘Start Section’’
ss : pos[p] := fetch&inc%(nxt,M );
ws : repeat until a[pos[p]];

‘‘Critical Section’’
cs : a[pos[i]], a[(pos[i]+ 1)%M ] := false, true;

‘‘Final Section’’
fs : . . .

whereM is the number of processes taking part in Anderson.
nxt is a variable of natural numbers and a is an array such
that its size is M and the type of each element is Bool. nxt
and a are shared with the M processes. pos[p] is a variable
of natural numbers and local to process p. fetch&inc% is an
atomic operation. fetch&inc%(nxt,M ) increments nxt mod-
ulo M and returns the old value of nxt . x1, x2 := e1, e2; is
a concurrent assignment. Expressions e1 and e2 are evalu-
ated simultaneously (or independently), and their results are
assigned to variables x1 and x2, respectively. Each process p
is initially at ss (Start Section) and the initial value of each
variable is as: nxt = 0, a[0] = true, a[j] = false for
j = 1, . . . ,M−1, and pos[p] = 0.Whenever process pwould
like to go to cs (Critical Section), it atomically sets pos[p] to
nxt and increments nxt moduloM by fetch&inc%, moving to
ws (Waiting Section). Process p waits at ws while a[pop[p]]
is false. Whenever a[pop[p]] becomes true, p goes to cs.
When it exits cs, it assigns false and true to a[pos[p]] and
a[(pos[p]+1)%M ], respectively, moving to fs (Final Section).
When abnorm is false, process p works as abovementioned.
If abnorm is true and process p wants to go to or exit cs,
it goes to fs instead. For Anderson experiments, the initial
state is set to an illegitimate state in which nxt is 0, abnorm
is false, and for each process p, pc[p], pos[p], and a[p] are set
to ss, 0, and true, respectively.

We take three atomic propositions inCs1, inCs5, and
inAbnorm that denote whether processes p1 and p5 locate
at cs or not, and whether the current state is an abnormal
state or not, respectively. We model checked inAbnorm  

�¬ (inCs1 ∧ inCs5) for Qlock and Anderson while we
model checked illegal  � legal for KM with the
following initial state:

{(k-states: 11) (pc[0]: 0) (pc[1]: 2)
(pc[2]: 2) (pc[3]: 3) (pc[4]: 4) (pc[5]: 5)
(pc[6]: 6) (pc[7]: 7) (pc[8]: 8) (pc[9]: 0)
(#pc: 10)}

using Maude model checker, the sequential and parallel tools
of DCA2CSMC. The size and complexity of each of the
three case studies are directly proportional to the number of
processes used in each one.

A. EXPERIMENTS WITH MAUDE MODEL CHECKER AND
THE SEQUENTIAL TOOL
We conducted case studies with Maude model checker and
the sequential tool using a docker container running Ubuntu
20.04.3 LTS as a virtual machine that ran on a host machine
(an iMac) with a 4 GHz processor and 32 GB of memory.
For Qlock and Anderson experiments, we restricted to use 2
GB of memory for the virtual machine. The experimental
data are exhibited in Table 1. d1 d2 . . . dL in the layers
column says that L + 1 layers are employed and ith layer
depth is di. N/A means that the model checking experiment
made it impossible to be carried out in that it did not suffice
to employ 2 GB of memory for the model checking. Thus, the
state space explosion can be eased by the sequential tool to a
certain scope.

For KM experiments, we restricted to use only 1 GB of
memory for the virtual machine. The experimental data are
shown in Table 2. For KM with 10 processes, 11 processes
and 12 processes, both the sequential tool and Maude model
checker could complete the model checking experiments. For
KM with 13 processes, both the sequential tool and Maude
model checker could not complete the model checking exper-
iments because 1 GB of memory was not sufficient for model
checking experiments, leading to the state space explosion.
We can see that the verification time ofMaude model checker
is much smaller than that of the sequential tool. That is
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TABLE 3. Conditional stable model checking running performance by Maude model checker, the sequential tool, and the parallel tool.

FIGURE 4. Verification time with different numbers of workers.

because many states are likely to be shared by the sub-state
spaces at the final layer. Therefore, the sequential tool may
need to explore again many shared states in those sub-state
spaces at the final layer, making the running performance of
the sequential tool degrade. For KM with 13 processes, the
sequential tool also could not ease the state space explosion
because the size of each sub-state space at the final layer is
likely to be still big, making the memory consumption high.
We need to find a better layer configuration for KM with
13 processes in which the size of each sub-state space at the
final layer is small enough. This is one piece of our future
work.

B. EXPERIMENTS WITH MAUDE MODEL CHECKER, THE
SEQUENTIAL TOOL, AND THE PARALLEL TOOL
We used a MacPro computer that carries a 2.5 GHz micro-
processor with 28 cores and 1.5 TB of memory to conduct
experiments with (1)Maudemodel checker, (2) the sequential
tool, and (3) the parallel version of DCA2CSMC. We have
demonstrated above that the sequential tool can ease the state
space explosion in model checking to a certain scope with
limited memory. However, we do not restrict the memory
used in these experiments to demonstrate that the parallel tool
can increase the running performance of model checking to a
certain scope. The experimental data are shown in Table 3.

We conducted experiments for Qlock with 11 process
participants, Anderson with 6 process participants, and
KM with 10 process participants. Our sequential version
of DCA2CSMC exhibits better model checking running

performance than Maude model checker for the two mutual
exclusion protocols as shown in Table 3. Our parallel version
of DCA2CSMC is better than the sequential version from
model checking running performance for the two protocols as
shown in Table 3. The model checking running performance
achieved by the former is about 3.6 and 3.7 times faster
than the one by the latter for the two protocols, respec-
tively, where four workers were used in the parallel tool.
The model checking running performance improvement is
understandable because there are some extra costs when using
our parallel version, such as socket communication over-
heads between the master and workers. On the other hand,
Maude model checker is better than both of our sequential
and parallel versions from the running performance point of
view for KM. KM is a simple unidirectional token ring in
which each process has an equal chance to use the privilege
to change its status if the privilege is present at the process.
Meanwhile, there is only one process that can take its move
at one time. In other words, KM has a symmetry for each
process that can take its move if the privilege is present at
the process. Furthermore, the initial state used in KM gives
an equal chance to each process that can take its move at the
beginning. In addition, Fig. 2 shows the reachable state space
of KM with 2 processes used that contains some lasso loops,
although they are not long lasso loops. That implies that there
may be some lasso loops in the reachable state space of KM
with 10 processes used. Therefore, lots of sub-state space in
the final layer are then likely to share lots of states, which
makes it impossible to effectively utilize both shared and local
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caches to keep away from tackling duplicated jobs. Qlock and
Anderson do not have such a symmetry and so each process
does not have an equal chance to enter the critical section.
This would be probably why both (2) and (3) do not exhibit
better model checking running performance than (1) for KM,
although our parallel version outperforms our sequential ver-
sion when using four workers as shown in Table 3. Because it
is a commonly used practice to break any symmetries when
designing good concurrent/distributed protocols [21], both
the sequential and parallel versions of DCA2CSMC would
effectively handle well-designed concurrent/distributed self-
stabilizing systems/protocols and moreover the parallel ver-
sion would outperform the sequential version.

It is possible to increase the number of workers in a flex-
ible way when we would like to employ more computing
resources available. We conducted experiments with differ-
ent numbers of workers with the parallel tool for the three
protocols. The experimental data are shown in Table 3, and
also plotted on the graph shown in Fig. 4 as well. We can
simply see that the verification time of the protocols improves
quickly when we increase the number of workers from 4 to 8,
however, it improves slower when we increase the number of
workers from 8 to 12 and 12 to 16. Up to a certain point, the
more workers used, the busier the master needs to handle and
communicate with workers that may make the improvement
slower compared to the number of workers increased. Thus,
based on the power of the machine used to conduct model
checking experiments, wemay choose an appropriate number
of workers when using our parallel tool. When the number
of workers is 16, our parallel tool can largely improve the
running performance of the sequential version by 87%, 92%,
and 91% for Qlock, Anderson, and KM, respectively. In sum-
mary, our parallel version of DCA2CSMC has better model
checking running performance than our sequential version of
DCA2CSMC for all three protocols and than Maude model
checker for the two mutual exclusion protocols but not for the
simple token ring protocol.

VIII. RELATED WORK
A successful technique that eases the state space explo-
sion is SAT/SMT-based bounded model-checking (SAT/
SMT-BMC) [22]. Although it is possible to discover a coun-
terexample placed at a non-deep depth from each initial state,
it is in general impossible to prove that a system enjoys
desired properties. SAT/SMT-BMC has been extended so
that it is possible to prove that a system enjoys desired
properties. k-induction [23], [24] is one of such extensions
and combines mathematical induction and SAT/SMT-BMC.
SAT/SMT-BMC is used to initially tackle the bounded state
space from each initial state up to depth k . This is considered
the base case. For each sequence s0, s1, . . . , sk of states that
starts with an arbitrary state s0 in which the property to be
verified is satisfied in each state si, the following is inspected:
the property is satisfied in all successor states sk+1 of sk .
This is carried out by an SAT/SMT solver and considered the
induction step. Our technique [9] and SAT/SMT-BMC share

the basic idea that the former tackles the bounded state space
that starts with each state placed at the beginning of each non-
final layer. DCA2CSMC can be considered another extension
of BMC but never uses any solvers of SAT/SMT.

Some recent advancements of parallel model checking
algorithms for LTL are surveyed by Barnat, et al. [6]. It is nec-
essary to redesign graph search algorithms so as to make the
best use of multi-core architectures. Among parallel model
checkers based on such algorithms are DiVinE 3.0 [25], and a
multicore extension of SPIN [26]. We do not need to redesign
graph search algorithms to implement a parallel version of
DCA2CSMC and can use any existing LTLmodel checker for
it, which is an essential difference from any existing parallel
model checkers.

Inverso, et al. [27] have extended SAT/SMT-based BMC
in order to model check concurrent programs. Let u be the
unwinding (or unfolding) bound and r be the number of
round-robin schedules. A concurrent program P is first trans-
formed to an intermediate bounded program Pu by unfolding
all loops and inlining all function calls in P with u as a bound
except for those used for creating threads.Pu is next converted
into a sequential program Qu,r that simulates all behaviors
of Pu within r round-robin schedules. Qu,r is then trans-
lated into a propositional formula that can be analyzed by
a SAT/SMT solver. Analyzing such a propositional formula
with a SAT/SMT solver can be parallelized by decomposing
the formula into multiple sub-formulas, assigning these sub-
formulas to multiple instances of a SAT/SMT solver, and
tackling the sub-formulas with the multiple instances in par-
allel [28]. This approach seems to be able to deal with safety
properties, while our tools are able to deal with conditional
stable properties, a class of liveness properties.

Lerda and Sisto [29] propose distributed-memory model
checking with SPIN. Their proposed technique and ours
in the present paper share a purpose. If a systems formal
specification under verification with SPIN becomes larger
than the physical memory carried by a computer in use,
then the model checking running performance gets much
slower or even might get impossible. To address it, Lerda and
Sisto invented a way to divide the reachable state space of a
large-state systems formal specification into multiple nodes
(or computers) connected with networks. Their technique
can be used together with some optimization techniques
employed by SPIN, such as partial order reduction and bit
state hashing. Lerda and Sisto carried out some case studies
to show the effectiveness of their proposed technique. Their
distributed-memory SPIN makes it possible to handle safety
properties only, while our sequential and parallel versions of
DCA2CSMC are able to deal with conditional stable proper-
ties, a class of liveness properties.

Although a bit-state verificationmode of SPINmay be able
to detect a bug hiding in a large-state systems formal specifi-
cation that cannot be exhaustively tackled, it is more likely
to overlook a bug lurking in a larger system specification.
Holzmann, et al. have proposed Swarm Verification [30] to
alleviate the situation. Parallelism and search diversity are
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the key ideas of Swam Verification. Multiple instances of
bit-state verification use multiple different search strategies
so as to be more likely to traverse different portions of the
entire reachable state space, increase the coverage of the
entire reachable state space, and find bugs lurking in a large
system specification. Multiple instances of bit-state verifica-
tion can run in parallel. DeFrancisco, et al. [31] have imple-
mented Swarm Verification on GPUs, called Grapple. This
adoption may be able to detect a flaw hiding in a large-state
systems formal specification more quickly than the current
parallel technique/tool.

IX. CONCLUSION
We have described a sequential tool, a parallel technique
with the master-worker pattern in the form of pseudo-code,
and a parallel tool for DCA2CSMC. Both the sequential and
parallel tools have been implemented in Maude. We have
carried out some case studies showing that the sequential
and parallel tools ease the state space explosion and improve
the running performance of model checking for conditional
stable properties to a certain scope, respectively. The parallel
technique/tool exhibits better running performance than the
sequential technique/tool. As usual, however, there are sev-
eral things left to do as future work. For example, more case
studies should be carried out with the tools.

To effectively use our proposed techniques/tools, it is
necessary to make a formal systems specification so that
each sub-state space generated has a much smaller number
of states than the number of states in the whole reachable
state space of the formal systems specification. For example,
we need to get rid of any long lasso loops that may prevent
some sub-state spaces in the final layer from having a much
smaller number of states than the number of states in the
whole reachable state space of the formal systems specifica-
tion. The formal systems specifications of the self-stabilizing
versions of Qlock and Anderson utilized for the case studies
in the present paper do not have any lasso loops, which may
make the behavior of self-stabilizing protocols less exciting.
For Qlock and Anderson, we suppose that each process goes
to the critical section (cs) at most once and finally stays at the
final section (fs) forever, which prevents their formal specifi-
cations from having long lasso loops. The protocols recover
an illegitimate state to a legitimate state by basically making
processes that stay in and wait for entering csmove to fs. Such
processes will never enter cs. If it is possible to freely use
long lasso loops, we can revise the protocols such that each
process can enter cs as many times as it wants, making the
behaviors of the protocols more fascinating. It is a challenge
to efficiently deal with long lasso loops for our approach.
Therefore, we need to come up with a technique that can
handle such long lasso loops as one piece of our future work.
One possible approach to it is as follows: each long lasso loop
is divided into multiple short finite sequences of states, model
checking experiments for these finite sequences are con-
ducted and their model checking results are combined to con-
clude the model checking experiment for the long lasso loop.
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