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ABSTRACT Neuroprosthetics have demonstrated the potential to decode speech from intracranial brain
signals, and hold promise for one day returning the ability to speak to those who have lost it. However, data
in this domain is scarce, highly variable, and costly to label for supervised modeling. In order to address
these constraints, we present brain2vec, a transformer-based approach for learning feature representations
from intracranial electroencephalogram data. Brain2vec combines a self-supervised learning methodology,
neuroanatomical positional embeddings, and the contextual representations of transformers to achieve three
novelties: (1) learning from unlabeled intracranial brain signals, (2) learning from multiple participants
simultaneously, all while (3) utilizing only raw unprocessed data. To assess our approach, we use a leave-one-
participant-out validation procedure to separate brain2vec’s feature learning from the holdout participant’s
speech-related supervised classification tasks. With only two linear layers, we achieve 90% accuracy on
a canonical speech detection task, 42% accuracy on a more challenging 4-class speech-related behavior
recognition, and 53% accuracy when applied to a 10-class, few-shot word classification task. Combined with
the visualizations of unsupervised class separation in the learned features, our results evidence brain2vec’s
ability to learn highly generalized representations of neural activity without the need for labels or consistent
sensor location.

INDEX TERMS Brain–computer interface, intracranial EEG, deep learning, transformers, vector quantiza-
tion, speech modeling.

I. INTRODUCTION
Speech neuroprostheses are designed to decode and syn-
thesize speech directly from the electrical potentials of the
brain. There have been significant advances in neural speech
decoding over the past decade using intracranial recordings
such as electrocorticography (ECoG) or stereotactic EEG
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(sEEG). These include describing brain regions and mech-
anisms involved in speech, predicting words or phonemes,
translating neural signals to articulatory kinematics models,
text, or directly to speech waveforms [1], [2], [3], [4], [5], [6],
[7]. Recent efforts have progressed to real-time synthesis or
classification, and decoding of imagined speech [8], [9], [10],
[11], [12], [13].

However, due to the nature and limitations of the clin-
ical procedures commonly used to obtain research data,
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existing methods for neural speech decoding generally rely
on participant-specific models, trained on labeled experi-
ment tasks. Supervised approaches such as these are natu-
rally restrictive, supporting only one particular participant’s
sensor configuration and task-related behavior. Instead, self-
supervisedmethods with unlabeled data and explicit handling
of sensor configuration may allow for much more flexible
paradigms in which multiple participants’ data can be pooled
for learning general purpose features. Furthermore, methods
that learn without labels have broader potential applications,
including use in closed-loop online systems in which labels
are unreliable or non-existent.

The recent introduction of the transformer architecture
ushered in a new era for the deep learning field, showing
the attention mechanism to be a simple yet powerful tool for
natural language processing (NLP) and sequence to sequence
models [14]. The self-attention transformer block served as
the foundation for BERT [15] and the GPT series [16], which
solidified a trend of self-supervised learning (SSL) where
models are pretrained on a large, neutral, data corpus before
being fine-tuned on a specific task of narrower scope. More
recent vision transformers effectively demonstrate that most
data can be treated as a sequence, that self-attention performs
as well or better than convolutional neural networks, and
that computer vision models can benefit from self-supervised
pretraining like their NLP counterparts [17]. Transformers
have since been shown as a viable or superior method for
object detection, video action recognition, point cloud shape
classification, and multi-modal models [18], [19], [20], [21],
[22], [23].

Recently, several studies have explored training language
models directly from audio signals rather than text [24], [25],
[26]. The key insight of these methods is that, rather than
learning a representation in a latent space with continuous
targets, they learn from a discretized set of ‘pseudo-speech’
units. Thus, these methods essentially use clustering to learn
a self-defined lexicon rather than being constrained to map to
an externally defined set such as words, phonemes, or char-
acters. This approach is particularly appealing to speech
neuroprosthetic development because it is analogous to the
way speech is processed by humans, assigning discrete con-
ceptual meaning to physiological inputs from a persisting
audio source, which are also concepts underlying speech
production.

In this work, we present brain2vec, a sensor-level fea-
ture learning methodology that builds on recent progress
by utilizing self-supervised pretraining, vector quantization,
and spatio-temporal positional encoding for use in speech
neuroprosthetics. We adapt semi-supervised NLP techniques
to allow pooling of data across participants by re-referencing
electrode locations of different participants to a common
brain atlas before training.

The proposed framework is used to pretrain a sensor-level
feature extraction model on unlabeled data from multiple
participants. For evaluation, the pretrained model is used to
extract features for an unseen participant’s speech-related

TABLE 1. Number of implanted electrodes for each participant.

classification tasks. Importantly, the pretrained model’s
parameters are not updated to accommodate the new partic-
ipant’s data or sensor configuration, forcing the fine-tuning
classifier to rely only on the features learned from pooled
participant data. We also perform exploratory dimensionality
reduction and visualization of the learned features to illustrate
class separation for the downstream classification tasks.

Our results demonstrate that brain2vec is capable of encod-
ing rich speech representations which can be used for classi-
fying an array of disparate speech-related downstream tasks.
These results show promise for a future in which ‘‘off-the-
shelf’’ pretrained speech neuroprostheticsmodels can be used
to improve a user’s livelihood without the need for extensive
data collection and labeling.

II. STEREOTACTIC EEG DATA
To assess our method, we utilize data collected from seven
participants, with time-aligned labels of speech behavior
from an experimental protocol. This section describes our
data and how it was collected.

A. PARTICIPANTS
sEEG data were collected from 7 native English-speaking
participants being monitored as part of treatment for
intractable epilepsy at University of California San Diego
Health. The locations of sEEG electrodes were determined
solely based on the participants’ clinical needs. The number
of implanted electrodes for each participant are provided in
Table 1. The study was approved by Virginia Commonwealth
University and UCSD Health IRB.

B. ACQUISITION CONFIGURATION
Data from the sEEG electrodes (Ad-Tech Medical Instru-
ment Corporation) were recorded with a Natus Quantum
Amplifier (Natus Medical Inc.) and referenced to a pair
of subdermal needle electrodes in the scalp. The amplifier
signals were digitized at 1,024 Hz. An external microphone
recorded the audio signal, and was digitized at 44,100 Hz.
The digitized intracranial signals and microphone audio,
along with the experiment cues, were synchronized with
the Presentationr software (Version 18.0, Neurobehavioral
Systems, Inc., Berkeley, CA, www.neurobs.com).

C. DATA COLLECTION PROTOCOL
The experimental protocol is designed to investigate overt and
imagined speech processes in the brain by having participants
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FIGURE 1. Diagram of the harvard sentences experiment protocol. Detailed in section II-C.

repeat a sequence of sentences, each in a series of three
different speaking modes.

Before beginning experiment trails, the experiment
paradigm, as well as experimental icons and cues, are
explained to the participant. They are instructed to perform
the associated tasks immediately upon cue presentation -
within a 4-second interval during which the task cue is
displayed. A trial begins with a short sentence displayed on
a computer monitor while simultaneously narrated through
computer speakers. All sentence audio was less than 4 sec-
onds in length, but regardless of the length, the associated text
remains on the screen for 4 seconds. Following a 20 ms blank
screen, the participant is cued with an icon to vocalize the
sentence (i.e., overt mode), and this cue remains on the screen
for 4 seconds. Following a 20 ms blank screen, the participant
is cued for 4 seconds via icon to articulate the sentence as if
they were speaking, but without vocalizing (i.e., mouthing
mode). Finally, after a 20 ms blank screen, the participant is
cued for 4 seconds by icon to imagine speaking the sentence
without articulating or vocalizing (i.e., imaginedmode). Then
following a 20ms blank screen, the next sentence trial begins.
This protocol is illustrated in Figure 1.

The paradigm is repeated each time for a set of 50 unique
Harvard sentences, designed to be phonetically-balanced
conversational English [27]. All participants completed the
entire set of 50 sentence trials; however, only 25 sentence
trials from Participant 1 are evaluated due to a software issue
that corrupted the labeling of the other 25 sentence trials.

D. VOLUMETRIC MORPHING OF ELECTRODE LOCATIONS
TO A COMMON BRAIN ATLAS
Compared to single audio data streams commonly used for
NLP and language modeling domains, neural recordings are
commonly acquired from tens to hundreds of electrode chan-
nels. Additionally, not only is the location of these channels
relative to one another important for modeling neural pro-
cesses, but the absolute channel locations in the brain are also
important.

The 3D electrode coordinates reconstructed from CT and
MRI imaging data can not be directly compared across par-
ticipants due to anatomical brain differences. For this reason,

each participants’ electrode locations were converted from
their native brain space coordinates to corresponding loca-
tions on the MNI305 common brain atlas [28], [29]. The
mappingwas done using the Freesurfer software package [30]
and MNE-Python python package [31], where further infor-
mation on the details of the affine transformation procedure
can be found [30], [32].

While the MNI brain was selected because it is a widely
used common atlas, the critical step is converting the elec-
trodes to a common coordinate space, then any established
common atlas can be implemented. This remapping allows
sensing locations to be related across participants or even
sensor modalities (e.g. ECoG, scalp EEG, etc.), and allows
our modeling methodology to leverage the additional spatial
information when learning from many participants.

Figure 2 shows the locations of all participant electrodes
on the common brain atlas. Each electrode is represented
using a 3-dimensional vector indicating its location on the
common brain atlas. These coordinates are given in the Right-
Anterior-Superior (RAS) frame, with positive values in the
3 dimensions referring to right vs. left, anterior vs. posterior,
and superior vs inferior, respectively. The coordinate units
are in meters, and take on a range of values [−0.076 m,
0.079 m] across all dimensions. The origin is located at the
Anterior Commissure, and the negative y-axis passes through
the Posterior Commissure.

III. SELF-SUPERVISED PRETRAINING METHODOLOGY
Our primary contribution is a model architecture and pre-
training methodology for learning generalized feature repre-
sentations of brain activity, using only unlabeled sensor data
pooled from an arbitrary number of participants. We refer
to this approach as brain2vec,1 and this section describes
the underlying model, loss functions, and optimization pro-
cedure. We later show in Section IV that representations
learned by brain2vec can be used to train classifiers on an
array of labeled downstream tasks. Importantly, the brain2vec
pretraining methodology enables fine-tuning on any number
of sensors, including new configurations on unseen users.

1https://github.com/Morgan243/brain2vec
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FIGURE 2. Common atlas electrode locations for the 7 participants.

The model consists of a sensor-level feature encoder,
implemented as a convolutional neural network (CNN). The
feature encoder’s outputs are then passed to a transformer net-
work that learns a latent context vector representation of the
input sEEG signal. During the pretraining phase, the model
is tasked with reconstructing masked regions of the input sig-
nal’s latent representations, using self-supervised techniques
pioneered by language models [15], [16], [24], [33]. The
training is aided by a vector quantization module that dis-
cretizes the targets, thus guiding the network to learn hidden
units. RAS coordinates are used to learn a spatio-temporal
embedding that is added to the input of the context model.
The resulting sensor-level model can then be used for feature
extraction in a task-specific fine-tuning procedure.

A. MODEL ARCHITECTURE
The brain2vec architecture is based on the wav2vec2 audio
modeling architecture [24], but with significantmodifications
to support the modality of intracranial sensor data, including
changes to the feature encoder CNN, positional embedding
paradigm, codebook configuration, and context network size.
In this section, we first overview the input data and the
key processing steps across the model’s components. Further
details on how brain2vec differs fromwav2vec2 are described
in each subsection.

Brain2vec’s input is an unnormalized 0.5 second segment
from a single sEEG channel. The input window is first down-
sampled to 512 Hz and standardized to a zero mean and unit
variance within the half-second window. The segment is then

passed through a CNN-based feature encoder that generates
the latent representations. These latent representations are
then passed to both the Quantization Module, where they are
discretized into a codebook vector for the objective function,
as well as to the context network. The context network is a
standard transformer encoder architecture, producing context
representations from the codebook distribution. Before enter-
ing the context network, regions of context representations
across time aremasked from the context network by replacing
the context representation with a learned mask embedding.
Then, spatio-temporal positional information is embedded in
the latent representations before being passed to the context
model. The masked context representations are learned by
having to correctly choose their corresponding quantized
latent representation from a set of distractors.

The decision to use a 0.5 s window was driven primarily
by prior work, and the intuition that the majority of pertinent
information for decoding speech from neural signals will be
encapsulated in the neural activity immediately preceding
the produced speech. In [34], a speech re-synthesis task was
shown to be largely dependent on only 400 ms of neural
data centered at the corresponding 400 ms audio signal to be
reconstructed, despite the preceding and trailing 400 ms of
neural data being included in the predictive model.

1) FEATURE ENCODER NETWORK
The feature encoder network is used to reduce the dimension-
ality of the input signal before being passed to the Quantiza-
tionModule and Context Network. The encoder is therefore a
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FIGURE 3. Brain2vec pretraining architecture that learns sensor-level representations. A 0.5 s window of normalized sEEG for a single
electrode signal is passed to a CNN feature encoder producing latent representations (blue). Spatio-temporal embeddings are created
using the 3D RAS coordinates of the electrode (red). The latent representations from the feature encoder are sent to the quantization
module. The latent representations are then passed to the masking module, and then the positional embedding is added to the masked
latent representations (purple). The embedded latent representations are then passed to the context network, which is a set of
transformer blocks, which finally produce the context representations. The reconstructed context representations corresponding to the
masked latent representations are then compared to the quantized vectors using cosine similarity in a contrastive loss paradigm. Further
details of each component are in Section III.

1-D CNN, operating on the fixed length, single-channel, 0.5 s
of 512 Hz input sEEG data. The network has 5 convolution
layers, each consisting of a 1-D convolution, dropout regular-
ization with probability p = 0.25, layer normalization [35],
and a GELU activation function. The first convolutional layer
learns 128 filters with a width of 7 samples. The next two
layers reduce to 64 filters with a smaller 3 sample kernel. The
final two layers further reduce dimensionality to 32 filters
with a kernel width of 3. All layers use no padding and a
stride of 2 to reduce dimensionality. The resulting feature
encoding architecture encodes a 0.5 second window of sEEG
into 6 sequential steps of 32 channel data (32 × 6).

2) POSITIONAL EMBEDDING
The original wav2vec2 architecture utilized a grouped con-
volution relative positional embedding scheme to include
temporal position information to the network. Unlike the
single-channel audio used in the original design, there is a
need to encode the brain signals according to their spatial
locations. In order to include not only temporal but also
spatial channel information, a positional embedding scheme
was implemented that incorporates the electrode RAS coor-
dinates.

The positional embedding used in brain2vec is produced
from a learned transformation of the RAS coordinates
described in Section II-D. The first linear layer of the transfor-
mation receives the electrode’s 3-element RAS coordinates
and transforms the input to 32 hidden units. Another 32-unit
hidden layer then further transforms the features, before a
final output layer produces a 32× 6 -dimensional embedding
vector. A ‘‘Leaky’’ Rectified Linear Unit (ReLU) with neg-
ative slope equal to 0.01 is used as the non-linear transform
after each linear layer. We use a leaky ReLU, rather than a
standard ReLU, to better handle negative values of the RAS
coordinates, while still being computationally simple. The
resulting embedding vector is added to the latent represen-
tation vector before being passed to the context network.

3) QUANTIZATION MODULE
The vectors are quantized using a combination of the prod-
uct quantization [36] and Gumbel Softmax [37] techniques.
Product quantization involves creating a set of discrete vec-
tors by defining a number of codebooks G, each with a set
of codewords W . Quantization vectors are made by concate-
nating codewords sampled from each codebook. Thereby a
maximum number of quantization vectors is given by WG.
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We assign the hyperparameters G = 2 and W = 40 for a
maximum possible 1,600 vocabulary size.

Gumbel Softmax enables one-hot encoding of the quan-
tization vectors in a fully differentiable way. A vector of
G ∗ W = 80 logits are produced for a latent representation
vector which after Gumbel Softmax produce one-hot encod-
ing of a word within a group. The quantization vectors are
learned via a linear layer, ReLU, and another linear layer
which outputs the logits. A diversity loss term, discussed in
more detail in the training section, encourages diverse use
of the codebook and codewords. This prevents collapse of
the codebook, such that it uses only one or few codewords.
Details on the exploration of the effect of modulating number
of groups and words on a performance of a vector quantized
approach are examined in [38].

4) MASKING PROCEDURE
All the latent representations are quantized before the mask-
ing step in order to serve as targets for the objective function.
The same latent representations from the feature encoder that
are passed to the quantization module are also masked before
being fed into the context network.

This masking is the basis of the self-supervised learning of
the model and is implemented according to [24]. Due to our
shorter sequence dimension of only 6 elements, masking is
simplified to choosing two consecutive time steps at random.

Each masked latent representation is replaced by the same
learnable masking token vector. Overall this results in 1/3 of
latent representation vectors masked for the context network.
An example of this masking is provided in Figure 4.

FIGURE 4. Illustration of a random mask on hypothetical batch of
5 samples. A model would be required to identify the correct encoding for
each of the yellow regions depicted in the figure.

5) CONTEXT TRANSFORMER NETWORK
The context network is a transformer that follows the same
architecture as the encoding side [14], also employed by
BERT [15], which provides the in-depth details of the Trans-
former architecture. The proposed context network con-
sists of 6 transformer block layers, each with four attention
heads, 2048 feed forward units, and dropout regularization
with P = 0.25. The output of each layer is the same dimen-
sion as the latent representations fed into the network.

B. PRETRAINING
During pretraining, brain2vec learns speech activity represen-
tations from intracranial signals based on an objective func-
tion that requires it to correctly identify the true quantized
latent representation vector from a set of distractors using the
corresponding context representation vector. By using dis-
crete targets rather than continuous vector space targets, the
network is influenced towards a parsimonious set of ‘hidden
unit’ clusters which represent the underlying speech activity.

1) LOSS FUNCTIONS
The objective in the pretraining phase is achieved by balanc-
ing three loss terms. The first is the contrastive loss function.
Given a context representation vector ct for a masked time
step t , the model must choose the correct quantized vector
qt = QM (zt ), which represents the quantization of the latent
representation zt at timestep t , from a set of quantized vectors
q ∈ Q which include itself and K distractors uniformly
sampled from other masked timesteps. The loss is calculated
by first computing the cosine similarity between context rep-
resentation vector ct and quantized vectors Q. The similarity
logits are then normalized before taking the negative log of
the result for the true vector qt . All experiments presented in
this work use k = 100 during pretraining.

Lc = −log
exp(cosinesim(ct , qt )/κ∑
q∈Q exp(cosinesim(ct , q)/κ)

This contrastive loss is combined with a diversity loss
term. The diversity loss Ld is used to ensure that the use of
codewords and codebooks is diverse. The equal use of W
codewords from G codebooks is encouraged by maximizing
the entropy of averaged softmax distribution over the code-
words for each codebook pg

Ld = −
1
GW

G∑
g=1

W∑
W=1

pg,wlogpg,w

Finally, a feature penalization term Lz is included as the
L2-norm of the feature encoder’s output. This encourages
smaller features and reduces variance.

Lz =

√√√√i=N∑
i=1

|zt (i)|2

The final objective function weighs the diversity loss Ld
with α, and the L2-norm Lz with λ. Both α and λ can be
treated as model hyperparameters during pretraining to help
ensure themodel converges. All experiments presented in this
work use α = 1 and λ = 10−4 during pretraining.

L = Lc + αLd + λLz

2) OPTIMIZATION PROCEDURE
Models are pretrained using stochastic gradient descent, with
batches of 1,024 sensor windows over 100 epochs. A random
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20% of training samples, stratified at the participant-sentence
level, are set aside for cross validation at the end of each epoch
during training. The final model is taken from the epoch with
the lowest loss L on the cross validation samples. A learning
rate of 0.001 and betas of (0.5, 0.999) were used with the
Adam optimizer [39]. The learning rate is reduced by a factor
of 0.1 every 10 epochs without improvement on a validation
set drawn from the training set.

IV. EVALUATION ON CLASSIFICATION TASKS
To assess the viability of brain2vec, and the generalizability
of its learned representations, the features extracted through
the feature encoder and context network are applied to three
distinct but related downstream classification tasks. These
tasks were chosen to be relevant to different aspects of speech
decoding; however, they vary in complexity and the compo-
nents of speech being classified.

For all three classification tasks, 0.5 seconds of sEEG data
from all available electrodes is considered, with labels for the
half-second window assigned in a task-specific manner. In all
cases, classification performance is evaluated using balanced
accuracy.

The first classification task is Speech Activity Detection.
This task is the binary classification of whether a partic-
ipant is speaking or not-speaking during the half-second
window. The second task is Speech Behavior Recognition,
a multi-class problem of predicting which of 4 speech-related
behaviors is being performed: listening, speaking, mouthing,
or imagining. The third task isWord Classification, where the
model must classify which word from a reduced set is being
spoken during the window.

A. LEAVE-ONE-PARTICIPANT-OUT PRETRAINING
The scarcity of well-labeled intracranial brain data is an
important motivation for this work, and with only seven par-
ticipants, our evaluation must also confront these challenges.
We design a leave-one-participant-out pretraining evaluation
method, in which six participants of our seven are used for
pretraining and a single participant’s data is held out for
fine-tuning a downstream classifier.

For each participant, that participant’s data is excluded and
all remaining participants’ data is pooled into an unlabeled
training dataset. Thus, a unique pretrained model is generated
for each participant, one that has never seen a sample from
the patient before fine-tuning. This paradigm minimizes data
leakage in context feature learning, and ensures the model is
not simply memorizing inputs. Additionally, it is intended to
simulate the ultimate intended scenario for which a pretrained
model based on a larger data corpus is used as the initial
model for a new user and subsequently fine-tuned. Herein,
a pretrained brain2vec model refers to such a participant-
specific, leave-one-out model. All models employ the same
architecture and only differ with respect to the training data.

B. DOWNSTREAM CLASSIFICATION
The utility of learned features is assessed by optimiz-
ing parsimonious supervised classification models using

only the features extracted from brain2vec. The parame-
ters of the brain2vec model are frozen, and not updated,
to better assess practical applications where new data and
available training time are both small. We refer to these
procedures interchangeably as fine-tuning or downstream
classification.

All three downstream classification tasks follow a similar
structure in terms of architecture. Each 0.5 second window
of sEEG data is labeled for each of the three tasks, respec-
tively, as described in subsequent sections. To train the down-
stream tasks, the weights of the entire pretrained model are
fixed. For every 0.5 second window of labeled sEEG data,
every electrode belonging to a participant is passed through
the pretrained model in sequence. Every electrode generates
the context vector representation of the sEEG input. These
representations are flattened and concatenated. This vector,
containing the context representations of all electrodes of a
participant for a 0.5 window, is then provided to one 16-unit
linear layer and a final output linear layer which learns to
map to the task-specific classes. The activation function is
a leaky ReLU with a negative slope of 0.01. We use dropout
with P = 0.75 and batch normalization to help regularize the
classification optimization.

During fine-tuning, only the additional linear layers and
normalization layers are updated. Fine-tuning is performed
separately for each participant. That is, a classifier is trained
for each participant on their set of electrodes and correspond-
ing labels.

1) SPEECH ACTIVITY DETECTION
For speech activity detection, the audio data is labeled
using an energy threshold to generate binary speech/non-
speech labels for each segment. Only task segments from
the speaking region are processed for speaking labels, but
non-speaking labels are taken from any low-energy windows
in any task region. The sentence narration audio was removed
to prevent false positives in this automatic labeling process.
Windows of 0.5 s sEEG data corresponding to overt speech
are assigned a speaking label. An approximately equivalent
quantity of windows with audio below the threshold were
assigned a label of non-speaking.

2) SPEECH-RELATED BEHAVIOR RECOGNITION
The behavior recognition task labels each 0.5 s sEEGwindow
according to one of four speech-related behaviors; listen-
ing, speaking, mouthing, or imagining. The resulting 4-class
classification problem challenges the model to disambiguate
highly related activities. The experiment protocol codes the
regions with associated experimental cues that are visualized
in Figure I. Labels are assigned to the sEEG data according
to these task intervals. Each interval is 4 s in length; however,
the initial 0.5 s and the final 1.0 s of the 4-s interval is not
labeled to better ensure that the labeled data is representing
the speech-related behavior within the interval.
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FIGURE 5. Diagram of the downstream task training procedure. Given a participant’s sEEG signals, a 0.5 s window across all
electrodes is considered. The window for each single electrode, and its corresponding RAS coordinates, are passed to a brain2vec
model, producing context representations for each electrode. These representations are flattened, concatenated, then passed
through a 16-unit linear layer before finally being passed through the N-class classification output linear layer. The value of the
N-class is dependent on the task being optimized.

3) WORD CLASSIFICATION
The word classification task requires the fine-tuning model to
classify a word from a restricted set. The data collection pro-
tocol does not repeat sentences, but across all sentences, there
are a set of words that are repeated and are not stop words.
Stop words are the most common words such as articles,
prepositions, or pronouns, which are commonly excluded
when training natural language schemes. Ten such non-stop
words are selected arbitrarily for the present analysis.

Forced word alignment was performed on the audio data
to identify word start and stop times. These word start-stop
times were used to label the corresponding sEEG segments
with the associated word.

The training set consists of the sEEGwindows correspond-
ing to all 10 selected non-stop words from their first appear-
ance. For the test set, the model is given an sEEG window
from 5 of the 10 words, taken from the second appearance of
the word. The remaining second appearances of each word
are used for cross-validation during training. For example,
if the bolded training word was taken from the sentence The
fish turned on the bent hook, then the word would be tested
on sEEG segments corresponding to the subsequent sentence
He was caught, hook, line, and sinker. In this way, the word
classification task is challenged with previously unseen data.
The selection of which word’s second occurrence is included

FIGURE 6. Box plot of accuracy across participants for the 3 downstream
task. Red triangles represent the chance accuracy for each task.

in the cross-validation versus the test set is randomized for
each participant’s trial.

V. RESULTS
The performance of brain2vec is evaluated by comparing the
balanced accuracy for each of the respective classification
tasks. Figure 6 and Table 2 show the balanced accuracies
of the three tasks for each participant, the overall average
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accuracy, and the chance accuracy of the classification task.
In order to verify chance accuracy, the downstream tasks were
trained on randomly assigned labels, and these results are
included in the table.

Compared to the Speech Activity Detection and the Word
Classification task, Speech-Related Behavior Recognition
had higher inter-participant variability, and was overall closer
to chance accuracy for the task.

The Speech Activity Detection task’s average balanced
accuracy is 89.8% and it achieves the smallest variance
among the tasks. All participants were significantly above
chance accuracy of 50%, and the worst performer attained
82.7% accuracy. For comparison, in a recent speech activity
detection study using the same Harvard Sentence dataset,
logistic regression models as well as CNN models achieved
an average accuracy of 82-84% [40]. Several other studies
using intracranial signals reported results ranging between
80% - 94% accuracy [10], [41]. All of these studies used fully
supervised learning methods.

Word Classification yielded the most promising perfor-
mance of the three tasks. With only one training example of
each word from the repeated word set, the average partic-
ipant accuracy was 52.9% when tested on repeated words.
Moreover, the hold-out words were from entirely different
sentences with distinct broader contexts. As mentioned in
Section II-C, Participant 1 did not complete all 50 sentences
during the data collection experiment. They did not have the
samples required to be evaluated on the Word Classification
task, and thus are excluded from this portion of the evaluation
experiments.

A notable observation seen in Figure 6 is that, while there
were some exceptions, there was a tendency for participants
to perform consistently in comparison to other participants
across the three tasks. For example, participants 4 and 6 per-
formed in the top half for all tasks, while participants 3 and 7
performed in the bottom half.

Figure 7 shows the cross-validation loss of during pretrain-
ing for all participants. It can be observed that themodels con-
verge to generally similar losses, that is, there do not appear to
be order-of-magnitude differences. This is expected, as each
model shares approximately 6/7 of the electrode data corpus.
Nevertheless, it is confirmation of that there is some measure
of consistency in the convergence process.

The confusion matrices of downstream classification tasks
are shown in Figure 8. The Behavior Recognition task shows
that imagining was confused more often with listening and
mouthing than with speaking. Further, speakingwas confused
most often with mouthing. This observation may indicate
a closer mechanistic relationship exists between imagined
speech and listening or mouthing, than does between imag-
ined and overt speaking [42], [43], [44].

Figures 9, 10, and 11, and respectively show the
3-component t-SNE [45] of the pretrained features for each
fine-tuning task. The figures give an indication that the con-
text representations learned by brain2vec are meaningful to
each speech domain task. It is observed that, for each task,

FIGURE 7. Cross validation loss of brain2vec model over pretraining
epochs.

TABLE 2. Balanced accuracy of downstream tasks. Participant 1 did not
have a complete dataset needed for Word Classification and is therefore
omitted.

there are clear regions of separability for each of the classes.
Particularly, word classification in Figure 9 shows distinct
separation between words. This likely contributes to the
impressive performance of the word classification task given
comparatively little training data, as the context representa-
tions show clear differentiation prior to supervised training.

VI. DISCUSSION
The performance of brain2vec on the three disparate
downstream tasks showcases the generalizability of the
self-supervised features learned by the procedure. While all
tasks achieve better than chance accuracy for all participants,
in particular, the speech detection task approaches accuracies
on par with other supervised learning methods, and the word
classification task exhibits promising results using only a
small amount of labeled data.

The main objective of this analysis was to develop and
establish the efficacy of the pretraining procedure and model,
using the performance on downstream tasks as a measure
rather than an end goal. The manner in which the model
pretrains inherently makes it difficult to draw conclusions
directly from analyzing the context representations, and is
further complicated with the addition of the fine-tuning linear
layers. Thus, performance on downstream tasks is used to
draw indirect evidence of the efficacy of pretrained features.
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FIGURE 8. Confusion matrices of fine-tuning classification tasks across all participant test sets. Each row (true label) is normalized independently,
giving the portion predicted class labels across all of the true samples evaluated.

FIGURE 9. Visualization of 3 t-SNE components from the pretrained
features on an unseen users data (Pt. 7), colored by the Word
Classification fine-tuning task.

The classification tasks were purposefully selected to cover
disparate speech representations that yield a range of clas-
sification challenges. Otherwise, the selected classification
tasks are somewhat arbitrary with respect to the common
speech representation available in this particular dataset, and
the framework is designed to be agnostic to specific speech
representations.

Performance on the Speech-Related Behavior Recogni-
tion task, while comparatively exhibiting the weakest perfor-
mance, can also be considered the most challenging of the
three classification tasks. The neural circuits for perceiving
speech, and producing overt, mouthed, and imagined speech,
are highly intertwined [43], [46], [47]. Nevertheless, it is
encouraging that the context representations of the model
appear to encode some neural correlates of these behaviors.

The Word Classification task is essentially a few-shot
learner, only provided a pair of training examples (i.e. word

FIGURE 10. Visualization of 3 t-SNE components from the pretrained
features on an unseen users data (Pt. 7), colored by the Behavior
Recognition fine-tuning task.

utterances) of each class before evaluation - one for optimiza-
tion, and another for validation. In contrast, a study recently
showed results ranging from 30-60% on a similar classifica-
tion task using ECoG signals and a transformer architecture,
though in a fully supervised manner [48]. This demonstrates
the utility of the self-supervisedmethod: using only unlabeled
data, features are learned and guided into hidden, likely sub-
word, units. Then, it is posited, comparatively little data is
required to map these features to a word space.

The success of brain2vec is likely due to several factors.
The self-supervised training of latent representations with
quantized targets, while keeping the learned context repre-
sentation as continuous, is a gentle influence to learn not
fully-discrete codewords, but instead grouped clusters in the
continuous space, known as hidden units. In this way, features
are guided towards self-determined clusters, while still allow-
ing the model to fully leverage the rich context of continuous-
space features. Because of the self-supervised nature, these
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FIGURE 11. Visualization of 3 t-SNE components from the pretrained
features on an unseen users data (Pt. 7), colored by the Speech Detection
fine-tuning task.

clusters are not matched to any linguistic unit, such as words
or phonemes, and instead are self-determined by the net-
work. However, because the training data are strictly from
the speech domain, it is likely that the hidden units are con-
verging to neural versions of some, possibly combinations of,
linguistic units. This is a potential explanation as to why the
Word Classification task was successful using sparse training
data.

The projection of RAS electrode coordinates to a common
brain atlas allowed for the pooling of data from multiple par-
ticipants to provide informative absolute brain location data
of electrodes to the model. With a sufficient data corpus and
electrode coverage, this type of self-supervised model has the
potential to train a brain signal regression given neighboring
signal data.

During model development, several issues were observed
that adversely impacted training success. The objective term
weights, and λ, required exploration with small experiments
to find appropriate configurations that avoided codebook
collapse - wherein the model used few codewords or the
codewords would have little variance overall.

Under some conditions, brain2vec would fail to converge
and be maintained at a high CV loss, but this could not be
consistently replicated and never occurred with the configu-
ration presented in this work. We found large improvements
in consistency after implementing appropriate weight initial-
ization. Convolution and linear layers were initialized from
N (0., 0.02), BatchNorm parameters from N (1., 0.02) with
a bias of zero, and LayerNorm parameters are initialized
with 1.0 and zero bias. This implies a sensitivity to initial
conditions and hints at further improvement through more
sophisticated initialization schemes and complex learning
rate paradigms as explored in other language model meth-
ods [26], [38]. This is likely an attribute of the model archi-
tecture rather than the particular data.

The number of transformer blocks, the latent represen-
tation vector dimension, and other factors that determined
model complexity, impacted performance on downstream
tasks. This is likely a balance with the amount of available
data. Language models using transformer architectures often
have a ‘large’ model variant with 24 transformer blocks [24],
[25], [26]; however, these models are typically pretrained
using on the order of 60,000 hours of data, whereas the
proposed approach was effective using slightly over 1 hour
of data for pretraining.

Additional sEEG training data would allow for a deeper
model withmore transformer blocks, a longer input sequence,
or a larger embedding dimension, whichmight in turn provide
greater context and learn richer representations of multiple
speech and speech-related processes. The downstream tasks
explored here are constrained by the nature of the speech
data available. With enough data, and a sufficient depth
of network, it is conceivable for brain2vec to serve as the
backbone of an even more generalized model; one capable
of discriminating overt or imagined speech intention, then
decoding the speech from the same initial feature set.

As this work is largely an initial proof-of-concept, there
are many possibilities to extend and optimize this frame-
work. Here, a linear output layer was implemented for sim-
plicity and comparability; however, more complex decoder
paradigms, such as a GPT transformer stack may be bet-
ter suited to more complex downstream tasks. The recent
and growing corpus of publicly available data sets [49] can
be leveraged to pool data from participants across experi-
ments, and potentially across sensing paradigms, as long as
the dataset includes electrode coordinates for the positional
embedding.

VII. CONCLUSION
This work developed and evaluated brain2vec, a transformer-
based self-supervised model that learns speech-related hid-
den unit representations from unlabeled sensor-level sEEG
data. The outputs of brain2vec after pretraining are used to
fine-tune a classifier on labeled data from three disparate
downstream speech classification tasks. All tasks perform
above chance accuracy for all participants, while the speech
activity detection and word classification task performance
rival competitive supervised learning methods.
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